
Soft Computing (2020) 24:11297–11314
https://doi.org/10.1007/s00500-020-05069-2

FOUNDATIONS

An n-state switching PSO algorithm for scalable optimization

Izaz Ur Rahman1 ·Muhammad Zakarya1 ·Mushtaq Raza2 · Rahim Khan1

Published online: 15 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Particle swarm optimization (PSO) is an optimization method that is most widely used to solve a number of problems
in various fields such as engineering, economics and computer systems. However, due to its scalability and unsatisfying
performance particularly for large-scale optimization problems; numerous PSO variants have been suggested so far, in the
literature. This paper also proposes a new variant of the canonical PSO algorithm (‘N -state switching PSO—NS-SPSO’) that
uses the evolutionary factor information to update particles velocities and, therefore, further enhance its performance. The
evolutionary factor is derived by using the population distribution and the mean distance of each particle from the global
best. The population distribution and the mean distance are determined through Euclidean distance. Moreover, algorithmic
parameters such as inertia weight, and acceleration coefficients are assigned appropriate values at N stages (derived from
exploration, exploitation, convergence and jumping out states) that improves the search efficiency and convergence speed. The
proposed algorithm is applied to 12 widely used mathematical benchmark functions that demonstrate its best performance
in terms of minimum evaluation error, fast convergence and low computational time. Besides these, seven high-dimensional
functions and few other algorithms for large-scale optimization were considered to test the scalability of NS-SPSO algorithm.
Our comparative results show that NS-SPSO performs well on low-dimensional problems and is promising for solving large-
scale optimization problems. Furthermore, the proposed NS-PSO algorithm almost outperforms its closest rivals for various
benchmarks.

Keywords Particle swarm optimization · Evolutionary factor · Large-scale optimization · scalability

1 Introduction

Optimization is a real-world problem that is illustrated as
the minimization or maximization of an objective func-
tion according to some constraints. In order to optimize
real-world problems, they must be mathematically formu-
lated, first. Mathematically, all optimization problems can

Communicated by A. Di Nola.

B Izaz Ur Rahman
izaz@awkum.edu.pk

B Muhammad Zakarya
mohd.zakarya@awkum.edu.pk

Mushtaq Raza
mushtaq.raza@fe.up.pt

Rahim Khan
rahimkhan@awkum.edu.pk

1 Department of Computer Science, Abdul Wali Khan
University, Mardan, Pakistan

2 Faculty of Engineering, University of Porto, Porto, Portugal

be divided into two types based on the derived cost func-
tion, i.e. linear and nonlinear. In the literature, three different
approaches have been adopted to solve optimization prob-
lems, i.e. deterministic, analytical and stochastic (Elijah
2012). Moreover, all deterministic approaches are based on
a given initial condition and/or assumption, whereas analyti-
cal approaches have some pre-defined targets for a particular
problem. Both of these methods diverge if the dimensional-
ity factor of an optimization problem increases, dramatically.
Therefore, to resolve the issue of quick divergence, the third
approach, i.e. stochastic is largely used to solve and find near
optimum solutions to various real-world optimization prob-
lems.

Among stochastic approaches, a population-based tech-
nique known as PSO (particle swarm optimization) is widely
used to solve the optimization problems (Kenndy and Eber-
hart 1995; Eberhart and Kennedy 1995). PSO is a powerful
and modern swarm intelligence technique to solve the
global optimization problems. The particles find the objec-
tive of real-world optimization problem by emulating the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05069-2&domain=pdf
http://orcid.org/0000-0002-2289-6624
http://orcid.org/0000-0001-7070-6699

11298 I. U. Rahman et al.

behaviours of fish schools and bird flocks. Population is
referred as swarm and each individual agent is a candidate
solution that is referred as particle.Generally, two approaches
are used to initialize the swarm, i.e. random initializa-
tion of the population and swarm initialization according
to the problem variables. Each particle i in a swarm has
some attributes and it is associated with two vectors, i.e.
velocity vector vi = [v1i , v2i , . . . , vD

i] and position vector
xi = [x1i , x2i , . . . , xDi], where D represents the problem
dimensionality factor. Velocity and position are initialized
randomly within the search space range. Throughout the
development process, the velocity and position of i th par-
ticle are updated on dimension D according to the following
two equations:

vi (t + 1) = vi (t) + c1r1(pbesti (t) − xi (t))

+ c2r2(gbesti (t) − xi (t)) (1)

xi (t + 1) = xi (t) + vi (t + 1) (2)

where c1 and c2 represent acceleration coefficients (or
weights) and have constant values equal to 2.0, usually. Fur-
thermore, r1 and r2 are two random numbers, which are
uniformly distributed, and belong to (0, 1).

The velocity update equation (i.e. Eq. 1) has three terms on
the right-hand side in which the first term is called momen-
tumor inertiaweight. The second term is called cognitive part
that represents the personal influence of the particle. The third
term is called the social part that denotes the social and collec-
tive influence of the particle. Themain role of the acceleration
coefficients is to adjust the balance between exploitation and
exploration of each particle in the search space during its
movement. Moreover, Vmax is also introduced to further con-
strain the movement of each particle within the boundary of
the search space. The value of Vmax is given according to
the problem’minimumandmaximumboundaries.Moreover,
small values for Vmax cause exploitation (local minima), and
large values for Vmax cause exploration (local maxima). Each
particle memorizes its best position that has found in the his-
tory. The best position that is found by each particle itself is
called personal best Pbest position.However, the best position
found by the whole swarm is called global best or Gbest. In
the beginning, each particle moves with random velocity in
the search space. Subsequently, each particle dynamically
fine-tunes its movement velocity matching to the experi-
ences of its own and other participants. The particle position
will be updated constantly until the final optimal solution is
found ormaximumnumber of iterations are reached. Figure 1
describes the main process of traditional PSO algorithm.

Like traditional evolutionary algorithms, sensitivity of
parameter and premature convergence are the tightly cou-
pled issues associated with the PSO algorithm. The proposed
model, that is a novel variant of the traditional PSO scheme,

is introduced to resolve the aforementioned issues and more
likely enhancing its search capacity. The proposed module is
focused on how to: (i) control parameters modification (i.e.
weight of inertia and acceleration coefficients); (ii) design
topological structures of the model that is used for updating
the velocity; and (iii) form a hybrid of PSO and evolution-
ary algorithms (Van den Bergh and Petrus Engelbrecht 2006;
Eberhart andShi 2001, 2004;Ozcan andMohan1999;Cheng
and Jin 2015; Robinson et al. 2002; Juang 2004). Besides
these, evolutionary state estimation (ESE)-based approaches
that divides the search space into several sub-stages are also
suggested to improve PSO search efficiency and convergence
speed (Zhan et al. 2009). However, the four states do not
guarantee the suitability of such approaches to large-scale,
scalable, optimization problems, in particular, high dimen-
sional.

In this paper, we introduce a novel N state switching PSO
(NS-SPSO) algorithm. The NS-SPSO algorithm is based on
the assumptions to further improve the performance of NS-
MJPSO (Rahman 2016) by excluding some complex steps
such as: (i) determine the jumping probability according to
the domain knowledge; however, in practice, it is very diffi-
cult to have enough domain knowledge of the optimization
problem; and (ii) reduce the computational complexity and
burden induced by the Markov chain process. In the pro-
posed NS-SPSO algorithm, particles velocities are updated
purely according to the evolutionary factor value. The par-
ticle switches from one state to another state according to
the assessment of its current evolutionary factor. Further-
more, the choice of each particle either: to stay in the current
state; or to switch to other state, is made by how large the
value of evolutionary factor is. First of all, the population
distribution and the mean distance are determined by using
Euclidean distance. The evolutionary factor is then derived
by using the population distribution and the mean distance
of each particle from the global best. In the population dis-
tribution, we determine how far the particles are away from
each other and also their global optimums. The main states
are described as exploration, exploitation, convergence and
jumping-out states (Zhan et al. 2009). However, in the N
states, we further divide the main four states into sub-states
or stages. Each state is assigned a value in the range of (0, 1).

The algorithmic parameters such as inertia weights and
acceleration coefficients are assigned appropriate weights
according to each sub-state or stage. In the N states, N
number of acceleration coefficients are assigned, but its
appropriate value is selected during the evaluation process
according to the current state. Subsequently, the algorithm
converges to the optimum in just few iterations. For that
reason, we have adopted the concept of linearly time decreas-
ing inertia weight for the proposed NS-SPSO algorithm.
Extensive simulations have been carried out to evaluate the
performance of our proposed NS-SPSO algorithm through

123

An n-state switching PSO algorithm for scalable optimization 11299

applying it to 12most widely used benchmark functions. The
benchmark functions consist of six uni-modal and six multi-
modal problems. The results produced by the NS-SPSO are
then compared with NS-MJPSO and other state-of-the-art
algorithms (PSO variants). The average/best evaluation val-
ues are shown in the tables and further illustrated in the
graphical figures. The proposed algorithm has consumed the
shortest computation time and also has produced second best
results (in terms of accuracy) in comparison with all other
variants—with the notable exception of NS-MJPSO. Fur-
thermore, the proposed algorithm has solved the problem of
premature convergence to some extent by the concept of state
switching. The particle successfully learns from the popula-
tion distribution about the neighbourhood and also the global
best position. Then, the particles efficientlymove towards the
global optimum in shorter time. Moreover, the classification
of N states has induced the balance between local and global
search regions. Following are the main contributions of our
work:

1. an N-state switching PSO is proposed that extends the
four-states approach (Zhan et al. 2009) into N-state for
large-scale optimization problem;

2. an additional parameter based on evolutionary switching
is introduced;

3. an existing mechanism for calculating the inertia weight
parameter (Shi and Eberhart 1998b) is being adopted;
and

4. the proposed approach is evaluated on various lower and
high-dimensional (uni-modal and multi-modal) bench-
mark functions.

