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Abstract
Clustering by fast search and find of density peaks (CFDP) is a popular density-based algorithm. However, it is criticized
because it is inefficient and applicable only to some types of data, and requires the manual setting of the key parameter. In
this paper, we propose the two-stage density clustering algorithm, which takes advantage of granular computing to address
the aforementioned issues. The new algorithm is highly efficient, adaptive to various types of data, and requires minimal
parameter setting. The first stage uses the two-round-means algorithm to obtain

√
n small blocks, where n is the number of

instances. This stage decreases the data size directly from n to
√
n. The second stage constructs the master tree and obtains

the final blocks. This stage borrows the structure of CFDP, while the cutoff distance parameter is not required. The time

complexity of the algorithm is O(mn
3
2 ), which is lower than O(mn2) for CFDP. We report the results of some experiments

performed on 21 datasets from various domains to compare a new clustering algorithm with some state-of-the-art clustering
algorithms. The results demonstrated that the new algorithm is adaptive to different types of datasets. It is two or more orders
of magnitude faster than CFDP.

Keywords Clustering · Density peak · Efficiency

1 Introduction

Clustering is a fundamental approach used to organize data
into distinct groups to find intrinsic hidden patterns in the
data. Its applications include image processing (Pappas 1992;
Leong and Ong 2017), bioinformatics (Shuji et al. 2015),
social networks (Chang et al. 2014) and pattern recogni-
tion (Guo et al. 2009). Popular clustering algorithms include
partition-based (MacQueen et al. 1967; Kaufman 2008),
density-based (Kriegel et al. 2011; Rodriguez and Laio 2014)
and hierarchical (Johnson 1967; Dasgupta 2002). Partition-
based clustering algorithms typically include the k-means
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(MacQueen et al. 1967) and k-medoid algorithms (Kauf-
man 2008). They construct a single partition of the dataset
based on the distance between instances. Among them, the
k-medoid algorithm always requires that each cluster center
is an existing instance. By contrast, the k-means algorithm
uses the average value of the cluster to build the virtual center.
Because an instance is always assigned to the nearest center,
these approaches are unable to detect non-spherical clusters.

Density clustering (Ester et al. 1996; Rodriguez and Laio
2014) performs well on data with circular, arc and some
other irregular shapes. CFDP (Rodriguez and Laio 2014) has
attracted much attention because of its simplicity and good
results, and it can automatically find the clustering centers.
However, it is criticized because it is inefficient and appli-
cable only to some types of data, and requires the manual
setting of the key parameter. First, the time complexity of
the algorithm is O(mn2), where m and n are the number of
attributes and instances, respectively. Hence, the algorithm
is inapplicable to data with millions of instances. Second, for
many datasets, the clustering results are often unsatisfactory
in terms of purity, the Jaccard coefficient (JC), Fowlkes and
Mallows index (FMI) and Rand index (RI). Third, the quality
of the results depends substantially on cutoff distance thresh-
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old dc. It is difficult, if not impossible, for the user to make
an optimal setting in practice.

One solution to these issues is to introduce the granu-
lar computing (Hu et al. 2016; Li et al. 2016; Qian et al.
2015; Yao and Yao 2002; Chen et al. 2015) methodology.
This methodology is widely used to manage many machine
learning tasks, such as classification (Wang andMusa 2014),
clustering (Wilderjans and Cariou 2016; Sarma et al. 2013),
recommendation (Zhang et al. 2019, 2017), active learning
(Wang et al. 2017), attribute reduction (Min et al. 2011; Li
et al. 2011) and three-way decisions (Huang et al. 2017; Zhao
et al. 2016a, b; Li et al. 2017; Yu et al. 2016; Liu and Liang
2017). For the clustering task, each instance can be consid-
ered as the finest granule, the entire dataset can be considered
as the coarsest granule, and the clustering result has the gran-
ule level between the finest and coarsest. We may construct
other granule levels to address the aforementioned issues.

