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Abstract
In this paper, we investigate some aspects of Spencer–Brown’s Calculus of Indications. Drawing from earlier work by
Kauffman andVarela, we present a new categorical framework that allows to characterize the construction of infinite arithmetic
expressions as sequences taking values in grossone.

Introduction

The Calculus of Indications (Spencer-Brown 1969) pro-
vides an elegant formalism to represent fundamental logical
operations as nested “distinctions” notated as closed curves
in a plane.1 An especially interesting phenomenon in the
Calculus of Indications (CI) is what Spencer Brown calls
the reentry of the form, understood as the recursive nest-
ing of curves yielding a structure formally equivalent to
the Epimenides paradox (or the Liar Paradox (Barwise and
Etchemendy 1989)]. As in the classical setting, there are
several different attempts made at resolving the paradoxi-
cal character of this self-referential or “reentered” form.One,
proposed first by Spencer Brown himself and advanced more
rigorously in Kauffman and Varela (1980), basically defines
an alternative truth value, the “imaginary” value which is
neither true nor false. The other, introduced in Varela and
Goguen (1978), takes the limit of the nesting process to yield
a definite expression that is then taken as a particular solu-
tion to a given reentry equation, rather than a distinct general
truth value.

We will take an intermediate route between these two
approaches, combining the best of the two methods in a

1 This is akin to Peirce’s α graphs (Zeman 1974; Gangle et al. 2020),
although with a basic but immaterial difference between the represen-
tations of True and False in the two formalisms.
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category-theoretical setting. We will show first how in the
case of expressions consisting of finite nestings, a recursive
procedure yields a unique answer as the formal simplifi-
cation or reduction of the given expression. However, in
order to extend our procedure then to the case of infinite
nestings, we will have to develop the notion of construc-
tive sequences that build up such expressions part by part.
In evaluating such sequences, we will need to deal with
infinite sums that, in general, diverge. A finer control on
such divergence is needed in order to make the process of
evaluating sequences well-defined, and a solution to this
problem is offered by the notion of grossone, first defined by
Yaroslav Sergeyev, with respect to which the natural num-
bers (including zero) can be represented by the sequence
N = {0, 1, 2, 3, . . . , ① − 2, ① − 1, ①}.2

In the approach detailed below, incorporating calcula-
tions with ①allows for the evaluation function applied to
both finite and infinite graphs to yield a distinguished, com-
putable answer, solving the question of how to give a truth
value to the reentry of the form with respect to constructive
sequences. We therefore aim to capitalize on the basic idea
that grossone allows for a “finer” control on infinite denu-
merable sequences than the classic Cantorian approach (for
details, see Sergeyev’s survey paper 2017 and, for a more
informal treatment, Sergeyev (2013a)). Within the grossone
framework, it becomes feasible to deal computationally with
infinite quantities, in a way that is both new (in the sense that

2 The introduction of the numeral ①may require, in some contexts, the
augmentation of the set of natural N to a larger set N̂, where

N̂ = {0, 1, 2 . . . , ① − 1,

①, ① + 1, ① + 2, . . . , 2 · ①, . . . , ①2 − 1, ①2, ①2 + 1, . . . }.

For the purpose of this paper we will not need to make use of N̂.
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previously intractable problems become amenable to com-
putation) and natural.3

The CI is generated by two simple algebraic rules or “ini-
tials” applicable to diagrams called “arithmetic expressions”
consisting of collections of non-intersecting closed curves in
the Euclidean plane (Fig. 1).

The lack of expression on the right side of initial 2 is
merely apparent. For CI, the empty plane (or any empty
part of the plane) is also a formal expression (or part of an
expression) in the calculus. It is this use of natural topo-
logical properties of closed curves in the plane that makes
CI particularly interesting as a diagrammatic formal system,
as recognized for instance by Louis Kauffman in Kauffman
(2012).

Using the two initials as permissions for rewriting equiv-
alent expressions, it becomes possible to simplify such
expressions step by step. For instance, the sequence of
expressions below represents an application of initial 2, an
application of initial 1 and then another application of initial
2 (Fig. 2).