The rest of work in this paper is organized as follows. Sec-
tion 2 is dedicated to summarize the background literature,
the structure of basic PSO algorithm and its developments
towards the proposed work. A brief description of the prob-
lem is presented in Sect. 3. In Sect. 4, the structure of the
proposed algorithm is presented. In the following Sect. 5, the
performance of proposed NS-SPSO algorithm is thoroughly
examined in comparison to the other well-known PSO vari-
ants. In Sect. 6, we have briefly summarized our proposed
work along with several directions for further research.

2 Related work

PSO is a meta-heuristic, population-based algorithm which
was first introduced by Kennedy and Eberhart in 1995 (Ken-
ndy and Eberhart 1995; Eberhart and Kennedy 1995). The
main concept is inspired by the swarm intelligent behaviour
and choreography of birds flocking and fish schooling
(Kennedy et al. 2001). PSO imitates the participant agents
called particles to get to the optimum location in the search

space. After the random initialization of population, the par-
ticles compare their current position to their neighbours and
thus move to the new position. Basically, each particle is a
candidate solution and it keeps track of the best places found
by itself within the trial history. It is denoted as personal best
or Pbest symbolically, whereas the best value ever found by
entire swarm is called global best or Gbest. All particles are
collectively named as swarm. PSO algorithm is based on two
simple equations denoted as velocity update vi , and position
update xi . A constant value 2 is used for the acceleration coef-
ficients c1 and c2. Apart from that, two uniformly distributed
random numbers denoted as rand1 and rand2 have also been
used. The simplified structure, good quality solutions, quick
convergence and algorithm reliability are the main character-
istics that have attracted researchers in various fields. PSO
has been applied to various real-world optimization problems
(Eberhart and Shi 2001; Krohling and dos Santos Coelho
2006; Ho et al. 2008; Liu et al. 2007; Eberhart and Shi 2004;
Wang et al. 2013; Hu et al. 2015) in the last two decades.
Due to the limitations of getting trapped into local optimum
and excessive evaluations the basic PSO has been further
modified. Several variants have been developed with extra
capabilities.

In PSO modified versions, the diversity of the swarm
has been improved by introducing the various structures
for topologies in Suganthan (1999) and Kennedy (1999).
Kennedy and Mendes (2002) have proposed two different
types of topologies named as ring and Von-Neumann topolo-
gies. A novel fully informed PSO (FIPS) has been proposed
inMendes et al. (2004). In FIPS, the particles learn from their
peers with the best fitness in their neighbourhood. Another
variant, the comprehensive learning PSO (CLPSO) has been
developed in Liang et al. (2006). This algorithm has also con-
tributed to the area of topological improvements of the PSO.
The performance of the above-mentioned algorithms are
investigated on various uni-modal and multi-modal bench-
mark functions. Another variant of PSO is developed in Qu
et al. (2013) that derives the mean distance of particles in the
local neighbourhood. This algorithm has been used for the
problems having many local optima.

PSO algorithm is used in combination with the other tech-
niques such as evolutionary techniques (Zhan et al. 2009),
genetic algorithm (Robinson et al. 2002; Valdez et al. 2014)
and ant bee colony (Shelokar et al. 2007). Additional param-
eters have been introduced into PSO algorithm. The concept
of niching has been incorporated with PSO algorithm in
Brits et al. (2007). Gaussian mutation has been introduced
by Higashi and Iba (2003). Another adaptive particle swarm
optimization (APSO) algorithm has been proposed (Zhan
et al. 2009), evolutionary state information has been used as
an additional term added to the process of basic PSO. Four
evolutionary states S1, S2, S3 and S4 (exploration, exploita-
tion, convergence and jumping out) have been introduced.

123

11300 I. U. Rahman et al.

Each state has assigned an appropriate value from the fuzzy
membership interval of the particle current state. The evolu-
tionary factor Ef has been used to initialize the population
distribution, and to measure the mean distance between the
global best and other particles in the swarm. Four states have
been described by taking population distribution information
Ef in to account, which describes convergence, exploration,
exploitation and jumping-out states, respectively. Fuzzy clas-
sification method is used for classifying the states, which
results in some limitations of excessive computation of accel-
eration coefficients in each generation, swarm stagnation in
the local optima, if the current global best is the local opti-
mum and the last one is the complicated implementation
of classification method. The authors state that dividing the
search space into sub-stages increases search efficiency and
convergence speed. However, the four states still do not guar-
antee to solve the local optimum and pre-mature convergence
for high-dimensional optimization problems.

Furthermore, in the PSO performance studies, the com-
putation time has been considered as the initial objective
for improvement. Another aim that has been considered
is solving the problem of local optima or premature con-
vergence (Ho et al. 2008; Liu et al. 2007; Ciuprina et al.
2002; Liang et al. 2006). The given improved variants have
been thoroughly investigated by applying them into numer-
ous real-world problems. However, due to the nonlinear,
multi-modal, high-dimensional and complex types of the
real-world problems there is still a desirable room for further
enhancement to the PSO algorithm. In response to that, the
supplementary techniques have been merged to significantly
control the parameters of PSO algorithm (Zhan et al. 2007,
2009; Tang et al. 2011). The topological structures have been
improved to explore the search space, ensure global optimum
and avoid premature convergence (Liang et al. 2006).

A novel hybrid type, switching PSO (SPSO), has been
proposed in Tang et al. (2011). Evolutionary state informa-
tion is used to find themean distance of all the particles. Then
Markov chain is applied to randomly switch particle within
the four states according to certain transition probability.
Furthermore, appropriate values of acceleration coefficients
have been predefined for all states. The main consideration
of the switching PSO is to establish the balance between
local, global search region and converge quickly to the global
optimum in few iterations. The switching mechanism has
ensured that the particle will change its state according to
certain probability and will not get trapped into local opti-
mum prematurely. SPSO has shown the best performance for
benchmark functions andgenetic regulatory networks (GRN)
application (Tang et al. 2011). Therefore, tomake the existing
SPSO robust and more accurate, we have proposed several
modifications to the current SPSO algorithm.

In Weibo et al. (2018), a randomly occurring distribut-
edly delayed PSO algorithm (RODDPSO) is suggested. In

RODDPSO, the evolutionary state is computed through using
the evolutionary factor. Based on the evolutionary state, the
particle switches from one state to another. To reduce the
chances of stagnation locally and to explore the search space,
the time delays occurring randomly, which shows the previ-
ous Pbest and Gbest particles, are incorporated in the velocity
update equation. Empirical evaluation suggests that ROD-
DPSO outperforms some well-known PSO variants over
eight benchmark functions. Previous studies show that PSO
suffers from premature convergence, particularly, in problem
relating to data clustering. RODDPSO has been evaluated for
data clustering. Similarly, density-based PSO variants are
presented for data clustering in Alswaitti et al. (2018) and
Ling et al. (2016); and evaluated over various benchmark
functions.

The proposed N state switching PSO algorithm (NS-
SPSO) is the modified version of our previously developed
algorithmNS-MJSPO described in Rahman (2016) and Rah-
man et al. (2020), where N is number of possible states that
can be any positive value. In Rahman et al. (2020), the transi-
tionmatrix based on the probability of each particle is used to
predict the next state of the particle usingMarkovian jumping
mechanism. Basically, the main idea is similar to four-state
versions given in APSO and SPSO (Zhan et al. 2009; Tang
et al. 2011). The NS-SPSO algorithm is based on evolution-
ary techniques. The N states are visualized as sub-states or
stages of four states. Furthermore, the evolutionary states are
described by calculating and then using the population dis-
tribution, mean distance using Euclidean space, maximum,
minimum values and also the index of global best particle in
the population distribution information. The inertia weightω
is an important parameter of the PSO algorithm, which has
first been introduced by Shi and Eberhart (1998a). Shi and
Eberhart (1998b) proposed the concept of linearly decreased
inertia weight (LDIW) to compute the value of ω. It itera-
tively decreases the value of ω from 0.9 to 0.4 on basis of
Eq. 9. The idea behind this decrease is possibly the state of the
particle—in initial stages, the particle is far away the target;
therefore, larger value for ω is proffered.

Besides these, PSO has been applied to a variety of opti-
mization problems including machine learning techniques
to improve feature selection of text and document clustering.
These falls under the category of PSO application. For exam-
ple,Abualigah andKhader (2017) andAbualigah et al. (2018)
used PSO for feature selection, i.e. an unsupervised learning
approach to choose a subset of most informative text features
in order to improve the performance of the text clustering and
minimize its computational time. The algorithm is known as
FSPSOTC (Abualigah et al. 2018). The authors proposed
‘H-FSPSOTC’ a hybrid PSO algorithm using genetic oper-
ator to improve its efficiency (Abualigah and Khader 2017).
Their results show that the proposed feature selectionmethod

123

An n-state switching PSO algorithm for scalable optimization 11301

improved the text clustering outcomes through assisting the
k-mean text clustering to make more similar groups.

In this work, we compute the inertia weightω by combing
the evolutionary factor and the time varying strategy (Shi and
Eberhart 1999).Acceleration coefficients c1 and c2 both takes
N number of tuned values. The proposed algorithm is then
applied to 12 commonly used uni-modal and multi-model
functions of various dimensions. The results are compared
with some well-known and most cited algorithms. The pro-
posed algorithm has performed well in terms of the shortest
computation time and average/best evaluation values in com-
parison with all variants in comparison except NS-MJPSO in
accuracy for most of the benchmark functions. However, in
fewproblems some additional parameter tuning is required to
improve the quality of solution in terms of better evaluation
values.

