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Abstract
Traditional collaborative filtering methods perform poorly in providing location recommendations due to the high sparsity

of users’ check-in data, prompting the development of new location recommendation approaches that can integrate

situational factors such as time and location. Using long short-term memory (LSTM) neural networks and kernel density

estimation (KDE), this paper integrates the impact of point-of-interest (POI) location and category on users’ check-in

behavior according to check-in sequence data. First, LSTM neural networks are used to model users’ periodic and

repetitive daily activities for a sequence-based prediction of the probability of whether the user will visit a candidate POI.

Second, the user’s geographical preference in the two-dimensional space is represented by KDE and used to make a

location-based check-in probability prediction. Next, the user’s category preference is used to predict the check-in

probability of a candidate POI. Finally, a user preference model is constructed from three perspectives of time, location,

and category, and the comprehensive check-in probability is used for Top-N recommendation. The validation experiments

on Foursquare dataset verifies that, in terms of recommendation precision and recall, the proposed recommendation method

is superior to both the basic LSTM approach and the method that uses only location information. In addition, it is

experimentally confirmed that the geographical preference, which is reflected by ‘‘clustering’’ of a user’s check-in loca-

tions, is stable, but the user’s category preference is prone to drift.

Keywords Point-of-interest recommendation � Deep learning � Kernel density estimation � User preferences �
Spatio-temporal information

1 Introduction

With the widespread use of smartphones and mobile

wearable devices, location-based social networks (LBSNs)

such as Foursquare, Gowalla, and Dianping have devel-

oped rapidly, allowing people to easily share their check-in

information. However, the tremendous amount of location

information also introduces the challenge of information

selection when using LBSNs. One important application of

recommendation systems on LBSNs is to recommend the

geo-location and services that users may be interested in

based on the check-in data of location (Wang et al. 2017),

comments, and other information (Zeng et al. 2017). As a

powerful tool to solve this problem of handling massive

data (Li et al. 2020), point-of-interest (POI) recommenda-

tion systems help users select the locations they may be

interested in and filter out useless information as well as

promote tourism planning, business marketing, and scenic

tourism services (Uddin and Habibullah 2020). The inno-

vation of POI recommendation algorithms has become a

research focus in recent years, and many researchers have

undertaken efforts to improve algorithm performance (Liao

et al. 2018). Popular POIs, concentrated check-in time, and

POI category with a high check-in frequency can be

identified based on users’ check-in data (Zhang et al.

2017). By combining such information with users’ profile

(Kurashima et al. 2013), POI location and category (Li

et al. 2016a, b), social contacts, and comments, various

hybrid recommendation models can provide personalized

POI recommendations to users (Nassar et al. 2020).
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1.1 POI recommendation with temporal
information

Time is the most important situational factor considered in

the research of POI recommendation. Users’ check-in

activities have a time sequence, which reflects the temporal

attributes of user preferences and needs (Chen et al. 2016).

Considering latent factor models are widely used in rec-

ommendation system, because most data of a recommender

system, such as ratings, impacts, and link hit-counts, can be

expressed as the interaction of a user latent vector and an

item latent vector (Luo et al. 2019a, b). Latent factor

models and the Markov method are widely used in

sequence data analysis and recommendation tasks (Luo

et al. 2016). The factorizing personalized Markov chain

(FPMC) proposed by Rendle et al. (2010) combines matrix

factorization and Markov chains for next-basket recom-

mendation. On this basis, Cheng et al. (2016) added

restrictions on user activities in Markov chains based on

FPMC and applied the modified model to next-POI

recommendation.

Latent factor models with the item’s profile property

mainly use matrix factorization to generate a weighted

matrix factorization model (Luo et al. 2019a, b). The

combination of temporal property and matrix factorization

usually divides user check-ins with different time intervals

and obtain a check-in matrix in each interval. Next, the

probability score of the candidate POI in each time interval

is calculated via matrix factorization. The total score is the

sum of the scores in all time intervals, which is used to

make a recommendation. The four-dimensional tensor

decomposition model proposed by Li et al. (2017) incor-

porates users’ long- and short-term preferences with the

check-in matrix derived from temporal factorization and

considers the POI category to reduce the data sparsity and

cold-start problems, which would occur when only the

check-in sequence data are used.

Recently, recurrent neural networks (RNNs) have been

successfully applied in sequence data modeling and have

become a popular method for sequence data analysis and

recommendation (Li et al. 2017), in particular, it can sig-

nificantly alleviate the effect of data sparsity in the matrix

factorization model (Luo et al. 2015). The approach of

Quadrana et al. (2017) using RNNs in session-based rec-

ommendation tasks depends on the user’s session data for

recommendation, and it does not require user ID or

embedding to characterize users. Similarly, researchers

have proposed various POI recommendation methods that

use the tracking of user check-in POIs rather than user ID

and embedding to characterize users for recommendation

(Zeng et al. 2017). Based on the long short-term memory

network (LSTM), Zhao et al. (2018) proposed a time-

LSTM network architecture to solve the recommendation

problem that considers time factors, sets a ‘‘control gate’’

for temporal information in check-in data, and constructs a

time-segment-based model for ‘‘next-item’’ recommenda-

tion. On this basis, Xia et al. (2017) further improved RNN

neurons and combined the RNNs with the attention net-

work to determine the spatio-temporal relationships

between users’ long-term and short-term preferences and

check-in behavior.

1.2 POI recommendation with geographical
information

In contrast to sequence-based recommendation for pur-

poses such as shopping and natural language, geo-location

information is a distinct feature that is important for POI

recommendation. Geo-location information contains the

objective physical relation between POIs and is closely

associated with the activities of users. Many studies have

used geo-location information to improve the quality of

recommendations. The commonly used geo-location-based

modeling methods for POI recommendation include the

power law distribution method, kernel density estimation

(KDE) (Zhang and Chow 2016) (Zhang and Chow

2015a, b), and LBSNs (Zhang et al. 2014a, b). In various

studies, the distance between the user’s current location

and the candidate recommended POI location has been

calculated to obtain a candidate set of users’ check-in

distance preferences based on the power law distribution of

user check-in behavior. Some studies considered nearby

POIs of a candidate POI calculated using the distance

between two POIs in the matrix factorization and deter-

mined the geographical effect based on the weight of the

location—i.e., the proximity. This method is called

weighted matrix factorization (Liu et al. 2014). The

GeoMF method (Lian et al. 2014) divides the impact on

user check-in behavior at a particular POI into users’

impact and POIs’ impact to describe the scope of a user’s

activity area to determine both the users’ impact on the

visits of POIs and the geographical impact on the users’

check-in behavior. The relation between a user and a POI is

represented by the vector product, and the final POI score is

the sum of the vector products derived from matrix fac-

torization. KDE can model the check-in preference of a

user in two-dimensional (2D) space. It describes the geo-

graphical distribution of the user’s visits in a specific area

based on the longitude and latitude coordinates of the

check-in POIs and estimates the user’s check-in probability

based on the kernel function (Zhang et al. 2014a, b).

