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Abstract
The performance of any meta-heuristic algorithm depends highly on the setting of dependent parameters of the algorithm.
Different parameter settings for an algorithmmay lead to different outcomes. An optimal parameter setting should support the
algorithm to achieve a convincing level of performance or optimality in solving a range of optimization problems. This paper
presents a novel enhancement method for the salp swarm algorithm (SSA), referred to as enhanced SSA (ESSA). In this ESSA,
the following enhancements are proposed: First, a new position updating process was proposed. Second, a new dominant
parameter different from that used in SSA was presented in ESSA. Third, a novel lifetime convergence method for tuning
the dominant parameter of ESSA using ESSA itself was presented to enhance the convergence performance of ESSA. These
enhancements to SSA were proposed in ESSA to augment its exploration and exploitation capabilities to achieve optimal
global solutions, in which the dominant parameter of ESSA is updated iteratively through the evolutionary process of ESSA so
that the positions of the search agents of ESSA are updated accordingly. These improvements on SSA through ESSA support it
to avoid premature convergence and efficiently find the global optimum solution for many real-world optimization problems.
The efficiency of ESSA was verified by testing it on several basic benchmark test functions. A comparative performance
analysis between ESSA and other meta-heuristic algorithms was performed. Statistical test methods have evidenced the
significance of the results obtained by ESSA. The efficacy of ESSA in solving real-world problems and applications is also
demonstrated with five well-known engineering design problems and two real industrial problems. The comparative results
show that ESSA imparts better performance and convergence than SSA and other meta-heuristic algorithms.

Keywords Salp swarm algorithm · Lifetime convergence scheme · Meta-heuristic · Benchmark test functions · Engineering
optimization problems
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1 Introduction

Meta-heuristic algorithms have become quite popular in
solving engineering design problems (Gandomi et al. 2013;
Wang et al. 2014), modeling of chemical processes (Sheta
et al. 2019), diagnosis of medical images (Braik et al.
2019) and many other problems (Mirjalili et al. 2017; Wang
2018). In recent years, many meta-heuristic algorithms have
been proposed and have received excellent acceptance by
researchers in the artificial intelligence community due to
their prominence in generating low-cost and robust solutions
for complex optimization and non-deterministic polynomial
problems (Mirjalili et al. 2017). The literature reviewofmeta-
heuristic algorithms reveals their efficiency and reliability

4 Department of Computer Information Systems, Al-Balqa
Applied University, Salt, Jordan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05130-0&domain=pdf
http://orcid.org/0000-0002-3727-6276


182 M. Braik et al.

in solving real-world problems in various fields of study.
Ant colony optimization (ACO) algorithm (Maniezzo 1992)
inspired by the foraging behavior of ants is very effective
in solving structural optimization problems (Luh and Lin
2009), genomics (Greene et al. 2008) and also in traffic area
control problems (Sattari et al. 2014). Particle swarm opti-
mization (PSO) is a well-known optimization algorithm that
mimics the social behavior of fish schooling or bird flocking
(Eberhart and Kennedy 1995). The performance of PSO in
solving several complex problems such as image process-
ing (Omran et al. 2006), electric power systems (AlRashidi
and El-Hawary 2008) and offshore heavy oil reservoir (Wang
and Qiu 2013) is distinctly confirmed in the literature. Salp
swarm algorithm (SSA) (Mirjalili et al. 2017) is a recently
evolved meta-heuristic algorithm, motivated by the dynamic
swarming behavior of salps while searching for food in the
oceans (Mirjalili et al. 2017). SSA has been used success-
fully to solve a large number of real-world problems in
many branches of science such as extracting the parameters
of the electrical equivalent circuit of a photovoltaic system
cell (Abbassi et al. 2019), color image segmentation (Xing
and Jia 2019), optimization of software-defined networks
(Ateya et al. 2019) and training the weights and biases of a
feed-forward neural network (FFNN) (Bairathi andGopalani
2019). Artificial bee colony (ABC) algorithm (Karaboga and
Basturk 2007), cuckoo search (CS) algorithm (Yang and Deb
2009), firefly algorithm (FA) (Yang 2009), bat algorithm
(BA) (Yang 2010a), fruit fly optimization algorithm (FOA)
(Pan 2012), gray wolf optimization (GWO) (Mirjalili et al.
2014), whale optimization algorithm (WOA) (Mirjalili and
Lewis 2016) and moth search (MS) algorithm (Wang 2018)
are some of the well-known swarm intelligence-based algo-
rithms.Manyof these algorithmshavebeenused successfully
to address many problems in several areas such as medical
diagnoses (Wang et al. 2017), process control (dos Santos
Coelho and Mariani 2012), image processing (El Aziz et al.
2017), text clustering (Rashaideh et al. 2018), feature selec-
tion and classification (Hegazy et al. 2018; Ibrahim et al.
2019) and many other applications (Mavrovouniotis et al.
2017; Ali et al. 2019).

With the development of several optimization algorithms,
it is difficult to identify which algorithm is most appropri-
ate to solve a given problem. This is due to that most of the
meta-heuristic algorithmswork on a generalized concept and
do not have domain knowledge specific to each problem (KS
and Murugan 2017). Many parameters have to be tuned for
any meta-heuristic algorithm, which can provide more flex-
ibility and robustness for an optimization algorithm, but this
process requires careful initialization (Kumar et al. 2015).
However, all meta-heuristic algorithms have their dependent
parameters, where the performance of an algorithm is largely
dependent on the values of its parameters. These algorithms’
dependent parameters may have a large influence on the

effectiveness of algorithms’ search agents in exploring and
exploiting the search space. The process of finding the best
parameter setting for an algorithm is expected to enhance the
applicability of an algorithm to solve a range of optimization
problems in various areas of science. Parameter setting prob-
lem for meta-heuristic algorithms reveals the importance of
presenting a robustmechanism that can automatically choose
the best parameter setting for an algorithm to achieve its
optimality in solving a given problem (Yang et al. 2013).
However, parameter setting control for meta-heuristic algo-
rithms is still an open problem.

Several parameter setting techniques have recently been
evolved for several meta-heuristic algorithms as a part
of enhancing optimization algorithms. They tend to show
significantly improved performance compared to their meta-
heuristic algorithms’ counterparts in solving benchmark
functions or particular optimizationproblems.Many research-
ers first identified the parameters’ values of meta-heuristics
in solving an optimization problem based on trial and
error paradigm (Fallahi et al. 2014; Jain et al. 2019). For
instance, Dobslaw (2010) used an automated Design of
Experiment (DoE) framework to identify sensible initial
parameter settings for problem instances for various meta-
heuristic algorithms such as PSOandACO.Also, a parameter
settingmethod forACObased onDoEwas presented to solve
7 traveling salesman problem instances (Fallahi et al. 2014),
where different solutions were obtained for the same prob-
lem using different parameter settings. Geem and Sim (2010)
proposed a parameter-setting-free (PSF) technique to find
the best parameter setting for the harmony search (HS) algo-
rithm. Khadwilard et al. (2012) investigated the performance
of FA for solving a job shop scheduling problem with vari-
ous parameter settings. A method for self-tuning algorithms
so that an algorithm to be tuned can be used to automati-
cally tune its parameters was presented by Yang et al. (2013).
They used FA to tune itself, where the authors claimed that
this method of self-tuning algorithm worked well. Using an
upper-level meta-heuristic to decide the most appropriate set
of parameters for a low-level meta-heuristic was presented
in Crawford et al. (2013). Crawford et al. (2013) applied a
genetic algorithm (GA) as an upper-level meta-heuristic to
optimize the parameter values of ACO and scatter search
meta-heuristics for solving a particular problem. The idea is
to transfer the parameter setting effort of one algorithm to
another algorithm.

1.1 SSA challenges

The parameter setting for the dominant parameter of SSA is
the foremost problem of SSA, where inappropriate values
for the factors of this parameter may drive SSA to stag-
nate in local optima. Another problem of SSA is that it
does not explicitly keep track of its best positions in for-
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mer generations, which bounds its exploitation ability and
leads to early convergence in some basic benchmark func-
tions. Even though global and local search capabilities of
SSA are somewhat convincing of randomization behavior
and dynamic swarming behavior of salps, these search capa-
bilities are sometimes limited which causes the solutions to
get fall into local optima in some optimization problems.

To overcome these flaws, many researchers have devel-
oped hybridized versions of SSA with other algorithms to
improve performance compared to their original counter-
parts. For example, Sayed et al. (2018) employed a hybrid
approach between Chaos theory and SSA (CSSA) to solve
a set of basic benchmark functions. The obtained results
showed that CSSA can improve the convergence rate for
SSA. Hegazy et al. (2018) proposed an improved salp swarm
algorithm (ISSA) by controlling the parameters of SSA using
the DoE framework to enhance the exploration process of
SSA for solving feature selection problems. Ibrahim et al.
(2019) proposed a hybrid approach between SSA and PSO
(SSAPSO) to solve feature selection problems on datasets
obtained from the UCI machine learning repository. Ali
et al. (2019) proposed a hybrid approach between SSA
and weighted L1-norm optimization to design 2nd to 4th
wideband infinite impulse response (IIR) digital differen-
tiators (DDs). This hybridization approach was presented
to enhance the exploration of SSA at the initial stages and
exploitation at later stages by iteration-level hybridization
process to get the global optimum solution. However, these
techniques proposed for enhancing the performance of SSA
are either very preliminary or computationally complex and
require a relatively large computational cost.

From the literature, SSA is a promising optimization algo-
rithm with room for possible improvement and employment
in various disciplinary areas. For example, there is no proper
discussion about the performance of SSA regarding its tun-
ing parameters.Also,most applications of SSAon real-world
problems have not explored the proper parameter settings of
SSA. Finally, how do we control the exploration process of
SSA up to the extent that SSA does not become so slow to
converge? Therefore, a more reliable and computationally
efficient approach to enhance SSA is required, but with the
simplicity and speed of SSA. This is the motivation behind
this study, in which a novel enhancement to SSA is proposed
as given below.