2.1 The basic framework of PSO algorithm

The PSO algorithm refers to the intelligent searching
behaviour of all participants named as particles. The pop-
ulation of all particles is called swarm of size n, where each
individual particle i is a candidate solution in the problem
space. Each particle i holds two vectors quantities, the first
one is the velocity of i th particle in Dth dimension and t
time is represented as vi (t) = [(vi1(t), vi2(t), . . . , vi D(t))]
and the second one is the position of the i th particle
in Dth dimension and in time t is denoted as xi (t) =
(xi1(t), xi2(t), . . . , xiD(t)), where D represents dimension
of the solution search space. The swarm velocities and posi-
tions are initialized randomly with their respective bound-
aries xin(t) ∈ [xmin,n, xmax,n] (1 ≤ n ≤ D) with xmin,n and
xmax,n of the search space; where Vmax is maximum velocity
set to the 20% of the search space (Eberhart and Shi 2001).
During the process of algorithm evaluation iteratively, the

Fig. 1 The particle and parameter social learning behaviour (Rahman
2016) (this generalized figure denotes the movement of each particle
that could be in any state out of the N states—as shown in Fig. 2)

particle i with dth dimension is updated as follows.

vi (t + 1) = ωvi (t) + c1rand1(pbesti (t) − xi (t))

+ c2rand2(gbesti (t) − xi (t)) (3)

xi (t + 1) = xi (t) + vi (t + 1) (4)

whereω is called the inertiaweight (Shi and Eberhart 1998a),
c1 and c2 are denoted as acceleration coefficients (Eber-
hart and Kennedy 1995). Further, rand1 and rand2 are two
uniformly distributed random numbers generated between
[0, 1] (Kenndy and Eberhart 1995). Similarly, Pbest repre-
sents pbesti = (pbi1, pbi2, . . . , pbi D). The personal best is
the particle having the best fitness value found by the i th
particle so far; and gbest means gbest denoted as gbestD =
(gb1, gb2, . . . , gbD). The global best is the particle with the
best fitness value found by the entire swarm. Notre that, nBest
is used for global best in the neighbourhoodversion,GBest for
the global version, and LBest for the local version of the PSO.
The particle’s personal experience and its social interaction
determines the direction towards its best position, iteratively.
The movement of each and every particle in the search space
and the influence of its parameter is shown in Fig. 1 (Weber
and Van Noije 2012).

3 Problem description

In traditional PSO, various issues, such as parameter sen-
sitivity, getting stuck in local optima and weak robustness,
affect its performance, particularly, for large-scale optimiza-
tion problems. Therefore, rich literature suggests various
PSO variants, in different problem domains, in order to: (i)
enhance the search performance; and (ii) address one ormore
aforementioned issues. Among these, our previously pro-
posedNS-MJPSO algorithm (Rahman 2016) has shown to be
successful based on the assumptions that: (i) we know how
to determine the jumping probability according to the prior
knowledge; and (ii) we do not really care about the compu-
tational burden induced by the extra stage of the Markovian
state jumping (Rahman 2016). In practice, however, it is quite
often that we have less domain knowledge about the opti-
mization problem and the computational burden is a concern.
Therefore, it is essential to tackle this issue. Moreover, evo-
lutionary state estimation and divisibility of the search space
into several sub-stages does not guarantee fast convergence
and mature convergence, in particular, for large-scale, high-
dimensional, optimization problems. In this case, we have
proposed another novel PSO algorithm, which is the NS-
SPSO algorithm. For NS-SPSO algorithm, we update the
velocity purely based on the evolutionary factors where the
state switches from one to another according to the evalua-
tion of its evolutionary factor. In other words, the possibility

123

11302 I. U. Rahman et al.

for the state switching or staying is determined by how large
the evolutionary factor is. Our proposed NS-SPSO algorithm
is then examined through applications to some benchmark
functions.

4 The novel N state switching PSO

This section elaborates the development of novel NS-SPSO
for the enhancement of global search performance. A new
switching parameter δ(t) is introduced in the basic PSO
velocity update Eq. (5). The value of N states along-
with other parameters is initialized; where N represents
the evolutionary state number and is described as N ∈
{4, 5, 6, . . . , n − 1, n}. The basic idea of state division is
shown in Fig. 2. It is to be noted that the original four (4) state
model—convergence, exploration, jump out and exploitation
(Tang et al. 2011), is divided into different sub-states. More-
over, the likelihood of dividing a single state into multiple
states is also possible such as (i) in exploitation state where
particles are stuck or (ii) due to the utilization of small c1
and large c2 values, particles enter into the pre-mature con-
vergence state where division of every state into at least two
sub-state is mandatory which lead to N = 5 or 6. Note
that, stucking a particle in a particular stage means that the
algorithm pre-maturely converges without further optimiz-
ing the objective. In order words, the suboptimal value is
computed in first few iterations and is repeatedly computed
the same until the end. Furthermore, the convergence state
means that the particle has already achieved its target posi-
tion. The accuracy and search ability of a PSObased variant is
significantly improved if a particular state is divided intomul-
tiple states. Furthermore, the proposed sub-state mechanism
reduces the probability of skipping a particle during the tran-
sition process. Although sub-state mechanism resolves the
aforementioned problem, a high computational overhead, i.e.
in terms of search space and dimensionality of the problem, is
major issue associated with the small state model. Note that,
the division of a single state into multiple stages may not be
beneficial in all cases, as investigated in Sect. 5.3. Therefore,
it is essential to evaluate and estimate an appropriate number
of states for a particular problem with respect to its dimen-
sionality. The novel N state switching PSO (NS-SPSO) is
investigated by applying to 12 uni-modal and multi-modal
widely used benchmark functions (Liang et al. 2006; Sugan-
than et al. 2005) which are given in Sect. 5.

vi (t + 1) = ωvi (t) + c1(δ(t))r1(t)(pbesti (t) − xi (t))

+ c2(δ(t))r2(t)(gbesti (t) − xi (t)), (5)

xi (t + 1) = xi (t) + vi (t + 1) (6)

Fig. 2 The concept ofN states using theMarkov chain process (Rahman
et al. 2020)

4.1 Prediction of evolutionary states

In the beginning of population distribution, the particles are
dispersed in the search space. However, in the evolutionary
process the particles group together iteratively in the later
stages and find their local and global optimal positions in
the search space. The extraction of information from the
population distribution and using that for further describ-
ing the evolutionary state is an important research topic in
PSO. Hence, the population distribution information in each
generation is important to be recorded. A clustering based
technique was introduced for evolutionary state estimation
in Zhang et al. (2007) and Zhan et al. (2007), whereas fuzzy
classification method is used for calculating four evolution-
ary states in Zhan et al. (2009).

In the first step of population distribution, the mean dis-
tance from the global best particle in the search space for each
i is derived. The particles having smaller distance from the
global best are close to the convergence state and it switches
to the other state according to evolutionary factor. Further-
more, the particles located far away from the global best
switch to another state with higher values of its parameters.
The mean distance is calculated by using Euclidean matrix
as follows (Zhan et al. 2009; Tang et al. 2011):

Pd(i) = 1

N − 1

N∑

j=1, j �=i

√√√√
D∑

k=1

(xi (k) − x̄ j (k))2 (7)

In Eq. (7), N represents the swarm size and D stands for
dimensions of the problem. Evolutionary factor Ef has been
introduced by Zhan et al. (2009), and it has further been
used by Tang et al. (2011). Note that, the value of N-state

123

An n-state switching PSO algorithm for scalable optimization 11303

is pre-determined. Then, the computed value for Ef , based
on the Euclidean distance, and comparing the Ef value with
States(δ) (as shown in Eq. 8) describes the current state in
the particularN-states. For example, if N = 8 and 0 ≤ Ef <

2/N then the particle is in the second stage of the exploration
state.

This paper presents a novel switching mechanism by
extending from four states up to N states (Rahman 2016).
It further divides the four states to possible sub-states. The
sub-states smoothly describe the unit of association for par-
ticle in a particular state. By dividing into sub-states, we
assume significant improvement in adopts more suitable val-
ues for its parameters. The sub-states represent the certain
stages according to the value of N states. Hence, by increas-
ing the number of states the performance of the algorithmwill
be improved in terms of accuracy in the evaluation results,
but the computation burden will increase slightly. An aux-
iliary parameter δ, as described in Sect. 4.3, is used in the
new velocity update Eq. (5) in Sect. 4. Initially, c1(δ(0)) and
c2(δ(0)) with δ at position/state 0, are assigned 2. Then, the
appropriate value for the c1 and c2 are automatically assigned
during the runtime.
Here, we have derived the mean distance of all Pd(i) by
using Eq. (7) and find Pdg the global best particle (which
corresponds to the usual global best of the traditional PSO
gbest), Pd(max) as themaximummean distance and Pd(min) as
theminimummean distances. Consider the values derived by
using Eq. (7) in the population distribution and then compute
the evolutionary factor using Eq. (8) (Fig. 3).

Ef = Pdg − Pd(min)

Pd(max) − Pd(min)
∈ [0, 1]

States(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ Ef < 1
N ,

2, 1
N ≤ Ef < 2

N ,

3, 2
N ≤ Ef < 3

N ,

...
...

N , N−1
N ≤ Ef < 1

(8)

The division of solution space exploration approaches,
which are found in other population-based optimization algo-
rithms, such asAPSO(Zhan et al. 2009;Tang et al. 2011), into
sub-stages improve their convergence and, as well as, search
efficiency. This is due to the fact that the entire population is
intelligently managed and controlled according to particle’s
initial position. For example, if the particle is far away from
its gbest, then maximum acceleration weight is assigned to
speed up its movement towards the target position. Similarly,
if particles are too close to their target position their speed is
controlled accordingly.

Fig. 3 The switching parameters flow diagram

4.2 Mechanism for inertia weight calculation

The inertia weight ω has the significant contribution in the
control of PSO algorithm. It has the main influence on the
global and local search performance. If the value ofω is small
then it causes exploitation in the local search region. Large ω

drag the swarm towards global search region. In this study, ω
is computedbyusing the linearly decreasing strategy (LDIW)
proposed in Shi and Eberhart (1999). In LDIW strategy, the
value of ω is iteratively decreased from 0.9 to 0.4 based on
the idea that in initial stages the particle needs larger values
to control its movement towards gbest. The main reason to
select this method is the suitability of the decreasing factor
with the current state of the particle.