In developing the system of CI, Spencer Brown first
considers arithmetic expressions composed of finite col-
lections of closed curves. He calls the system consisting
of all such expressions as related algebraically via the
two initials schematized above the Primary Arithmetic. He
then introduces variables that may take such expressions as
values and calls the system of expanded expressions the Pri-
mary Algebra, demonstrating standard results of consistency

Fig. 1 Algebraic rules

3 Evidence of the efficacy of the grossone approach is highlighted by its
successful application to many fields of applied mathematics, includ-
ing optimization (see Cococcioni et al. 2018, 2020; De Cosmis and De
Leone 2012; Sergeyev et al. 2018; Iavernaro et al. 2020; Iudin et al.
2012; Sergeyev 2007, 2013b; Zhigljavsky 2012), fractals and cellular
automata (see Caldarola 2018; D’Alotto 2012, 2015, 2013) as well as
infinite decision-making processes, game theory, and probability (see
Fiaschi and Cococcioni 2018; Rizza 2018, 2019), whereas the formal
logical foundation of grossone has been investigated in Lolli (2012);
Margenstern (2011); Montagna et al. (2015). The approach presented
in this paper bears similarities to the application of grossone to Turing
machines as described in Sergeyev and Garro (2010). Further investi-
gation of these analogies remains open.

Fig. 2 Reduction process

and completeness for the resulting systemwhich is equivalent
to that of Classical Propositional Logic. We will be espe-
cially concerned in the present paper with the introduction of
infinite expressions (infinite collections of non-intersecting
closed curves in the Euclidean plane) into the system, which
are described in Spencer-Brown (1969) in terms of equations
of second degree and the distinctive notion of “reentry of the
form”.

It may be remarked that the system of CI’s Primary Alge-
bra is quite close in spirit to the earlier logical system of
Existential Graphs (EG) developed by C.S. Peirce. In partic-
ular, the expressions of Spencer Brown’s CI PrimaryAlgebra
are formally equivalent to those of Peirce’s EG-α, which
was also designed to express Classical Propositional Logic.
However, whereas Peirce elects to consider the empty plane
(which he calls the “Sheet of Assertion”) to express the value
TRUE, Spencer Brown takes the empty sheet to express the
value FALSE. In a corresponding manner, a single empty
curve or “cut” represents the value FALSE for Peirce and the
value TRUE for Spencer Brown. In accordance with this dif-
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ference, for Peirce the juxtaposition of two ormore notational
elements (either “cuts” or variables) expresses their conjunc-
tion,while for SpencerBrown such a juxtaposition represents
their disjunction. For both systems, a curve or “cut” negates
the value of its interior. The expressions of the two systems
are thus syntactically equivalent but interpreted inversely at
the semantic level.4

In what follows, we will not further examine the stan-
dard algebraic treatment of the Calculus of Indications in
which variables in expressions of the Primary Algebra may
take basic arithmetic expressions as values (by substituting
such expressions diagrammatically for the variables them-
selves, thus reducing expressions in the Primary Algebra
to expressions in the Primary Arithmetic). Instead, we will
develop an alternate algebra of constructive sequences of
arithmetic expressions themselves. This algebra of construc-
tive sequences concerns the extension, proposed by Spencer
Brown himself but not fully developed in Spencer-Brown
(1969), of expressions in the Primary Arithmetic to include
infinite collections of closed curves in the plane. Following
the lead of Peirce, we will refer to the closed curves in all
such expressions in what follows as “cuts”.

One of the most interesting features of CI is the idea ini-
tially proposed in Spencer-Brown (1969) that solutions for
equations such as the following may be expressed as infinite
recursive structures.

Consider, for instance, the following “equation” (Fig. 3).
Clearly, neither the substitution of the empty sheet nor the

substitution of the empty cut for A (nor any finite expression,
since all such expressions reduce to either the empty sheet or
the empty cut) will satisfy the above equation. The following
expression, however, does formally satisfy it, where the filled
innermost circle is meant to represent an infinite sequence of
further nested circles (Fig. 4).

