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Abstract
With a rapid growth of research in multi-objective transportation problem, rough and bi-rough sets are two new mathematical
ideas for formulating real-world-based problems involving uncertain data. In this study, we have investigated a two-stage
multi-objective transportation problem by considering credit period policy under rough and bi-rough environments. In this
regard, three conflicting objective functions have been optimized simultaneously under the same restrictions. In first objective
function, we have presented the minimization of transportation cost of a production house. In second objective function,
total transportation cost of retailers has been minimized. But, in last one, we have maximized total profit of distributors.
Besides, due to existence of different types of uncertainties in our real-life problems, in the proposed model, independent
parameters (including, actual transportation cost, requirement of the retailers, and cost per unit distance) have been considered
as rough in nature and dependent parameters such as demanded transportation cost and demand of the distributors have been
considered as bi-rough in nature. Moreover, to convert the uncertain model into an equivalent deterministic form, a rough and
bi-rough programming approach has been derived along with the expected value approach. Finally, by using these ideas, the
mathematical model of our considered transportation problem has been illustrated. After that, the proposed model has been
solved by applying NSGA-II algorithm (elitist non-dominated sorting genetic algorithm) with some simulated numerical data.
Some sensitivity analysis associated with our proposed model has also been discussed to show the effectiveness of the model.

Keywords Multi-objective transportation problem · Rough set · Bi-rough set · Credit period · Restricted fixed charge

1 Introduction

The economy of a country is accelerated with the progress of
a business, trade, and factory. Again, the enrichment in these
depends on a transportation system. That is why, the trans-
portation system is the backbone of a country’s economy.
So, the research on transportation system is very essential
component in the growth of economy in a country. In 1941,
Hitchcock first presented a transportation problem (Hitch-
cock 1941) in mathematical way. The main objective of such
problem is to make a perfect decision on the transported
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amount along each path so that the total transportation cost
is minimum. After that, many researchers like Koopmans
(1949), Charnes and Cooper (1954), Kantorovich (1960),
Balinski (1961),Yang andLiu (2007),Yang andFeng (2007),
Ojha et al. (2009, 2013), Xie and Jia (2012), Raj and Rajen-
dran (2012), Chen et al. (2017a), Roy et al. (2019), Sangaiah
et al. (2019) and others worked on transportation problem.

Now, it is observed that in above-described researches,
the items have been transported directly from a production
house to retailers, but in real business world, the items are
shipped from a production house to retailers through some
distributors. So, there should be some stages of transportation
which is known as multi-stage transportation problem. Till
now, very few studies on multi-stage transportation problem
have been done. For example, Das et al. (2016), Gen et al.
(2006), aswell as Raj andRajendran (2012) formulated some
multi-stage transportation problems to minimize the trans-
portation cost only. Also, Pramanik et al. (2015) studied a
two-stage transportation problem to maximize the profit of a
transportation system. From these studies, it is seen that all
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research works on multi-stage transportation problem had
been done with a single-objective nature considering either
transportation cost or profit of the system only. But, it is
not desirable because in reality there may exist more than
one objective associatedwith a transportation problemwhich
are needed to be optimized simultaneously. Because of this,
in recent times, a multi-objective transportation problem is
an interesting area in the transportation research. The con-
cept of a multi-objective transportation problem had been
invented by Lee and Moore (1973). After that, Yang and
Feng (2007), Ojha et al. (2009), Chen et al. (2017b), Sifaoui
and Aïder (2019), and Majumder et al. (2019b) worked on
transportation problem to optimize several goals such as
profit, transportation time, fuel consumption, breakability
of a transportation system. But, from the literary lessons
on transportation research our observation is that till now
no one has considered a multi-stage transportation problem
with multi-objective nature which motivates us to consider a
transportation model to transport the goods from a produc-
tion house to some retailers through some distributors with
three objective functions.

Again, it is noted that the fixed charge, which means some
constant prices other than the variable cost, is an important
factor in a transportation problem. The examples of some
fixed charges in transportation problem are toll tax, permit
fee, tax for crossing state border, etc. Many researchers like
Yang and Liu (2007), Yang and Feng (2007), Raj and Rajen-
dran (2012), Pramanik et al. (2015), Ojha et al. (2010a), Xie
and Jia (2012), Hashmi et al. (2019), Shen and Zhu (2020)
formulated some transportation problems considering fixed
charges depending on route only because of the considera-
tion of a homogenous type of vehicles in the system. But,
in reality, it is seen that a production house may have differ-
ent types of vehicles for transportation. When different types
of vehicles are used in a system, then the fixed charge not
only depends on a route but also type of vehicles. Till now,
there is no work on transportation problem considering fixed
charges on both the vehicle type and associated path in a sys-
tem. That is why, we have motivated to consider a restricted
fixed charge depending on both the paths and vehicle types
in the proposed model.

Now, in a business system the credit period has a vital
role to influence the partners in that system. It is very well
known in inventorymanagement. There is many applications
of credit period policy in an inventory system such as Banu
and Mondal (2018), Panja and Mondal (2019), Das et al.
(2014). Now, since in a multi-stage transportation system,
there are some distributors and retailers, so to influence the
retailers, distributors may offer a credit period. But, there is
no research paper on transportation problem in which the
credit period policy has been considered. For this reason, the
proposed model has been developed under a credit period
policy.

To deal with reality, almost every system in the real
world has been developed depending on some uncertain-
ties. The reasons behind these uncertainties are lack of
information, fluctuating of the markets, inexperienced expert
prediction, etc. Therefore, it is a natural fact to have uncer-
tainties and vagueness in a transportation problem. The
uncertainty is described by different ways such as stochas-
tic theory, fuzzy set theory (Zadeh 1965), uncertainty theory
(Liu 2007), rough set theory (Pawlak 1982). In stochastic
environment, input data are imprecise in the stochastic sense
and described by random variables with a known probability
distribution function. Ojha et al. (2010b), Khalilpourazari
and Khalilpourazary (2018), Roghanian and Pazhoheshfar
(2014), and many others had worked on transportation prob-
lem by considering the nature of system’s parameters as
stochastic. When there is a large variance in the parametric
values in a system, we should deal with this by uncertainty
theory. In uncertainty theory, the uncertainty is measured by
a belief degree. A lot of works on transportation problem
like Zhang et al. (2016), Sifaoui and Aïder (2019), Dalman
(2019), Majumder et al. (2019a), Chen et al. (2017c, d), Zhao
and Pan (2020), Kara et al. (2019), as well as Shen and Zhu
(2020) had been done using uncertainty theory. In fuzzy set
theory, the uncertainty is described by membership func-
tion whose range is [0, 1]. Many researches such as Ojha
et al. (2013, 2014), Das et al. (2016), Samanta and Mondal
(2015); Samanta et al. (2018), Chakraborty and Chakraborty
(2010), Baykasoglu and Subulan (2019), Mahmoodirad et al.
(2019), Tirkolaee et al. (2020) had been done on transporta-
tion problem under different types of fuzzy environments.
Moreover, in rough set theory, the uncertainty is measured
by the approximation of a set into two crisp sets which
are known as lower approximation set and upper approxi-
mation set. Here, the lower approximation set contains the
surely belonging elements,while the upper approximation set
contains the possible belonging elements. Now, the bound-
ary region is obtained by separating the elements of lower
approximation set from the elements of upper approxima-
tion set. If this boundary set is empty, then the considered set
is crisp; otherwise, it is known as rough set. It is noted that,
in rough set theory, lower approximation and upper approxi-
mation sets are crisp in nature so the boundaries of these two
sets must be fixed. When the uncertainty in a problem is han-
dled using rough set theory, then it is known that the problem
is under rough environment. Till now, very few researchers
(Kundu et al. 2013, 2017; Das et al. 2017) had worked on
transportation problem under rough environment.

On the other hand, if boundaries of lower approximation
and upper approximation sets are not fixed, i.e., they are again
rough set, then the considered set is known as bi-rough set.
So, it is an extension of rough set theory. Here, the uncer-
tainty is considered in two directions, i.e., in interior points
and boundary points in the set. In this way, in bi-rough set
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theory, a two-dimensional concept of rough set theory has
been imposed. When the uncertainty in a problem is handled
using bi-rough set theory, then it is known that the problem
is under bi-rough environment. At our best knowledge, till
now, no one has studied a transportation problem in bi-rough
environment. In Tables 1 and 2, some comparative studies of
recentworkswith the presentwork on transportation problem
have been illustrated under different uncertain frame work.

In this research, we have worked out on a multi-objective
transportation problem in rough and bi-rough environments
under a credit period policy depending on the requirements of
the retailers to transport the items from a production house
to some retailers through some distributors by minimizing
the transportation cost of the production house and retailers
as well as by maximizing total profit of the distributors. For
using different types of vehicles in the first stage of themodel,
a restricted fixed charge is considered depending on both the
types of vehicles and associated paths. Also, a credit period
is offered by the distributers to those retailers whose require-
ments are more than a threshold value in the second stage. To
convert the uncertain model into an equivalent deterministic
form, two different approaches, namely, an expected value
approach together with a rough and bi-rough programming
approach, have been proposed. For the optimal solutions, we
have used one of the best evolutionary algorithm NSGA-II
(elitist non-dominated sorting genetic algorithm). Finally, a
numerical example has been considered to verify the feasi-
bility of the proposed model.

The main contributions of this study are as follows:

• This is the first work to analyze a transportation problem
to investigate the benefit of the distributors along with a
production house and retailers simultaneously.

• For the first time ever, a restricted fixed charge has been
allowed depending on both the varieties of vehicles and
associated paths in a transportation problem.

• A credit period policy has been considered to influence
the retailers depending on their requirements which is a
new concept in transportation problem.

• To make the transportation system more realistic, the
model has been constructed under rough and bi-rough
environments, which no one has ever done before.