Most LBSNs-based POI recommendation systems,

including USG (Ye et al. 2011), iGSLR (Zhang and Chow

2013), LORE (Zhang et al. 2014a, b), and Geo-So-Ca

(Zhang and Chow 2015a, b), use hybrid methods that
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integrate geographic location, POI category, and social

relations of users. For example, Geo-PFM (Liu et al. 2015)

constructs a 2D POI check-in distribution and uses differ-

ent polynomial functions to represent user check-in

behavior based on the geographical information of all POIs

in the user’s check-in records, based on the consideration

that the user’s check-in behavior is mainly related to user

preference and location. In ASMF (Li et al. 2016a, b), the

final POI score of a user is derived from a comprehensive

consideration of the check-in record of the user’s neighbors

on POI, the user’s POI category preference shown in her/

his past check-in records, and the distance between the

candidate POI and the user’s ‘‘home’’.

In this paper, a POI recommendation method that con-

siders multiple spatio-temporal factors is proposed. Using

users’ check-in sequence, POI location, and POI category

data, the correlation score between users’ candidate POI

and historical visits is calculated to generate Top-N rec-

ommendation. LSTM neural networks for deep learning are

used to construct a time-based check-in behavior model for

users’ periodic, repetitive, and complex daily activities.

After extracting the information regarding the user’s long-

and short-term preferences from the user’s historical

check-in sequence data, the model predicts the probability

whether the candidate POI conforms to the user’s historical

preference—namely, whether the user will visit the can-

didate POI in the future, which is the probability estimated

with temporal information. Regarding the geographical

clustering of users’ check-in behavior, this paper uses the

KDE method to build a 2D spatial model of user’s POI

location preference to demonstrate and quantify user’s

preference for geographical location and provide a spatial-

location-based prediction of check-in probability. In addi-

tion, we construct a model of a user’s personal preference

on POI category to calculate the user’s visit probability

based on POI categories. Adding the factors of POI loca-

tion and category preferences into the neural network

model based on check-in sequence helps to resolve the

sparsity problem of check-in data. Moreover, this paper

offers a comprehensive user preference model constructed

from three dimensions—time, location, and category—

achieve more precise and personalized recommendations.

The contributions of this paper include the following.

(1) In addition to users’ check-in sequence, the recom-

mendation model uses the POI location (longitude and

latitude) and POI category as inputs, which alleviates the

data sparsity problem caused using only the user-POI

check-in sequence. The experimental results also prove that

using POI location and POI category data can greatly

improve the precision and recall of recommendation. (2) In

addition to sequence-based check-in probability prediction

by LSTM neural network, the proposed model predicts the

visit probability based on users’ location and POI category

preferences. User preference is interpreted from the per-

spectives of time, POI location, and POI category, and a

recommendation in line with user preference is generated,

enhancing the understandability of the comprehensive

recommendation model based on deep learning and the and

interpretability of the recommendation results. (3) This

study derives two conclusions that have reference values

for POI recommendation research. First, although check-in

behavior has a clustering phenomenon, a user’s location

preference is stable; therefore, both long- and short-term

location preferences determined from historical check-ins

have very few fluctuations, which can be used to improve

the recommended effect. Second, the POI category pref-

erence of a user is prone to ‘‘drift’’; as a result, the category

preference obtained from historical check-ins is unsta-

ble and can improve only the performance of ‘‘Top-1’’

recommendation.

2 The proposed recommendation algorithm

This paper proposes an LSTM-based POI recommendation

model that considers multiple situational factors of time,

location, and category. The framework of the model is

shown in Fig. 1. First, mathematical models of check-in

sequence, POI location, and POI category are constructed

to predict the check-in probability of users in different

dimensions. The LSTM network is used to mine the

behavioral pattern of a user in terms of check-in sequence

and predict the user’s check-in probability at a candidate

POI in the temporal dimension. KDE is applied to describe

the spatial distribution of the user’s visits and construct a

personalized location preference model for check-in prob-

ability prediction at the candidate POI in the spatial

dimension. The proposed method also calculates the cate-

gory preference to predict the probability that the user will

visit a candidate POI in the category dimension. Finally,

the comprehensive user check-in probability Scorek at the

candidate POI k—i.e., the sum of the check-in probabilities

in the above three dimensions which is described as

Eq. (1)—is determined and used to generate a Top-N

recommendation list. The performance of the proposed

algorithm is evaluated using two indicators, precision and

recall. In addition, the sensitivities of time, location, and

category in the improvement of the recommendation effect

are investigated. The notations used in this paper are listed

in Table 1.

Scorek ¼ a � Scoretime þ b � Scorelocation þ c � Scorecategory;
ð1Þ

where a, b, c represent the coefficients used in the inte-

gration of the probability scores in different dimensions.
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2.1 LSTM-based check-in probability prediction
in the temporal dimension

The time sequence of a user’s check-ins is a check-in track

from the past to the present. Each segment of the track

represents the user’s status during the corresponding per-

iod. For example, in the complete check-in track of user u1
consisting of the check-ins (x1, x2, x3,……, xn-1, xn), there

are (x1, x2, x3,……, xn-1) ? xn at time t = n and (x1, x2,

x3,……, xn-2) ? xn-1 at time t = n-1. Each user check-in

track corresponds to a conditional probability represented

by its prefix sequence and the last check-in, the probability

is represented by the below equation:

P xtð Þ ¼ P xt Xt�1jð Þ ¼ P xt x1; x2 � � � xt�1ð Þjð Þ: ð2Þ

According to the time sequence of check-ins, the user’s

current check-in is affected by the prefix sequence. The

user’s personal preference, real-time needs, and changes

are reflected in all check-in segment sets; hence, the user’s

historical check-ins are not independent of each other, and

the joint probability is represented as Eq. (3):