Fig. 3 Recursive structure

Fig. 4 Infinite nesting

4 The two systems are slightly different in terms of their rules of deduc-
tion (or rewriting). We do not examine this point any further in this
paper.

In order to simplify the notation, in what follows we
will denote the above expression (an infinite series of sin-
gle nested cuts) with the symbol I .

The expression above may itself be constructed by a
recursive procedure that in effect operationalizes the orig-
inal equation 1. Informally, I is generated by treating the
right side of equation 1 as an operation that draws a circle
around A. Starting from A = empty sheet, one then suc-
cessively plugs in the result of the operation back into the
equation and repeats the operation indefinitely. The original
equation thus becomes a recipe for generating an expression
that is a solution to the equation itself.5

This is why Spencer Brown named such recursive con-
structions “reentry of the form”. His own interpretation of
this notation was in terms of temporal signals. The solution
to the equation above would be conceived as an infinite nest-
ing of circles, and on this interpretation its value would be
understood as an oscillation between TRUE and FALSE.

The notion of “reentry of the form” has been analyzed and
evaluated by various specialists including mathematicians,
logicians, and social scientists. Especially noteworthy is the
use of CI and reentry as the basis for a comprehensive theory
of social communicative systems in Luhmann (1995) and its
related research program.

Fromamore formal point of view, twodominant approach-
es to reentry in CI may be identified. The first, represented
by Kauffman and Varela (1980) and Zalamea (2010) works
from the intuition first proposed by Spencer Brown that
the infinitely-nested expression that stands as a solution
to equation 1 may be understood on analogy with the
imaginary value i in complex algebra. Spencer Brown
thus calls the value of the CI-expression I the “imaginary
value”. Somewhat surprisingly, this informal analogy may
be made rigorous, as shown in Kauffman and Varela (1980).
More recently, Zalamea (2010) has developed this approach
(though with primary reference to Peirce’s EG rather than
Spencer Brown’s CI) with respect to holomorphic functions.
The second approach is represented by Varela and Goguen
(1978). According to this approach, infinite expressions are
conceived on analogy with limits of infinite sequences. If the
former approach follows the mathematics of complex alge-
bra, this latter approach follows instead that of differential
calculus. Our own approach detailed in what follows repre-
sents something of a hybrid model between the two previous
approaches.6

5 The relevance of grossone to this construction will appear in the sub-
sequent sections.
6 Our approach is similar to that of Varela and Goguen (1978) in that it
involves limits of sequences. But by calculating values of the sequences
themselves, and not only their limits, the (complex algebra) waveform
interpretation of Kauffman and Varela (1980) is partially maintained as
well.
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1 The category CI of CI-expressions

In this section, we develop a formalization of the Calculus of
Indications in the setting of category theory, in particular, by
using categories of presheaves. This approach follows that
introduced in Caterina and Gangle (2016) and Caterina and
Gangle (2013). The elementary notions of category theory
are summarized here for the reader’s convenience. For further
details, the reader is directed to Mac Lane (1998).

A category consists of a class of objects together with
morphisms or arrows between objects. Given two objects a
and b a morphism f between them will be denoted either

f : a → b or a
f→ b. A category is subject to axioms of

identity (every object a is equipped with an identity mor-

phism, a
1a→ a), composition (two morphisms, a

f→ b and

b
g→ c compose to a unique morphism a

g◦ f→ c, where ◦ indi-
cates the operation of composition) and associativity (paths
of morphisms compose uniquely, i.e., given three arrows
f : a → b, g : b → c and h : c → d, h◦(g◦ f ) = (h◦g)◦ f ,
given the same morphism from a to d).

A functor F is a map between two categories (say A and
B), sending objects to objects and morphisms to morphisms
in a way that preserves identities and composition. If for
any morphism a → a′ in A, F(a → a′) is mapped to a
morphism F(a) → F(a′) in B, F is said to be covariant.
If instead F(a → a′) maps to F(a) ← F(a′), F is called
contravariant.