• To convert the uncertain model into deterministic form,
twodifferent approaches such as expectedvalue approach
as well as rough and bi-rough programming approach
have been proposed.

The remaining parts of this paper have been organized
as follows: In Sect. 2, we have discussed the basic concepts
of rough and bi-rough set theory. The main theme of this
study, i.e., the problem definition, is presented in Sect. 3.
Section 4 describes the mathematical formulation of this
study with assumptions and notations. The process of con-

verting into deterministic form is addressed in Sect. 5. In
Sect. 6, the solution methodologies have been introduced. In
Sect. 7, some numerical experiments and sensitivity analysis
are illustrated. Finally, a conclusion for this work is drawn
in Sect. 8.

2 The concept of rough and bi-rough set
theory

In this section, firstly, the definitions of rough and bi-rough
sets have been defined in interval form which are used to
represent the uncertainty in this paper; then, some arithmetic
operations andproperties have beendiscussed for the purpose
of this study.
Definition of rough set in interval formA set with uncertainty
is said to be a rough set in interval form if it is approximated
into two crisp sets in interval form, namely upper approx-
imation set and lower approximation set, and it is defined
as Â = ([a1, b1], [c1, d1]) where a1, b1, c1, and d1 are
real numbers with the condition c1 ≤ a1 ≤ b1 ≤ d1. Here,
[a1, b1] is the lower approximation set, while [c1, d1] is the
upper approximation set.
Definition of bi-rough set in interval form A set with uncer-
tainty is said to be a bi-rough set in interval form if it is
approximated into two interval rough sets, namely upper
approximation set and lower approximation set, and it is
defined as ˆ̂ς1 = ([ Â − k1, Â + l1], [ Â − m1, Â + n1])
where Â is the rough set associated with the bi-rough set ˆ̂ς1
and k1, l1, m1, and n1 are all real numbers with conditions
k1 ≤ m1 and l1 ≤ n1.

2.1 Arithmetic operations on rough set

To illustrate the arithmetic operations on rough set, we
have considered two rough sets Â and B̂ where Â =
([a1, b1], [c1, d1]) and B̂ = ([a2, b2], [c2, d2]) and a1, b1,
c1, d1, a2, b2, c2, and d2 are real numbers with the conditions
c1 ≤ a1 ≤ b1 ≤ d1 as well as c2 ≤ a2 ≤ b2 ≤ d2.

• Addition The addition of two rough sets (Liu 2004) Â
and B̂ has been defined as:

Â + B̂ = ([a1 + a2, b1 + b2], [c1 + c2, d1 + d2]).

• Scalar multiplication Here, we have discussed about
scalar (both positive and negative) multiplication (Liu
2004) with a rough set Â as:

�. Â =
{

([�.a1, �.b1], [�.c1, �.d1]), if � ≥ 0
([�.b1, �.a1], [�.d1, �.c1]), if � < 0

where � is a real number.
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Lemma 1 If Â = ([a1, b1], [c1, d1]) and B̂ = ([a2, b2],
[c2, d2]) are two rough sets, then

Â − B̂ = ([a1 − b2, b1 − a2], [c1 − d2, d1 − c2]),
and B̂ − Â = ([a2 − b1, b2 − a1], [c2 − d1, d2 − c1])

where a1, b1, c1, d1, a2, b2, c2, and d2 are all real numbers
with the conditions c1 ≤ a1 ≤ b1 ≤ d1 and c2 ≤ a2 ≤ b2 ≤
d2.

Proof It is given that

B̂ = ([a2, b2], [c2, d2])
i.e., − B̂ = ([−b2, − a2], [−d2, − c2]),

by scalar multiplication

i.e., Â − B̂ = Â + (−B̂)

= ([a1 − b2, b1 − a2], [c1 − d2, d1 − c2]), by addition.

Now, it has to prove that c1 − d2 ≤ a1 − b2 ≤ b1 − a2 ≤
d1−c2. Since c1 ≤ a1 and b2 ≤ d2 exist, sowe have c1+b2 ≤
a1+d2 i.e., c1−d2 ≤ a1−b2. In similar way, it can be proved
that a1−b2 ≤ b1−a2 and b1−a2 ≤ d1−c2. Combining these
three inequalities, we have c1 − d2 ≤ a1 − b2 ≤ b1 − a2 ≤
d1 − c2. Again, following the above procedure, we get

B̂ − Â = ([a2 − b1, b2 − a1], [c2 − d1, d2 − c1]).

Now, this is necessary to examine the existence of the
inequality c2 − d1 ≤ a2 − b1 ≤ b2 − a1 ≤ d2 − c1. Since
c2 ≤ a2 and b1 ≤ d1 both are given so using these we have
c2 − d1 ≤ a2 − b1, and in similar way, the other inequalities
a2 − b1 ≤ b2 − a1 and b2 − a1 ≤ d2 − c1 have been also
proved. Finally, using these, it is obtained that c2 − d1 ≤
a2 − b1 ≤ b2 − a1 ≤ d2 − c1. Hence, this is the complete
proof of subtraction of two rough sets. ��
Lemma 2 If Â = ([a1, b1], [c1, d1]) be a rough set and �

be real number, then

Â + � = ([a1 + �, b1 + � ], [c1 + �, d1 + � ])

where a1, b1, c1, and d1 are all real numbers with condition
c1 ≤ a1 ≤ b1 ≤ d1.

Proof A real number � can be written in rough form as
([�, � ], [�, � ]).

Now, Â + � = ([a1, b1], [c1, d1]) + �

= ([a1, b1], [c1, d1]) + ([�, � ], [�, � ])
i.e., = ([a1 + �, b1 + � ], [c1 + �, d1 + � ]),

using addition.

Since c1 ≤ a1 ≤ b1 ≤ d1 satisfy and � be any real
number, so we have c1 + � ≤ a1 + � ≤ b1 + � ≤ d1 +
� . Hence, this is the complete proof of scalar addition with
rough set. ��
Lemma 3 If Â = ([a1, b1], [c1, d1]) be a rough set and �

be real number, then

Â − � = ([a1 − �, b1 − � ], [c1 − �, d1 − � ])

where a1, b1, c1, and d1 are all real numbers with condition
c1 ≤ a1 ≤ b1 ≤ d1.

Proof This lemma can be proved easily like Lemma 2. ��

2.2 Arithmetic operations on bi-rough set

In this subsection, some arithmetic operations on bi-rough
set have been also deduced.

Lemma 4 ˆ̂ς1 = ([ Â − k1, Â + l1], [ Â − m1, Â + n1])
and ˆ̂ς2 = ([B̂ − k2, B̂ + l2], [B̂ − m2, B̂ + n2]) are two
bi-rough sets in interval form, where Â and B̂ are the rough
sets associated with the bi-rough sets ˆ̂ς1 and ˆ̂ς2, respectively.
k1, k2, l1, l2, m1, m2, n1, and n2 are all real numbers with
conditions k1 ≤ m1, l1 ≤ n1, k2 ≤ m2, and l2 ≤ n2 then

ˆ̂ς1 + ˆ̂ς2 = ([ Â + B̂ − (k1 + k2), Â + B̂ + (l1 + l2)],
[ Â + B̂ − (m1 + m2), Â + B̂ + (n1 + n2)]).

Proof Using the concept of addition of rough sets, it has been
proved that

ˆ̂ς1 + ˆ̂ς2 = ([ Â + B̂ − (k1 + k2), Â + B̂ + (l1 + l2)],
[ Â + B̂ − (m1 + m2), Â + B̂ + (n1 + n2)]).

Now, it is essential to show (k1 + k2) ≤ (m1 + m2) and
(l1 + l2) ≤ (n1 + n2). Since k1 ≤ m1 and k2 ≤ m2 both
are given, so we have (k1 + k2) ≤ (m1 + m2) again l1 ≤ n1
and l2 ≤ n2 both imply (l1 + l2) ≤ (n1 + n2). This is the
complete proof of the addition of two bi-rough sets. ��
Lemma 5 ˆ̂ς1 = ([ Â − k1, Â + l1], [ Â − m1, Â + n1]) be
a bi-rough set where Â is a rough set associated with the
bi-rough set ˆ̂ς1. k1, l1, m1, and n1 are all real numbers with
conditions k1 ≤ m1 and l1 ≤ n1 then for any real number� ,

�. ˆ̂ς1 =
{

([�.( Â − k1), �.( Â + l1)], [�.( Â − m1), �.( Â + n1)]), if � ≥ 0
([�.( Â + l1), �.( Â − k1)], [�.( Â + n1), �.( Â − m1)]), if � < 0.

Proof For � ≥ 0, using the concept of scalar multiplication
on rough set, we have

�. ˆ̂ς1 = ([�.( Â − k1), �.( Â + l1)],
[�.( Â − m1), �.( Â + n1)]).
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Since k1 ≤ m1 and l1 ≤ n1 hold and � be a non-negative
real number, so it has been easily proved that �.k1 ≤ �.m1

and �.l1 ≤ �.n1.
Again, if � < 0, in similar way, it has been shown that

�. ˆ̂ς1 = ([�.( Â + l1), �.( Â − k1)],
[�.( Â + n1), �.( Â − m1)]).

So, this is the complete proof of scalar multiplication. ��
Lemma 6 ˆ̂ς1 = ([ Â − k1, Â + l1], [ Â − m1, Â + n1])
and ˆ̂ς2 = ([B̂ − k2, B̂ + l2], [B̂ − m2, B̂ + n2]) are two
bi-rough sets in interval form where Â and B̂ are the rough
sets associated with the bi-rough sets ˆ̂ς1 and ˆ̂ς2, respectively.
k1, k2, l1, l2, m1, m2, n1, and n2 are all real numbers with
conditions k1 ≤ m1, l1 ≤ n1, k2 ≤ m2, and l2 ≤ n2 then

ˆ̂ς1 − ˆ̂ς2 = ([( Â − B̂) − (k1 + l2), ( Â − B̂) + (l1 + k2)],
[( Â − B̂) − (m1 + n2), ( Â − B̂) − (m2 + n1)]).