1.2 Motivations of the proposed work

In this paper, to overcome the above shortcomings of SSA,
we propose a novel lifetime convergence scheme for SSA,
referred to as enhanced SSA (ESSA), to reinforce the explo-
ration and exploitation capabilities of SSA. The proposed
ESSA works in two stages: In the first stage, a new position
updating mechanism is proposed to control the movement of

salps in the search space. In this process, the salps that store
the coordinates of the best positions that have achieved so
far in previous generations are incorporated into the updating
position process. In the next stage, a new dominant parameter
different from that used in SSA is proposed in ESSA. Then,
an innovative methodology to automatically self-tuning this
dominant parameter is proposed. This is the main goal of this
work, where a novel lifetime convergence process is incor-
porated with the proposed ESSA in a self-tuning scheme
to ensure the ability of exploration at the initial iterations
and the capacity of exploitation at the later iterations of the
evolutionary process of ESSA. These improvements made
to SSA assist the salps to explore different promising areas
in the deep ocean and exploit each search area to find food
sources. Further, they shall provide great potential for the
salps to avoid stagnation in local optima and help them to
move toward the global optimum solution with increased
precision.

1.3 Contributions

The contribution of this work are as follows:

– Proposing a new position updating process for SSA,
referred to as ESSA, that could improve the swarming
behavior of the salps.

– Integrating a new lifetime convergence scheme with
ESSA, which can be updated at each iteration loop of
ESSA to reach optimal convergence. This is an inno-
vation process where ESSA is used to tune itself. It is
anticipated that this process will ultimately increase the
exploration and exploitation abilities of ESSA to obtain
the global optimum (i.e., food), rapidly and potentially
efficiently and

– The performance of ESSA is compared with other state-
of-the-art meta-heuristic algorithms on basic benchmark
functions and several computational engineering design
problems commonly used bymeta-heuristic optimization
algorithms in the literature.

In Sect. 2, the original SSA is described in detail. Section 3
then presents the proposed ESSA and provides a description
of the lifetime convergence process proposed. The evalua-
tion, convergence and statistical test results are presented in
Sect. 4. Section 5 presents the results of ESSA on engineer-
ing design problems compared to other algorithms. Section 6
then presents the results of ESSA on modeling industrial
problems. Section 7 presents an analysis and discussion of
the obtained results with concluding comments and future
scope in Sect. 8.
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2 Basics of SSA

Salp swarm algorithm is a new meta-heuristic algorithm
inspired by the unique and superior behavior of salps while
searching for food in deep ocean (Mirjalili et al. 2017). For-
aging behavior of salps is characterized by splitting the salp
chain into a leader and followers that move toward food
sources into deep ocean. That is, the first position in the chain
is for the leader, while the remaining positions in the chain
are for the followers. The leader guides the followers while
searching for food sources, denoted by F . For n salps in a d-
dimensional search space, the position of all salps is defined
by a matrix xdn . Consider population of salps of size n, the
position of the i th salp in SSA can be given as shown in
Eq. (1).

xi =
(
x1i , x

2
i , . . . , x

k
i , . . . , x

d−1
i , xdi

)
(1)

where i represents the i th salp in the population of SSA, d
stands for the dimension of the i th salp and xki corresponds to
the position of the i th salp in the kth dimension of the search
space. Equation (2) can be used to assign the initial position
of each salp in the salp chain.

xi = ubk + r × (ubk − lbk) (2)

where lbk and ubk are the lower and upper bounds of the i th
salp in the kth dimension, respectively, and r is a randomly
generated number in the range from 0 to 1.

The position of the leader salp at the first position in the
kth dimension, xk1 , in the salp chain is updated according to
Eq. (3) (Mirjalili et al. 2017).

xk1 =
{
Fk + c1[(ubk − lbk)c2 + lbk] c3 ≥ 0.5

Fk − c1[(ubk − lbk)c2 + lbk] c3 < 0.5
(3)

where Fk identifies the food source position in the kth dimen-
sion, ubk denotes the upper bound of the kth dimension, lbk

denotes the lower bound of the kth dimension, and c2 and
c3 are random numbers generated uniformly in the interval
from 0 to 1.

Equation (3) states that the leader in SSA only updates
its location in regard to the source of food F . The c2 and
c3 parameters decree if the following position of the salp
approach ∞ or −∞ with the next movement. The c1 param-
eter is defined as shown in Eq. (4) (Mirjalili et al. 2017).

c1 = 2e−( 4lL )2 (4)

where l and L identify the current iteration and the maxi-
mum number of iterations, respectively. The c1 parameter is
the leading and dominant parameter in SSA, as it creates a
balance between exploration and exploitation of the search

space. The position of the followers is updated according to
Eq. (5).

xki = 1

2
(xk1 + xk−1

i ) (5)

where i ≥ 2, xki and xk−1
i stand for the positions of the i th

follower salp in the kth and k−1th dimensions, respectively,
and xk1 represents the position of the leader salp in the kth
dimension.

The fitness function is evaluated at each iteration within
the evolutionary process loop of SSA. The position updating
processes of the leader and followers are continued until the
stopping condition is reached. The basic steps of SSA can
be described by the iterative procedural steps illustrated in
Algorithm 1.

Algorithm 1: A pseudocode of the basic SSA.

1

1: Initialize the population of salps xi (i = 1, 2, . . . , n)

2: while (termination condition is not met) do
3: Find the fitness value of each search salp
4: F = the source of food that the salps search for
5: Update the dominant parameter c1 in SSA using Eq. (3)
6: for each salp or referred to as xi do
7: if (i == 1) then
8: Update the leader’s position using Eq. (3)
9: else
10: Update the positions of the followers using Eq. (5)
11: end if
12: end for
13: Check the positions of salps according to ub and lb bounds of

problem variables.
14: end while
15: Return the search agent that found the food source F

As shown in Algorithm 1, if any of the salps moves out
of the search area, it will be returned to the boundaries based
upon the simulated steps of SSA. All the steps of SSA in
Algorithm1 except the initialization step are executed repeat-
edly at each loop until the termination condition is met. It is
observed that the food source, F , is updated throughout the
evolutionary process of SSA since it is very likely that the
salp chainwill find a better solution by exploring and exploit-
ing the surrounding environment. The leader and followers
can move toward the global optimum throughout iterations.

3 Proposed ESSA

This section details the proposed position updating process
for SSA. Then, it explains the proposed self-tuning method
applied to improve parameter setting and convergence pro-
cess for the proposed algorithm.
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3.1 Proposedmathematical model for ESSA

In SSA and ESSA, the position of the food source needs
to be updated iteratively. The position of the leader and the
accompanying salps can be updated at dimension k as given
below:

xki,l+1 = Fk + �x (6)

where�x represents the new update and xki,l+1 stands for the
position of the i th salp at iteration l + 1 at dimension k.

The term �x needs to be chosen carefully to achieve two
essential aspects: exploration and exploitation of the search
space. Further, this term should support the convergence path
of the search agents (i.e., salps) toward the food source. Tun-
ing �x is a significant matter that has a foremost impact on
the overall performance of ESSA. This term plays a vital
role in exploring the search space by helping the individu-
als of ESSA to move efficiently to the food. Therefore, it is
useful to support updating this term with a lifetime conver-
gence mechanism to achieve a proper convergence process
and keep the exploration rate high throughout iterations.

In this work, �x was presented as a function of a lifetime
parameter, c1, as shown in Eq. (7).

xl+1 = f (F,�x)

�x = f (xl , c1, ub, lb, c2) (7)

where F represents the position of the food source, xl repre-
sents the current solution to a given problem at iteration l, c2
is a randomly generated number in the range from 0 to 1 and
f is a nonlinear mapping function from a given solution, xl ,
to a new solution xl+1.

In the position updating process of ESSA in Eq. (7), ESSA
tends to generate a new solution xl+1 at iteration l + 1 for
a given problem that is better than the current solution xl
at iteration l. In ESSA, the positions of the salp leader and
its accompanying salps are updated with a mathematical for-
mula different from that used in SSA. The updatemechanism
of salps in ESSA is given in Eq. (8).

xki,l+1 =
{
Fk + c1xki,l

[(
ubk − lbk

)
c2 + lbk

]
c3 ≥ 0.5

Fk − c1xki,l
[(
ubk − lbk

)
c2 + lbk

]
c3 < 0.5

(8)

where i ≤ n/2 indicates the leader of the salp chain and the
accompanying salps of the leader, xki,l+1 and x

k
i,l are the next

and current positions of the salp leader and its accompanying
salps at iterations l + 1 and l, respectively, the parameter c1
was used to dominate the movement of salps of ESSA and is
reformulated in ESSA as shown below:

c1 = λ1e
K

K = −λ2
√

λ3 × l (9)

where the coefficients λ1, λ2 and λ3 are used to update c1 at
each iteration loop of ESSA.

In ESSA, the position of the followers, representing the
i > n/2 salps, are automatically updated using Eq. (5). The
positions of the population of salps are updated iteratively
with the help of the proposed lifetime convergence process.
This process is used to control the parameter c1 through the
evolutionary process of ESSA throughout iterations. This
parameter consists of three coefficients, λ1, λ2 and λ3, that
are needed to update iteratively to automatically tune c1 using
ESSA itself.

These three coefficients λ1, λ2 and λ3 are proposed to
provide a proper setting for c1, where the proposed lifetime
convergence process can empower the salp chain to explore
more search space and exploit each promising area while
searching for food sources. This is to reach an effective con-
vergence process for ESSA, which can further improve the
performance ofESSA in solving optimization problems. This
proposed parameter setting method is described below.

3.2 Parameter setting-based ESSA

The proposed ESSA was used to tune the coefficients of the
parameter c1 using itself. This process is referred to as a self-
tuning method. Mathematically speaking, we can describe
the mathematical model of ESSA as:

xki,l+1 = f
(
F, xki,l ,p, ub, lb, c2

)
(10)

where the parameter vector p = (λ1, λ2, λ3). As the parame-
ter vectorp is the target of the proposed self-tuning parameter
method, the representation formula shown in Eq. (10) can be
reduced to:

xki,l+1 = f
(
xki,l ,p

)
(11)

It is known that there is a global optimum, fmin(x), for
each optimization problem to be optimized. This optimality
depends on both ESSA itself and the optimization problem,
φ, to be addressed. That is, the optimality to be realized is to
maximize the performance of:

ζ = f (φ,p) (12)

This optimality is then denoted as:

ζ∗ = f∗(φ,p∗) (13)

where the parameter p∗ is the optimal parameter setting for
c1.
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For an optimization problem, the goal is to find the global
optima f∗ for a function f (x) in a d-dimensional search
space. That is, to minimize the function:

f (x) = (x1, x2, . . . , xd) (14)

To optimize a problem, there is a need to find fmin which
may be close to the actual global optimum f∗. For a predeter-
mined tolerance ρ, this may require Lρ iterations to realize
| fmin − f∗| ≤ ρ. Obviously, Lρ will largely depend on both
the problem objective and the coefficients λ1, λ2 and λ3 of
vector p that can be used to tune c1.