With these core notions in hand, we may now define the
notion of an expression in CI as a contravariant functor from
the category of natural numbers to that of finite sets. More
precisely:

Definition 1 A CI-expression is a functor

F : Nop −→ FinSet

where Nop is the category of natural numbers with the usual
order reversed7 and FinSet is the category whose objects are
finite sets andwhosemorphisms are functions between them.
We call a CI-expression finite8 if and only if there exists some
n ∈ N such that F(n) = ∅, otherwise we call it infinite.

The collection of all CI-expressions so defined forms a cat-
egory, with natural transformations between CI-expressions
as morphisms. Such a category is typically denoted by
FinSetN

op
. For the sake of notational simplicity, we label

this category CI. Thus, CI = FinSetN
op
.

7 Here the objects are the natural numbers, and there is a morphism
between two natural numbers m → n if and only if m ≥ n. The choice
of reversing the natural order is made in order for the functor F to be
contravariant.
8 The condition given here guarantees that all nested cuts are of at most
depth n − 1.

It is a standard result that, since CI is a category of
presheaves (with the domain category being small), it has
the structure of a topos. This means, in particular, that it can
be endowedwith a logical structure. In particular, it possesses
a subobject classifier that functions in the topos in a manner
analogous to the set {0, 1} in the category Set (also a topos)
of sets and functions. Just asmorphisms (functions) from any
set S into {0, 1} correspond to subsets of S, morphisms from
any object O in a general topos into the subobject classifier
of the topos correspond to monic arrows into O .9

Using the notion of monic arrows, it is straightforward to
define a preorder 	 on the objects of CI. Given two such
objects O1 and O2, O1 	 O2 iff there is a monic arrow
m : O1 −→ O2.

In the case of the category CI, monic arrows select “parts”
of CI-expressions in the sense that they select arbitrary cuts
in the target expression subject to the condition that if they
select a cut c, they also select all cuts C such that c is inside
C . This is illustrated by the following example (Fig. 5).

Given the following two CI-expressions
monic morphisms from the former to the latter correspond to
selections of parts of the latter. There are exactly three such
morphisms, represented here by thickened lines (Fig. 6).

The mathematical setting of category theory, and in par-
ticular presheaves, allows for a rigorous formalization of the
somewhat informal approach found in Varela and Goguen
(1978).

In any topos of presheaves, each object in the base cate-
gory gives rise to a canonical presheaf associated with that
object called a representable set. For details, see Reyes et al.
(2004) and Gangle et al. (2020). In the topos CI, we have
a representable set hn for every n ∈ N, which consists of n
nested circles.

Morphisms from representable sets hn into a CI-express-
ion F correspond uniquely to cuts in F at depth n. We may
thereby identify cuts p, q, r . . . in any CI-expression with
morphisms p : hnp −→ F, q : hnq −→ F, r : hnr −→
F . . . , where hnx represents a representable set with as many
nested cuts as the depth of x .

Fig. 5 CI-expressions

9 A monic arrow in any category is defined as follows. Given any mor-
phism f : A −→ B, f is said to be monic if, for any two morphisms
g, h : Z −→ A such that f ◦ g = f ◦ h, it is the case that g = h.
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Fig. 6 List of morphisms

Thus with representable sets, we have a straightforward
way to characterize formally when one cut is inside another
and also when a cut is empty. Given a CI-expression F , a cut
q at depth n in F is inside a cut p at depthm in F if and only if
the following diagram iswell-defined and commutes (Fig. 7).

A cut is empty if no cuts are inside it. Using this
framework, it becomes possible to formally define various
diagrammatic operations on CI-expressions.We define a pair
of such operations, a unary operation CIRCLE and a binary
operation JUXTAPOSE:

Definition 2 • CIRCLE: given a CI-expression F it gener-
ates a new CI-expression C(F) such thatC(F)(1) = {∅}
and for all n ∈ N,C(F)(n+1) = F(n) andC(F)(in+1) :
C(F)(n+2) −→ C(F)(n+1) = F(in) : F(n+1) −→
F(n), where morphisms in are the (unique) morphisms
from n to n + 1.