Proof Using Lemma 4 and 5, it has been proved that

ˆ̂ς1 − ˆ̂ς2 = ([( Â − B̂) − (k1 + l2), ( Â − B̂) + (l1 + k2)],
[( Â − B̂) − (m1 + n2), ( Â − B̂) − (m2 + n1)]).

Now, It is essential to verify (k1 + l2) ≤ (m1 + n2) and
(l1 + k2) ≤ (m2 + n1). Since k1 ≤ m1 and l2 ≤ n2 both
are true so we have (k1 + l2) ≤ (m1 + n2). Again, we have
(l1 + k2) ≤ (m2 + n1) from the given inequalities l1 ≤ n1
and k2 ≤ m2. This is the complete proof of subtraction on
bi-rough sets. ��

2.3 Trust measure

In rough set theory, the uncertainty is measured by the trust
(Liu 2004; Kundu et al. 2017). Trust is a measurable function
from a rough space (�, �, �, π ) to [0, 1] where � be a non-
empty set, � be a σ -algebra of the subsets of �, � be an
element of �, and π be non-negative real-valued function, is
denoted by “Tr .” Let S ∈ �, then the trust of the event S is
defined as:

Tr(S) = 1

2
(Tr(S) + Tr(S))

where

Tr(S) = π(S)

π(�)
and Tr(S) = π(S)

π(�)
.

For example, let Â = ([a1, b1], [c1, d1]) (where a1, b1,
c1, and d1 are all real numbers with c1 ≤ a1 ≤ b1 ≤ d1) be
a rough set. Then trust measure of the event ( Â ≤ r) (where
r is a real number) is defined as follows:

Tr( Â ≤ r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ c1
r−c1

2(d1−c1)
, if c1 ≤ r ≤ a1

1
2

[ r−a1
b1−a1

+ r−c1
d1−c1

]
, if a1 ≤ r ≤ b1

1
2

[
1 + d1−r

d1−c1

]
, if b1 ≤ r ≤ d1

1, if r ≥ d1.

Similarly, the trust of the event ( Â ≥ r) has been described
as

Tr( Â ≥ r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if r ≥ d1
d1−r

2(d1−c1)
, if b1 ≤ r ≤ d1

1
2

[ d1−r
d1−c1

+ b1−r
b1−a1

]
, if a1 ≤ r ≤ b1

1
2

[
1 + r−c1

d1−c1

]
, if c1 ≤ r ≤ a1

1, if r ≤ c1.

In Figs. 1 and 2, the graphical representation of trust mea-
sure of the events Â ≤ r and Â ≥ r has been depicted,
respectively.

The α-optimistic value of a rough set Â has been pre-
scribed as

Âsup(α) = sup{r : Tr{ Â ≥ r} ≥ α}

i.e., Âsup(α) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2α).d1 + 2.α.c1, if α ≤ d1−b1
2.(d1−c1)

2(1 − α).d1 + (2α − 1).c1, if α ≥ 2.d1−a1−c1
2.(d1−c1)

d1.(b1−a1)+b1.(d1−c1)−2.α.(b1−a1)(d1−c1)
(b1−a1)+(d1−c1)

, if d1−b1
2.(d1−c1)

≤ α ≤ 2.d1−a1−c1
2.(d1−c1)

.

Fig. 1 Trust measure of the event Â ≤ r
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Fig. 2 Trust measure of the event Â ≥ r

Similarly, theα-pessimistic value of Â has beenprescribed
as

Âinf(α) = inf{r : Tr{ Â ≤ r} ≥ α}

i.e., Âinf(α) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2α).c1 + 2α.d1, if α ≤ a1−c1
2.(d1−c1)

2.(1 − α).c1 + (2α − 1).d1, if α ≥ b1+d1−2.c1
2.(d1−c1)

c1.(b1−a1)+a1.(d1−c1)+2α.(b1−a1)(d1−c1)
(b1−a1)+(d1−c1)

, if a1−c1
2.(d1−c1)

≤ α ≤ b1+a1−2.c3
2.(d1−c1)

.

2.4 Chancemeasure

The uncertainty of a bi-rough set has been identified by the
chance measure (Liu 2004) and is denoted by “Ch.” Let
ˆ̂ς1 = ([ Â − k1, Â + l1], [ Â − m1, Â + n1]) be a bi-rough
set where Â is a rough set associated with the bi-rough set ˆ̂ς1
and k1, l1, m1, and n1 are all real numbers with conditions
k1 ≤ m1 and l1 ≤ n1, and B be a borel set, then the chance
measure of the bi-rough event ( ˆ̂ς ∈ B) is a function from (0,
1] to [0, 1] and is defined as

Ch{ ˆ̂ς1 ∈ B}(β) = sup
Tr( Â)≥β

inf
λ∈ Â

T r{ ˆ̂ς1 ∈ B}.

If

Ch{ ˆ̂ς1 ∈ B}(β) = γ

then we have

Tr{λ ∈ � : Tr{ ˆ̂ς1 ∈ B} ≥ γ } ≥ β.

• Let ˆ̂ς1 be a bi-rough set and β, γ ∈ (0, 1], then its
(β, γ ) optimistic value and the pessimistic value can be
expressed by the respective following equations

ˆ̂ς1sup(β, γ ) = sup{r : Ch{ ˆ̂ς1 ≥ r}(β) ≥ γ }
ˆ̂ς1inf (β, γ ) = inf{r : Ch{ ˆ̂ς1 ≤ r}(β) ≥ γ }.

2.5 Expected value of rough set

The expected value (Liu 2004) of a rough set Â =
([a1, b1], [c1, d1]) has been defined as

E[ Â] =
∫ ∞

0
Tr( Â ≥ r) dr −

∫ 0

−∞
Tr( Â ≤ r) dr

i.e., = a1 + b1 + c1 + d1
4

.

2.6 Expected value of bi-rough set

Expected value (Liu 2004) of a bi-rough set ˆ̂ς1 has been
evaluated by the following expression:

μ̂ =
∫ ∞

0
Tr( ˆ̂ς1 ≥ r) dr −

∫ 0

−∞
Tr( ˆ̂ς1 ≤ r) dr

where μ̂ is a rough set and it is deduced by taking the expected
value on the bi-rough set ˆ̂ς1. Then, the deterministic form has
been obtained by taking the expected value on the rough set
μ̂ again and this is described as

E[ ˆ̂ς1] = E[μ̂] =
∫ ∞

0
Tr(μ̂ ≥ r) dr −

∫ 0

−∞
Tr(μ̂ ≤ r) dr.

For example, if ˆ̂ς1 = ([ Â−k1, Â+l1], [ Â−m1, Â+n1])
be a bi-rough set (where Â = ([a1, b1], [c1, d1]) is associate
rough set), then the expected value is

E[ ˆ̂ς ] = E[ Â] + l1 + n1 − k1 − m1

4

= a1 + b1 + c1 + d1
4

+ l1 + n1 − k1 − m1

4
.

3 Problem definition

In real life, instead of transporting directly from a produc-
tion house to different retailers, every usable goods have been
delivered to retailers from a production house through some
mediators or distributors. Here, we have described such a
realistic transportation model to transport the products from
a production house to retailers with the help of some dis-
tributors. The described model is a two-stage transportation
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model where the first stage is between a production house
and some distributors and the next between distributors and
retailers. Here, production house supplies their own prod-
ucts to different distributors according to their demands by
using different types of vehicles which are available to them
and distributors deliver those products to different retailers
by themselves using similar kind of vehicles. For this pur-
pose, distributors make somemoney as commission from the
production house for their work and they demand a certain
cost to send every single item to different retailers, which is
more than the actual unit transportation cost. In order to influ-
ence the retailers, the distributors use a credit period policy
depending on the requirements of the retailers. According
to this policy, if any retailer’s requirement is higher than
a threshold requirement then that particular retailer would
get the benefit of credit period from any distributor. Here,
a restricted fixed charge has been considered depending on
both the vehicle types and associated routes in the first stage.
Based on the above descriptions, we have developed a two-
stage multi-objective transportation model that is very useful
for reducing the transportation costs of production house and
retailers as well as to increase the distributor’s income at the
same time. So, the main objective is to determine by the pro-
duction housewhich type of howmanyvehicles have to use to
transport the items to different distributors according to their
demands and distributors have to decide how much items
have been transported from them to different retailers so that
the production house and the retailers can reduce their trans-
portation cost and the distributors can increase their profit
simultaneously. Therefore, the production house and the dis-
tributors play the role of decision makers in the respective
stages. To deal with reality, the model has been constructed
under an uncertain environment, namely rough and bi-rough.
InFig. 3, thewhole transportation systemhasbeen illustrated.

Fig. 3 Structure of the proposed model

3.1 Why has themodel been constructed under
rough and bi-rough environments?

In this study, the proposedmodel has been structured in rough
and bi-rough environments to consider the uncertainty in the
real world.

• Although, in the literature, there aremanyuncertain prob-
lems which are solved using the concept of the fuzzy set
theory, nevertheless, why are we thinking about rough
and bi-rough environments to formulate the model?

• Why have we chosen two different types of parameters’
uncertain nature in the same model?

To answer the above questions, firstly, we have discussed
a comparative study of the fuzzy set and rough set by consid-
ering some realistic transportation-related examples to clear
the conflicting concept between fuzzy and rough sets.

Fuzzy and rough sets are the generalizations of crisp set
for modeling uncertainty and vagueness. Initially, the idea of
fuzzy setwas invented byZadeh (1965).Here, the uncertainty
is measured by a membership function which is a function
from a set of objects to the interval [0, 1]. The objects with
membership value 0 do not belong to the set,while the objects
withmembership value 1 imply surely belonged. For partially
belonged, the membership value lies in (0, 1).