ω = (ωmax − ωmin) × iter

maxiter
+ ωmin (9)

Here, we have initialized ω = 0.9 as maximum and 0.5
values as minimum. The value of inertia weight ω is lin-
early decremented with time, so as to accelerate the velocity

123

11304 I. U. Rahman et al.

Ini�alize X, V, N, t = 0, w = 0.9,
δ (0) = 1

Determine the State, and compute
parameters using Fig.2

i = 1

i < = N

Update Velocity, Posi�on,
Pbest and Gbest

i = i + 1

t = t + 1 t < Max_iter

End

Fig. 4 N state switching PSO algorithm flowchart

of each particle according to its current position. Further
developments and investigation of various methods regard-
ing inertia weight have been briefly described in Rahman
(2016). The complete structure of NS-SPSO is described by
the following flowchart in Fig. 4, and the steps are shown in
Algorithm 1:

4.3 Selection of acceleration coefficients

In the proposed NS-SPSO algorithm, the acceleration coef-
ficients are selected and adjusted manually according to the
problem. N number of acceleration coefficients are required.
For instance, if N = 4 then we have to initialize four
values for each acceleration coefficient C = [2, N]. Each
value is designated to a particular state. The N acceleration
coefficient values are pre-initialized. Initially, c1(δ(0)) and
c2(δ(0)) are assigned 2. Then the appropriate value for the
acceleration coefficient is automatically assigned during the
program execution time. The strategy for selecting the accel-
eration coefficients for each state is described in Tang et al.
(2011) as follows:

In the proposed NS-SPSO technique, the large value of
Ef describes the state as jumping-out-state. As the particle
has the intention to jump from the local optimum towards

the global optimum; a large value of social learning fac-
tor c2(δ(4)) = 2.2 and smaller value of cognitive factor
c1(δ(4)) = 1.8 are assigned. Subsequently, the particle flies
towards the global best region very quickly. According to this
strategy, the proposed algorithm converges to global opti-
mum in few iterations.

Similarly, a relatively small value of E f describes the
current state in the exploration-state, according to that a large
value of c1(δ(3)) = 2.2 and smaller value of c2(δ(3)) = 1.8
are assigned to let the particle explore search spaces on its
personal influence.

Moreover, in the exploitation-state, a large value of
c1(δ(2)) = 2.1 and smaller value of c2(δ(2)) = 1.9 are
pre-initialized. Slight changes have been made to preserve
the balance in local and global search performance. Sub-
sequently, in the convergence-state equal values to both
c1(δ(1)) = 2.0 and c2(δ(1)) = 2.0 because all particles
group together in the convergence-state. The steps in the
proposed NS-SPSO algorithm are shown in Algorithm 1 and
their explanation follows as given. From step 1 to step 5, all
the required parameters are being initialized. In subsequent
steps, the mean distance or Euclidean distance for each par-
ticle is computed from step 7 to step 16. Then, from step 17
to step 18 the evolutionary factor is computed. Next, based
on the Ef value and States(δ) the current state is computed in
step 19 to step 23. In step 24, the next state of each particle is
predicted in step 24. Finally, in step 25, the particle is moved
through updating its velocity and acceleration coefficients.
Note that, step 7 to step 25 are repeated for each particle
until all iterations are completed.

4.4 Computational complexity

The computational complexity ofNS-SPSOdepends on three
various parts: (a) fitness evaluations; (b) mean-based popu-
lation distribution—Ef calculation; and (c) learning of the
swarm behaviour. In respect of (a), time cost of the fitness
evaluation is dependent on the problem size (dimension),
which is beyond the scope of our current work. Therefore,
we describe the time complexity of the proposed algorithm
with respect to (b) and (c).

In respect of (b), the time required to calculate the evo-
lutionary factor (Ef) of each particle is constant and is
achieved using the Euclidean distance. For m particles, the
time required for computing the population distribution is
given by:

Tm = O(m) (10)

Moreover, behaviour learning is an essential process for
updating the particle behaviour; and we assume it similar
to other learning mechanisms in various PSO algorithms
(Cheng and Jin 2015). As described in Cheng and Jin (2015),

123

An n-state switching PSO algorithm for scalable optimization 11305

Algorithm 1: State switching process
1 N ← Number of states ;
2 D ← Dimension ;
3 S ← Population ;
4 X ← Current position ;
5 C ← Acceleration coefficients ;
6 for each particle i do
7 // calculate the mean distance using Equation (7) ;
8 temp2 ← 0 ;
9 for k ← 1 : S do

10 temp ← 0 ;
11 for j ← 1 : D do
12 temp ← (X(i, j) − X(k, j))2 + temp ;
13 end for
14 temp2 ← temp2 + √

temp ;
15 end for
16 Disi ← temp2/S [which denotes the traditional PSO global

best particle gbest];
17 // calculate E f and current state ;
18 E f ← (Dis j − min(Dis))/(max(Dis) − min(Dis)) ;
19 for i ← 0 :N States do
20 if i /N States ≤ E f < (i + 1)/N States then
21 δ ← current state i ;
22 end if
23 end for
24 predict the next state using δ and Ef ;
25 update velocity using δ with respect to time ;
26 end for

‘the time complexity of behaviour learning process is indis-
pensable in a population-based stochastic search algorithm’.
Therefore, for n-dimensional problem which consists of m
number of particles, the time complexity of the learning pro-
cess can be obtained as follows:

Tl = O(m × n) (11)

Therefore, the total complexity T of the NS-SPSO algorithm
can be described as:

T = O(m(1 + n)) (12)

5 The experimental work

The proposed NS-SPSO has been evaluated over 12 com-
monly used benchmark functions that are given in Table 1
f1 to f12 taken from Cheng and Jin (2015). Few of them
are uni-modal (f1 to f5), and several are multi-modal (f6
to f12) as described in Cheng and Jin (2015) Initially, the
proposed NS-SPSO is applied to the 12 benchmarks func-
tions f1 to f12 in 30 dimensions using different values for
N . Then, the evaluation results are compared with published
values of six state-of-the-art algorithms. All the variants were
re-implemented and evaluated for 30 independent trials. The
published results of all the variants are taken fromCheng and

Jin (2015) for comparison. Additionally, the proposed algo-
rithm were also tested for its scalability on high-dimensional
functions in Sect. 5.4. These consist of various 50 dimen-
sional shifted or rotated functions from f13 to f19; and their
dimensionality were set to 100, 500 and 1000. All the exper-
imental work have been conducted on a PC with an Intel
Core i5-3320M 2.6 GHz CPU and Microsoft Windows 10
Pro 64-bit system. The benchmark test experiments of the 12
uni-modal and multi-modal problems for the proposed NS-
SPSO and other PSO variants in comparison are all coded in
MATLAB version R2015a. It is also worth to be mentioned
that because of the evolutionary control and switching tech-
niques the algorithm converge to its optimum in the early
stages of the function evaluations.

Mathematical benchmark functions f1− f12 are taken as
for testing high-dimensional problems. Out of those func-
tions, f1− f5 functions represent uni-modal. Function f6
represents a step function that has a single minimum and is
disjointed. Function f7 represents a quadratic and noisy func-
tion, where random [0, 1] denotes a uniformly distributed
arbitrary variable between [0, 1], whereas functions f8− f12
describes multi-modal functions, with intent that the num-
ber of local minima grows exponentially in conjunction with
the problem dimensionality factor (Yao et al. 1999; Törn and
Žilinskas 1989). Such kind of problems emerge to be the
most challenging class of problems for evolutionary opti-
mization algorithms. Considering uni-modal functions for
classical and fast evolutionarymethods convergence rates are
more fascinating and attractive as compared to the end opti-
mized results, as othermethods are specified for optimization
uni-modal functions. However, in considering multi-modal
functions, the end optimization results are much more sig-
nificant and important as they contemplate the strength of
algorithm in getting away from local optima and finding a
near-global optimum position.

Various metrics were used to evaluate the performance of
the proposed algorithm. For example, the optimization error
denote the difference between the real optimum value and
achieved value. Similarly, the near convergent rate specifies
the smallest achievable value. Moreover, the computational
time shows the wall clock time which an algorithm takes
to converge. Similarly, the impact of number of states (N),
for high-dimensional optimization functions, on the per-
formance of the proposed NS-SPSO algorithm has been
investigated through repeated experimentations. The dis-
cussion is consistent with the scalability of the proposed
approach.