P x1; x2 � � � xTð Þ 6¼
YT

i¼1

P xi Xi�1jð Þ; ð3Þ

In this paper, LSTM is used to mine the personal attri-

bute in user’s check-in sequence. After processing with the

basic neurons of LSTM, a state vector (hidden vector) ct
�

and a state value (hidden state) ct are obtained at each POI

on the user’s check-in track, the transfer function of ct
�
and

ct are specified as Eqs. (4) and (5) which are represented as

below. The hidden state vector represents the temporal

feature vector of the current check-in extracted by the

neural unit. The state value is passed to the processing step

of the next check-in as an abstract of this feature, which

represents the impact of the current check-in on the sub-

sequent check-in.

ct
� ¼ tanh Wcxt þ Ucht�1 þ bcð Þ; ð4Þ

ct ¼ ft � ct�1 þ it � ct
�
: ð5Þ

In the basic neurons of LSTM, the memory and for-

getting of the current location and prefix sequence it are

controlled via the input gate, the forget gate ft, and the

output gate. The parameters are determined during the

training process, and the time feature vector (history fea-

ture) ht containing check-in preference information is

extracted from the check-in track. The vectors are updated

as follows: Wi, Wf, and Wo represent the weight matrix in

Check-in in a city

LSTM neural network 

Kernel density 
estimation function

POI location

Category check-in 
frequency

Sequence characteristic

User’s check-in

POI category

Candidate POI set

Time relevance

Personalized location 
preferences

Personalized category 
preferences

Calculate the comprehensive check-in probability and 
get the recommendation list

Fig. 1 Framework of proposed

recommendation model
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input gate, forget gate, and output gate; bi, bf, and bo rep-

resent the bias in input gate, forget gate, and output gate;

Ui, Uf, and Uo represent the cell state in input gate, forget

gate, and output gate.

it ¼ r Wixt þ Uiht�1 þ bið Þ; ð6Þ

ft ¼ r Wf xt þ Uf ht�1 þ bf
� �

; ð7Þ

ot ¼ r Woxt þ Uoht�1 þ boð Þ; ð8Þ
ht ¼ ot � tanh ctð Þ: ð9Þ

For any training sample X = \H, T[ composed of

actual check-in sequence H and candidate POI T, each

training sample corresponds to a tag y. If T is the user’s

actual check-in POI after H, then y = 1; otherwise, y = 0.

The probability whether the user visits the candidate POI is

Scoretime ¼ P y
^
¼ 1 H; Th ij

� �
, which is the case when

y = 1 in a binary classification problem. First, the historical

check-in behavior matrix WeH and the vector WeT of the

candidate POI are obtained through embedding. After the

time feature extraction of LSTM from WeH, user’s histor-

ical check-in feature vector is obtained, which is concated

with the candidate POI vector. Next, the multilayer full

connection and sigmoid activation function are applied to

Table 1 Notations

Notation Meaning

u A user

n The number of a sequence of POIs visited by a user just before a certain time point

Scorek The predicted probability whether the user visits the candidate POI k

a The coefficients in time dimension used in the integrated probability scores

b The coefficients in location dimension used in the integrated probability scores

c The coefficients in category dimension used in the integrated probability scores

Scoretime The check-in probabilities in time dimensions

Scorelocation The check-in probabilities in location dimensions

Scorecategory The check-in probabilities in category dimensions

X = \H, T[ A user’s check-in footprint, H represents user’s historical check-in sequence, T represents candidate POI

xi A POI in check-in sequence

c
� The hidden state vector of LSTM cell

c The hidden state value of LSTM cell

h The feature vector of user preference extracted by LSTM

i The input gate in LSTM cell

f The forget gate in LSTM cell

o The output gate in LSTM cell

W The weight matrix in LSTM cell

b The bias in LSTM cell

U The cell state in LSTM cell

y The actual label of whether the user checked in at the candidate POI

y
^ The predicted label of whether the user checked in at the candidate POI

Lu The location set consisted by POI latitude and longitude

(x, y) The location coordinates of a POI, x is longitude and y is latitude

Cu,li User u’s check-in frequency on POI li

H1 A longitude-related global coefficient in KDE

H2 A latitude-related global coefficient in KDE

KHhi A POI location-related global coefficient in KDE

hi The local bandwidth coefficient in KDE

g The location coefficient in KDE

Uc The feature vector of user preference in POI category

uki A binary mark indicating whether the k-th POI belongs to category i

Pc The one-hot feature vector of POI category
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calculate the tag y
^
between the candidate POI and the

historical check-ins, y
^
is updated by Eq. (10).

y
^
¼ sigmoid concat LSTM WeHð Þ;WeTð Þð Þ: ð10Þ

The LSTM model updates its parameters based on the

error between the predicted and actual check-in tags. Iter-

ative training is performed to minimize the objective

function L and optimize the model parameters until the

model converges and achieves the expected prediction

precision. Cross entropy loss is used as the objective

function and the loss function is specified as Eq. (11).

L ¼ �
Xn

i¼1

yi
^
logyi þ 1� yi

^� �
log 1� yi

^� �
: ð11Þ

2.2 KDE-based check-in probability prediction
in the spatial dimension

The user’s localization characteristics of interest and

activities lead to geographical ‘‘clustering’’ of the user’s

check-ins. Figure 2 reflected two users’ actual check-in

records in the Foursquare dataset. The left panel shows that

all check-in activities of the user are clustered in the cen-

ters of two connected circular distribution areas; the right

panel shows only one obviously clustered distribution area,

and the visited locations in other two areas are scattered.

The following can be seen in the figure. First, analysis of

the check-in location clustering can provide an important

reference for determining the correlation between a can-

didate POI and historical check-ins. A candidate POI closer

to the center of the cluster is more likely to be visited.

Second, selecting a candidate POI based on only the dis-

tance between the candidate POI and historical check-ins

might have errors due to missing information, because the

relationship between user’s historical check-ins and the

candidate POI can be better represented in 2D spatial.

Third, the user’s check-in location distribution shows a

distinct characteristic of personalization; therefore, user-

level geographical preference modeling can significantly

improve the quality of personalized POI recommendation.