The idea of rough set was initially introduced by Pawlak
(1982). In rough set, the uncertainty is measured by the
approximation into two crisp sets, namely lower approxima-
tion and upper approximation sets. The lower approximation
set contains surely belonging elements, while the upper
approximation set contains possible belonging elements. The
boundary region is obtained by separating the elements of
lower approximation set from the elements of upper approx-
imation set. If this boundary region is empty, then the
considered set is crisp otherwise rough.

Moreover, bi-rough is an extended concept of rough set
theory to deal with more uncertainty. The boundaries of a
bi-rough set are rough in nature, while the boundaries of
the rough data are deterministic. Now, a comparative study
of crisp, fuzzy, rough, and bi-rough sets has been done by
considering the following examples linguistically.

• Example 3.1 The unit transportation cost along a partic-
ular road is Rs. 25.

• Example 3.2 The unit transportation cost along a partic-
ular road is around Rs. 25.

• Example 3.3 The unit transportation cost along a partic-
ular road in general lies between Rs. 23 and Rs. 27. If
for some reason it is less than 23, it would be never less
than Rs. 20, and if it is more than 27, it would be never
greater than Rs. 30.
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In example 3.1, it is mentioned that the unit transportation
cost along a particular road is exactly Rs. 25. So, this is
a fixed value which is never changed for the sake of the
environment. That is why, this is a deterministic or crisp case.
But, the unit transportation cost is fixed depending on the
several factors of transportation, such as fuel consumption,
driver cost, labor cost, traffic, nature of the road, which are
always fluctuated depending on market situation. So, it is
not true that the expense for per unit transportation along a
particular road is always Rs. 25.

In example 3.2, we have described that the unit transporta-
tion cost along a particular road is around Rs. 25, i.e., the cost
ismore or less than 25which is not a fixed value during a busi-
ness period. In this way, there exists some uncertainty and
vagueness in the transportation cost. This type of uncertainty
may be handled using fuzzy set theory defining a member-
ship function whose value may be considered as 1 in some
interval containing 25 and the membership value in the other
region is less than 1.

In example 3.3, the described transportation cost is with
full of uncertainty and vagueness. From the description, we
have seen that the transportation cost surely belongs to the
interval (Kundu et al. 2013; Liu 2007) and possibly belongs
to the interval (Kara et al. 2019; Majumder et al. 2019b).
For this example, we can not define the exact membership
value for each point in both intervals. One way is to express
this uncertainty by the approximation of these two intervals
which is the fundamental concept of rough set. Here, the
interval (Kundu et al. 2013; Liu 2007) is the lower approx-
imation set, while the interval (Kara et al. 2019; Majumder
et al. 2019b) is the upper approximation set and completely
has been written in rough set form as Kundu et al. (2013),
Liu (2007), Kara et al. (2019), Majumder et al. (2019b). The
nature of the above-described rough data is depicted in Fig. 4.

A realistic example of a bi-rough set is illustrated in fol-
lowing example 3.4.

• Example 3.4 The demanded unit transportation cost
along a particular destination is fixed from the experi-
ence of the previous trips as ψ̂ = ([30, 35], [25, 40])

Fig. 4 Representation of a rough set

Fig. 5 Representation of a bi-rough set

which is a rough data. Moreover, the assigning of the
demanded transportation cost is the distributer’s own pol-
icy, that is why, there is another dimensional uncertainty
from the distributers’ point of views. And, distributers
may say in general cost changes from −2 to +2, also the
change of minimum cost is −3 and the change of maxi-
mum cost is +3. These uncertain data are expressed by a
bi-rough form as ˆ̂ς=([ψ̂-2, ψ̂+2], [ψ̂-3, ψ̂+3]). In Fig. 5,
the above-describedbi-rough set has beendescribedmore
precisely.

If these types of uncertainties (described in examples 3.3
and 3.4) present in a system, then it must have to develop
under rough and bi-rough environments.

But the question is, is it reasonable to have all the parame-
ters of a transportation model bi-rough in nature when the
model has been developed in bi-rough environment? By
studying the nature of rough and bi-rough set theory, we con-
clude that it is not always true. In a transportationmodel, there
are some dependent parameters whose values would be fixed
depending on some other parameters which are independent
in the system. So, if the independent parameters are rough,
then the dependent parameters which are fixed depending
on these must be bi-rough in nature. Due to the existence of
more and another dimensional uncertainty, we cannot say the
nature of these dependent parameters as rough. That is why,
when a model has been formulated in bi-rough environment,
there must be exist some parameters rough in nature. So,
the model is constructed under rough and bi-rough environ-
ments and independent parameters like actual transportation
cost in both the stages and requirements of the retailers of
themodel are considered as rough in nature, while the depen-
dent parameters like demanded unit transportation cost and
demands of the distributors which are fixed depending on
the above-discussed independent parameters are considered
as bi-rough.

4 Mathematical model formulation

In this section, we have derived the mathematical model of
the proposed study.
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• Notations The following notations are linked in Table 3
to develop the model.

• Assumptions The following assumptions have been
listed to construct the present study:

(i) In reality, it is observed that in a business system
goods are transported from a production house to
different distributors; then, distributors deliver these
goods to various retailers in an area. For this reason,
here, a two-stage transportation problem has been
assumed to deliver the homogenous goods from a
production house to some retailers with the help of
some distributors as mediator.

(ii) Generally, the production house may have different
types of vehicles with various capacities, but dis-
tributors have vehicles of the same kind because
they deliver the items in a local area. Again, dis-
tances of distribution centers from the production
house are different andmuchmore; hence, theremust
exist some additional cost except transportation cost
such as toll tax, permit fee, state border crossing tax.
Henceforth, a fixed charge (Ojha et al. 2010a; Shen
and Zhu 2020; Zhang et al. 2016; Majumder et al.
2019a) should be included in the total transportation
cost of the production house. This fixed cost may be
different for different types of vehicles and associ-
ated routes. Due to this fact, we have considered a
restricted fixed charge for the first stage of the model
depending on both the vehicle types and associated
paths. Again, since distributors are liable to distribute
the products among local retailers, this type of addi-
tional cost is not considered in the second stage.

(iii) The storage costs have not considered at the dis-
tribution centers because after receiving the goods,
distributors send these to different retailers as soon
as possible.

(iv) Acredit periodmeans a timeduration between receiv-
ing the products and payment of their dues. In reality,
retailers can not make payment to distributors imme-
diately after taking the goods. They always want to
make payment their dues after some time. Moreover,
retailers would like to get the goods from that dis-
tributor who offers this facility. So, to increase the
transportation business, distributors always want to
influence more retailers. Here, a credit period (Panja
and Mondal 2020) has been considered depending
on the requirement of the retailers, i.e., if a retailer’s
requirement is more than a threshold value, distribu-
tors are obliged to give a certain amount of credit
period to that particular retailer. This is described

mathematically as:

τk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
N∑
j=1

x jk < ξ

T , if
N∑
j=1

x jk ≥ ξ

, k = 1, 2, . . . , R

(1)

where ξ is the threshold requirements of the retailers
to be fixed by the distributors to get the benefit of
credit periodpolicy and x jk be the transported amount
from jth distributor to kth retailer.

(v) We know that the real world is full of uncertainty.
So, to tackle with the uncertainty associated with the
transportation parameters, we have considered that
the actual transportation cost in both the stages and
requirements of the retailers is all rough, while the
demanded unit transportation costs and the demands
of the distributors are all bi-rough in nature. The fact
of nature of uncertainties of parameters is discussed
in Sect. 3.1.

(vi) In the first stage of the transportation system, the
decision maker is a production house who decides
which type of how many vehicles have been sent out
to different distributors. Since a fixed amount of items
has to be sent out to different distributors according
to their demands, the distances of production house
from different distributors are very important. In this
regard, we have assumed distance as a parameter in
the first stage of transportation, but in the second stage
the items are transported depending on unit trans-
portation cost according to distributors’ decision.

(vii) Since the considered transportation problem is a joint
transportation system with three partners such as
production house, distributors, and retailers accord-
ing to the first assumption, so each of them has a
specific objective and theywould alwayswant to opti-
mize their own objectives. For this reason, several
conflicting objectives of different partners are to be
optimized simultaneously under the same conditions.
Here, three objectives such as minimization of trans-
portation cost of a production house, minimization of
total transportation cost of retailers, and maximiza-
tion the total profit of distributors are considered.