5.1 Performance analysis of NS-SPSO in benchmark
functions

To analyse the performance of the proposed NS-SPSO algo-
rithm over various benchmark functions, we compare it to

123

11306 I. U. Rahman et al.

Table 1 The 12 common standard functions for experimentation using 30 dimensions (Rahman 2016)

Name Function Search range

Sphere f1(x) = f (x1, x2, . . . , xn) = ∑n
i=1 x

2
i [− 100, 100]n

Schwefel 2.22 f2(x) = f (x1, . . . , xn) = ∑n
i=1 |xi | + ∏n

i=1 |xi | [− 10, 10]n

Schwefel 1.2 f3(x) = ∑n
i=1

(∑i
j=1 x j

)2
[− 100, 100]n

Schwefel 2.21 f4(x) = f (x1, . . . , xn) = maxi=1,...,n |xi | [− 100, 100]n

Rosenbrock f5(x, y) = ∑n
i=1[b(xi+1 − x2i)

2 + (a − xi)2] [− 30, 30]n

Step f6(x) = ∑n
i=1�xi + 0.5�n [− 100, 100]n

Schwefel f7(x) = f (x1, x2, . . . , xn) = 418.9829d − ∑n
i=1 xi sin(

√|xi |) [− 500, 500]n

Rastrigin f8(x, y) = 10n + ∑n
i=1(x

2
i − 10 cos(2πxi)) [− 5.12, 5.12]n

Ackley f9(x) = f (x1, . . . , xn) = −a.exp(−b
√

1
n

∑n
i=1 x

2
i) − exp(1n

∑n
i=1 cos(cxi)) + a+ [− 32, 32]n

exp(1)

Griewank f10(x) = f (x1, . . . , xn) = 1 + ∑n
i=1

x2i
4000 − ∏n

i=1 cos(
xi√
i
) [− 600, 600]n

Penalized 1 f11(x) = π
n

{
10 sin2 (π y1) + ∑n−1

i=1 (yi − 1)2
[
1 + 10 sin2 (π yi+1)

] + (yn − 1)2
}

[− 50, 50]n

+ ∑n
i=1 u (xi , 10, 100, 4)

y = 1 + 1
4 (xi + 1)

Penalized 2 f12(x) = 0.1

{
sin2 (3πx1) + ∑n−1

i=1 (xi − 1)2
[
1 + sin2 (3πxi+1)

]+ [− 50, 50]n

(xn − 1)2
[
1 + sin2 (2πxn)

] }
+ ∑n

i=1 u (xi , 5, 100, 4)

In f11 and f12, u(x j , a, k,m) =

⎧
⎪⎨

⎪⎩

k(x j − a)m , x j > a

0,−a ≤ x j ≤ a

k(−x j − a)m , x j < −a

Note that, these functions are also scalable to the search dimensionality represented by n. Furthermore, the global optimum is zero for entire
functions. These functions relate to uni-modal (f1 to f5) and multi-modal (f6 to f12) functions

Table 2 Parameter coefficients
of the PSO variants for
comparison—m, and R denote
each swarm population size and
regrouping period (Liang and
Suganthan 2005); moreover χ

denote the constriction
coefficient parameter, as
described in Mendes et al.
(2004)

Algorithm Inertia weight Acceleration coefficients

LPSO [0.9, 0.4] c1 = c2 = 2.0

GPSO [0.9, 0.4] c1 = c2 = 2.0

DMS-PSO 0.729 c1 = c2 = 1.49445,m = 3, R = 15

FIPS χ = 0.729 c1 + c2 = 4.1

CLPSO [0.9, 0.7] c1 = c2 = 1.49445

NS-MJPSO [0.9, 0.5] c1 = [2, N], c2 = [2, N], φ = 0.9, N

NS-SPSO [0.9, 0.5] c1 = [2, N], c2 = [2, N], N

the newly developed NS-MJPSO (Rahman et al. 2020; Rah-
man 2016); and five other variants of the PSO algorithm.
All the variants have been coded and re-implemented for
comparison purposes. The published values are used in the
tables here produced by Cheng and Jin (2015). We compare
NS-SPSO to our newly developed NS-MJPSO algorithm, as
described in Rahman (2016); sincewe aim to further enhance
its performance by reducing the computational burden. Our
second comparative variant is the local-neighbourhood PSO
(local-PSO) (Kennedy and Mendes 2002), third is the global
best version (GPSO) (Shi and Eberhart 1999), fourth is the

dynamic multi-swarm version of PSO (DMS-PSO) (Liang
and Suganthan 2005; Cheng et al. 2013), fifth is the fully
informed PSO (FIPS) (Mendes et al. 2004), and the sixth
and last one is the comprehensive-learning PSO (CLPSO)
(Liang et al. 2006). The required parameters along-with the
values are described here in Table 2.

The proposed NS-SPSO has characterized outstanding
performance on 9 out of 12 problems (i.e. f1 to f6 and f8 to
f12) containing both uni-modal and multi-modal problems.
We have shown the performance of the proposed NS-SPSO
algorithm individually for each function in Table 3. More-

123

An n-state switching PSO algorithm for scalable optimization 11307

Table 3 The 12 standard test functions’ optimization errors—for each procedure and test function, the primary row characterizes the statistical
mean or average value (μ), while the subsequent row designates the statistical standard deviation (σ)

NS-SPSO NS-MJPSO LPSO FIPS DMS-PSO CLPSO GPSO

f1 6.86E−142 = 2.16E−150 + 4.89E−12 + 7.23E−70 + 3.81E−15 + 6.32E−19 + 5.56E−33

1.71E−161 2.79E−161 1.80E−14 4.78E−71 4.97E−20 1.69E−19 3.30E−45

f2 2.26E−100 – 7.93E−95 + 1.33E−08 + 9.99E−39 + 3.29E−11 + 7.49E−12 + 9.67E+00

3.46E−95 2.51E−98 9.36E−10 2.71E−39 1.42E−14 4.70E−12 1.85E−28

f3 1.54E−25 + 1.48E−23 + 2.75E+01 + 1.16E+00 + 8.35E+01 + 1.06E+03 + 2.22E+03

1.87E−30 5.45E−27 8.10E+00 3.58E−01 1.06E+01 6.74E+02 4.44E−05

f4 2.52E−20 + 3.04E−21 + 2.14E−02 + 2.42E+00 + 2.14E+00 + 4.50E+00 + 3.87E−05

7.63E−24 1.48E−23 8.23E−03 3.60E−01 8.52E−01 3.32E+00 3.71E−06

f5 1.36E−05 – 1.92E−04 + 6.27E+01 + 2.59E+01 + 3.86E+01 + 9.55E+00 + 1.31E+02

1.47E−04 8.47E−09 7.32E+00 1.25E−01 2.74E−01 1.73E+00 3.84E−01

f6 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 2.67E−01 = 0.00E+00 = 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 3.25E−03 + 2.99E+03 + 1.87E+03 + 2.70E+03 + − 2.55E−01 – 4.85E−13 + 5.52E+03

5.62E−04 1.40E+03 9.51E+02 1.34E+03 − 7.66E+00 0.00E+00 2.82E+03

f8 2.41E−03 – 0.00E+00 + 1.69E+01 – 4.25E+01 + 3.32E−02 + 6.13E−09 + 3.05E+01

3.00E−04 0.00E+00 4.01E+00 2.70E+01 1.78E−15 4.23E−10 1.98E−07

f9 1.45E−14 – 1.33E−14 + 2.87E−06 – 7.16E−15 + 1.49E−08 + 2.98E−10 – 9.25E−01

1.33E−14 6.22E−15 7.68E−08 6.22E−15 6.84E−11 1.24E−10 6.22E−15

f10 5.33E−15 – 0.00E+00 + 3.94E−03 – 4.48E−09 – 7.22E−03 + 2.20E−12 – 1.05E−02

4.55E−16 0.00E+00 2.44E−13 0.00E+00 0.00E+00 7.22E−15 0.00E+00

f11 4.15E−02 = 1.57E−32 + 6.97E−15 = 1.57E−32 + 3.46E−03 + 3.09E−20 = 3.46E−03

1.57E−32 1.57E−32 2.45E−16 1.57E−32 1.24E−21 9.08E−21 1.57E−32

f12 2.20E−03 = 1.35E−32 + 8.45E−14 = 3.66E−04 + 4.76E−03 + 4.17E−19 = 1.43E−16

1.35E−32 1.35E−32 3.36E−15 1.35E−32 1.47E−18 1.09E−19 1.35E−32

+/=/– 3/4/5 11/1/0 6/3/3 10/1/1 10/1/1 7/3/2

The smallest value for μ denotes the best outcome and, therefore, good algorithm; furthermore, the ranking formula was used to rank the NS-SPSO
algorithm against other variants

over, Figs. 5and 6 visually show the convergence rates of
various algorithms over various benchmark function—the
lower the curve, the minimum is the value.We have executed
the algorithms for 30 independent trails due to the random-
ness of the algorithms results. In the empirical results, we
store themean, small evaluation errors and standard deviation
for each function in all trails. In Table 3, the statistical results
are given over 30 independent trails for the newly developed
NS-SPSO and all other comparison algorithms. To simplify
our findings, a rankingmethod is developed to show their sig-
nificance. Over the 30 runs’ population of data, a statistical
two-tailed t testwas carried outwith 95%confidence interval,
i.e. significance level α = 0.05 (Zakarya and Gillam 2019;
Khan et al. 2020). As shown in Table 3, if the proposed NS-
SPSO technique outperforms other algorithms, a plus sign
‘+’ was inserted in front of the corresponding results. Sim-
ilarly, if no significance differences were observed between
NS-SPSO and other algorithm, an equal sign ‘=’ was used.
Furthermore, other algorithms outperform the proposed NS-
SPSO algorithm, a minus sign ‘–’ was used. At the bottom

Table 3, the total number of ‘+’, ‘=’ and ‘-’ is outlined.More-
over, best results for each function are shown in boldface
(Cheng and Jin 2015).

The newly developed NS-SPSO has produced the best
value (global optimum) in comparison with all other algo-
rithms in terms of minimum values (lower curves). Further,
comparatively NS-SPSO is faster in execution than the clos-
est rivals. Therefore, the newly developed NS-SPSO has the
promising performance for uni-modal problems. As shown
in Fig. 5, theNS-SPSO is on top rank for functions like f1, f2,
f3, f4, f5 and f6. Furthermore, the NS-MJPSO is on rank 2
for these functions—NS-SPSO outperforms the NS-MJPSO
algorithm. Moreover, the newly developed NS-SPSO is the
fastest one in execution time in comparison with all other
algorithms. However, the newly developed NS-SPSO and
NS-MJPSOalgorithms have promising performance for such
kind of optimization problems.