Based on the study of Zhang and Chow (2014), this

paper applies the KDE method, which is based on a binary

Gaussian function to fit the check-in location distribution at

user level. The check-in probability density function on a

2D plane is obtained using the historical check-in data of

the target user, and then the check-in probability of the

candidate POI is calculated.

The location set Lu specified as Eq. (12), which is

expressed by the latitudes and longitudes of POIs, is

obtained from user’s historical check-in records. For a

given candidate POI, the user’s check-in probability

Scorelocation ¼ fGeo l ujð Þ is approximately the user’s check-

in frequency at its nearby POIs, which is given as Eq. (13).

Lu ¼ l1; l2; l3; � � � ; lnf g
¼ x1; y1ð Þ; x2; y2ð Þ; x3; y3ð Þ; � � � ; xn; ynð Þf g; ð12Þ

fGeo l ujð Þ ¼ 1

N

Xn

i¼1

Cu;li � KHhi l� lið Þ
� �

; N ¼
Xn

i¼1

Cu;li ;

ð13Þ

where n is the total count of historical check-in locations of

user u, Cu,li is the user’s check-in frequency at location li,

KHhi which can be represented as Eq. (14) is calculated

using the standard deviations of the longitudes and lati-

tudes of all POIs, and H1 and H2 are two global coefficients

calculated according to the longitudes and latitudes of POIs

(Zhang and Chow 2015a, b).

KHhi l� lið Þ ¼ 1

2pH1H2h
2
i

exp � x� xið Þ2

2H2
1h

2
i

� y� yið Þ2

2H2
2h

2
i

 !
:

ð14Þ

The local bandwidth coefficient hi and the location

coefficient g are used to represent the personalized check-

in characteristics of user u for probability estimation based

Fig. 2 Example of user preference on POI location
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on the self-adaptive kernel function of user u, which are

described by the following equations:

hi ¼ g�1 � fGeo
�

li ujð Þ
� ��a

; ð15Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

i¼1

fGeo
�

li ujð Þn

s
ð16Þ

2.3 Category preference modeling based
on check-in frequency

A user’s check-in preference includes the POI category

preference. In the user’s check-in POI category set, the

check-in frequency of each category is obtained. A higher

check-in frequency of a POI category indicates that the

user more strongly prefers that POI category and the POI

category is more important to the user. The preference

vector Uc of the POI category is obtained by Eq. (17), and

the number of dimensions of this vector is the same as the

total number of POI categories (Fig. 3).

Uci ¼
Pn

k¼1 ukiPm
i¼1

Pn
k¼1 uki

; ð17Þ

uki is valued 1 or 0 to indicate whether the POI of the kth

check-in of user u belongs to category i.

The POI category is represented by one-hot vector Pc.

Uc and the category vector Pc of the candidate POI have

the same dimensions. The inner product of the two vectors

represents the user’s historical check-in frequency in the

same category as the candidate POI, which is the proba-

bility estimation Scorecategory = Uc�Pc of the user’s check-

in at the candidate POI.

3 Experiment and result analysis

3.1 Data analysis

The real check-in dataset Foursquare was used to validate

the personalized POI recommendation method proposed in

this paper. The check-in records in the Foursquare dataset

were from March 2012 to October 2013, and the check-in

data in the two cities of New York and San Francisco were

used in our experiments. In the two sub-datasets of NY

(Now York) and SF (San Francisco), the total check-in

counts show a similar fluctuation trend over time as shown

in Fig. 4. To minimize the interference of irrelevant fac-

tors, this study used the data in only the two datasets from

October 2012 to June 2013 when the total check-in counts

were relatively stable. In addition, the users with less than

10 check-ins and POIs with less than five check-ins during

the study period were discarded to reduce data sparsity.

The data details are presented in Table 2 and illustrated in

Fig. 4.

Figures 5 show the distribution and cumulative distri-

bution of the length of the user check-in sequence in the

two sub-datasets. In NY, the maximum length of the user

check-in track is 1144, with an average length of 43. A

cutoff length of 200 can fully retain more than 85% users’

check-in information. In SF, the maximum length of the

user check-in track is 1041, with an average length of 27. A

cutoff length of 120 can fully retain 85% users’ check-in

information. To retain as much check-in information as

possible while minimizing the impact of data sparsity on

calculation, the ‘‘padding’’ treatment was applied on user

check-in sequences of different lengths. For NY, the fixed

length for ‘‘padding’’ was 200. The check-in sequences

with fewer than 200 check-ins were padded with zeros, and

for those with more than 200 check-ins, only the first 200

check-in POIs were included. The fixed length for padding

in SF was 120.

Fig. 3 Example of user preference on POI category. All POIs are

grouped into nine categories in Foursquare, including 1: nightlife

spot, 2: food, 3: shop and service, 4: travel and transport, 5: art and

entertainment, 6: professional and other places, 7: college and

university, 8: outdoors and recreation, and 9: residence. We use a

9-dimensional vector to represent the POI category and user’s

category preference respectively Fig. 4 Total check-in counts in NY and SF
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3.2 Result analysis

3.2.1 Comparative experiment and evaluation indicators

We selected three models for comparison to verify the

performance of the proposed method in improving rec-

ommendation quality. To minimize the interference on the

results caused by the difference in the amount of infor-

mation used, the location and category factors were added

into the original model used in the previous research. The

three models used for a parallel comparison with the model

proposed in this paper are described as follows:

(1) Deep neural networks (DNN). DNN uses the deep

section in wide and deep model for pop-up recommenda-

tion. The model gives recommendations in pop-up win-

dows based on a user’s click sequence. In the deep section

of the model, fully connected networks are used to abstract

the features of a user’s ‘‘query’’ and ‘‘item’’ and calculate

the matching degree between the two. The model is

described in Reference De and Kao (2019).

(2) The deep context-aware POI recommendation model

(DCPR). DCPR is a location recommendation model based

on check-in sequences. It mainly consists of three collab-

orative layers. The first is the convolutional neural network

(CNN) layer for POI feature mining. The second is the

RNN layer that can extract sequential dependency and can

be used to construct a user preference model. The last layer

is an interactive layer based on matrix factorization to

optimize the overall model using a stochastic gradient

descent algorithm. The model and its experimental

parameters are described in Wang et al. (2017).