• Formulation Here, total number of distribution centers
is N with demand of jth distributor ˆ̂w j (j = 1, 2,…, N)
and there are total R retailers with requirement ŝk (k=1,
2,…, R) for kth retailer. ˆ̂c jk be the demanded unit trans-
portation cost, while ĉajk be the actual unit transportation
cost along the j-k path (i.e., from jth distributor to kth
retailer) and pdj be the commission given by the produc-
tion house to jth distributor for the distribution per unit
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Table 3 List of notations for
model

Notation Description

Indices

i Indicates the type of vehicles

j This is used to indicate the distributors

k Indicates the different retailers

Parameters

pi Total number of the vehicles of type i available at production house

fi j Fixed charge for the ith type of vehicles along jth distributor

qi Capacity of ith-type vehicle

M There are M types of vehicles

N Total number of distributors

R Total number of retailers

ˆ̂w j Bi-rough demand of the jth distributor

ŝk Rough requirement of the kth retailer

ĉv
i Rough cost for per unit distance in the first stage of ith-type vehicle

ˆ̂c jk Bi-rough demanded unit transportation cost by jth distributor to kth retailer

ĉajk Rough actual unit transportation cost from jth distributor to kth retailer

d j Distance from production house to jth distributor

r Banking interest

τk Offered credit period by any distributor for kth retailer

pdj Commission given by the production house to the jth distributor for per unit distribution

ξ Threshold requirement

Decision variables

x jk Amount of goods to be transported from jth distributor to kth retailer

vi j Number of vehicles of type i have been used to transport the products to the jth distributor

item. At production house, there are total M types of
vehicles (i = 1, 2, . . . , M) and the numbers of ith-type
vehicle are pi with capacity qi . fi j be the restricted fixed
charge associated with ith-type vehicle along jth distribu-
tor.Here, τk be the offered credit period for the kth retailer
and r be the banking interest. If x jk be the transported
amount from jth distributor to kth retailer and vi j be the
number of ith-type vehicles have been used to transport
the products to jth distributor from the production house,
then model has been formulated as:

minimize F̄1 =
M∑
i=1

N∑
j=1

ĉv
i .d j .vi j +

M∑
i=1

N∑
j=1

fi j .vi j (2)

minimize F̄2 =
N∑
j=1

R∑
k=1

ˆ̂c jk .x jk −
R∑

k=1

[ N∑
j=1

x jk . ˆ̂c jk
]
.τk .r

(3)

maximize F̄3

=
N∑
j=1

pdj .w j +
N∑
j=1

R∑
k=1

ˆ̂c jk .x jk

−
N∑
j=1

R∑
k=1

ˆcajk .x jk −
R∑

k=1

[ N∑
j=1

x jk . ˆ̂c jk
]
.τk .r (4)

subject to

M∑
i=1

qi .vi j ≥ ˆ̂w j , j = 1, 2, . . . , N (5)

R∑
k=1

x jk ≤ ˆ̂w j , j = 1, 2, . . . , N (6)

N∑
j=1

x jk ≥ ŝk, k = 1, 2, . . . , R (7)

N∑
j=1

vi j ≤ pi , i = 1, 2, . . . , M (8)

M∑
i=1

N∑
j=1

qi .vi j ≥
N∑
j=1

R∑
k=1

x jk (9)

M∑
i=1

qi .vi j ≥
R∑

k=1

x jk, j = 1, 2, . . . , N (10)
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τk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
N∑
j=1

x jk < ξ

T , if
N∑
j=1

x jk ≥ ξ

, k = 1, 2, . . . , R (11)

x jk ≥ 0, j = 1, 2, . . . , N ; k = 1, 2, . . . , R (12)

vi j ≥ 0, i = 1, 2, . . . , M; j = 1, 2, . . . , N (13)
N∑
j=1

ˆ̂w j ≥
R∑

k=1

ŝk . (14)

By objective functions (2) and (3), transportation cost of
the production house and retailers areminimized, respec-
tively, while objective function (4) maximizes the total
profit of the distributors. Constraint (5) indicates that the
total transported amount to a particular distributor ismore
than or equal to the demand of that particular distributor
for the first stage. Constraints (6) and (7) are the demand
and requirement constraints of the distributors and retail-
ers, respectively, in the second stage. Constraint (8) is
a restriction on the total numbers of different types of
vehicles. The overall flow is balanced by constraint (9),
while the flow at a particular distribution center is con-
served by constraint (10). Constraint (11) is a restriction
on the offered credit period. Finally, the feasibility of the
problem has been maintained by constraints (12)–(14).

5 De-rough and de-bi-rough of themodel

De-rough and de-bi-rough are a procedure to convert the
uncertain model with rough and bi-rough parameters into
an equivalent deterministic model.

It is noted that, after creating a transportation problem
in varieties of uncertain environments, it has to be tack-
led properly. There are two mechanisms for dealing with
uncertainty, the first one is without converting into determin-
istic form (Baykasoglu and Subulan 2019), and in second
one, different types of uncertain programming have been for-
mulated to convert into deterministic form. Expected value
approach and chance constraint programming approach (Roy
et al. 2019; Zhang et al. 2016; Kundu et al. 2017) are
commonuncertain programmingapproach indifferent uncer-
tain environments. Moreover, the other popular uncertain
programming approaches are Robust optimization (San-
gaiah et al. 2019; Kara et al. 2019), stochastic optimal
control (Khalilpourazari and Khalilpourazary 2018), etc.
Here, the expected value approach and rough and bi-rough
programming approach (an extension of chance constraint
programming approach) have been utilized for the purpose
of de-rough and de-bi-rough of the model.

• Expected value approach
In expected value approach (Chen et al. 2017a; Cheng
et al. 2017; Kundu et al. 2017), all uncertain objective
functions (2)–(4) and uncertain constraints (5)–(7) and
(14) have been converted into the deterministic form
using the expected values of both rough and bi-rough
parameters using Sects. 2.5 and 2.6.

• Rough and bi-rough programming approach
In rough and bi-rough programming approach, uncertain
objective functions (2)–(4) have been transformed into
the deterministic form using expected values (Sects. 2.5
and 2.6) of associated rough and bi-rough parameters.
Then the uncertain constraints with rough parameters are
transformed into the deterministic form with the help of
trust measure (Sect. 2.3), while the uncertain constraints
with bi-rough parameters have been converted into deter-
ministic form by chance measure (Sect. 2.4).

It is noted that to remove the uncertainty, expected value
approach and chance constraint programming approach both
have been used. Now, the difference between these twometh-
ods is that the uncertainty of a parameter in a constraint has
been removed taking only expected value of that parame-
ter, and on the other hand, to remove the uncertainty of a
parameter in a constraint, the chance of satisfaction of that
constraint above some confidence level has been taken first,
and then trust measure for rough and chance measure for bi-
rough parameter has been used to remove the uncertainty of
that parameter in constraint.

5.1 Crisp form of themodel using expected value
approach

Here, the transportation cost for per unit distance in the first
stage ĉv

i = ([cv
i1, cv

i2], [cv
i3, cv

i4]), actual unit transportation
cost ĉajk = ([cajk1, cajk2, [cajk3, cajk4]) in the second stage,

and requirements of the retailers ŝk = ([s1k , s2k ], [s3k , s4k ])
are all rough. Moreover, the demanded unit transportation
cost ˆ̂c jk = ([ĉ jk − a1jk, ĉ jk + a2jk], [ĉ jk − a3jk, ĉ jk + a4jk])
where ĉ jk = ([c1jk, c2jk], [c3jk, c4jk]) and demands of the

distributors ˆ̂w j = ([ŵ j − b1j , ŵ j − b2j ], [ŵ j − b3j , ŵ j −
b4j ]), ŵ j = ([w1

j , w2
j ], [w3

j , w4
j ]) are bi-rough. Using the

framework of earlier described expected value approach, the
proposed uncertain model (2)–(14) has been converted into
the equivalent crisp form as:

minimize F1 =
M∑
i=1

N∑
j=1

E[ĉv
i ].d j .vi j +

M∑
i=1

N∑
j=1

fi j .vi j (15)

minimize F2 =
N∑
j=1

R∑
k=1

E[ ˆ̂c jk ].x jk −
R∑

k=1

{ N∑
j=1

x jk .E[ ˆ̂c jk ]
}
.τk .r

(16)
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maximize F3 =
N∑
j=1

pdj .w j +
N∑
j=1

R∑
k=1

E[ ˆ̂c jk ].x jk

−
N∑
j=1

R∑
k=1

E[ ˆcajk ].x jk −
R∑

k=1

{ N∑
j=1

x jk .E[ ˆ̂c jk ]
}
.τk .r (17)

subject to

M∑
i=1

qi .vi j ≥ E[ ˆ̂w j ], j = 1, 2, . . . , N (18)

R∑
k=1

x jk ≤ E[ ˆ̂w j ], j = 1, 2, . . . , N (19)

N∑
j=1

x jk ≥ E[ŝk], k = 1, 2, . . . , R (20)

N∑
j=1

E[ ˆ̂w j ] ≥
R∑

k=1

E[ŝk] (21)

along with (8)−(13) (22)

where F1, F2, and F3 are the deterministic form of F̄1, F̄2,
and F̄3, respectively. Now, the above model can be rewritten
into the following deterministic form as:

minimize F1

=
M∑
i=1

N∑
j=1

[
cvi1 + cvi2 + cvi3 + cvi4

4

]
.d j .vi j +

M∑
i=1

N∑
j=1

fi j .vi j (23)

minimize F2

=
N∑
j=1

R∑
k=1

[ c1jk + c2jk + c3jk + c4jk + a2jk + a4jk − a1jk − a3jk
4

]
.x jk

−
R∑

k=1

[ N∑
j=1

x jk .

{ c1jk + c2jk + c3jk + c4jk + a2jk + a4jk − a1jk − a3jk
4

}]
.τk .r

(24)
maximize F3

=
N∑
j=1

pdj .w j +
N∑
j=1

R∑
k=1

[ c1jk + c2jk + c3jk + c4jk + a2jk + a4jk − a1jk − a3jk
4

]
.x jk

−
N∑
j=1

R∑
k=1

[ cajk1 + cajk2 + cajk3 + cajk4
4

]
.x jk

−
R∑

k=1

[ N∑
j=1

x jk .