The aim of this self-tuning method is to find p∗ in order
to achieve the best setting for c1 with the minimum number
of iterations Lρ . This idea could be addressed as a multi-
objective optimization problemwith two objectives: The first
objective is for the given problem,φ, and the second objective
is for the number of iterations, Lρ . This parameter tuning
method can be written as follows.

Minimize f (x)

Minimize Lρ = ESSA( f (x),p) (15)

where Lρ is the number of iterations carried out to achieve
a pre-identified tolerance ρ so that the solution fmin is
close enough to the true global solution f∗, respecting that
| fmin − f∗| ≤ ρ

This means that for tolerance ρ, there will be a pool of
best parameter settings with a minimum Lρ . But since ρ is
usually given, the normal way to solve this problem is to
use the so-called λ1, λ2 and λ3-constraints or ρ-constraint
method. So, for a given ρ ≥ 0, we can change one of the
targets (i.e., f (x)) into a constraint, so that Eq. (16) becomes
a single-objective optimization problem with a constraint as
shown in Eq. (16).

Minimize Lρ = ESSA( f (x),p) (16)

Subject to:

f (x) ≤ ρ (17)

Ideally suited, the vector p∗ must be adequately robust,
where any slight variation inp∗ should not significantly affect
the accuracy of ESSA in solving various types of problems.
This implies that p∗ should fall into a flat range, not at a sharp
peak in the parameter landscape.

For ESSA to converge properly, we employed exponen-
tial formulas for λ1, λ2 and λ3 similar to that used for c1 in
Eq. (4), as shown in Eqs. (18), (19) and (20), respectively.

λ1 = θ1e
−( l

L )2 , θ1 ∈ (1, 10) (18)

λ2 = θ2e
−( l

L )2 θ2 ∈ (0.25, 2) (19)

λ3 = θ3e
−( l

L )2 θ3 ∈ (1, 3) (20)

where the parameters to be tuned in this work become θ1, θ2
and θ3, where the parameters λ1, λ2 and λ3 can be obtained
from Eqs. (18), (19) and (20), respectively, and then c1 using
Eq. (9).

3.3 Time complexity of ESSA

The computational complexity of ESSA can be given as:

O(v(L(sd + cs + ms2))) (21)

where v represents the number of runs, L is the number of
iterations, s displays the number of solutions, d shows the
number of variables of the optimization problem (i.e., dimen-
sion), c denotes the cost of the objective function andm stands
for the number of objectives.

3.4 Space complexity of ESSA

The space complexity of ESSA in terms of thememory space
depends on the parameters of both the search agents and the
dimension of the given problem. This identifies the amount
of space that ESSA needs during the initialization process.
Hence, the space complexity of ESSA can be defined as:

O(sd) (22)

ESSA also requires additional space for other parameters
such as λ1, λ2, λ3, p and c1, but this extra space is not critical,
and therefore, the space complexity for ESSA remainswithin
the range given in Eq. (22).

The parameters in Eq. (21) have an effect on the speed of
ESSA while searching for the global optimal solution. The
search time to find the global optimum increases as the val-
ues for these parameters increase. The number of iterations
and search agents required to satisfactorily find the global
solution depends on the complexity of the given problem.
Therefore, the values of these parameters should be chosen
carefully to precisely solve the problem.

3.5 Analysis of ESSA

The parameters λ1, λ2 and λ3 in Eq. (9) were tuned through
Eqs. (18), (19) and (20), respectively. These values were iter-
atively updated by a self-tuning method-based ESSA itself
to reach the optimality, so that c1 can promote the explo-
ration and exploitation of ESSA, where the global minimum
f∗ can be obtained. The main procedures of ESSA can be
summarized by the iterative steps described in Algorithm 2.
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Algorithm 2: A pseudocode of ESSA.

1

1: Initialize the population of n salps xi (i = 1, 2, . . . , n) with con-
sideration of ub and lb bounds for the problem’s variables

2: L ← Maximum number of iterations
3: l ← Current iteration
4: ρ ← A predetermined tolerance
5: p ← (λ1, λ2, λ3)
6: Lρ( f (x),p)) ← Objective function for ESSA
7: f (x) ← Objective function for the problem
8: f ← Fitness solution of the population
9: Evaluate the fitness value of each salp in the initial population
10: while (l < L OR fmin > ρ) do
11: Computer the fitness of each search agent
12: F = the best search salp
13: Update the parameters λ1, λ2 and λ3 of the vector p using

Eqs. (18), (19) and (20), respectively.
14: Update the essential parameter c1 using Eq. (9)
15: for each salp (i .e., xi ) do
16: if (i ≤ n/2) then
17: Update the position of the leading salps using Eq. (8)
18: end if
19: if (i > n/2 AND i ≤ n) then
20: Update the position of the follower salps using Eq. (5)
21: end if
22: end for
23: Modify the salp positions based on ub and lb limits
24: Evaluate and find the fitness value f for each search agent

(i.e., salp)
25: Solve the objective function min Lρ( f (x),p)

26: Find the optimality solution fmin within ρ

27: l = l + 1
28: end while
29: Obtain the number of iterations Lρ conducted to find fmin
30: Obtain the best parameter setting p∗ (i.e., best values

for λ1, λ2, λ3)
31: Return the best search salp F

In Algorithm 2, ESSA first initializes the population of
salps concerning the upper and lower bounds of the problem
variables. Then this algorithm computes the objective value
for each salp and updates the parameters λ1, λ2 and λ3 using
Eqs. (18), (19) and (20), respectively. The objective value and
these parameters are updated inside the evolutionary process
of ESSA. These parameters need to decrease gradually in
terms of θ1, θ2 and θ3, respectively. These parameters are
necessary to update the vector p. The next step is to use
p to update the parameter c1 using Eq. (9) and update the
position of the leader and followers using Eqs. (8) and (5),
respectively. This process is repeated at each iteration loop
of ESSA, allowing ESSA to update this parameter by ESSA
itself. Essentially, this self-tuning parameter method-based
ESSA achieves two goals at once: finding the best setting
for the parameter c1 and finding the optimal objective value.
The food source and position of the leader and followers will
be updated during the optimization process because the salp
chain is very probably to pursue a better solution by exploring
and exploiting the surrounding area. The imitations of salps’
behavior in Algorithm 2 show that the salp chain movement

modeled in the proposed ESSA can explore and exploit the
area around both stationary andmoving food sources. So, the
salp chain has the potency to move toward the global opti-
mum throughout iterations. Based on the above illustration
of the strengths of the proposed ESSA, it is expected to be
effective in solving optimization problems.

4 Experimental results and discussion

Many evaluation experiments were conducted in this section
to clarify the theoretical assertions discussed the proposed
ESSA in the previous section.

1. First, twenty-three standard benchmark functions are
used to evaluate the performance of the proposed algo-
rithm.

2. Second, qualitative results are obtained and presented to
assess the general efficacy of the proposed ESSA in opti-
mizing a collective set of benchmark test functions.

3. Third, the efficiency of the proposed ESSA is compared
with the original SSA and other compelling meta-
heuristic algorithms.

4. Fourth, convergence curves are provided to substantiate
the accuracy and reliability levels of ESSA compared to
SSA and other algorithms.

4.1 Benchmark test functions

It is always beneficial to use a set of standard testbeds with
different characteristics to conveniently and confidently test
the performance of any new algorithm on different bench-
mark functions and compare it with other algorithms. The
diversity of test functions allows observing and testing the
ability of any new algorithm from different perspectives.

A set of twenty-three basic benchmark functions are used
to demonstrate the efficiency of the proposed algorithm com-
pared to the standard SSA and other existing algorithms
in the literature. These functions can be grouped into three
main categories: unimodal (Dhiman and Kumar 2017), mul-
timodal (Mirjalili 2015) and fixed-dimension multimodal
(Dhiman and Kumar 2017). These functions are mathemat-
ically described in “Appendix A.” A detailed description of
the characteristics of the unimodal functions, (F1–F7), multi-
modal functions (F8–F13) and fixed-dimension multimodal
functions (F14–F23) is presented in Table 14, where Dim
indicates the dimension of the function space, range stands
for the search space limits of the function and fmin indicates
the best-reported value.

Theunimodal test functions haveonly oneglobal optimum
with no local optima. These functions are highly suitable to
explore the convergence behavior and exploitative efficiency
of the proposed algorithm. Multimodal and fixed-dimension
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Fig. 1 Parameter space of the unimodal benchmark functions

Fig. 2 Parameter space of the multimodal benchmark functions

multimodal test functions face the existence of several local
optimum solutions andmore than one global optimum.These
functions are very appropriate to verify local optimum avoid-
ance and study the explorative behavior of the proposed
algorithm. All of these benchmark functions represent min-
imization problems.

Figures 1, 2 and 3 show the landscapes of unimodal,
multimodal and fixed-dimension multimodal benchmark
functions in two-dimensional versions, respectively.

To verify the accuracy of the proposed ESSA, its results
on the functions described in “Appendix A” are compared to
the results of the standard SSA (Mirjalili et al. 2017) and the

results of six well-known algorithms: moth-flame optimiza-
tion (MFO) (Mirjalili 2015), multi-verse Optimizer (MVO)
(Mirjalili et al. 2016), sine–cosine algorithm (SCA) (Mir-
jalili 2016), gravitational search algorithm (GSA) (Rashedi
et al. 2009), GA (Bonabeau et al. 1999) and HS (Geem et al.
2001). The parameter settings of these algorithms are given
in the following subsection.

4.2 Experimental setup

The parameter settings of the proposed ESSA and other algo-
rithms such as SSA,MFO,MVO, SCA,GSA,GAandHS are
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Fig. 3 Parameter space of the fixed-dimension multimodal benchmark functions

tabulated in Table 1. The parameter settings given in Table 1
are set according to the literature.

The number of search agents and the maximum number
of iterations of ESSA and each algorithm is set to 1000 and
30, respectively. The stopping criterion for each algorithm is
set according to the maximum number of iterations except
for ESSA that is also considered a tolerance threshold.