For multi-modal function f7, as shown in Fig. 6, the
CLPSO and DMS-PSO have the minimum values; and our
algorithm diverge quickly. The main reason is that the pro-

123

11308 I. U. Rahman et al.

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-200

10-150

10-100

10-50

100

1050

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-100

10-80

10-60

10-40

10-20

100

1020

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-30

10-25

10-20

10-15

10-10

10-5

100

105

1010

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-25

10-20

10-15

10-10

10-5

100

105

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

0.0001

0.01

1

100

10,000

1,000,000

100,000,000

10,000,000,000

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

100

101

102

103

104

105

106

107

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Fig. 5 Various test functions and their convergence profiles (the small-
est values denote the best approaches); f1 to f6—from leftward to
right-side and uppermost to bottommost. The proposed NS-SPSO algo-

rithm has revealed the finest performance on ten out of twelve test
functions (f1 to f3; f5; f6 and f8 to f12), together with 4 uni-modal
and 6 multi-modal functions

posed algorithm is a gbest-based approach, which leads the
population towards a single position. However, in multi-
modal problems the lbest-based approaches would be more
suitable (Chowdhury et al. 2014; Ghosh et al. 2012). We are
working to consider the lbest-based version of the proposed
NS-SPSO algorithm, in the near future. In the same set-
ting, the performance of the NS-MJPSO is not good for this
particular function. Similarly, for multi-modal function f8,
algorithms like NS-MJPSO, CLPSO, DMS-PSO and GPSO
have the best performance. Based on our investigation, we

found that the newly developed NS-SPSO needs some fur-
ther parameters’ adjustment in order to produce good and
relatively optimal results, for these multi-modal functions.
For other functions like f9, f10, f11 and f12, algorithms
like NS-SPSO, NS-MJPSO, CLPSO, DMS-PSO and GPSO
have similar and almost comparable performance in terms
of optimal evaluation values. Furthermore, NS-SPSO and
NS-MJPSO are relatively faster than the other algorithms.
In short, due to the gbest nature of the proposed NS-SPSO
algorithm, the algorithm has performedwell rather than other

123

An n-state switching PSO algorithm for scalable optimization 11309

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-15

10-10

10-5

100

105

1010

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-15

10-10

10-5

100

105

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-15

10-10

10-5

100

105
GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-15

10-10

10-5

100

105

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-40

10-30

10-20

10-10

100

1010

1020

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Number of generations: (Population=50,Dimension=30)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n
fit

ne
ss

:lo
g(

f(x
))

10-40

10-30

10-20

10-10

100

1010

1020

GPSO
LPSO
CLPSO
DMSPSO
FIPS
NS-JPSO
NS-SPSO

Fig. 6 Various test functions and their convergence profiles (the small-
est values denote the best approaches); f7 to f12—from leftmost to
rightmost and topmost to bottommost. The proposed NS-SPSO algo-

rithm has revealed the finest performance on ten out of twelve test
functions (f1 to f3; f5; f6 and f8 to f12), together with 4 uni-modal
and 6 multi-modal functions

rivals for uni-modal functions. Unfortunately, we observed
itsworst performance formulti-modal functions. For scalable
optimization, we consider high-dimensional optimization
functions and several other PSO variants, as described in
Sect. 5.4. The evaluation is being carried out using different
setting for dimensionality and different values for N , i.e. the
number of states.

5.2 Computation time of the proposed NS-SPSO

In this section, we analyse the average computational time of
the proposed NS-SPSO algorithm and others. The computa-
tional time represents the CPU clock time, i.e. the absolute
CPU time spent in evaluation—the lower its is, the faster
is the approach. Further, all algorithms were experimentally
evaluated with the same number of iterations, i.e. 2 × 105

123

11310 I. U. Rahman et al.

Fig. 7 Average computation of
the proposed NS-SPSO in
comparison

Table 4 Optimization errors using NS-SPSO for various number of states N on 10 basic test functions (f1– f10), the first value represents the mean
value (μ) and the second value denotes the standard deviation (σ)

N = f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

4 6.86E−142 2.26E−100 1.54E−25 2.52E−20 1.36E−05 0.00E+00 3.25E−03 2.41E−03 1.45E−14 5.33E−15

1.71E−161 3.46E−95 1.87E−30 7.63E−24 1.47E−04 0.00E+00 5.62E−04 3.00E−04 1.33E−14 4.55E−16

8 1.23E−150 1.89E−110 2.65E−30 3.32E−24 8.96E−06 0.00E+00 2.55E−04 5.60E−05 2.56E−15 4.11E−16

2.51E−161 2.25E−98 3.77E−35 2.55E−28 3.27E−05 0.00E+00 6.88E−04 2.45E−05 5.63E−16 2.22E−16

12 3.54E−145 1.59E−120 2.58E−31 1.31E−24 3.66E−05 0.00E+00 2.16E−05 3.64E−04 6.55E−15 3.33E−15

2.36E−160 2.96E−100 6.69E−30 5.77E−24 9.11E−04 0.00E+00 4.77E−04 1.10E−05 5.88E−14 4.22E−16

16 1.58E−142 6.70E−110 5.23E−28 1.65E−22 6.44E−04 0.00E+00 8.11E−03 5.66E−04 1.23E−14 7.99E−14

2.69E−160 2.62E−95 2.67E−35 4.21E−26 3.55E−05 0.00E+00 3.44E−04 2.99E−04 3.55E−14 1.58E−15

20 1.76E−138 3.53E−98 6.41E−24 1.97E−15 3.56E−04 0.00E+00 1.10E−03 3.88E−03 4.65E−12 1.42E−13

2.81E−158 5.31E−99 2.61E−25 4.83E−24 1.25E−04 0.00E+00 6.60E−03 4.77E−03 7.81E−12 1.48E−14

4 12 16 8 8 N/A 16 12 8 8

Minimum μ values are best and shown in boldface; further, the last line shows the optimal number of states for each benchmark function

over the same 12 benchmark functions. The average com-
putational times for all algorithms are shown in Fig. 7. The
Local PSO (LPSO) has the smallest average computational
time and stands at rank 1. The proposed NS-SPSO algorithm
has the second shortest computational time and stands at rank
2.Note that,NS-SPSOalso scores the second best, in terms of
minimum values for most of the uni-modal and multi-modal
problems, algorithm with respect to accuracy.

5.3 Impact of number of states on results

As described earlier, the contribution of our proposed algo-
rithm is twofold: (i) the utilization of N states rather than four
states used in the SPSO algorithm; and (ii) the adaptation of

linearly decreasing inertia weight (LDIW) (Shi and Eberhart
1998b). In respect of (i), the number of acceleration coeffi-
cient also varies. If N = 8, then there will be total 8 values
(pairs) for c1 and c2, where each pair of (c1, c2) relates to a
particular state among the standard 4 states, i.e. jumping out,
exploration, exploitation and convergence. In the same way,
for N = 12 there will be twelve values (pairs) each one for
c1 and c2. As described earlier in Sect. 4, the values of c1, c2
are pre-determined and tuned accordingly because they help
particles in escaping from one state to others. Consequently,
a variety of values will produce variations in outcomes. In
order to automatically compute c1, c2, we have to use a sim-
ple approach where in every pair, c1 value is decreased or
increased with 0.05 and the related c2 value is increased or

123

An n-state switching PSO algorithm for scalable optimization 11311

Table 5 Seven high-dimensional test functions and their optimization errors—for each algorithm and test function, the primary row characterizes
the statistical average or mean value (μ) while the subsequent row designates the statistical standard deviation (σ)

NS-SPSO NS-MJPSO SL-PSO CCPSO2 DMS-L-PSO

100-D (Number of states = 12)

f13 1.33E−31 2.99E−31 1.09E−27 7.73E−14 0.00E+00

3.68E−30 + 1.74E−29 + 3.50E−28 + 3.23E−14 – 0.00E+00

f14 1.28E−07 3.52E−07 9.45E−06 6.08E+00 3.65E+00

1.90E−07 + 1.89E−06 + 4.97E−06 + 7.83E+00 + 7.30E−01

f15 3.96E+00 4.25E+00 5.74E+02 4.23E+02 2.83E+02

1.43E+01 + 3.69E+01 + 1.67E+02 + 8.65E+02 + 9.40E+02

f16 1.30E−06 2.75E−06 7.46E+01 3.98E−02 1.83E+02

1.16E−06 + 1.23E−06 + 1.21E+01 + 1.99E−01 + 2.16E+01

f17 0.00E+00 0.00E+00 0.00E+00 3.45E−03 0.00E+00

0.00E+00 = 0.00E+00 = 0.00E+00 + 4.88E−03 = 0.00E+00

f18 1.07E−20 1.68E−20 2.10E−14 1.44E−13 0.00E+00

1.99E−18 – 2.47E−19 + 5.22E−15 + 3.06E−14 – 0.00E+00

f19 −1.11E+03 −1.36E+03 −1.48E+03 −1.50E+03 −1.14E+03

1.35E+00 + 2.99E+00 + 1.90E+01 + 1.04E+01 + 8.48E+00

+/=/– 5/1/1 6/1/0 7/0/0 4/1/2

500-D (Number of states = 16)

f13 1.65E−30 2.76E−28 7.24E−24 7.73E−14 0.00E+00

1.66E−29 + 1.39E−28 + 2.05E−25 + 3.23E−14 – 0.00E+00

f14 9.55E−02 8.76E+00 3.47E+01 5.79E+01 6.89E+01

3.65E−01 + 7.95E+00 + 1.03E+00 + 4.21E+01 + 2.01E+00

f15 5.45E+03 2.21E+03 6.10E+02 7.24E+02 4.67E+07

1.56E+02 + 1.99E+02 + 1.87E+02 – 1.54E+02 + 5.87E+06

f16 2.46E−02 4.35E−01 2.72E+03 3.98E−02 1.61E+03

1.93E−02 + 3.33E−01 + 3.25E+02 + 1.99E−01 + 1.04E+02

f17 5.88E−20 1.22E−15 3.33E−16 1.18E−03 0.00E+00

1.53E−20 + 3.22E−14 – 0.00E+00 + 4.61E−03 – 0.00E+00

f18 2.52E−15 1.87E−14 1.46E−13 5.34E−13 2.00E+00

1.99E−15 + 3.44E−14 + 2.95E−15 + 8.61E−14 + 9.66E−02

f19 −1.36E+02 −2.77E+03 −5.94E+03 −7.23E+03 −4.20E+03

4.26E+01 + 5.52E+02 + 1.72E+02 – 4.16E+01 – 1.29E+01

+/=/– 7/0/0 6/0/1 5/0/2 4/0/3

decreased with the same value. For example, beneath we
are describing eight values for each pair of c1, and c2 when
N = 8.