• JUXTAPOSE: given two CI-expressions F and G it gen-
erates a new CI-expression J (F,G), consisting of the
categorical coproduct F

∐
G of F and G.10

Remark 1 In any category C the coproduct of two objects A
and A′, denoted by A

∐
A′ is an object endowed with two

arrows p1 : A∐
A′ ← A and p2 : A∐

A′ ← A′ such that,
for all objects T with two arrows f and g respectively from
A and A′ into T , there exists a unique morphism !h : T ←
A

∐
A′ that makes the diagram in Fig. 8 commute.

Fig. 7 Cut inclusion

10 ∐
is well defined in CI since it is a topos.

Fig. 8 Coproduct

Diagrammatically, CIRCLE generates a new CI-expressi-
on by drawing a circle (more generally, a closed curve)
around a given CI-expression. Similarly, the operation JUX-
TAPOSE applied to two CI-expressions generates the CI-
expression consisting of both expressions drawn next to one
another on the same plane.

2 Evaluating the objects of CI
Each finite object in CI takes a unique value according the
following algorithmic evaluation procedure.

Definition 3 Given a finite CI-expression F ∈ Obj(CI), a
recursive evaluation of F , denoted by RE(F) is an ele-
ment of {0, 1} generated by a finite sequence f1, f2, . . . , fn
of subobjects of F such that f1 = F and each step from
fi to fi+1 corresponds to an application of the “pruning
procedure” algorithm detailed below. Since that algorithm
ensures that each of its operations generates a proper sub-
object of its operand, the sequence f1, f2, . . . , fn is ordered
f1 
 f2 
 · · · 
 fn Additionally, since the elements in
RE(F) are ordered by inclusion, they may be thought of as
a path in the lattice Sub(F).

We define a successor of a cut n in a CI-expression F
as a cut that appears immediately inside n in F . Note that
successors are not necessarily unique. An empty cut is a cut
that has no successors. An eliminable cut is a cut with at least
one successor that is empty.

Given a finite CI-expression F , we reduce it to one of the
two values 0 or 1 by applying the following iterative pruning
procedure:

Procedure 1

(i) Consider the diagrammatic representation of F as a
collection of nested cuts.

(ii) Take any eliminable cut n in F.
(iii) Erase the cut n and all cuts inside it, yielding a new

CI-expression F ′.
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(iv) Replace F with F ′ and repeat (i i) and (i i i) until the CI-
expression F ′ is either blank (no cuts at all) or consists
of empty cuts only.

(v) If the final CI-expression F ′ is blank, assign the original
CI-expression F the value 1. Otherwise, assign F the
value 0.11

Every time steps (ii) and (iii) of the procedure are applied,
a choice must be made among all the eliminable cuts that
exist at that stage. But any variant sequence of such choices
leads nonetheless invariably to the same final result:

Theorem 1 Given a finite expression F, the algorithm out-
lined in Procedure 1 will output either the empty sheet or
a finite number of empty cuts, independently of the choices
made in step (ii), that is, the order in which the eliminable
cuts are chosen.

Proof We first label all the nodes of F either 0 or 1 according
to the following rule:

• All cuts are labeled 0 if they have at least one successor
labeled 1 and they are labeled 1 otherwise.

It should be clear that this labeling is well-defined and
uniquely determined for any finite expression. We note first
that prior to applying the pruning procedure every empty
cut of the expression is necessarily labeled 1 since these (by
definition) have no successors. We then note that repeated
applications of steps (ii) and (iii) in the pruning procedure
abovewill always select anddelete a cut labeled 0. It is impos-
sible for a node labeled 1 to have any successors also labeled
1 according to the labeling rule. Since only an eliminable
cut can be chosen and deleted in steps (ii) and (iii), no such
cut can ever be labeled 1. Thus every cut selected in step (ii)
must be labeled 0.