In the proposed ESSA, we used the same initialization
procedure as the other comparative algorithms. In this sense,
the parameter settings for ESSA concerning the number of
search agents and a maximum number of iterations are sim-
ilar to each algorithm and are similar to what was reported
in the literature. For other control parameters of each algo-
rithm, the values in the latest version of each algorithm are
employed to ensure the best performance. For instance, each
algorithm has its control parameters and each algorithm is
generally distinguished based on its solution update strategy,
but these parameter settings are important to be the same to
provide a fair comparison between ESSA and other algo-
rithms.

4.3 Performance comparison

The mean and standard deviation (STD) measures were used
to compare the performance of ESSA to those of the stan-

dard SSA and other optimization algorithms on different
benchmark functions.Eachof these algorithms is run30 inde-
pendent times on each test function, to compute meaningful
statistics. Each run conducts 1000 times of iterations. The
mean and STD results are computed at the last iteration of
each algorithm on each test function to get the optimal solu-
tion and provide a fair comparison among all comparative
algorithms.

4.3.1 Evaluation of unimodal functions

The functions F1–F7 are unimodal and allow algorithms
to assess their exploitation capability. The mean and STD
results obtained by ESSA, the standard SSA and other meta-
heuristic algorithms on unimodal Functions F1–F7 are given
in Table 2. The best results are shown in bold throughout the
paper.

Table 2 shows that the proposed ESSA is capable of deliv-
ering encouraging results, and outperforms the standard SSA
and other algorithms in all of the unimodal functions. The
better average values on these functions reveal that ESSA
performs better than other algorithms on average and that
the STD results reveal that this superiority is stable. Due to
the existence of a single optimum in the unimodal functions,
these functions can benchmark exploitation and convergence
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Table 1 Parameter setup of the
compared algorithms

Algorithm Parameter Value

ESSA Number of generations 1000

Search agents 1000

SSA (Mirjalili et al. 2017) Number of generations 1000

Search agents 30

MFO (Mirjalili 2015) Logarithmic spiral 0.75

Convergence constant [− 1,− 2]
Number of generations 1000

Search agents 30

MVO (Mirjalili et al. 2016) Traveling distance rate [0.6, 1]

Wormhole existence prob. [0.2, 1]

Number of generations 1000

Search Agents 30

SCA (Mirjalili 2016) Number of elites 2

Number of generations 1000

Search agents 30

GSA (Rashedi et al. 2009) Alpha coefficient 20

Gravitational constant 100

Number of generations 1000

Crossover and Mutation 0.9, 0.05

GA (Bonabeau et al. 1999) Population size 30

Number of generations 1000

Harmony memory and rate 30, 0.95

HS (Geem et al. 2001) Discrete set and fret width 17,700, 1

Neighboring value rate 0.30

Number of generations 1000

Table 2 Computed results for the unimodal function-based ESSA and other algorithms

Functions ESSA SSA MFO MVO

Mean STD Mean STD Mean STD Mean STD

F1 3.23e−101 1.79e−101 1.24e−08 2.67e−09 3.15E−04 5.99E−04 2.81E−01 1.11E−01

F2 6.18e−101 1.20e−101 2.44e−02 1.06e−01 3.71E+01 2.16E+01 3.96E−01 1.41E−01

F3 3.59e−101 2.04e−101 1.93e−09 1.10e−09 4.42E+03 3.71E+03 4.31E+01 8.97

F4 3.88e−101 1.37e−101 1.54e−05 3.20e−06 6.70E+01 1.06E+01 8.80E−01 2.50E−01

F5 4.57 1.10 2.20e+02 4.87e+02 3.50E+03 3.98E+03 1.18E+02 1.43E+02

F6 3.08e−33 1.28e−08 7.15e−10 1.84e−10 1.66E−04 2.01E−04 3.15E−01 9.98E−02

F7 1.61e−05 1.42e−04 7.06e−03 4.99e−03 3.22E−01 2.93E−01 2.02E−02 7.43E−03

Functions SCA GSA GA HS
Mean STD Mean STD Mean STD Mean STD

F1 3.55E−02 1.06E−01 1.16E−16 6.10E−17 1.95E−12 2.01E−11 7.86E−10 8.11E−09

F2 3.23E−05 8.57E−05 1.70E−01 9.29E−01 6.53E−18 5.10E−17 5.99E−20 1.11E−17

F3 4.91E+03 3.89E+03 4.16E+02 1.56E+02 7.70E−10 7.36E−09 9.19E−05 6.16E−04

F4 1.87E+01 8.21 1.12 9.89E−01 9.17E+01 5.67E+01 8.73E−01 1.19E−01

F5 7.37E+02 1.98E+03 3.85E+01 3.47E+01 5.57E+02 4.16E+01 8.91E+02 2.97E+02

F6 4.88 9.75E−01 1.08E−16 4.00E−17 3.15E−01 9.98E−02 8.18E−17 1.70E−18

F7 3.88E−02 5.79E−02 7.68E−01 2.77 6.79E−04 3.29E−03 5.37E−01 1.89E−01
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Table 3 Computed results for the multimodal functions based on the proposed algorithm and other algorithms

Functions ESSA SSA MFO MVO

Mean STD Mean STD Mean STD Mean STD

F8 −2.2e+03 3.31e+02 −2.81e+03 2.86e+02 −8040 880 −6920 919

F9 1.42e−14 6.70e−6 1.58e+01 6.73 1.63E+02 3.74E+01 1.01E+02 1.89E+01

F10 8.88e−16 1.44e−15 7.18e−01 8.21e−01 1.60E+01 6.18 1.15 7.87E−01

F11 1.11e−16 7.45e−02 2.59e−01 1.29e−01 5.03E−02 1.74E−01 5.74E−01 1.12E−01

F12 4.71e−32 1.85e−02 2.92e−01 5.95e−01 1.26 1.83 1.27 1.02

F13 1.34e−32 1.22e−01 2.19e−03 4.47e−03 7.24E−01 1.48 6.60E−02 4.33E−02

Functions SCA GSA GA HS

Mean STD Mean STD Mean STD Mean STD

F8 −3810 283 −2750 572 −5110 437 −469 394

F9 2.23E+01 3.25E+01 3.35E+01 1.19E+01 1.23E−01 4.11E+01 4.85E−02 3.91E+01

F10 1.55E+01 8.11 8.25E−09 1.90E−09 5.31E−11 1.11E−1 2.83E−08 4.34E−07

F11 3.01E−01 2.89E−01 8.19 3.70 3.31E−06 4.23E−05 2.49E−05 1.34E−04

F12 5.21E+01 2.47E+02 2.65E−01 3.14E−01 9.16E−08 4.88E−07 1.34E−05 6.23E−04

F13 2.81E+02 8.63E+02 5.73E−32 8.95E−32 6.39E−02 4.49E−02 9.94E−08 2.61E−07

speed of algorithms. Therefore, the results in Table 2 show
that ESSA avails from high exploitation and convergence
speed of the unimodal functions.

4.3.2 Evaluation of multimodal functions

Multimodal functions may involve many local optima that
can grow exponentially. These functions have the ability to
assess the exploration capability of algorithms. Table 3 shows
the mean and STD results obtained by ESSA and other algo-
rithms over 30 independent runs for the functions F8–F13.

As per the results in Table 3, it may be observed that
ESSA again reports significantly better results than those
obtained by SSA and other algorithms for most of the test
functions including F9–F13, and it is very competitive in the
other test functions. These findings confirm that ESSA has a
high value in terms of exploration power. The better results
can be observed in both mean and STD measures, which
point out how robust and well ESSA is when addressing
these functions.

4.3.3 Evaluation of fixed-dimension functions

The mean and STD results of the fixed-dimension multi-
modal benchmark functions, F14 to F23, obtained by ESSA
and other algorithms over 30 independent runs, are presented
in Table 4.

The results in Table 4 show that the proposed ESSA has
arrived at average results for the functions F14–F19 which
are considerably better than those obtained by the standard
SSA. There is no significant difference between the results of

the proposed ESSA and those obtained by the standard SSA
on functions F20, F21, F22 and F23. Moreover, the difference
is very small on functions F15 and F16. Moreover, the mean
results reported by ESSA outperform those reported by other
algorithms. This confirms that ESSA has successfully iden-
tified the best global solutions and can efficiently explore the
search space. This high exploration gives ESSA the power
to avoid many local optima in a fixed-dimension multimodal
search space.

In short, the average results and small STD values in
Tables 2, 3 and 4 affirm that ESSA is robust, is stable and
has large capabilities in exploring and exploiting the search
space, even if the search space is complex.

4.4 Convergence analysis

Convergence curves are the most widespread qualitative
results for optimization algorithms in the literature. In con-
vergence curves, the best solutions obtained so far are
generally stored at each iteration loop of the meta-heuristic
algorithms. Thereafter, each convergence curve is drawn
as a line to be eligible to describe how well an algorithm
approximates the global optimum solution over a predeter-
mined number of iterations. The convergence analysis aims
to provide a deeper understanding of the exploitation and
exploration processes of the proposed ESSA. Moreover, the
convergence analysis results can judge the performance of
ESSAcompared to other algorithms.The convergence curves
of ESSA, SSA, MFO, MVO, SCA, GSA, GA and HS for
some benchmark test functions are presented in Fig. 4.
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Table 4 Computed results for the fixed-dimension multimodal functions based upon ESSA and other algorithms