c1, c2 =
{
2, 2.05, 2.1, 2.15, 2.2, 2.25, 1.8, 1.85

2, 1.95, 1.9, 1.85, 1.8, 1.75, 2.2, 2.15

We have found that increasing the N value for high-
dimensional problems even increases the convergence speed
and accuracy, but at a small increase in computational time.
Note that, accuracy reflects the total number of positive hits
for the least fitness evaluation test in 30 experimental hits. In
addition, it is noted that no further improvement ismadewhen
increasing the value of N , in particular, for low-dimensional

problems. For instance, the least function evaluation value
for f0, with 30 dimensions, was achieved at N = 12; thus,
fixing N = 20 just increases the algorithm’s computational
time with no benefits and performance gains. Likewise, as
the number of N states grows, the effort involved in choosing
sufficient acceleration coefficients is also increasing. Table 4
depicts fitness values for ten test functions (from f1 to f10)
when considered for optimization using the suggested PSO
variant (NS-SPSO) and 5 different values for states, i.e. N .
Because, for both functions, i.e. f11 and f12, we did not
overlooked any considerable improvements (minimization
or maximization), thus they are not listed in Table 4.

123

11312 I. U. Rahman et al.

Table 5 continued

NS-SPSO NS-MJPSO SL-PSO CCPSO2 DMS-L-PSO

1000-D (Number of states = 20)

f13 5.47E−28 2.33E−25 7.10E−23 5.18E−13 0.00E+00

4.36E−28 + 1.66E−24 + 1.40E−24 + 9.61E−14 – 0.00E+00

f14 2.55E+00 4.10E+01 8.87E+01 7.81E+01 4.25E+01

1.66E+00 + 3.22E+01 + 5.25E+00 + 2.35E+01 – 2.35E−01

f15 2.20E+01 3.22E+02 1.04E+03 1.22E+03 7.33E+09

1.89E+01 – 1.57E+01 + 5.14E+01 + 1.63E+02 + 3.28E+08

f16 1.77E−02 2.67E−01 5.89E+02 1.88E−01 3.44E+03

1.64E−02 + 3.65E−01 + 9.26E+00 + 3.04E−01 + 1.61E+02

f17 1.91E−20 3.87E−18 4.44E−16 1.08E−03 0.00E+00

2.34E−20 + 2.40E−18 – 0.00E+00 + 2.37E−03 – 0.00E+00

f18 1.38E−17 2.48E−16 3.44E−13 1.22E−12 2.76E+00

2.58E−16 + 1.36E−15 + 5.32E−15 + 1.56E−13 + 7.88E−02

f19 −2.33E+01 −4.63E+02 −1.30E+04 −1.53E+04 −5.50E+03

1.51E+01 + 3.46E+02 + 1.04E+02 + 2.58E+01 + 2.66E+01

+/=/– 6/0/1 6/0/1 7/0/0 4/0/3

The smallest value forμ denote the best values and is shown in boldface; furthermore, the ranking formula was used to rank the NS-SPSO algorithm
against other variants

5.4 Results for high-dimensional problems

Besides the above twelve benchmarks functions, NS-SPSO
is further tested on seven more functions by setting the
search dimensionality to 500-D and 1000-D, respectively
(Tang et al. 2007). For low-dimensional (20-D) optimization
problems, NS-SPSO has shown robust performance on 12
benchmark functions in comparison with five representative
PSO variants. However, in order to verify the scalability of
the proposed NS-SPSO, we are keen to further investigate its
performance on large-scale (high-dimensional) optimization
problems, whose search dimensionality is normally larger
than 100. For this purpose, SL-PSO is tested on a large-
scale optimization test set (denoted as f13 to f19), which
was proposed in the CEC’08 special session on large-scale
optimization. Afterwards, SL-PSO is further tested on f13 to
f19 by setting the search dimensionality to 100-D, 500-D,
and 1000-D, respectively.

Four different algorithms, based on their evaluation for
large-scale problems, were considered for this evaluation
and comparison. Amongst the four, CCPSO2 (Li and Yao
2011) is the most widely used state-of-the-art PSO variant
for large-scale optimization. Similarly, the DMS-L-PSO is
the enhanced version of the DMS-PSO with a local search
operator. DMS-PSO is described in Sect. 2. Moreover, NS-
MJPSO (Rahman et al. 2020) is our own developed version
of the PSO. The last one is the SL-PSO (Cheng and Jin 2015)
that have outperformed for high-dimensional problems. We
varied the number of states (N) for the proposed NS-SPSO

algorithm in various runs, and the best results were summa-
rized in Table 5.

The results obtained in Table 5 show that, on average,
NS-SPSO performs better than the NS-MJPSO, DMS-PSO
and CL-PSO. For example, for 100-dimensional functions,
it outperfomed all the closest rivals. Similarly, for 500-
dimensional functions, its performance is guaranteed but
comparable to the NS-MJPSO algorithm. Moreover, for
1000-dimensional functions, largely, the proposed algorithm
outperformed the other ones. However, the DMS-L-PSO
is always able to find the real global optimum, regardless
of the dimension, although it performs not so well on the
other five test functions. Further, the proposed algorithm has
comparable performance with SL-PSO and DMS-L-PSO.
On the other hand, NS-SPSO outperforms NS-MJPSO and
CCPSO2. The reasons for such out performance include: (i)
the increasing number of states produces chances for state
switching; (ii) adequate acceleration coefficients for particu-
lar states; and (iii) the large number of parameters set controls
sensitivity of the algorithm.

In order to demonstrate that there are statistical significant
differences amongst the results produced by the proposed
algorithms and the closest ones, particularly, SL-PSO and
DMS-L-PSO, a t test was performed over the data gathered in
various runs. The confidence interval is set to 95%. The t test
result (P value) shows that there are no significant differences
amongst these; hence, NS-SPSO is comparable to these two
algorithms.

123

An n-state switching PSO algorithm for scalable optimization 11313

6 Conclusions and future work

In this paper, we have proposed a novel PSO variant
called N state switching particle swarm optimization (NS-
SPSO) algorithm. The algorithm has combined the evo-
lutionary method for population distribution with the tra-
ditional PSO algorithm. The performance of the newly
developed NS-SPSO algorithm is demonstrated through
various metrics over evaluating 12 various benchmark
functions. These benchmark functions include several uni-
modal, multi-modal and nonlinear type problems. Further-
more, several variants of the classical PSO were coded,
re-implemented, which are widely known for their best per-
formance and capabilities to solve large-scale optimization
problems. These include GPSO, LPSO, FIPS, DMS-PSO
and CL-PSO. The newly developed NS-SPSO algorithm
is also used in the tournament for the same objective
functions. The significance of the proposed algorithm was
demonstrated though analysing statistical results obtained
on various benchmark functions. Our empirical evaluation
suggests that NS-SPSO algorithm has the shortest computa-
tional time, fast convergence ratio and scores for the second
best method in terms of accuracy.

It is notable that the presented NS-SPSO algorithm could
be useful to a diversity of modern optimization problems;
for example, power systems and healthcare informatics, in
which the precision and accurateness is the key fear of these
optimization problems.We intend to put on the proposedNS-
SPSO algorithm to the well-known economic load dispatch
(ELD) issue with the purpose to decline and minimize the
total power generation costs (Rahman 2016). Furthermore,
in order to select suitable values of the control parameters,
we will also examine the steadiness among the number of
evolutionary states N and the total computational cost. It is
notable that as the total number of states N rises, the choices
for the acceleration coefficients also rises consequently. In
similar situations, the programmed and adaptive approxima-
tion of the control parameters would be the chief priority
task in forthcoming research. Similarly, in future research
we will consider NS-SPSO for: complex many-objectives,
high-dimensional, optimization problems (Han et al. 2019);
and further improve its computational time. Moreover, we
observed through experimentation that the proposed algo-
rithm does not perform well for multi-modal function due to
the gbest version of PSO implementation. In the near future,
we look forward to preparing the lbest version of the NS-
SPSO algorithm for multi-modal functions.

Acknowledgements This work is supported by Abdul Wali Khan Uni-
versity, Mardan (AWKUM). The research was conducted as part of the
Ph.D. program, at Brunel University London, UK, under the supervi-
sion of Prof. ZidongWang (Fellow IEEE). The implementation code of
the proposed NS-SPSO algorithm is available on the GitHub repository
(https://github.com/izazhere/Research_Project).

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants nor any studies with animals, performed by any of the
authors.