Eventually, all cuts labeled 0 must be deleted. This will
result in a final expression that has at most depth 1. ��

3 Evaluating infinite objects in CI
In this section, we turn our attention to infinite objects in
the Calculus of Indications, and following the lead of Varela
and Goguen (1978) we consider them from the point of
view of limits of sequences of finite expressions that “con-
struct” or “build” them step by step. In the first subsection,
the informal presentation in Varela and Goguen (1978) is
given a rigorous mathematical setting in the framework of
presheaves developed above. We then show how every con-
structive sequence gives rise to a unique value in the grossone

11 A formal categorical characterization of a variant of this procedure,
applied to cuts-only α graphs can found in Gangle et al. (2020).

framework. Finally, we define an algebra on the sequences
that behaves nicely with respect to valuations in the interval
[0, ①].

3.1 Constructive sequences of CI-expressions

Definition 4 A constructive sequence for a CI-expression F
is an infinite sequenceoffiniteCI-expressions, f1, f2, f3, . . .
such that for all i fi 	 fi+1 	 F and for any m and any
morphism x : hm → F there is n ∈ N such that the follow-
ing diagram commutes. (The representable set hm factors
through fn into F) (Fig. 9).

We designate constructive sequences for CI-expressions
F,G, . . . with Greek letters and capital Roman subscripts
αF , βF , . . . , αG , βG , . . . , dropping the subscripts if the
given CI-expression is either obvious from the context or
else left indeterminate.

Intuitively, a constructive sequence may be thought of as
an increasingly determined CI-expression that in the limit
converges on F . This is the guiding intuition behind the
approach to CI found in Varela and Goguen (1978) which
the present paper develops somewhat more rigorously. Each
step in the sequence may be thought of as the inscribing
of CI-expressions on areas of the CI-expression formed at
the previous step. Constructive sequences are thus formal
characterizations of the informal notion of “growing” or
“deepening” CI-expressions.

Definition 5 An s-evaluation sval(α) for a constructive
sequence α is an infinite binary sequence, that is, a function
N −→ {0, 1}, such that sval(α)(n) = RE(αn).

Such a sequence is obviously constructible, given any con-
structive sequence α, since the calculation of RE(αn) for
every n is itself a finite procedure.

Definition 6 Given k ∈ N a k-sum Sk(α) for a constructive
sequence α is

k∑

n=1

sval(α)(n)

It may be remarked that given any constructive sequence
αF for any finite CI-expression F such that RE(F) = 1, the

Fig. 9 Constructive sequences
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limit of the k-sum as k approaches infinity will be infinite.
That is,

lim
x→∞ Sk(αF ) = ∞

Conversely, given any constructive sequence βG for any
finite CI-expression G such that RE(G) = 0, the limit of the
k-sum as k approaches infinity will be finite or zero. That is,

lim
x→∞ Sk(βG) = n

for some n ∈ N.
In order to normalize k-sums for different values of k, it

is natural to define a k-value in the following way:

Definition 7 A k-value Vk(α) for a constructive sequence α

and some k ∈ N is Sk (α)
k .

We now define the following pair of operations on con-
structive sequences, a unary operation CIRC and a binary
operation JUXTA:

1. CIRC: Given a sequence α, the sequence CIRC(α) or
α© is the sequence that draws a cut around each expres-
sion in the sequence. Formally, α© = CIRCLE( f1), . . .,
CIRCLE( fn), . . .12

2. JUXTA: Given two sequences α = f1, f2, . . . and
β = g1, g2, . . ., the sequence JUXTA(α, β) or αβ is
the sequence that juxtaposes αn and βn for all n ∈ N.
Formally, αβ = J ( f1, g1), J ( f2, g2), . . .. It should be
obvious that JUXTA, like the JUXTAPOSE operation J
above, is a commutative operation.