Functions ESSA SSA MFO MVO

Mean STD Mean STD Mean STD Mean STD

F14 0.998 3.62e−02 1.031 1.81483e−01 2.21 1.80 0.998 9.14E−1

F15 3.07e−04 4.64e−04 2.13e−03 4.96e−03 1.58E−03 3.50E−03 7.15E−03 1.26E−02

F16 −1.0316 5.83e−16 −1.0316 1.44e−14 −1.03 0.00 −1.03 4.74E−08

F17 3.97e−01 0.0 8.22e−01 7.30e−02 3.98E−01 1.13E−16 3.98E−01 1.15E−07

F18 3.0 1.04e−17 3.0 7.31e−14 3.00 4.25E−15 5.70 1.48E+01

F19 −3.85 3.77e−13 −3.86 3.77e−14 −3.86 3.16E−15 −3.86 3.53E−07

F20 −3.19 1.97e−04 −3.24 5.79e−02 −3.23 6.65E−02 −3.23 5.37E−02

F21 −10.1 2.60 −7.55 3.32 −6.20 3.52 −7.38 2.91

F22 −10.4 2.53 −8.80 2.98 −7.95 3.20 −8.50 3.02

F23 −10.5 2.59 −9.48 2.43 −7.50 3.68 −8.41 3.13

Functions SCA GSA GA HS

Mean STD Mean STD Mean STD Mean STD

F14 1.26 6.86E−01 3.61 2.96 4.39 4.41E−02 6.79 1.12

F15 1.01E−03 3.75E−04 6.84E−03 7.37E−03 7.36E−03 2.39E−04 5.15E−03 3.45E−04

F16 −1.03 3.23E−05 −1.03 0.00 −1.04 4.19E−07 −1.03 3.64E−08

F17 3.99E−01 7.61E−04 3.98E−01 1.13E−16 3.98E−01 3.71E−17 3.99E−01 9.45E−15

F18 3.00 2.25E−05 3.01 3.24E−02 3.01 6.33E−07 3.00 1.94E−10

F19 −3.86 2.55E−03 −3.22 4.15E−01 −3.30 4.37E−10 −3.29 9.69E−04

F20 −2.84 3.71E−01 −1.47 5.32E−01 −2.39 4.37E−01 −2.17 1.64E−01

F21 −2.28 1.80 −4.57 1.30 −5.19 2.34 −7.33 1.29

F22 −3.99 1.99 −6.58 2.64 −2.97 1.37E−02 −1.00 2.89E−04

F23 −4.49 1.96 −9.37 2.75 −3.10 2.37 −2.46 1.19

The convergence curves in Fig. 4 divulge that ESSA deliv-
ers encouraging convergence responses in all of the evaluated
test functions. In these curves, ESSA exhibits three featured
converging behaviors while optimizing these benchmark
functions. In the first few iteration steps, ESSA experiences
sudden changes and converges very slowly to reach the most
promising areas of the search space due to the adaptive self-
parameter settingmechanismof the parameter c1. Thismeans
that ESSA has a modest feebleness in exploring the search
space in the first few iterations. This behavior is evident in
functions F9 and F11. In the second converging behavior and
beyond the next 150 iterations, ESSA gradually converges
toward the global optimal solutions. This means that the
exploration process of ESSA is fast and capable of locating
the global solution using a modest number of iterations. This
behavior is clearly evident in functions F1–F4. The third con-
verging behavior can be inferred in the final iteration steps,
where there is a clear convergence to find the global optimal
solution or near-global optimal solution (i.e., food source)
as obviously observed in functions F10, F13 and F15. This
efficiency of ESSA in the convergence curves is attributed to
the proposed self-tuning parametermethod, which allows the

individuals of ESSA to explore the search space and move
around the food source to locate the global optimum.

By comparing the convergence curves obtained by ESSA
to those obtained by other algorithms, ESSA provides a rapid
convergence than other algorithms in most of the test func-
tions such as F1–F4 and F9–F11, and it is very competitive
to others in the other test functions. On the other hand, GSA
presented promising convergence curves better than ESSA
in some functions such as F5, F7, F12, F13 and F15.

Figure 5 shows the plot of c1 and the variations of
λ1, λ2 and λ3 over the course of iterations of ESSA for
some unimodal, multimodal and fixed-dimension multi-
modal functions. The values of these parameters used to plot
c1 were taken as 4, 0.44 and 1.1, respectively, where these
values represent the optimal values for these tuned parame-
ters inmost of the optimization problems. Figure 5 shows that
the variations of the parameters λ1, λ2 and λ3 are very small
at the beginning, and then, the values of these parameters
fluctuate relatively large at the middle before approaching
to small variations at the end. This narrow variation range
of these parameters implies that the search agents of ESSA
exploit each promising area to find the global optimum solu-
tion. These parameters need to reduce gradually in terms of
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Fig. 4 Comparison of convergence curves of ESSA and other meta-heuristic algorithms obtained for some benchmark functions

θ1, θ2 and θ3, respectively.However, the best settings for these
parameters mostly depend on the nature of the problem. The
following comments can be drawn based upon these results:

– The optimal setting for λ1, λ2 and λ3 in c1 often depends
on the nature of the problem, and there is no unique best
setting for these parameters for all problems. However,
Fig. 5 shows that proper values for these parameters can
be chosen as 4±0.1, 0.44±0.1 and1.1±0.1, respectively.
The choice of these values should work appropriately for
most problems, but not all problems.

– The small variations of the parametersλ1, λ2 andλ3 mean
that the actual setting of these parameters is not critical
to a given problem, and therefore, there is no need to use

a very large number of iterations and search agents to
reach very optimal settings.

– Some parameters are more sensitive than others. In the
present case, λ3 needs more fine-tuning than λ1 and λ2,
due to its smaller variations.

4.5 Statistical test analysis

Statistical tests are necessary to ensure that the results in
Tables 2, 3, 4 are not generated by chance. These tests are
essential to demonstrate the reliability and accuracy of ESSA
in obtaining the average and STD results in all of the 30
independent runs. To compare the average results of the algo-
rithms presented in Tables 2, 3 and 4, and emphasize the
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Fig. 5 Plot curves for the parameter c1 (λ1 = 4.0, λ2 = 0.44 and λ3 = 1.1) and the variations of these parameters over the course of iterations

significance of the results, statistical tests including Fried-
man’s and Holm’s tests (Pereira et al. 2015) are conducted to
identify whether the results obtained by ESSA deviate from
the results of other algorithms in a statistically significant
manner.

Friedman’s test aims to determine whether there is a
considerable difference between the findings of the various
algorithms. This test is based on a null hypothesis that there
is no remarkable difference in the performance of the com-
parative algorithms. The best performing algorithm gets the
lowest rank, while the worst performing algorithm obtains
the highest rank. In case the p value divulged by Friedman’s

statistical test is equal or less than the significance level, here
is 0.05, the null hypothesis is rejected, indicating that there
are significant differences between the accuracy of the com-
parative algorithms. Friedman’s test is typically followed by
a post hoc test such as Holm’s method to consider a pair-
wise comparison of the algorithms. In general, the lowest
ranked algorithm is used as a control algorithm for the post
hoc test method. A summary of the statistical test results
obtained using Friedman’s test on the mean results given in
Tables 2, 3 and 4 is presented in Table 5.

According to the statistical results in Table 5, ESSA is the
best performing algorithm among all other algorithms. Look-
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Table 5 A summary of the
statistical results obtained using
Friedman’s test on the results
shown in Tables 2, 3 and 4

Algorithm l Rank

ESSA 1.760869

SSA 3.652173

MFO 5.195652

MVO 4.934782

SCA 5.695652

GSA 5.239130

GA 4.543478

HS 4.978260

Table 6 Results of Holm’s method based on the statistical mean results
of the unimodal, multimodal and fixed-dimension multimodal bench-
mark functions

i Method p value α ÷ i Hypothesis

7 SCA 5.109424E−8 0.007142 Rejected

6 GSA 1.468802E−6 0.008333 Rejected

5 MFO 1.982096E−6 0.01 Rejected

4 HS 8.417653E−6 0.0125 Rejected

3 MVO 1.112409E−5 0.016666 Rejected

2 GA 1.169909E−4 0.025 Rejected

1 SSA 0.008834 0.05 Rejected

ing at the significance level of α = 0.05, ESSA is ranked first
in the test functions, followed in turn by SSA, GA, MVO,
HS, MFO, GSA and SCA in the last rank.

The p value calculated by Friedman’s test based on the
mean results in Tables 2, 3 and 4 is 4.06632E−7. The null
hypothesis of equivalent performance is rejected to affirm if
there are statistically considerable differences between the
performance of the comparative algorithms. Holm’s method
is then conducted as a posttest procedure to determine
whether there are statistically significant differences between
ESSA (i.e., the control algorithm) and other algorithms. The
statistical results obtained using Holm’s method are given in
Table 6.

The results of Friedman’s and Holm’s test methods in
Tables 5 and 6 illustrate the satisfactory performance and
reliability of ESSA. These results demonstrate that ESSA
will be proficient in solving complex real-world problems.

5 ESSA for engineering design problems

The efficiency of the proposed ESSA in solving real-
world problems is demonstrated by experimenting with
well-known examples of constrained engineering design
problems. In the following subsections, ESSAwas presented
to solve five engineering design problems: the welded beam
design problem, the tension/compression spring design prob-

Fig. 6 A schematic structure of the welded beam

lem, the three-bar truss design problem, the I-beam design
problem and the cantilever beam design problem. These
design problems have a range of constraints, so there is a need
to equip ESSA with a constraint handling method. In this
paper, to conduct a fair comparison between ESSA and algo-
rithms reported in the literature, a death penalty function was
used in a way analogous to that described in Yang (2010b).
This constraint handling method has a low computational
cost and does not use the information of infeasible solutions.
The parameter setting of ESSA in solving the design prob-
lems below is the same as those presented in Table 1.

5.1 Welded beam design problem

The main goal of this classical design problem is to design a
welded beam for the structure shown in Fig. 6 to achieve the
minimum fabrication cost (Wang et al. 2014).

As shown in Fig. 6, the welded beam composes of a beam
A and a weld required to attach it to the member B. This
design problem is subject to four constraints: shear stress
(τ ), bending stress in the beam (θ ), buckling load on the
bar (Pc) and end deflection of the beam (δ). To solve this
problem, there is a need to find the possible combination
of the four structural parameters of the welded beam design:
thickness of theweld (h), length of the clamped bar (l), height
of the bar (t) and thickness of the bar (b). These structural
design parameters can be represented by a vector as: 	x =
[x1, x2, x3, x4], where x1, x2, x3 and x4 represent h, l, t and b,
respectively. The mathematical formula of the cost function
to be minimized for this design problem can be defined as
follows:

f (	x) = 1.10471x21 x2 + 0.04811x3x4(14.0 + x2) (23)

Subject to the following constraints,

g1(	x) = τ(	x) − τmax ≤ 0

g2(	x) = σ(	x) − σmax ≤ 0

g3(	x) = x1 − x4 ≤ 0

g4(	x) = 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0
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Table 7 A comparison of the results obtained by ESSA and other algorithms for the welded beam problem