References

Abualigah LM, Khader AT (2017) Unsupervised text feature selection
technique based on hybrid particle swarm optimization algorithm
with genetic operators for the text clustering. J Supercomput
73(11):4773–4795

Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selec-
tion method to improve the document clustering using particle
swarm optimization algorithm. J Comput Sci 25:456–466

Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based parti-
cle swarm optimization algorithm for data clustering. Expert Syst
Appl 91:170–186

Brits R, Engelbrecht AP, van den Bergh F (2007) Locating multiple
optima using particle swarm optimization. Appl Math Comput
189(2):1859–1883

Cheng R, Jin Y (2015) A social learning particle swarm optimization
algorithm for scalable optimization. Inf Sci 291:43–60

Cheng R, Sun C, Jin Y (2013) A multi-swarm evolutionary framework
based on a feedback mechanism. In: 2013 IEEE Congress on evo-
lutionary computation. IEEE, pp 718–724

Chowdhury A, Zafar H, Panigrahi BK, Krishnanand KR, Mohapatra A,
Cui Z (2014) Dynamic economic dispatch using Lbest-PSO with
dynamically varying sub-swarms. Memet Comput 6(2):85–95

CiuprinaG, IoanD,Munteanu I (2002)Useof intelligent-particle swarm
optimization in electromagnetics. IEEE Trans Magn 38(2):1037–
1040

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm
theory. In: Proceedings of the sixth international symposium on
micro machine and human science, vol 1. New York, NY, pp 39–
43

Eberhart RC, Shi Y (2001) Particle swarm optimization: developments,
applications and resources. In: Proceedings of the 2001 congress
on evolutionary computation, 2001, vol. 1. IEEE, pp 81–86

Eberhart RC, Shi Y (2004) Guest editorial special issue on particle
swarm optimization. IEEE Trans Evol Comput 8(3):201–203

Elijah P (2012) Optimization: algorithms and consistent approxima-
tions, vol 124. Springer, Berlin

Ghosh A, Chowdhury A, Sinha S, Vasilakos AV, Das S (2012) A
genetic Lbest particle swarm optimizer with dynamically vary-
ing subswarm topology. In: 2012 IEEE congress on evolutionary
computation (CEC). IEEE, pp 1–7

Han D, Wenli D, Wei D, Jin Y, Chunping W (2019) An adaptive
decomposition-based evolutionary algorithm for many-objective
optimization. Inf Sci 491:204–222

Higashi N, Iba H (2003) Particle swarm optimization with Gaussian
mutation. In: Swarm intelligence symposium, 2003. SIS ’03. Pro-
ceedings of the 2003. IEEE, pp 72–79

Ho S-Y, Lin H-S, Liauh W-H, Ho S-J (2008) OPSO: orthogonal
particle swarm optimization and its application to task assign-
ment problems. IEEE Trans Syst Man Cybern Part A Syst Hum
38(2):288–298

Hu L, Wang Z, Rahman I, Liu X (2015) A constrained optimization
approach to dynamic state estimation for power systems includ-

123

https://github.com/izazhere/Research_Project

11314 I. U. Rahman et al.

ing PMU and missing measurements. IEEE Trans Control Syst
Technol PP(99):1–1

Juang C-F (2004) A hybrid of genetic algorithm and particle swarm
optimization for recurrent network design. IEEE Trans Syst Man
Cybern Part B Cybern 34(2):997–1006

Kenndy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE
Int Conf Neural Netw 4:1942–1948

Kennedy J (1999) Small worlds and mega-minds: effects of neighbor-
hood topology on particle swarm performance. In: Proceedings of
the 1999 congress on evolutionary computation, vol 3, 1999. CEC
99, p 1938

Kennedy J, Mendes R (2002) Population structure and particle swarm
performance. In: Proceedings of the 2002 congress on evolutionary
computation, vol 2, 2002. CEC ’02, pp 1671–1676

Kennedy J, Kennedy JF, Eberhart RC (2001) Swarm intelligence. Mor-
gan Kaufmann, Burlington

Khan AA, Zakarya M, Khan R, Rahman IU, Khan M et al (2020)
An energy, performance efficient resource consolidation scheme
for heterogeneous cloud datacenters. J Netw Comput Appl
150:102497

Krohling RA, dos Santos Coelho L (2006) Coevolutionary particle
swarm optimization using gaussian distribution for solving con-
strained optimization problems. IEEETrans SystManCybern Part
B Cybern 36(6):1407–1416

Li X, Yao X (2011) Cooperatively coevolving particle swarms for large
scale optimization. IEEE Trans Evol Comput 16(2):210–224

Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm
optimizer. In: Swarm intelligence symposium, 2005. SIS 2005.
Proceedings 2005. IEEE, pp 124–129

Liang JJ, Kai Qin A, Suganthan PN, Baskar S (2006) Comprehensive
learning particle swarm optimizer for global optimization of mul-
timodal functions. IEEE Trans Evol Comput 10(3):281–295

Ling H-L, Jian-Sheng W, Zhou Y, Zheng W-S (2016) How many clus-
ters? A robust pso-based local density model. Neurocomputing
207:264–275

Liu B, Wang L, Jin Y-H (2007) An effective PSO-based memetic algo-
rithm for flow shop scheduling. IEEE Trans Syst Man Cybern Part
B Cybern 37(1):18–27

Mendes R, Kennedy J, Neves J (2004) The fully informed particle
swarm: simpler, maybe better. IEEETrans Evol Comput 8(3):204–
210

Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the
waves. In: Proceedings of the 1999 congress on evolutionary com-
putation, 1999. CEC 99, vol 3. IEEE

Qu B-Y, Suganthan P, Das S (2013) A distance-based locally informed
particle swarm model for multimodal optimization. IEEE Trans
Evol Comput 17(3):387–402

Rahman IU (2016) Novel particle swarm optimization algorithms with
applications in power systems. Ph.D. thesis, Brunel University
London

Rahman IU, Wang Z, Liu W, Ye B, Zakarya M, Liu X (2020) An
n-state markovian jumping particle swarm optimization algo-
rithm. IEEE Trans SystMan Cybern Syst. https://doi.org/10.1109/
TSMC.2019.2958550

Robinson J, Sinton S, Rahmat-Samii Y (2002) Particle swarm, genetic
algorithm, and their hybrids: optimization of a profiled corrugated
horn antenna. In: Antennas and propagation society international
symposium, , vol 1, 2002. IEEE, pp 314–317

Shelokar PS, Siarry P, Jayaraman VK, Kulkarni BD (2007) Particle
swarm and ant colony algorithms hybridized for improved contin-
uous optimization. Appl Math Comput 188(1):129–142

Shi Y, Eberhart R (1998a) A modified particle swarm optimizer. In:
The 1998 IEEE international conference on evolutionary compu-
tation proceedings, 1998. IEEEWorld Congress onComputational
Intelligence. IEEE, pp 69–73

Shi Y, Eberhart RC (1998b) Parameter selection in particle swarm
optimization. In: Evolutionary programming VII. Springer, pp
591–600

Shi Y, Eberhart RC (1999) Empirical study of particle swarm opti-
mization. In: Proceedings of the 1999 congress on evolutionary
computation, vol 3, 1999. CEC 99. IEEE

Suganthan PN (1999) Particle swarm optimiser with neighbourhood
operator. In: Proceedings of the 1999 congress on evolutionary
computation, vol 3, 1999. CEC 99. IEEE

Suganthan PN, Hansen N, Liang JJ, Deb K, Y-Po C, Anne A, Tiwari
S (2005) Problem definitions and evaluation criteria for the CEC.
Special session on real-parameter optimization. KanGAL report
2005005:2005

TangK, YáoX, Suganthan PN,MacNish C, ChenY-P, Chen C-M, Yang
Z (2007) Benchmark functions for the CEC’2008 special session
and competition on large scale global optimization. Nat Inspired
Comput Appl Lab USTC China 24:1–18

Tang Y, Wang Z, Fang J (2011) Parameters identification of unknown
delayed genetic regulatory networks by a switching particle swarm
optimization algorithm. Expert Syst Appl 38(3):2523–2535

Törn A, Žilinskas A (1989) Global optimization, vol 350. Springer,
Berlin

Valdez F, Melin P, Castillo O (2014) Modular neural networks archi-
tecture optimization with a new nature inspired method using a
fuzzy combination of particle swarm optimization and genetic
algorithms. Inf Sci 270:143–153

Van denBerghF, Petrus EngelbrechtA (2006)A study of particle swarm
optimization particle trajectories. Inf Sci 176(8):937–971

Wang Z, Hu L, Rahman I, Liu X (2013) A constrained optimization
approach to dynamic state estimation for power systems including
PMU measurements. In: 2013 19th international conference on
automation and computing (ICAC). IEEE, pp 1–6

Weber TO, Van Noije Wilhelmus AM (2012) Design of analog
integrated circuits using simulated annealing/quenching with
crossovers and particle swarmoptimization. In: SimulatedAnneal-
ing Advances, Applications and Hybridizations. https://doi.org/
10.5772/50384

Weibo L, Zidong W, Xiaohui L, Nianyin Z, David B (2018) A novel
particle swarm optimization approach for patient clustering from
emergency departments. IEEE Trans Evol Comput 23:632–644

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster.
IEEE Trans Evol Comput 3(2):82–102

Zakarya M, Gillam L (2019) Modelling resource heterogeneities in
cloud simulations and quantifying their accuracy. Simul Model
Pract Theory 94:43–65

Zhan Z-H, Xiao J, Zhang J, Chen W (2007) Adaptive control of
acceleration coefficients for particle swarm optimization based on
clustering analysis. In: IEEE congress on evolutionary computa-
tion, 2007. CEC 2007. IEEE, pp 3276–3282

Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle
swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern
39(6):1362–1381

Zhang J, Chung HS-H, Lo W-L (2007) Clustering-based adaptive
crossover and mutation probabilities for genetic algorithms. IEEE
Trans Evol Comput 11(3):326–335

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TSMC.2019.2958550
https://doi.org/10.1109/TSMC.2019.2958550
https://doi.org/10.5772/50384
https://doi.org/10.5772/50384

	An n-state switching PSO algorithm for scalable optimization
	Abstract
	1 Introduction
	2 Related work
	2.1 The basic framework of PSO algorithm

	3 Problem description
	4 The novel N state switching PSO
	4.1 Prediction of evolutionary states
	4.2 Mechanism for inertia weight calculation
	4.3 Selection of acceleration coefficients
	4.4 Computational complexity

	5 The experimental work
	5.1 Performance analysis of NS-SPSO in benchmark functions
	5.2 Computation time of the proposed NS-SPSO
	5.3 Impact of number of states on results
	5.4 Results for high-dimensional problems

	6 Conclusions and future work
	Acknowledgements
	References