{ c1jk + c2jk + c3jk + c4jk + a2jk + a4jk − a1jk − a3jk
4

}]
.τk .r

(25)

subject to

M∑
i=1

qi .vi j ≥
[

w1
j + w2

j + w3
j + w4

j + b2j + b4j − b1j − b3j
4

]
,

j = 1, 2, . . . , N (26)

R∑
k=1

x jk ≤
[

w1
j + w2

j + w3
j + w4

j + b2j + b4j − b1j − b3j
4

]
,

j = 1, 2, . . . , N (27)
N∑
j=1

x jk ≥
[
s1k + s2k + s3k + s3k

4

]
, k = 1, 2, . . . , R (28)

N∑
j=1

[
w1

j + w2
j + w3

j + w4
j + b2j + b4j − b1j − b3j
4

]

≥
R∑

k=1

[
s1k + s2k + s3k + s3k

4

]
(29)

along with (8)−(13). (30)

5.2 Crisp form of themodel using rough and
bi-rough programming approach

Using rough and bi-rough programming approach, the pro-
posed uncertain model has been converted into the following
form:

minimize F1, minimize F2, and maximize F3

where F1, F2, and F3 be the same in equations (23)−(25)

subject to

Ch

{ M∑
i=1

qi .vi j ≥ ˆ̂w j

}
(β) ≥ γ, j = 1, 2, . . . , N (31)

Ch

{ R∑
k=1

x jk ≤ ˆ̂w j

}
(β) ≥ γ, j = 1, 2, . . . , N (32)

Tr

{ N∑
j=1

x jk ≥ ŝk

}
≥ α, k = 1, 2, . . . , R (33)

along with (8)−(14). (34)

So, the above model has been rewritten into the following
deterministic form as

minimize F1, minimize F2, and maximize F3

where F1, F2, and F3 be the same in equations (23)−(25)

subject to

M∑
i=1

qi .vi j ≥ Wj , j = 1, 2, . . . , N (35)

R∑
k=1

x jk ≤ W ′
j , j = 1, 2, . . . , N (36)

N∑
j=1

x jk ≥ Sk, k = 1, 2, . . . , R (37)
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along with (8)−(14) (38)

where Wj and W ′
j are the deterministic value of ˆ̂w j corre-

sponding to constraints (31) and (32), respectively, and Sk
be the deterministic value of ŝk corresponding to constraint
(33).

Firstly, we have obtained the value of Sk with confidence
level α ∈ (0, 1] by expression (39) as

Sk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − 2α)s3k + 2α.s4k , if α ≤ s1k−s3k
2(s4k−s3k )

2(1 − α)s3k + (2.α − 1)s4k , if α ≥ s2k+s4k−2.s3k
2(s4k−s3k )

s3k (s2k−s1k )+s1k (s4k−s3k )+2.α.(s2k−s1k )(s4k−s3k )

(s2k−s1k )+(s4k−s3k )
, if

s1k−s3k
2(s4k−s3k )

≤ α ≤ s2k+s4k−2.s3k
2(s4k−s3k )

.

(39)

The real number Wj corresponding to constraint (35) is

calculated from thebi-roughparameter ˆ̂w j = ([P1
j , P2

j ], [P3
j ,

P4
j ])with confidence level γ ∈ (0, 1] using (40) and the real

numbers P1
j , P

2
j , P

3
j , and P4

j are calculated using (41)–(44)

from the rough parameters ŵ j − b1j , ŵ j − b2j , ŵ j − b3j , and

ŵ j −b4j , respectively, with confidence level β ∈ (0, 1] while

ŵ j = ([w1
j , w1

j ], [w3
j , w4

j ]). So, the values ofWj have been
derived by the following expressions

Wj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2γ )P3
j + 2γ.P4

j , if γ ≤ P1
j −P3

j

2(P4
j −P3

j )

2(1 − γ )P3
j + (2.γ − 1)P4

j , if γ ≥ P2
j +P4

j −2.P3
j

2(P4
j −P3

j )

P3
j (P

2
j −P1

j )+P1
j (P

4
j −P3

j )+2.γ .(P2
j −P1

j )(P
4
j −P3

j )

(P2
j −P1

j )+(P4
j −P3

j )
, if

P1
j −P3

j

2(P4
j −P3

j )
≤ γ ≤ P2

j +P4
j −2.P3

j

2(P4
j −P3

j )

(40)

where

P1
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w3
j − b1j ) + 2β.(w4

j − b1j ), if β ≤ w1
j−w3

j

2(w4
j−w3

j )

2(1 − β)(w3
j − b1j ) + (2.β − 1)(w4

j − b1j ), if β ≥ w2
j+w4

j−2.w3
j

2(w4
j−w3

j )

(w3
j−b1j )(w

2
j−w1

j )+(w1
j−b1j )(w

4
j−w3

j )+2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w1
j−w3

j

2(w4
j−w3

j )
≤ β ≤ w2

j+w4
j−2.w3

j

2(w4
j−w3

j )
,

(41)

P2
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w3
j + b2j ) + 2β.(w4

j + b2j ), if β ≤ w1
j−w3

j

2(w4
j−w3

j )

2(1 − β)(w3
j + b2j ) + (2.β − 1)(w4

j + b2j ), if β ≥ w2
j+w4

j−2.w3
j

2(w4
j−w3

j )

(w3
j+b2j )(w

2
j−w1

j )+(w1
j+b2j )(w

4
j−w3

j )+2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w1
j−w3

j

2(w4
j−w3

j )
≤ β ≤ w2

j+w4
j−2.w3

j

2(w4
j−w3

j )
,

(42)

P3
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w3
j − b3j ) + 2β.(w4

j − b3j ), if β ≤ w1
j−w3

j

2(w4
j−w3

j )

2(1 − β)(w3
j − b3j ) + (2.β − 1)(w4

j − b3j ), if β ≥ w2
j+w4

j−2.w3
j

2(w4
j−w3

j )

(w3
j−b3j )(w

2
j−w1

j )+(w1
j−b3j )(w

4
j−w3

j )+2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w1
j−w3

j

2(w4
j−w3

j )
≤ β ≤ w2

j+w4
j−2.w3

j

2(w4
j−w3

j )
,

(43)

and
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P4
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w3
j + b4j ) + 2β.(w4

j + b4j ), if β ≤ w1
j−w3

j

2(w4
j−w3

j )

2(1 − β)(w3
j + b4j ) + (2.β − 1)(w4

j + b4j ), if β ≥ w2
j+w4

j−2.w3
j

2(w4
j−w3

j )

(w3
j+b4j )(w

2
j−w1

j )+(w1
j+b4j )(w

4
j−w3

j )+2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w1
j−w3

j

2(w4
j−w3

j )
≤ β ≤ w2

j+w4
j−2.w3

j

2(w4
j−w3

j )
.

(44)

The real number W ′
j corresponding to constraint (35) is cal-

culated from the bi-rough parameter ˆ̂w j = ([Q1
j , Q2

j ],
[Q3

j , Q4
j ]) with confidence level γ ∈ (0, 1] using (45), and

the real numbers Q1
j , Q

2
j , Q

3
j , and Q4

j have been obtained

from the rough parameters ŵ j − b1j , ŵ j − b2j , ŵ j − b3j , and

ŵ j − b4j , respectively, using (46)–(49) with confidence level

β ∈ (0, 1] while ŵ j = ([w1
j , w1

j ], [w3
j , w4

j ]).
So, the values ofW ′

j have been calculated by the following
expressions

W ′
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2γ )Q4
j + 2γ.Q3

j , if γ ≤ Q4
j−Q2

j

2(Q4
j−Q3

j )

2(1 − γ )Q4
j + (2.γ − 1).Q3

j , if γ ≥ 2Q4
j−Q1

j−Q3
j

2(Q4
j−Q3

j )

Q4
j (Q

2
j−Q1

j )+Q2
j (Q

4
j−Q3

j )−2.γ .(Q2
j−Q1

j )(Q
4
j−Q3

j )

(P2
j −P1

j )+(P4
j −P3

j )
, if

Q4
j−Q2

j

2(Q4
j−Q3

j )
≤ γ ≤ 2Q4

j−Q1
j−Q3

j

2(Q4
j−Q3

j )

(45)

where

Q1
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w4
j − b1j ) + 2β.(w3

j − b1j ), if β ≤ w4
j−w2

j

2(w4
j−w3

j )

2(1 − β)(w4
j − b1j ) + (2.β − 1)(w3

j − b1j ), if β ≥ 2w4
j−w1

j−w3
j

2(w4
j−w3

j )

(w4
j−b1j )(w

2
j−w1

j )+(w2
j−b1j )(w

4
j−w3

j )−2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w4
j−w2

j

2(w4
j−w3

j )
≤ β ≤ 2w4

j−w1
j−w3

j

2(w4
j−w3

j )
,

(46)

Q2
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w4
j + b2j ) + 2β.(w3

j + b2j ), if β ≤ w4
j−w2

j

2(w4
j−w3

j )

2(1 − β)(w4
j + b2j ) + (2.β − 1)(w3

j + b2j ), if β ≥ 2w4
j−w1

j−w3
j

2(w4
j−w3

j )

(w4
j+b2j )(w

2
j−w1

j )+(w2
j+b2j )(w

4
j−w3

j )−2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w4
j−w2

j

2(w4
j−w3

j )
≤ β ≤ 2w4

j−w1
j−w3

j

2(w4
j−w3

j )
,

(47)

Q3
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w4
j − b3j ) + 2β.(w3

j − b3j ), if β ≤ w4
j−w2

j

2(w4
j−w3

j )

2(1 − β)(w4
j − b3j ) + (2.β − 1)(w3

j − b3j ), if β ≥ 2w4
j−w1

j−w3
j

2(w4
j−w3

j )

(w4
j−b3j )(w

2
j−w1

j )+(w2
j−b3j )(w

4
j−w3

j )−2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w4
j−w2

j

2(w4
j−w3

j )
≤ β ≤ 2w4

j−w1
j−w3

j

2(w4
j−w3

j )
,

(48)

and
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Q4
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2β)(w4
j + b4j ) + 2β.(w3

j + b4j ), if β ≤ w4
j−w2

j

2(w4
j−w3

j )

2(1 − β)(w4
j + b4j ) + (2.β − 1)(w3

j + b4j ), if β ≥ 2w4
j−w1

j−w3
j

2(w4
j−w3

j )

(w4
j+b4j )(w

2
j−w1

j )+(w2
j+b4j )(w

4
j−w3

j )−2.β.(w2
j−w1

j )(w
4
j−w3

j )

(w2
j−w1

j )+(w4
j−w3

j )
, if

w4
j−w2

j

2(w4
j−w3

j )
≤ β ≤ 2w4

j−w1
j−w3

j

2(w4
j−w3

j )
.