(3) Gated recurrent units (GRU). GRU is a variant of

RNN that achieve superior performance among RNN.

Their architecture is simpler than that of LSTM, with only

two gates, the update gate and the reset gate. Some

parameters used in this study were based on Reference Van

and Fellow (2014), whose representative GRU have been

widely used for comparisons with other RNN models.

To evaluate the impacts of the time, location, and cat-

egory factors on the quality of location recommendation,

the proposed recommendation method was analyzed in

depth by investigating the impacts of not only each indi-

vidual factor but also different combinations of the factors.

Three methods were used progressively for comparison:

LSTM. LSTM networks and users’ check-in data (only

user ID and location ID) were used for POI recommen-

dation based on check-in sequence.

LSTM ? GEO. LSTM networks and KDE were used for

POI recommendation based on both the check-in

sequence and geo-location data.

LSTM ? GEO ? CATE. LSTM networks and KDE

were used to give POI recommendations based on check-

in sequence, geo-location, and POI category. This is the

final recommendation method proposed in this paper.

The precision and recall of the recommendation lists

derived from the above methods were compared to evalu-

ate the performance of different algorithms. The experi-

mental results are shown in Sect. 3.2.2.

3.2.2 Experimental results

We counted the POI categories in experimental dataset and

conducted several pre-experiments to determine the

Table 2 Description of experimental datasets

# Datasets

Foursquare NY SF

#User 266,909 2932 1753

#POI 3,680,126 40,823 20,088

#Check-in 33,278,683 368,376 147,605

Fig. 5 Distribution and cumulative distribution of check-in length in NY and SF
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optimal number of categories which is the dimension of

user’s category preference vector and the POI category

vector due to that some category is fairly infrequent. Fig-

ure 6 depicts the check-in frequency of categories, the

POIs with ‘‘residence’’ are fairly infrequent in two sub-

datasets. We set up three experiments: All category: use all

categories to construct a 9-dimensional category vector.

Frequent category: use all categories expect ‘‘residence’’ to

construct an 8-dimensional category vector. No category:

do not use category information. The result of the pre-

experiments is shown in Fig. 7, model performance with

all categories achieved the highest precision (0.568 at NY

and 0.256 at SF) and recall (0.036 at NY and 0.059 at SF).

After removing an infrequency category, the precision

(0.561 at NY and 0.254 at SF) and recall (0.035 at NY and

0.059 at SF) were slightly reduced but still higher than the

No category. There are indeed fewer POIs in the dataset

with infrequent category, constructing a 9-dimensional

category feature vector according to the original dataset

does not cause data sparseness, but preserves complete user

preference information. Therefore, in the following

experiments, we preserved all categories to represent POI’s

category feature and user’s category preference. We use a

9-dimensional one-hot vector to represent the category

feature of each POI, each dimension is a binary value that 0

means the POI is not belong to this category, and 1 means

the POI is belong to this category. User’s category pref-

erence is represented by a 9-dimensional vector, and each

dimension represents the frequency of the user’s check-in

on each category.

The experimental results of different models are shown

in Fig. 8. The location recommendation model proposed in

this paper is significantly superior to other models in terms

of the precision and recall. In particular, when the Top-N

recommendation list is short, the proposed model achieves

a precision of 0.568, which is 25.39% higher than the GRU

model and 35.23% higher than the DNN model (Top-1 on

the NY sub-dataset). The recall of the proposed model

reaches 0.036, 28.37% higher than the GRU model and

40.31% higher than the DNN model (Top-1 on the NY sub-

dataset). The results derived from both sub-datasets con-

firmed that the recommendation quality can be stably

improved by the proposed algorithm. Compared with the

GRU model, the LSTM architecture used in this paper is

more suitable for the prediction of users’ check-in location.

This indicates that users’ check-in preference might be

either long term or short term, and LSTM can control the

preference attenuation through it forget gate for long-term

user preference. GRUs perform slightly worse than the

proposed model because they do not distinguish between

long-term and short-term preference. CNN and DNN are

two completely static neural networks, which extract fea-

tures of the matrix only after sequence embedding and do

not consider the sequence features between locations.

Therefore, DCPR and DNN have the worst recommenda-

tion quality among all models. In the SF sub-dataset,

because the check-in sequences have a small average

length and do not have distinct sequence features, DCPR

performs better than GRU due to the advantage of CNN in

processing the embedding matrix of the sequences.

The results in NY (Fig. 9) show that the LSTM ? GEO

probability estimation method, which considers the geo-

graphical factor in addition to the temporal factor in the

application of LSTM, has remarkably higher recommen-

dation precision and recall. LSTM ? GEO ? CATE

probability estimation with the addition of category can

significantly improve the precision and recall of recom-

mendation results in Top-1—i.e., the ‘‘Next Point’’ rec-

ommendation. However, when N[ 1, the addition of

category has a weak or even negative influence on the

recommendation quality, as evidenced by the fact that

LSTM ? GEO ? CATE probability estimation always

performs worse than LSTM ? GEO. This indicates that

users’ location preference obtained from users’ historical

check-in data is stable under the geographical clustering

effect, and it can be used to stably and positively affect the

location prediction quality of future check-ins. Users’

preference for location category plays a relatively

stable role in the ‘‘next point’’ prediction, but its drifting in

future check-ins may lead to a negative impact on the

improvement of recommendation performance when

N[ 1.

However, in SF, in which the average number of users’

check-ins is far less than that in NY, the importance of

category information in probability estimation increases

because the time and spatial information of users’ check-

ins are more sparse. As a result, the LSTM ? GEO ?

Fig. 6 Description of POI categories in Foursquare. Bars indicate the

check-in frequency of each category. Curve shows the cumulative

check-in frequency of each category. The mapping between numbers

and categories is: 1: food, 2: shop and service, 3: professional and

other places, 4: nightlife spot, 5: travel and transport, 6: art and

entertainment, 7: college and university, 8: outdoors and recreation, 9:

residence
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CATE method with the addition of the category factor is

superior to other recommendation methods that consider

only time and location information in terms of precision

and recall. Hence, the category correlation score can be

applied to significantly improve the recommendation

quality when users’ check-in sequences are short and only

a small amount of check-in data is available.