Algorithm Optimal values for variables Optimum cost

h l t b

ESSA 0.205730 3.470489 9.036624 0.205730 1.724852

SSA (Mirjalili et al. 2017) 0.2057 3.4714 9.0366 0.2057 1.72491

MVO (Mirjalili et al. 2016) 0.205611 3.472103 9.040931 0.205709 1.725472

SCA (Mirjalili 2016) 0.204695 3.536291 9.004290 0.210025 1.759173

MFO (Mirjalili 2015) 0.203567 3.443025 9.230278 0.212359 1.732541

CS (Gandomi et al. 2013) 0.2015 3.562 9.0414 0.2057 1.73121

ACO (Kaveh and Talatahari 2010) 0.205700 3.471131 9.036683 0.205731 1.724918

GSA (Rashedi et al. 2009) 0.18219 3.856979 10.0000 0.202376 1.879952

IPSO (Cagnina et al. 2008) 0.205729 3.470488 9.036624 0.205729 1.724852

ABC (Karaboga and Basturk 2008) 0.205730 3.470489 9.036624 0.205730 1.724852

ES (Mezura-Montes and Coello 2008) 0.812500 0.437500 42.098087 176.640518 6059.7456

Coevolutionary PSO (He and Wang 2007) 0.20573 3.47049 9.03662 0.20573 1.72485084

DE (Mezura-Montes et al. 2007) 0.20573 3.470489 9.0336624 0.205730 1.724852

SA (Hedar and Fukushima 2006) 0.20564426 3.472578742 9.03662391 0.2057296 1.7250022

g5(	x) = 0.125 − x1 ≤ 0

g6(	x) = δ(	x) − δmax ≤ 0

g7(	x) = P − Pc(	x) ≤ 0

where the other parameters of the beam design are deter-
mined as follows:

τ(	x) =
√

((τ ′)2 + (τ ′′)2) + 2τ ′τ ′′x2
2R

, τ ′ = p√
2x1x2

τ ′′ = MR

J
, M = P

(
L + x2

2

)
, R =

√
(
x1 + x3

2
)2 + x22

4

J = 2

{√
2x1x2

[
x22
12

+ (
x1 + x3

2
)2

]}
, σ (	x) = 6PL

x4x23

δ(	x) = 4PL3

Ex4x33
, Pc(	x) =

4.013
√
EGx23 x

6
4/36

L2

(
1 − x3

2L

√
E

4G

)

where P = 6000 lb, L = 14 in., δmax = 0.25 in., E =
30× 106 psi, G = 12× 106 psi, δmax = 13,600 psi, σmax =
30,000 psi.

In this design problem, the ranges of the variables h, l,
t and b were taken as 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10 and 0.1 ≤ x4 ≤ 2, respectively. The welded
beam design problem was solved by many algorithms such
as SSA (Mirjalili et al. 2017), MVO (Mirjalili et al. 2016),
SCA (Mirjalili 2016), MFO (Mirjalili 2015), CS algorithm
(Gandomi et al. 2013), ACO (Kaveh and Talatahari 2010),
GSA (Rashedi et al. 2009), improved PSO (IPSO) (Cagnina
et al. 2008),ABC (Karaboga andBasturk 2008), evolutionary
strategy (ES) (Mezura-Montes and Coello 2008), coevolu-

Fig. 7 A schematic of the tension/compression spring problem

tionary PSO (He andWang 2007), differential evolution (DE)
algorithm (Mezura-Montes et al. 2007) and simulated anneal-
ing (SA) (Hedar and Fukushima 2006). The comparative
results for the best solution obtained by ESSA and other
algorithms for this design problem are shown in Table 7. The
results in Table 7 indicate that ESSA produced an optimal
design for the welded beam problem by finding the optimal
cost of approximately 1.72485, which is similar to the cost
obtained by IPSO (Cagnina et al. 2008) and ABC (Karaboga
and Basturk 2008).

5.2 Tension–compression spring design problem

The second engineering problem is a tension/compression
spring with three parameters as shown in Fig. 7.

The goal of this design problem is to reduce the weight of
a tension/compression spring design. This problem is sub-
ject to a number of constraints, including shear stress, surge
frequency and minimum deflection. The parameters in this
design problem can be defined as follows: wire diameter
(d), mean coil diameter (D) and number of active coils (N ),
which are, respectively, represented by vector parameters as
	x = [x1, x2, x3]. The function f (	x) = (x3 + 2)x2x21 to be
optimized is subject to the following constraints:
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Table 8 A comparison of the results obtained by ESSA and other algorithms for the tension/compression spring design problem

Algorithm Optimum variables Optimum weight

d D N

ESSA 0.051592 0.354396 11.426390 0.0126654

SHO (Dhiman and Kumar 2017) 0.051144 0.343751 12.0955 0.012674000

SSA (Mirjalili et al. 2017) 0.051207 0.345215 12.004032 0.0126763

GWO (Mirjalili et al. 2014) 0.05169 0.356737 11.28885 0.0126665

MVO (Mirjalili et al. 2016) 0.05000 0.315956 14.22623 0.012816930

SCA (Mirjalili 2016) 0.050780 0.334779 12.72269 0.012709667

MFO (Mirjalili 2015) 0.05000 0.313501 14.03279 0.012753902

GSA (Rashedi et al. 2009) 0.050276 0.323680 13.525410 0.0127022

ES (Mezura-Montes and Coello 2008) 0.051989 0.363965 10.890522 0.0126810

Coevolutionary PSO (He and Wang 2007) 0.051728 0.357644 11.244543 0.0126747

DE (Huang et al. 2007) 0.051609 0.354714 11.410831 0.0126702

IHS (Mahdavi et al. 2007) 0.05025 0.316351 15.23960 0.012776352

g1(	x) = 1 − x32 x3
71785x41

≤ 0

g2(	x) = 4x22 − x1x2
12566(x2x31 − x41)

+ 1

5108x21
− 1 ≤ 0

g3(	x) = 1 − 140.45x1
x22 x3

≤ 0

g4(	x) = x1 + x2
1.5

− 1 ≤ 0

The ranges of the parameters, d, D and N , were taken as
follows: 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3 and 2.0 ≤
x3 ≤ 15.0, respectively. This problem was widely addressed
in the literature by many algorithms such as spotted hyena
optimizer (SHO) (Dhiman and Kumar 2017), SSA (Mirjalili
et al. 2017), GWO (Mirjalili et al. 2014), MVO (Mirjalili
et al. 2016), SCA (Mirjalili 2016), MFO (Mirjalili 2015),
GSA (Rashedi et al. 2009), ES (Mezura-Montes and Coello
2008), coevolutionary PSO (He andWang 2007), DE (Huang
et al. 2007) and improved HS (IHS) (Mahdavi et al. 2007).
A comparison of the best solution obtained by ESSA and
other algorithms for this design problem is shown in Table 8.
The results in Table 8 reveal the merits of ESSA in solving
this problem by producing an optimal design. The proposed
ESSA obtained a design for this problemwith a cost of about
0.0126654, which is slightly better than the design obtained
by similar algorithms such as GWO (Mirjalili et al. 2014).

5.3 Three-bar truss design problem

The three-bar truss engineering design problem (Gandomi
et al. 2013) consists of two design variables, where the struc-
tural parameters in this problem are shown in Fig. 8.

Fig. 8 Three-bar truss design problem

The aim of this problem is to design a truss with three bars
to minimize the volume of the truss structure for an objective
function setup as:

f (	x) =
(
2
√
2x1 + x2

)
L (24)

This problem is subject to the following constraints:

g1(	x) =
(

2
√
2x1 + x2√

2x21 + 2x1x2

)
P ≤ 2

g2(	x) =
(

1

x1 + √
2x2

)
P ≤ 2

g3(	x) =
(

2√
2x21 + 2x1x2

)
P ≤ 2

where 0 ≤ x1 ≤ 1.0 and 0 ≤ x2 ≤ 1.0. The other con-
stants are L = 100 cm and P = 2 kN/cm2. The three-bar
truss design problem was solved by many researchers using
different algorithms such as SSA (Mirjalili et al. 2017),
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Table 9 A comparison of the
results obtained by ESSA and
other algorithms for the
three-bar truss design problem

Algorithm Optimal values for variables Optimal weight

x1 x2

ESSA 0.788604 0.408450 263.8958433

SSA(Mirjalili et al. 2017) 0.78866541 0.40827578 263.8958434

CS(Gandomi et al. 2013) 0.78867 0.40902 263.9716

MBA(Sadollah et al. 2013) 0.7885650 0.4085597 263.8958522

PSO-DE(Liu et al. 2010) 0.7886751 0.4082482 263.8958433

DEDS(Zhang et al. 2008) 0.78867513 0.40824828 263.8958434

Fig. 9 I beam design problem

CS algorithm (Gandomi et al. 2013), mine blast algorithm
(MBA) (Sadollah et al. 2013), PSO with DE (PSO-DE)
(Liu et al. 2010) and DE with dynamic stochastic selection
(DEDS) (Zhang et al. 2008). Table 9 shows a comparison of
the best solutions obtained by ESSA and other algorithms
previously reported in the literature for the three-bar truss
design problem. According to Table 9, ESSA can find an
optimal design for the three-bar truss problem with a cost of
about 263.8958433.

5.4 I-beam design problem

The capability of ESSAwas also used to solve the real I-beam
engineering design problem that deals with four structural
parameters (Gandomi et al. 2013). The main objective of this
problem is to minimize the vertical deflection of the I-beam
design shown in Fig. 9.