(49)

6 Solutionmethodology

The proposed model contains three objective functions with
a large number of variables. So, it is hard to find out the solu-
tions by a classical method. From the literature, it is known
that NSGA-II (Deb et al. 2000;Majumder et al. 2019a) is one
of the best evolutionary algorithms to solve a complicated
multi-objective optimization problem. To solve the proposed
model by two approaches, the following two algorithms have
been developed.

Algorithm 1 Solution algorithm in expected value approach

Step 1: Firstly obtain the expressions of F̄1, F̄2, F̄3 and
the constraints (5)–(14).

Step 2: Give the values of M , N , and R then input crisp
parameters like d j , fi j , pi , qi , r , T , and ξ where
i = 1, 2, . . . , M and j = 1, 2, . . . , N .

Step 3: Input the values cv
i1, c

v
i2, c

v
i3, c

v
i4 for the rough

distance-based cost ĉv
i in the first stage and cajk1,

cajk2, c
a
jk3, c

a
jk4 for the rough actual unit trans-

portation cost in the second stage ĉajk and s1k , s
2
k ,

s3k , s
4
k for the rough requirements of the retailers

ŝk where i = 1, 2, . . . , M , j = 1, 2, . . . , N ,
and k = 1, 2, . . . , R.

Step 4: Input c1jk ,c
2
jk , c

3
jk , c

4
jk , a

1
jk , a

2
jk , a

3
jk , a

4
jk for the

bi-rough demanded unit transportation cost ˆ̂c jk
and w1

j , w2
j , w3

j , w4
j , b

1
j , b

2
j , b

3
j , b

4
j for the bi-

rough demands of the distributors ˆ̂w j with j =
1, 2, . . . , N and k = 1, 2, . . . , R.

Step 5: Using expected value presented in Sects. 2.5
and 2.6, evaluate the deterministic values E(ĉv

i ),

E(ĉajk), E(ŝk), E( ˆ̂c jk), E( ˆ̂w j ) for i = 1, 2, . . . , M ,
j = 1, 2, . . . , N , and k = 1, 2, . . . , R.

Step 6: Using step 5, formulate the deterministic model
like (23)–(30).

Step 7: Assign the values of NSGA-II parameters such as
population size, number of generations, crossover
probability and mutation probability.

Step 8: To get the optimumvalues of vi j and x jk , optimize
F1, F2, and F3 subject to constraints (26)–(30)
with the help of NSGA-II through Dev-C++
solver software, where i = 1, 2, . . . , M , j =
1, 2, . . . , N , and k = 1, 2, . . . , R.

Step 9: Using these optimum values of vi j and x jk in step
8, a set of pareto-optimal solutions have been sum-
marized.

Algorithm 2 Solution algorithm in rough and bi-rough pro-
gramming approach

Step 1: Follow steps 1–4 in Algorithm 1 for parametric
values associated with problem.

Step 2: Using expected value, convert uncertain objective
functions (2)–(4) into deterministic form (23)–
(25).

Step 3: Determine the deterministic values Wj and W ′
j

for bi-rough constraints (5) and (6) using (40)–
(44) as well as (45)–(49), respectively, and Sk for
rough constraint (7) with the help of (39) where
j = 1, 2, . . . , N and k = 1, 2, . . . , R.

Step 4: Declaring the NSGA-II parameter values, opti-
mize F1, F2 and F2 subject to constraints (35)–
(38) to get the optimum values of vi j and x jk
(i = 1, 2, . . . , M , j = 1, 2, . . . , N , and
k = 1, 2, . . . , R) using NSGA-II through Dev-
C++ solver software.

Step 5: Summarize a set of trade-off solutions using Step
4.

7 Model application with sensitivity analysis

To illustrate the proposed model numerically, we have taken
into account the following problem.

A cattle feed production house at Dumdum has three
types of vehicles such as Eicher pro 1049 truck, SML sar-
taj GS 5252 truck, and Eicher pro 1080 XPT tipper with
maximum load capacities 49, 52, and 82.50 quintals, respec-
tively, to transport the products to three distribution centers at
Sonarpur, Maheshtala, and Habra, respectively. The number
of vehicles of each type is 10. Per trip fixed charges for each
type of vehicle along different paths are given in Table 4. The
average cost for per unit distance of each type of vehicles is
given in Table 5. Moreover, the distances of the distribution
centers from the production house are 26.6 km, 31.1 km,
and 37.9 km, respectively. The demands of the distributors
are displayed in Table 6. The items distributed among four
retailers at Thakurpukur, Raghabpur, Dankuni, and Bhangar
with the requirements of the retailers are shown in Table 7.
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Table 4 Restricted fixed charges

fi j Toward Sonarpur Toward Maheshtala Toward Habra

First-type vehicle (Eicher pro 1049 truck) 200 210 220

Second-type vehicle (SML sartaj GS 5252 truck) 200 215 225

Third-type vehicle (Eicher pro 1080 XPT tipper) 205 210 215

Table 5 The unit transportation cost for per km distance of each type of vehicles

First-type vehicle (Eicher
pro 1049 truck)

Second-type vehicle (SML
sartaj GS 5252 truck)

Third-type vehicle (Eicher
pro 1080 XPT tipper)

Cost for per unit distance ([95, 100], [90, 105]) ([105, 110], [101, 117]) ([112, 120], [107, 125])

Table 6 Demands of distributors

ˆ̂w1
ˆ̂w2

ˆ̂w3

([ŵ1−2, ŵ1+3], [ŵ1−2, ŵ1+3]);
ŵ1 = ([500, 505], [495, 510])

([ŵ2−1, ŵ2+2], [ŵ2−3, ŵ2+2]);
ŵ2 = ([505, 515], [495, 520])

([ŵ3−1, ŵ3+1], [ŵ3−2, ŵ3+1]);
ŵ3 = ([495, 505], [490, 510])

For the distribution of the products, distributors demand a
certain amount of cost (shown in Table 9) which is more
than actual transportation cost (in Table 8). To influence the
retailers, distributors offer 30 days of credit period policy to
those retailers whose requirements are more than 350 quin-
tals. Moreover, yearly banking interest is 6%. So, production
house has to take a perfect decision on how many vehicles
of which type to be sent out to a particular distribution cen-
ter so that their transportation cost is minimum and a perfect
decision on transported amount by the distributors so that the
total transportation cost of the retailers is minimum as well
as their total profit is maximum.
Solution Here, the given parametric values are M = 3,
N = 3, R = 4, d1 = 26.6, d2 = 31.1, d3 = 37.9,
r = 6, T = 30, ξ = 350, p1 = 10, p2 = 10, p3 = 10,
q1 = 49, q2 = 52, and q3 = 82.50 with respective units.
Now, the given problem in which some parameters are rough
and some are bi-rough in nature has been solved using Algo-
rithm 1 taking the NSGA-II parametric values of probability

of crossover, probability of mutation, population size, and
number of generations as 0.75, 0.05, 500, and 1000, respec-
tively. Firstly, Tables 5, 6, 7, 8, and 9 are converted into
deterministic forms in the Tables 10, 11, 12, 13, and 14,
respectively, using expected value. Using these determinis-
tic values, a crisp model has been formulated. The obtained
crisp model is solved by NSGA-II through Dev-C++ solver
software andhas summarized a set of optimal solutionswhich
is discussed in Table 15.

In Table 15, the first column indicates the optimum trans-
ported amounts from different distribution centers to various
retailers, while the second three columns indicate about the
optimum results of different types of vehicles to be sent
to different distributors from the production house. More-
over, the last three columns represent the optimal values of
the objective functions. From Table 15, it is observed that
distributors get maximum profit of amount 17,778.50 for
x11 = 86.00, x12 = 0.00, x13 = 147.80, x14 = 272.30,
x21 = 153.40, x22 = 92.30, x23 = 164.40, x24 = 97.40,

Table 7 Requirements of retailers

ŝ1 ŝ2 ŝ3 ŝ4

([400, 410], [395, 415]) ([295, 305], [290, 310]) ([395, 405], [385, 415]) ([390, 395], [380, 405])

Table 8 Actual unit
transportation cost

ĉajk Thakurpukur Raghabpur Dankuni Bhangar

Sonarpur ([15, 17], [12, 20]) ([18, 22], [15, 25]) ([18, 21], [16, 23]) ([14, 16], [12, 18])

Maheshtala ([14, 16], [13, 19]) ([20, 22], [17, 25]) ([18, 21], [15, 23]) ([17, 21], [15, 22])

Habra ([13, 15], [10, 17]) ([12, 17], [11, 19]) ([18, 21], [14, 22]) ([20, 22], [17, 25])
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ĉ 1

2
−1

,ĉ
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ĉ 2
2

=
([3

4,
35

],[
30

,
37

])
([
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,ĉ
32

+2
],
[ĉ
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Table 10 Deterministic value of unit transportation cost for per km
distance of each type of vehicle

First-type
vehicle

Second-type
vehicle

Third-type
vehicle

Cost for per
km. distance

97.5 108.25 116

Table 11 Deterministic value of the demands of distributors

Sonarpur Maheshtala Habra

502 508.75 499. 75

Table 12 Deterministic value of the requirements of retailers

Thakurpukur Raghabpur Dankuni Bhangar

405 300 400 392.5

Table 13 Deterministic form of actual unit transportation cost

Thakurpukur Raghabpur Dankuni Bhangar

Sonarpur 16 20 19.5 15

Maheshtala 15.5 21 19.25 18.75

Habra 13.75 14.75 18.75 21

x31 = 159.10, x32 = 232.70, x33 = 83.40, x34 = 23.50,
v11 = 6, v12 = 3, v13 = 1, v21 = 0, v22 = 3, v23 = 6,
v31 = 4, v32 = 4, and v33 = 2 when the production house
and the retailers have the costs of amounts 93,450.80 and
39,923.50, respectively, but, in this case, these are not opti-
mal. Again, when we see the minimum cost of retailers is
38,600.70 for x11 = 129.24, x12 = 25.50, x13 = 142.00,
x14 = 204.60, x21 = 155.40, x22 = 218.10, x23 = 5.30,
x24 = 128.00, x31 = 120.00, x32 = 14.50, x33 = 252.30,
x34 = 61.00, v11 = 3, v12 = 4, v13 = 2, v21 = 3, v22 = 2,
v23 = 5, v31 = 4, v32 = 4, and v33 = 2, then the cost of
production house (93,836.00) and the total profit of distribu-
tors (16,601.00) are not optimum. Also, similar scenario has
been observed for production house. So, it is concluded that
when one objective function is best, then the other objective
functions may not be so, i.e., Table 15 gives a set of pareto-
optimal solutions from which a decision maker can choose
anyone according to his/her choice.