3.3 Parameter analysis

The ranking scores are calculated using the formula

Scorek = a� Scoretime ? b� Scorelocation ? c�Scorecategory,
where a, b, c are, respectively, the coefficients of time,

location, and category used in the calculation of the com-

prehensive probability. The coefficient value reflects the

sensitivity of the corresponding factor in the improvement

of recommendation quality. The value of the coefficients

reflects the degree of time, location and category relevance

considered in ranking score. For example, the larger the

value of a, the more time correlation of candidate POIs is

considered in the recommendation process, while if a is 0,

indicating that the time correlation is not considered in the

recommendation process. Table 3 shows the optimal rec-

ommendation results with different factors combinations.

3.3.1 Effects of a, b, and c on recommendation precision
and recall at NY

From the experimental results, the impact of these three

parameters on precision and recall is dataset related. In the

experiments using NY, the precision and recall are basi-

cally affected by three parameters, showing a monotonous

Fig. 7 Pre-experimental results

for the number of categories

determination (Precision@Top-

1 and Recall@Top-1)

Fig. 8 Comparison of the precision and recall of recommendation results between different models [NY (top), SF (bottom)]
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trend which is shown in Fig. 10. It can be seen from

Fig. 10 (1) and (2), this change is caused by a when a is

non-zero. The maximum of precision is 0.548 when (a,
b) = (0.981, 0.750), and 0.334 when (a, c) = (0.899,

0.021). Without considering the time correlation, when (b,
c) = (0.990, 0.010), the precision is 0.488. The recom-

mendation with time and location information can achieve

the highest precision than others. One can see that time

correlation on the NY dataset is a key factor for accurate

recommendation and plays a decisive role in the recom-

mendation result. The same conclusion is still valid in

recall. The highest recall is 0.036 when (a, b) = (0.986,

0.742), the highest recall is 0.021 when (a, c) = (0.915,

0.006), and the highest recall is 0.029 when (b, c) = (0.018,

1.000). In general, the sensitivities of time, category, and

location information in the improvement of recommenda-

tion precision and recall are in a descending order on NY.

3.4 Effects of a, b, and c on recommendation
precision and recall on SF

The results on the SF dataset are slightly different, it can be

seen from Fig. 11, When (a, b) = (0.005, 0.800), (a,
c) = (0.700, 0.600), and (b, c) = (0.950, 0.0005), the

highest recommendation precisions using correlation

scores of only two kinds of information are 0.204, 0.231,

and 0.269, respectively. In the experiment using SF, when

(a, b) = (0.005, 0.991), (a, c) = (0.950, 0.800), and (b,
c) = (0.872, 0.0005), the highest recommendation recalls

achieved using only two kinds of information are 0.054,

0.067, and 0.068, respectively. It can be seen that the

sensitivities of location, time, and category information in

Fig. 9 Precisions and recalls of the recommendation methods when using different sub-datasets [NY (top) SF (bottom)]

Table 3 Performance of different recommendation methods under

optimal parameter combination

Methods Datasets

NY SF

Precision Recall Precision Recall

LSTM ? GEO ? CATE 0.568 0.036 0.256 0.059

GEO ? CATE 0.542 0.029 0.269 0.062

LSTM ? GEO 0.488 0.036 0.204 0.054

GEO 0.398 0.025 0.221 0.056

LSTM ? CATE 0.334 0.020 0.249 0.066

LSTM 0.332 0.021 0.015 0.006

CATE 0.027 0.001 0.094 0.035
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the improvement of recommendation precision and recall

are in a descending order on SF.

The time, location, and category information have dif-

ferent effects on the recommendation results on different

datasets. In the experiments using NY, the average length

of user’s check-in sequence is 200, then user’s check-in

behavior reflects more time preferences. The time corre-

lation between the candidate POIs and the user’s historical

check-in records determines the recommendation result.

The average length of user check-in sequence in SF is 120,

which is significantly shorter than sequence in NY.

Therefore, user’s time preference is less reflected, on the

contrary, the geo-location of the check-ins is more stable.

Then location correlation in SF determines the ranking

score of candidate POIs.

Fig. 10 Effects of the combinations of a and b, a and c, and b and c on Precision@Top-1 and Recall@Top-1 (sub-dataset: NY)

Fig. 11 Effects of the combinations of a and b, a and c, and b and c on Precision@Top-1 and Recall@Top-1 (sub-dataset: SF)
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In summary, recommendation with the combined use of

time, location, and category information can achieve the

highest precision and recall. Compared with the recom-

mendation using only check-in sequence information, the

addition of location and category information can signifi-

cantly improve the precision and recall (Fig. 12). When the

number of check-ins is large and check-in sequences are

long, which generates abundant time sequence information,

the sensitivities of time, category, and location information

in the improvement of recommendation precision and

recall are in a descending order. When the number of

check-ins is small and the check-in sequences are short—

that is, when there is a lack of check-in sequence data—the

sensitivities of location, time, and category information in

the improvement of recommendation precision and recall

are in a descending order. This indicates that abundant

sequence data can effectively improve the quality of

location recommendation. In addition, the remarkable

geographical ‘‘clustering’’ phenomenon of user check-in

behavior causes the location information to be the second

important in location recommendation except time infor-

mation. However, when the sequence data are insufficient,

POI category information can significantly improve the

prediction of the ‘‘next point’’ and plays a more important

role than sequence data. However, users’ category prefer-

ence may drift during multiple check-ins in the long term.

4 Conclusion

In this paper, a location recommendation model based on

the comprehensive probability with time, location, and

category information is proposed. LSTM networks are used

to extract the temporal features of users’ check-in

sequence, which is used to make a time-based probability

prediction that a user will visit the candidate POI. The

binary Gaussian kernel function is used to estimate the

probability density and fit the user-level personalized

check-in location distribution, which is used to estimate

user’s check-in probability based on the geographic loca-

tion of the candidate POI. In addition, the probability that a

user will visit the candidate POI is also considered user’s

category preference. The validation experiment using

check-in data in two cities in the Foursquare dataset proved

that the proposed recommendation method can effectively

improve the precision and recall of POI recommendation.

Further, this paper explores the sensitivities of time, loca-

tion, and category information in the improvement in rec-

ommendation quality and clarifies the effects of the time,

location, and category factors by analyzing the data char-

acteristics in the dataset. The results indicate that users’

check-in locations have a long-term stable geographical

‘‘clustering’’ phenomenon, and the information regarding a

user’s location preference can steadily improve the rec-

ommendation quality. However, the information regarding

the user’s category preference can improve the recom-

mendation performance for only a short recommendation

list because the user’s category preference will drift in the

long term and may negatively affect the quality of

recommendation.