This design problem simultaneously meets the cross-
sectional area and stress limitations under given loads. The
four parameters of this problem are listed as: b, h, tw and
t f , where the length of the beam (L) and modulus of elastic-

Fig. 10 A cantilever beam design problem

ity (E) are 5.200 cm and 523.104 kN/cm2, respectively. The
objective function defined to minimize the vertical deflection
f (x) = PL3/48E I was considered as given in the following
formula:

Minimize: f (	x) = 5000

x3(x2−2x4)3
12 + x1x34

6 + 2x1x4
(x2−x4)2

4

The problem is subject to cross-sectional area less which
would be than 300 cm2, as defined below:

g1(	x) = 2x1x3 + x3(x2 − 2x4) ≤ 300

where the design spaces of the variables are defined as:
10 ≤ x1 ≤ 50, 10 ≤ x2 ≤ 80, 0.9 ≤ x3 ≤ 5.0 and
0.9 ≤ x4 ≤ 5.0. There are several optimization algorithms
in the literature previously presented to solve this design
problem. These algorithms respected the aforementioned
constraint and used the same range of design variables. The
results of ESSA for the I-beam design problem design are

Table 10 A comparison of the results obtained by ESSA and other algorithms for the I-beam design problem

Algorithm Optimal values for variables Optimum vertical deflection

b h tw t f

ESSA 50.0 80.0 1.764706 5.0 0.0066259581655

SSA (Mirjalili et al. 2017) 50.0 80.0 1.76470587 5.0 0.0066259581689

SOS (Cheng and Prayogo 2014) 50 80 0.9 2.32179 0.0130741

CS (Gandomi et al. 2013) 50 80 0.9 2.321675 0.0130747

ARSM (Wang 2003) 37.05 80.0 1.71 2.31 0.0157

IARSM (Wang 2003) 48.42 79.99 0.90 2.40 0.131
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Table 11 A comparison of the results obtained by ESSA and other algorithms for the cantilever beam design problem

Algorithm Optimal values for variables Optimum weight

x1 x2 x3 x4 x5

ESSA 6.016243 5.308456 4.494628 3.501176 2.153158 1.33995634

SSA (Mirjalili et al. 2017) 6.015134 5.309304 4.495006 3.501426 2.152787 1.33995639

SOS (Cheng and Prayogo 2014) 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

GCAI (Gandomi et al. 2013) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCAI I (Gandomi et al. 2013) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CS (Gandomi et al. 2013) 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

compared with the standard SSA (Mirjalili et al. 2017) and
many other algorithms such as symbiotic organism search
(SOS) (Cheng and Prayogo 2014), CS algorithm (Gandomi
et al. 2013), adaptive response surface method (ARSM)
(Wang 2003) and inherited ARSM (IARSM) (Wang 2003).
A comparison of the best solutions obtained by ESSA and
other algorithms for the I-beam design problem is presented
in Table 9. Table 10 shows that ESSA is capable of find-
ing an optimal design for the I-beam design problem with a
minimum cost of 0.0066259581655.

5.5 Cantilever beam design problem

Thefifth engineering design problem is a cantilever beam that
consists of five elements, each with a hollow cross section
with a constant thickness (Gandomi et al. 2013). The beam is
strictly supported as shown in Fig. 10, and there is an external
vertical force acting at the free end of the cantilever.

The goal of this problem is to minimize the weight of a
cantilever beam while setting an upper limit on the vertical
displacement of the free end. The design variables are the
heights (or widths) of the cross section of each element. The
lower limits of these variables are too small and the upper lim-
its are too large so they do not become active in the problem.
To solve this optimization problem, there is a need to find a
possible combination of the five parameters of this design.
The cost function of this design problem can be formulated
as follows:

f (	x) = 0.0624(x1 + x2 + x3 + x4 + x5)

where this problem is subject to the following constraint,

g1(	x) = 61

x31
+ 37

x32
+ 19

x33
+ 7

x34
+ 1

x35

The ranges of the variables in this design problem were
considered as follows: 1 ≤ xi ≤ 10, where i ∈ 1, 2, 3, 4, 5.
Several algorithms in the literature were used to solve the
cantilever beam design problem such as SSA (Mirjalili et al.
2017), SOS (Cheng and Prayogo 2014), generalized convex

Fig. 11 A schematic diagram of the metal cutting system tool

approximation (GCAI , GCAI I ) (Gandomi et al. 2013) and
CS (Gandomi et al. 2013). A comparison of the solutions
obtained by ESSA and other algorithms for the cantilever
beam design problem is presented in Table 11. The results in
Table 11 affirm that ESSAproduced an optimal design for the
cantilever beamproblemwith an optimal cost of 1.33995634,
which is the lowest cost compared to the others.

6 Modeling of complex nonlinear systems

This section shows the applicability of ESSA to model two
real industrial problems. These systems are a metal cutting
system and an industrial winding machine system.

6.1 Metal cutting system

The systemmodeling in this problem aims to design a cutting
temperature experiment for the metal cutting system pre-
sented in Fig. 11 (Zhou et al. 1998).

The metal cutting tool used here is P05 horny alloy steel
and the workpiece metal is 38CrNi3Mo. A commonly cut-
ting temperature model used for P05 is presented in Eq. (25)
(Zhou et al. 1998; Faris and Sheta 2016).

Tr = kax f yvz (25)
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Fig. 12 Convergence curves over thirty experiments for parameter esti-
mation of the cutting tool P05

where Tr identifies the output of the temperaturemodel, k is a
parameter where its value depends on themachinedmaterial,
a represents the depth of cut section in millimeters (mm), f
represents the cutting feed rate in mm/rev, v identifies the
speed of cutting in meter/minute (m/min) and x, y and z are
three parameters whose values depend on the material of the
cutting tool.

In this study, ESSAwas used to develop a model for a cut-
ting temperature systemusingpublicly available data (Yi-jian
et al. 2005). More specifically, ESSA was used to estimate
k, x, y, z parameters of the P05model shown in Eq. (25). The
main goal of the developed model is to minimize the error
between the actual metal cutting temperature system (T ) and
the counterpart estimated model (Tr ). The fitness function is
defined in Eq. (26).

fitness =
n∑

i=1

[T (i) − Tr (i)]
2 (26)

where n represents the number of data samples. The variance-
accounted-for (VAF) measure defined in Eq. (27) was used
to assess the performance of the developed models.

VAF =
[
1 − var(T − Tr )

var(T )

]
× 100% (27)

where var(y) is the varianceof the actual data of themetal cut-
ting temperature system (T ) and var(T − Tr ) is the variance
of the difference between the actual data, T , and the esti-
mated data (Tr ). The convergence curve obtained by ESSA
compared to that obtained by SSA in the modeling of P05
is shown in Fig. 12. Figure 12 shows that ESSA presented
faster convergence better than the convergence provided by
the standard SSA. The model responses of P05 along with
the true P05 obtained by ESSA and SSA are presented in
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Fig. 13 Evaluation responses of the models developed by ESSA and
SSA for the cutting tool P05

Fig. 13. Table 12 compares the VAF values and the estimated
values of k, x, y, z, obtained by ESSAwith those obtained by
other algorithms such as SSA, PSO and GA. The findings in
Table 12 confirm that ESSA has remarkably reported a better
VAF rate than those reported by the standard SSA, PSO and
GA.

6.2 An industrial winding process

The industrial winding process under consideration is usu-
ally encountered in real web conveyance systems (Bastogne
et al. 1998; Rodan et al. 2017). The structural diagram of this
process is shown in Fig. 14.

As shown in Fig. 14, the winding process targeted in this
study consists of three reels, referred to as reel 1, reel 2 and
reel 3. These reels are controlled by three DC motors known
as M1, M2 and M3, respectively. Reels 1 and 3 are coupled to
DC motors driven by set-point currents I1 at motor 1 and I3
at motor 2. Moreover, tension meters are placed to measure
strip tensions in the web between reel 1 and reel 2, referred
to as T1, and between reel 2 and reel 3, referred to as T3.
In this process, there is a dynamo tachometer to measure
the angular speeds of reels 1, 2 and 3, referred to as S1, S2
and S3), respectively. The angular velocity of motor M2, or
denoted as �2, is measured using a dynamo tachometer. The
main input variables of this process are: S1, S2, S3, I1 and I3,
and the outputs are: T1 and T3.

The training dataset for each model developed for T1 and
T3 consisted of 1250 data samples for each input variable.
The dataset in the testing process consisted of 1250 samples
for each input variable. These datasets are described inNozari
et al. (2012). The goal of this modeling problem is to capture
the main characteristics of the correct output responses for
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Table 12 A comparison of the
results obtained by ESSA and
other algorithms for P05 of a
metal cutting temperature
system

Algorithm Optimal values for variables Optimal VAF value

k x y z

ESSA 325.9 0.0415 0.0324 0.0215 81.2314

SSA 448.0 0.0362 0.0422 0.0457 66.0578

PSO 470.3 0.0324 0.0828 0.159 56.6956

GA 471.0 0.0301 0.083 0.159 56.9459

Fig. 14 A schematic diagram of the winding process

this process given its input and output parameters.To solve
this problem using linear estimates, there is a need to create
linear models for T1 and T3. These models are defined in
Equations 28 and 28, respectively.

T1(t) = T1(t − 1) + α1S1(t) + α2S2(t)

+α3S3(t) + α4 I1(t) + α5 I3(t)

T3(t) = T3(t − 1) + β1S1(t) + β2S2(t)

+β3S3(t) + β4 I1(t) + β5 I3(t)

where T1(t−1) and T3(t−1), respectively, are the preceding
values for T1 and T3 at time t−1, andα1–α5 andβ1–β5 are the
weights of the linear models developed for T1(t) and T3(t),
respectively.

The mean absolute percentage error (MAPE) criterion,
defined in Eq. (28), was used as a fitness function for this
modeling problem.

MAPE = 1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100% (28)

where n represents the number of experimental data values,
y identifies the actual values of a real experiment and ŷ rep-
resents the estimated values generated by the models. In the
development of T1 and T3 models, the maximum number of
iterations and the number of search agents for ESSA and
SSA were set to 1000 and 30, respectively. The convergence
curves obtained by ESSA compared to the corresponding
curves obtained by SSA in the modeling of T1 and T3 are
shown in Fig. 15.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
10-3

Fig. 15 Convergence curves over thirty experiments for linear T1 and
T3 model-based ESSA and SSA
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Fig. 16 Training and testing responses of the linear T1 model developed
by ESSA

The convergence curves in Fig. 15 confirm the reliability
of the proposed ESSA in reaching the minimum errors over
those obtained bySSA.Theperformance ofESSA in tracking
the output data of T1 and T3 is shown in Fig. 16 and 17,
respectively, along with the actual responses of T1 and T3,
for both training and test cases.
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Fig. 17 Training and testing responses of the linear T3 model developed
by ESSA

The simulation results in Figs. 16 and 17 demonstrate the
validity and appropriateness of ESSA in reliably modeling
the web tension, T1 and T3, of the winding process. Table 13
presents a comparative study of the performance of the pro-
posed ESSA and the standard SSA. According to results in
Table 13, ESSA achieved VAF rates for T1 and T3 models
significantly better than those obtained by the standard SSA.

7 Analysis of the results

The preceding sections used a set of benchmark functions,
a set of five engineering problems and two real industrial
problems with various characteristics to assertively measure
and confirm the performance of ESSA. In this work, ESSA
is different from SSA in that it uses the current positions of
the search agents in the position updating mechanism. Also,
the dominant parameter c1 of ESSA does not depend on the
maximum number of iterations as that of SSA. Moreover, in
ESSA, we have successfully developed a novel lifetime con-
vergence framework by self-tuning the parameter c1 using
ESSA itself. This is to find the best setting for c1 so that
ESSA can perform the best for a broad range of problems of
varying complexity.