Table 14 Deterministic form of demanded unit transportation cost

Thakurpukur Raghabpur Dankuni Bhangar

Sonarpur 22.75 22 22.25 29

Maheshtala 22.50 34.50 32 33.50

Habra 22 23.75 23.50 31.50
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Table 16 Deterministic form of requirements of the retailers

S1 S2 S3 S4

408.33 303.33 403.75 394.58

Table 17 Deterministic form of the demands of distributors

W1 W2 W3 W ′
1 W ′

2 W ′
3

503.625 512.063 502.53 502.375 506.775 497.06

Again, the given problem has been solved using Algo-
rithm 2 taking the same parametric values of NSGA-II as
earlier. Assigning the confidence levels α and (β, γ ) as 0.75
and (0.75, 0.25), respectively, get the deterministic values
Sk , Wj , and W ′

j for constraints (35)–(37), respectively, in
Tables 16 and 17. Using these, a deterministic model has
been constructed and solved as earlier. In Table 18, a set of
solutions have been listed.

FromTable 18, it has been noticed that production house’s
transportation cost (88,615.50) is minimum and distributors’
profit (17,101.20) is maximum for x11 = 216.20, x12 =
130.30, x13 = 81.40, x14 = 76.00, x21 = 33.40, x22 =
61.40, x23 = 279.30, x24 = 133.40, x31 = 158.00, x32 =
111.00, x33 = 42.90, x34 = 185.30, v11 = 0, v12 = 4, v13 =
3, v21 = 5, v22 = 1, v23 = 4, v31 = 4, v32 = 4, and v33 = 2
where total transportation cost of retailers is 40,853.20, but,
in this case it is not optimal.Again,whenwe see theminimum
cost of retailers (37,108.60) for x11 = 19.70, x12 = 211.60,
x13 = 157.40, x14 = 100.00, x21 = 210.40, x22 = 51.60,
x23 = 43.80, x24 = 155.60, x31 = 103.00, x32 = 53.00,
x33 = 184.60, x34 = 150.00, v11 = 2, v12 = 1, v13 = 7,
v21 = 1, v22 = 6, v23 = 3, v31 = 6, v32 = 4, and v33 = 0,
then the cost of production house (95,751.00) and the total
profit of distributors (14,272.90) are not optimum. So, it is
concluded thatwhen one ormore objective functions are best,
then other objective functions may not be so, i.e., Table 18
gives a set of trade-off solutions fromwhich a decisionmaker
can choose anyone according to his/her choice.

Now, some sensitivity analysis has been done to ana-
lyze the effects of different parameters on optimal solutions
through Dev-C++ solver software and the graphical presen-
tations for sensitivity analysis have been made by Microsoft
Office Excel. For the sensitivity analysis of the model,
Tables 19 and 20 and Fig. 6 show the different outcomes
of the optimal solutions.

In rough and bi-rough programming approach, three types
of confidence levels such asα and (β, γ ) have been utilized to
convert constraints (5)–(7) into the deterministic form. The
values of these confidences levels always lie between 0 and
1. So it is necessary to review how the solutions would be
changed for different values of that confidence levels.

From the previous discussion, a set of non-dominated
solutions of themodel have been obtained usingAlgorithms1
and 2. So, for each different values of α and (β, γ ), we have
obtained a different set of non-dominated solutions. That is
why, it is difficult to make a comparison among the solutions.
To overcome this difficulty, we have picked up that solution
from the non-dominated set of solutions which is best with
respect to a particular objective function for each α and (β,
γ ).

So, in Table 19, we have listed a set of optimal solu-
tions when the model is converted in deterministic form
using rough and bi-rough programming approach (i.e., Algo-
rithm 2). Here, for each α and (β, γ ), we have picked up
that particular solution from the non-dominated solutions set,
which is best with respect to F3.

FromTable 19, it is seen that, if we specify the value of (β,
γ ) = (0.50, 0.50) and increase the value of α, the profit of
the distributors’ would also increase, but after a certain value
of α (i.e., α = 0.75), the profit decreases. At the same time,
both the other objective functions F1 and F2 fluctuate slightly.
Similar type of results would be obtained if we pick up the
solutions from the pareto-optimal set by giving the priority
the other objective functions separately for each particular
values of α and (β, γ ).

Here, the offered credit period has been fixed by the dis-
tributors depending on the requirements of the retailers. So,
for what values of requirements of retailers, (i.e., the thresh-
old requirement ξ of the retailers has been fixed by the
distributors) distributors would pay the credit period (T),
which is distributor’s own policy. So, it is essential to ana-
lyze the effect on optimal solutions for different values of
ξ . In Table 20, we have summarized a set of three optimal
results for different threshold values of requirement (ξ ) by
giving priority the third objective function F3. Moreover, a
graphical view is depicted in Fig. 6.

• From Fig. 6, it has been observed that when the thresh-
old requirements (ξ ) of the retailers are fixed by the
distributers as 300, then all retailers get the benefit of
credit period policy since their respective requirements
(405, 300, 400, and 392.5) are greater than or equal to
ξ = 300. In this case, transportation cost of production
house is 84,278.75, total transportation cost of retailers is
38,927.50, and total profit of the distributors is 16,197.90.

• When ξ = 400, in the considered problem, only first
and third retailers get the benefit of credit period policy
because their respective requirements (405 and 400) are
greater than or equal to the specified threshold require-
ment. In this case, the transportation cost of production
house is 84,162.50, total transportation cost of retailers
is 39,074.70, and total profit of distributors is 16,682.40.
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Table 19 Variations of results
with changing the confidence
levels

Sl. No. (β, γ ) α Transportation
cost of produc-
tion house (F1)

Total transporta-
tion cost of retail-
ers (F2)

Total profit of dis-
tributors (F3)

1 (0.50, 0.50) 0.25 84,156.25 39,011.77 17,132.95

2 (0.50, 0.50) 0.50 87,731.25 40,527.17 17,206.30

3 (0.50, 0.50) 0.75 84,730.25 40,267.60 18,363.65

4 (0.50, 0.50) 1.00 87,896.55 41,791.68 18,134.50

5 (0.25, 0.25) 0.50 87,318.25 39,858.20 16,960.45

6 (0.50, 0.50) 0.50 90,560.42 40,416.80 17,081.50

7 (0.75, 0.75) 0.50 87,257.50 40,182.70 17,182.50

8 (1.00, 1.00) 0.50 90,017.50 41,676.80 17,952.70

Table 20 Variations of results
with different threshold
requirements

Threshold requirement (ξ ) Transportation
cost of produc-
tion house (F1)

Total transporta-
tion cost of retail-
ers (F2)

Total profit of dis-
tributors (F3)

300 84,278.75 38,917.50 16,197.90

400 84,162.50 39,074.60 16,682.40

500 84,327.50 39,322.80 17,056.50

Fig. 6 Change of optimal result
with changing the value of ξ

• When ξ = 500, no onewill get the benefit of credit period
policy. In this case, the transportation cost of production
house is 84,327.50, total transportation cost of retailers
is 39,322.80, and the total profit of the distributors is
17,056.30.

From Fig. 6, it is observed that when the value of ξ step-
wise increases, total transportation cost of the retailers and
the total profit of the distributers increase, while transporta-

tion cost of the production house fluctuates with small value
due to the conflicting nature of the objective functions.

8 Conclusion

In this work, a two-stagemulti-objective transportation prob-
lem has been addressed to deliver the products from a
production house to some retailers through some distributors.
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Here, we have simultaneously optimized three conflicting
goals which are (i) minimization of transportation cost of
production house, (ii) minimization of total transportation
cost of retailers, and (iii) maximization of total profit of
distributors. This model has been decorated by including a
restricted fixed charge in the first stage and a requirement-
dependent credit period policy in the second stage. Due to the
lack of exact data in the problem, different uncertainties, like
rough and bi-rough nature, have been considered in the asso-
ciated parameters of the model and a rough and bi-rough
programming approach has been developed to remove the
uncertainties. Finally, a real-life transportation-related exam-
ple is chosen for numerical analysis. The results of some
computational studies have been presented which are carried
out as a benchmark of such type of transportation problem. It
is noted that in the model there exist some limitations such as
(i) it is applicable only for one production house, (ii) distrib-
utors consider only one type of vehicles, (iii) it is compatible
for two-stage transportation system, and (iv) to measure the
uncertainty, the concepts of rough and bi-rough sets have
been used.

So, in future research, the present study can be extended by
considering more than one production house through more
stages. Studying of some two-stage transportation models
where both the production house and distributors used dif-
ferent types of vehicles under various uncertain environments
such as type-2 fuzzy, bi-fuzzy, rough-fuzzy, may be regarded
as a future research suggestion.
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