Considering the limitations in this paper and the

potential research directions, the following topics can be

investigated in the future. (1) Other situational factors

relevant to POI recommendation can be considered in the

recommendation model, including users’ social relations,

POI descriptions, and check-in environment. (2) The POI

category information can be further mined. The Foursquare

dataset includes data regarding different levels of POI

categories, which can be used to construct category trees to

describe users’ category preference in detail.

Acknowledgements This work was partly funded by the National

Science Foundation of China (Nos. 71871019, 71471016, 71531013,

71729001) and by the Fundamental Research Funds for the Central

Universities under Grant No. FRF-TP-18-013B1.

Fig. 12 Precision@Top-1 (left) and Recall@Top-1 (right) when using optimal parameter combinations

Exploring multiple spatio-temporal information for point-of-interest recommendation 18745

123



Compliance with ethical standards

Conflict of interest Author Mingxin Gan declares that she has no

conflict of interest. Author Yingxue Ma declares that she has no

conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Chen J, Li X, Cheung WK et al (2016) Neurocomputing effective

successive POI recommendation inferred with individual behav-

ior and group preference. Neurocomputing 210:174–184. https://

doi.org/10.1016/j.neucom.2015.10.146

Cheng C, Yang H, King I et al (2016) A unified point-of-interest

recommendation framework in location-based social networks.

Acm Transact Intell Syst Technol 8(1):10. https://doi.org/10.

1145/2901299

De HTTH, Kao HY (2019) C-3PO: Click-sequence-aware deeP

neural network (DNN)-based Pop-uPs recOmmendation: I know

you’ll click. Soft Comput. https://doi.org/10.1007/s00500-018-

03730-5

Kurashima T, Iwata T, Hoshide T et al (2013) Geo topic model: joint

modeling of user’ s activity area and interests for location

recommendation. Proc Sixth ACM Int Conf Web Search Data

Min. https://doi.org/10.1145/2433396.2433444

Li H, Ge Y, Hong R et al (2016a) Point-of-interest recommendations:

learning potential check-ins from friends. Proc 22nd ACM

SIGKDD Int Conf Knowl Discov Data Min. https://doi.org/10.

1145/2939672.2939767

Li L, Xing X, Xia H, Huang X (2016b) Entropy-Weighted instance

matching between different sourcing points of interest. Entropy

18(2):1–15. https://doi.org/10.3390/e18020045

Li XIN, Jiang M, Hong H et al (2017) A time-aware personalized

point-of-interest recommendation via high-order tensor factor-

ization. ACM Transact Inf Syst 35(4):1–23. https://doi.org/10.

1145/3057283

Li M, Li Y, Lou W et al (2020) A hybrid recommendation system for

Q & A documents. Expert Syst Appl 144:113088. https://doi.org/

10.1016/j.eswa.2019.113088

Lian D, Zhao C, Xie X et al (2014) GeoMF: joint geographical

modeling and matrix factorization for point-of-interest recom-

mendation. Proc SIGKDD. https://doi.org/10.1145/2623330.

2623638

Liao J, Tang J, Zhao X, Shang H (2018) Improving POI recommen-

dation via dynamic tensor completion. Sci Program 2018:1–11.

https://doi.org/10.1155/2018/3907804

Liu Y, Wei W, Sun A et al (2014) Exploiting Geographical

Neighborhood Characteristics for Location Recommendation.

Proc 23rd ACM Int Conf Conf Inf Knowl Manage. https://doi.

org/10.1145/2661829.2662002

Liu B, Xiong H, Member S et al (2015) A general geographical

probabilistic factor model for point of interest recommendation.

IEEE Trans Knowl Data Eng 27(5):1167–1179. https://doi.org/

10.1109/TKDE.2014.2362525

Luo X, Zhou M, Li S et al (2015) An efficient second-order approach

to factorize sparse matrices in recommender systems. IEEE

Trans Industr Inf 11(4):946–956. https://doi.org/10.1109/TII.

2015.2443723

Luo X, Zhou M, Xia Y et al (2016) Generating highly accurate

predictions for missing QoS data via aggregating nonnegative

latent factor models. IEEE Transact Neural Netw Learn Syst

27(3):524–537. https://doi.org/10.1109/TNNLS.2015.2412037

Luo X, Wang Z, Shang M (2019a) An instance-frequency-weighted

regularization scheme for non-negative latent factor analysis on

high-dimensional and sparse data. IEEE Transact Syst Man

Cybern Syst. https://doi.org/10.1109/TSMC.2019.2930525

Luo X, Zhou M, Li S et al (2019b) Algorithms of unconstrained non-

negative latent factor analysis for recommender systems. IEEE

Transact Big Data. https://doi.org/10.1109/TBDATA.2019.

2916868

Nassar N, Jafar A, Rahhal Y (2020) Knowledge-Based Systems A

novel deep multi-criteria collaborative filtering model for

recommendation system. Knowl Based Syst 187:104811.

https://doi.org/10.1016/j.knosys.2019.06.019

Quadrana M, Milano P, Karatzoglou A et al (2017) Personalizing

session-based recommendations with hierarchical recurrent neu-

ral networks. Proc Eleventh ACM Conf Recomm Syst. https://

doi.org/10.1145/3109859.3109896

Rendle S, Freudenthaler C, Schmidt-thieme L (2010) Factorizing

personalized markov chains for next-basket recommendation.

Proc 19th Int Conf World Wide Web. https://doi.org/10.1145/

1772690.1772773

Uddin S, Habibullah T (2020) Framework of dynamic recommenda-

tion system for e-shopping. Int J Inf Technol 12(1):135–140.

https://doi.org/10.1007/s41870-019-00388-6

Van MB, Fellow CS (2014) Learning phrase representations using

RNN encoder—decoder for statistical machine translation.

Comput Sci. https://doi.org/10.3115/v1/D14-1179

Wang F, Qu Y, Zheng L et al (2017) Deep and broad learning on

content-aware POI recommendation. 2017 IEEE 3rd Int Conf

Collab Internet Comput (CIC). https://doi.org/10.1109/CIC.