Inspecting the results of the unimodal, multimodal and
fixed-dimension multimodal functions in Tables 2, 3 and 4,
respectively, we may conclude that ESSA performs better
than other algorithms in the majority of test functions. The
higher mean values indicate that ESSA carries out better than
others on average, and the standard deviation values confirm
that this supremacy is stable. These results denote how excel-
lently and robust ESSA is when solving these functions. Due
to the existence of a single optimum in the unimodal func-

tions, they can only measure exploitation and convergence
of algorithms. Therefore, the results in Table 3 showed that
ESSA takes advantage of the high exploitation and conver-
gence speed of these functions.

As aforementioned, multimodal functions confront the
presence of many local optimums in addition to more than
one global optimum, so these functions are highly efficient
to benchmark the ability of the algorithms to eschew local
optimum and test their exploration capability. Therefore, the
results in Tables 3 and 4 showed that ESSA benefits from
large exploration.

This arises from the fact that the search agents of ESSA
tend to communicate with each other, so they are not eas-
ily attracted to a local solution. The connection between the
search agents of ESSA also allows it to explore the search
space and gradually moves the salp chain toward the global
optimal. The superior convergence of ESSA is attributed to
the position updating process of salps around the best solu-
tions obtained so far.

The entire salp chain converges toward the global opti-
mum solution proportionate to the iteration number due to
the proposed lifetime tuning mechanism for the parameter
c1 of ESSA based on ESSA itself. On the other hand, the
results of the p values in Table 6 generated from Friedman’s
and Holm’s tests show that the superiority of ESSA is statis-
tically significant. The p values of Holm’s test also evidence
how important the proposed algorithm is on the functions
F1–F23. The outcomes of Friedman’s test also prove that
the results of ESSA are statistically significant because the
majority of the p values are less than the significance level
(i.e., 0.05).

Despite the success of ESSA in solving basic benchmark
functions of varying complexity, we conducted amore exten-
sive test to assess its ability to solve engineering design
problems and real industrial problems. This is to explore its
reliability and verify the robustness of the proposed lifetime
convergence scheme that is performed using the proposed
self-tuning method. The results of ESSA on engineering
design problems in Tables 7, 8, 9, 10 and 11, and industrial
problems in Tables 12 and 13 show that ESSA produced sta-
ble performance and outperformed other algorithms. These
engineering and industrial problems present very challenging
test problems for any meta-heuristics search algorithm. This
makes them very analogous to the actual search space that
ESSA might encounter when solving real-world challeng-
ing and practical problems. Therefore, researchers always
view meta-heuristic search algorithms as generally effective
means to solve challenging problems of growing size. We
know that each algorithm has its advantages such as flex-
ibility, simplicity and limitations such as complexity and
parameter setting. As analyzed and discussed above, ESSA
has many key features; a natural question is: What are the
limitations of the proposed ESSA? Based upon the position
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Table 13 A comparison of the
results obtained by ESSA and
SSA in developing linear models
for T1 and T3 over 30 runs

Algorithm Weight parameters for T1 Optimal VAF
α1 α2 α3 α4 α5

ESSA 0.00342 0.00415 −0.05645 −0.01247 0.96597 99.86

SSA 0.02542 −0.01300 −0.09185 0.01184 −2.03375 98.03

Algorithm Weight parameters for T3 Optimal VAF
β1 β2 β3 β4 β5

ESSA 0.00674 0.01365 0.01741 0.03116 −2.11876 99.09

SSA −0.00367 0.03000 −0.02392 0.04320 −0.34492 97.39

updating process, the lifetime convergence scheme and the
obtained results of ESSA, we can sum up the limitations of
ESSA as given in the following subsection.

7.1 Limitations of the proposed ESSA

It is worth mentioning here that the exploitation of ESSA
attends to be better than its exploration. This can be deduced
from the results produced from the unimodal functions com-
pared to those of the multimodal functions. This is related
to the position updating proposed and the proposed self-
tuning method of this algorithm, where sudden changes in
the solutions are small at the beginning of the execution of
this algorithm.Despite this fact, the results inTables 2, 3 and4
confirm that this is not a serious concern, as the explorative
behavior of ESSA is also very plausible. Mere exploration
does not ensure locating the global optimum solution, where
an appropriate balance is needed between exploration and
exploitation. The computation time of ESSA is not a critical
issue as it can vary according to the nature and complex-
ity of the problem. Several meta-heuristic algorithms use
fixed pre-tuned parameters. Contrarily, ESSA uses one main
control parameter, which is tuned using ESSA itself as iter-
ations proceed. This offers a way for ESSA to automatically
turn from exploration to exploitation as the optimal solution
approaches. This known limitation of meta-heuristic algo-
rithms was addressed and provides an advantage to ESSA
over other algorithms.

8 Conclusion and future works

This paper has proposed an improved variant of the salp
swarm algorithm (SSA) or referred to as enhanced SSA
(ESSA). ESSA is generally distinguished based on its strat-
egy to update the salps position and the proposed self-tuning
convergence method. The major elements that contribute to
the exploitation and convergence abilities of ESSA are the
proposed self-tuningmethod for themain parameter of ESSA
and the position updating mechanism that works on the best
positions acquired so far in the search space. These fea-

tured elements in ESSA allow its salps to effectively explore
the search space and identify the global optimum. To ver-
ify the efficacy of ESSA, many experiments were conducted
on basic benchmark test functions. The outstanding perfor-
mance of ESSA on these functions evinces the exploitation
and exploration capabilities of ESSA in addition to its con-
vergence behavior. The results of ESSAwere compared with
SSA and other well-known algorithms in terms of the aver-
age and standard deviation values. ESSA has proved to be an
effective candidate that outperforms many other algorithms.
The convergence behavior of ESSA was analyzed and found
to be converging rapidly compared to others. The ability of
ESSA in solving challenging problems ismanifested by solv-
ing five well-known engineering design problems and two
real industrial processes. The proposed self-tuning method-
based ESSA could be effective for parameter control, so
a more general framework for both parameter setting and
control could be expanded for a broad range of real-world
applications. Future work could be directed to substantiate
the robustness of ESSA to address multi-objective, continu-
ous and discrete optimization problems.
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Appendix A: Objective test functions

A detailed description of the unimodal benchmark test
functions (F1–F7), multimodal benchmark test functions
(F8–F13) and fixed-dimension multimodal benchmark test
functions (F14–F23) is given in Table 14.
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Table 14 Characteristics of benchmark functions

Key Function formulation f (x∗) Category Dimension Range

f1
∑n

i=1 x
2
i 0 U 10,30,50,100 xi ∈ [−100,100]

f2
∑n

i=1 |xi | + ∏n
i=1 |xi | 0 U 10,30,50,100 xi ∈ [−10,10]

f3
∑n

i=1

(∑i
j−1 x j

)2
0 U 10,30,50,100 xi ∈ [−100,100]

f4 maxi {|xi |, 1 ≤ i ≤ n} 0 U 10,30,50,100 xi ∈ [−100,100]

f5
∑n−1

i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

0 U 10,30,50,100 xi ∈ [−30,30]

f6
∑n

i=1 ([xi + 0.5])2 0 U 10,30,50,100 xi ∈ [−100,100]

f7
∑n

i=1 i x
4
i + random[0, 1) 0 U 10,30,50,100 xi ∈ [−128,128]

f8
∑n

i=1 −xi sin
(√|xi |

) −418.9829 × 5 M 10,30,50,100 xi ∈ [−500,500]

f9
∑n

i=1

[
x2i − 10 cos (2πxi ) + 10

]
0 M 10,30,50,100 xi ∈ [−5.12,5.12]

f10 − 20 exp(− 0.2
√

1
n

∑n
i=1 x

2
i ) −

exp
( 1
n

∑n
i=1 cos (2πxi )

)+20+e

0 M 10,30,50,100 xi ∈ [−32,32]

f11
1

4000

∑n
i=1 x

2
i −∏n

i=1 cos
(

xi√
i

)
+1 0 M 10,30,50,100 xi ∈ [−600,600]

f12
π
n

{
10 sin (π y1) + ∑n−1

i=1 (yi − 1)2[
1 + 10 sin2(π yi+1)

] + (yn − 1)2
}+∑n

i=1 u(xi , 10, 100, 4)
yi = 1 + xi+1

4 u(xi , a, k,m) =⎧
⎪⎨
⎪⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

0 M 10,30,50,100 xi ∈ [−50,50]

f13 0.1
{
sin2(3πx1) + ∑n

i=1 (xi − 1)2[
1 + sin2(3πxi + 1)

]+ (xn −1)2[
1 + sin2(2πxn)

]}
+∑n

i=1 u(xi , 5, 100, 4)

0 M 10,30,50,100 xi ∈ [−50,50]

f14

(
1

500 + ∑25
j=1

1
j+∑2

i=1(xi−ai j )
6

)−1

1 F 2 xi ∈ [− 65, 65]

f15
∑11

i=1

[
ai − x1

(
b2i +bi x2

)
b2i +bi x3+x4

]2
0.0003 F 4 xi ∈ [− 5, 5]

f16 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 −

4x22 + 4x42

−1.0316 F 2 xi ∈ [− 5, 5]

f17
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2 +
10

(
1 − 1

8π

)
cos x1 + 10

0.398 F 2 xi ∈ [− 5, 5]

f18
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x21

−14x2 + 6x1x2 + 3x22
)] 3 F 2 xi ∈ [−2, 2]

× [
30 + (2x1 − 3x2)2

× (
18 − 32x1 + 12x21 + 48x2

−36x1x2 + 27x22
)]

f19 −∑4
i=1 ci exp

(
−∑3

j=1 ai j
(
x j − pi j

)2) −3.86 F 3 xi ∈ [1, 3]

f20 −∑4
i=1 ci exp

(
−∑6

j=1 ai j
(
x j − pi j

)2) −3.32 F 6 xi ∈ [0, 1]

f21 −∑5
i=1

[
(X − ai ) (X − ai )T + ci

]−1 −10.1532 F 4 xi ∈ [0, 10]

f22 − ∑7
i=1

[
(X − ai ) (X − ai )T + ci

]−1 −10.4028 F 4 xi ∈ [0, 10]

f23 − ∑10
i=1

[
(X − ai ) (X − ai )T + ci

]−1 −10.5363 F 4 xi ∈ [0.10]

U: unimodal; M: multimodal; F: fixed-dimension multimodal
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