We have the following facts for all k ∈ N:

1. Sk ( α©) = k − Sk(α)

2. Sk(αβ) = ∑k
n=1min(sval(α), sval(β)) ≤ Sk(α) +

Sk(β)

Our first result is to show that it is possible to extend
these results to the entire sequence taken as a whole by using
grossone.

A ①-sum S①(α) for a sequence α is

①∑

n=1

sval(α)(n)

Similarly, using the arithmetic properties of grossone, a

①-value V①(α) for a constructive sequence α is
S①(α)

①
.

12 Note that it is important to distinguish this operator α© (as an oper-
ation on α) from the circle drawn around 1 in the grossone numeral
①.

In accord with the facts above, the following facts hold:

1. S①( α©) = ① − S①(α)

2. S①(αβ) ≤ S①(α) + S①(β)

In addition, we have that:

3. For any finite expression F and constructive sequence
αF , V①(αF ) is either finite or ①-n for some finite n.

From (3) and elementary divisibility properties of gross-
one, it follows that any constructive sequence G such that
V①(αG) = m

①
± n with finite m and n must be the construc-

tive sequence for an infinite expression.
The use of the grossone notation and its associated arith-

metic thus allows both for the uniform extension of certain
finite determinations of constructive sequences to those
sequences taken as a whole (that is, taken as “actual” or
“completed” infinities) and also for a new arithmetic char-
acterization (based solely on k-values) of the difference
between finite and infinite CI-expressions.

3.2 Evaluating constructive sequences via grossone

We now show how every constructive sequence F gives rise
to a unique value Fv such that 0 ≤ Fv ≤ ①. Several examples
will illustrate how the evaluation works.

Let us first look at the most basic reentry of the form
considered in Fig. 3

A A

whichgives rise to the infinite nesting expression I as inFig. 4
(as in Sect. 1, the solid dot stands for an infinite number of
concentric circles):

The following three examples show three distinct con-
structive sequences, all of which construct I but each in a
different way:

Example 1 This sequence includes every step of the recursive
nesting, in which case each step is evaluated according to the
sequence 0, 1, 0, 1, 0, . . . . Hence, the ①-sum is ①/2 and the
①-value is 1/2, which corresponds to Kauffman’s i (Fig. 10).
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Fig. 10 All steps

Fig. 11 Only even steps

Fig. 12 Only odd steps

Fig. 13 Varela’s equation

Example 2 This sequence is constituted by the even steps of
the recursive nesting only, each of which evaluates to 1, so
that the ①-value of the entire sequence is ① (Fig. 11).

Example 3 Similarly, we can consider the sequence that only
includes the odd steps of the recursive nesting, each of
which evaluates to 0, hence the ①-value of the sequence is 0
(Fig. 12).

Example 4 Let us now consider a different and slightly more
complex reentry of the form, via Varela’s equation (Fig. 13)

The first few steps of the recursive construction sequence
are given below

Hence, since each step evaluates to 1, the ①-value of the
constructive sequence that includes each recursive step is ①

(Fig. 14).

4 Conclusion

It has been shown how both finite and infinite expressions in
Spencer Brown’s Calculus of Indications may be straight-
forwardly represented in a category-theoretical setting as
presheaves. We have denoted the resulting category of such
presheaves (and natural transformations among them) as CI.
Itwas then shownhowevaluations of finite expressions corre-
spond to applications of a recursive procedure. In this setting,
the concept of an infinite constructive sequence determining
an expression as its limit was defined and used to define s-
evaluations and k-sums and the latter’s normalized k-values
for constructive sequences of finite expressions. The exten-
sion of these concepts to the case of infinite expressions was
then shown to be possible by using the grossone notation and
arithmetic framework.

A further, natural generalization is given by adding
labels—representing atomic statements—to the Spencer–
Brown, cuts-only graphs. In a recent paper Tohmé et al.
(2020), we show that the grossone framework, combined
with a different sets of tools from category theory, can be

Fig. 14 First three steps of the
constructive sequence
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successfully employed also to deal with this more general
case.
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