2017.00054

Xia B, Li Y, Li Q, Li T (2017) Attention-based recurrent neural

network for location recommendation. 12th Int Conf Intell Syst

Knowl Eng (ISKE). https://doi.org/10.1109/ISKE.2017.8258747

Ye M, Yin P, Lee W et al (2011) Exploiting geographical influence

for collaborative point-of-interest recommendation. Proc 34th Int

ACM SIGIR Conf Res Dev Inf Retr. https://doi.org/10.1145/

2009916.2009962

Zeng W, Fu CW, Arisona SM et al (2017) Visualizing the relationship
between human mobility and points of interest. IEEE Trans Intell

Transp Syst 18(8):2271–2284. https://doi.org/10.1109/TITS.

2016.2639320

Zhang J, Chow C (2013) iGSLR : personalized geo-social location

recommendation—a kernel density estimation approach. Proc

21st ACM SIGSPATIAL Int Conf Adv Geogr Inf Syst. https://

doi.org/10.1145/2525314.2525339

Zhang J, Chow C (2014) CoRe: exploiting the personalized influence

of two-dimensional geographic coordinates for location recom-

mendations. Inf Sci 293:163–181. https://doi.org/10.1016/j.ins.

2014.09.014

Zhang J, Chow C (2015a) GeoSoCa: exploiting geographical, social

and categorical correlations for point-of-interest recommenda-

tion. Proc 38th Int ACM SIGIR Conf Res Dev Inf Retr. https://

doi.org/10.1145/2766462.2767711

Zhang J, Chow C (2015b) Spatiotemporal sequential influence

modeling for location recommendations: a gravity-based

approach. Acm Transact Int Syst Technol 7(1):1–25. https://

doi.org/10.1145/2786761

Zhang J, Chow C (2016) TICRec: a probabilistic framework to utilize

temporal influence correlations for time-aware location recom-

mendations. IEEE Trans Serv Comput 9(4):633–646. https://doi.

org/10.1109/TSC.2015.2413783

Zhang J, Chow C, Li Y (2014a) LORE: exploiting sequential

influence for location recommendations. Sigspatial. https://doi.

org/10.1145/2666310.2666400

18746 Y. Ma, M. Gan

123

https://doi.org/10.1016/j.neucom.2015.10.146
https://doi.org/10.1016/j.neucom.2015.10.146
https://doi.org/10.1145/2901299
https://doi.org/10.1145/2901299
https://doi.org/10.1007/s00500-018-03730-5
https://doi.org/10.1007/s00500-018-03730-5
https://doi.org/10.1145/2433396.2433444
https://doi.org/10.1145/2939672.2939767
https://doi.org/10.1145/2939672.2939767
https://doi.org/10.3390/e18020045
https://doi.org/10.1145/3057283
https://doi.org/10.1145/3057283
https://doi.org/10.1016/j.eswa.2019.113088
https://doi.org/10.1016/j.eswa.2019.113088
https://doi.org/10.1145/2623330.2623638
https://doi.org/10.1145/2623330.2623638
https://doi.org/10.1155/2018/3907804
https://doi.org/10.1145/2661829.2662002
https://doi.org/10.1145/2661829.2662002
https://doi.org/10.1109/TKDE.2014.2362525
https://doi.org/10.1109/TKDE.2014.2362525
https://doi.org/10.1109/TII.2015.2443723
https://doi.org/10.1109/TII.2015.2443723
https://doi.org/10.1109/TNNLS.2015.2412037
https://doi.org/10.1109/TSMC.2019.2930525
https://doi.org/10.1109/TBDATA.2019.2916868
https://doi.org/10.1109/TBDATA.2019.2916868
https://doi.org/10.1016/j.knosys.2019.06.019
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1007/s41870-019-00388-6
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/CIC.2017.00054
https://doi.org/10.1109/CIC.2017.00054
https://doi.org/10.1109/ISKE.2017.8258747
https://doi.org/10.1145/2009916.2009962
https://doi.org/10.1145/2009916.2009962
https://doi.org/10.1109/TITS.2016.2639320
https://doi.org/10.1109/TITS.2016.2639320
https://doi.org/10.1145/2525314.2525339
https://doi.org/10.1145/2525314.2525339
https://doi.org/10.1016/j.ins.2014.09.014
https://doi.org/10.1016/j.ins.2014.09.014
https://doi.org/10.1145/2766462.2767711
https://doi.org/10.1145/2766462.2767711
https://doi.org/10.1145/2786761
https://doi.org/10.1145/2786761
https://doi.org/10.1109/TSC.2015.2413783
https://doi.org/10.1109/TSC.2015.2413783
https://doi.org/10.1145/2666310.2666400
https://doi.org/10.1145/2666310.2666400


Zhang J, Chow C, Li Y (2014b) iGeoRec: a personalized and efficient

geographical location recommendation framework. IEEE Trans

Serv Comput. https://doi.org/10.1109/TSC.2014.2328341

Zhang L, Hu T, Min Y et al (2017) A taxi order dispatch model based

on combinatorial optimization. 23rd ACM SIGKDD Int Conf.

https://doi.org/10.1145/3097983.3098138

Zhao P, Zhu H, Liu Y et al (2018) Where to go next: a spatio-

temporal LSTM model for next POI recommendation. https://

arxiv.org/abs/1806.06671

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Exploring multiple spatio-temporal information for point-of-interest recommendation 18747

123

https://doi.org/10.1109/TSC.2014.2328341
https://doi.org/10.1145/3097983.3098138
http://arxiv.org/abs/1806.06671
http://arxiv.org/abs/1806.06671

	Exploring multiple spatio-temporal information for point-of-interest recommendation
	Abstract
	Introduction
	POI recommendation with temporal information
	POI recommendation with geographical information

	The proposed recommendation algorithm
	LSTM-based check-in probability prediction in the temporal dimension
	KDE-based check-in probability prediction in the spatial dimension
	Category preference modeling based on check-in frequency

	Experiment and result analysis
	Data analysis
	Result analysis
	Comparative experiment and evaluation indicators
	Experimental results

	Parameter analysis
	Effects of alpha , beta , and gamma on recommendation precision and recall at NY

	Effects of alpha , beta , and gamma on recommendation precision and recall on SF

	Conclusion
	Acknowledgements
	References