In this paper, we propose the two-stage density clus-
tering (TSD) algorithm, which is highly efficient, adaptive
to various types of data, and requires minimal parame-
ter setting. Figure 1 illustrates our new algorithm through
a running example. Figure 1a describes a dataset of 100
instances. The first stage is pre-clustering, as shown in
Fig. 1b. We divide the dataset into ten blocks and obtain
ten virtual centers [c1, c2, . . . , c10]. Block size array ρ =
[17, 11, 9, 6, 12, 11, 9, 9, 6, 10] is obtained for the next
stage. Pre-clustering ensures the local distribution of data
and decreases the data size. The second stage is the den-
sity clustering of virtual centers, as shown in Fig. 1c.
First, we obtain density ρi of each instance and calculate
its minimum distance δi . Second, we construct the mas-
ter tree according to (ρi , δi ). Finally, we cluster ten virtual
centers into three blocks and obtain their cluster indices
cl = [1, 1, 1, 3, 3, 2, 2, 2, 3, 3]. Figure 1d shows the clus-
ter results. All instances in each block have the same cluster
indices as the virtual centers.

The granular computingmethodology is used to design the
TSD algorithm. In the pre-clustering stage, approximately√
n small local granules are obtained using a two-round-

means subroutine, where n is the number of instances. This
stage does not change the distribution of the data. In the
density clustering stage, both the inner-granule size and inter-
granule distance are used to construct the master tree. Then,
local granules are accumulated to form the final clusters.

The two-stage density clustering (TSD) algorithm has the
following advantages. First, the number of instances required
for density clustering is reduced to

√
n. Thus, the time com-

plexity is O(mn
3
2 ), which is much lower than O(mn2) for

clustering by fast search and find of density peaks (CFDP).
Second, the TSD algorithm has the advantages of the k-
means algorithm and CFDP and has good adaptability. It has
good clustering performance for datasets containing data of

various types. Third, the density ρ is set to the number of
instances in each block. The method is simple and effective
and avoidsmanually setting the cutoff distance dc . Therefore,
the main problem solved is the efficiency and parameter set-
ting in the CFDP algorithm. The new algorithm is

√
n times

faster than CFDP. It does not require the value of ρ to be set.
Experiments were performed on 21 datasets to quantify

the performance of the TSD algorithm. These datasets were
chosen from different applications, such as botany, materi-
als science and games, with different data distributions. The
largest dataset, Poker (Cattral and Oppacher 2007), contains
1,025,009 instances. We compared the TSD algorithm with
five types of clustering algorithms: partition clustering (Mac-
Queen et al. 1967), peak density clustering (Rodriguez and
Laio 2014; Xie et al. 2016; Liu et al. 2018; Xu et al. 2016),
maximum margin clustering (MMC) (Li et al. 2009), spec-
tral clustering (Wang et al. 2011) and balanced clustering
(Liu et al. 2017a). Four external evaluation functions were
used to evaluate the clustering results. The time complex-
ity was verified on seven large datasets. The experimental
results demonstrated that the TSD algorithm had good clus-
tering performance on various types of datasets. It was two
or more orders of magnitude faster than CFDP.

The remainder of this paper is organized as follows: In
Sect. 2, we review five types of clustering algorithms. In
Sect. 3,wepresent theTSDclustering algorithm.Wedescribe
experiments on 21 datasets in Sect. 4. Finally, we draw a
conclusion in Sect. 5.

2 Related work

In this section, we review five types of clustering algorithms:
partition-based clustering (MacQueen et al. 1967; Kauf-
man 2008), density-based clustering (Kriegel et al. 2011;
Rodriguez and Laio 2014; Xie et al. 2016; Liu et al. 2018;
Xu et al. 2016),maximummargin clustering (MMC) (Li et al.
2009), spectral clustering (Chen and Cai 2011; Wang et al.
2011) and balanced clustering (Liu et al. 2017a).

2.1 Partition-based clustering

Partition-based clustering algorithms, such as the k-means
(MacQueen et al. 1967) and k-medoid (Kaufman 2008) algo-
rithms, are classic and efficient. The k-means algorithm
calculates cluster centers iteratively as follows:

Step 1. Initialize k centers c1 …ck using random sam-
pling.
Step 2. Each instance belongs to the block of the nearest
center.
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(a)

(b) (c)

(d)

Fig. 1 Running example of the TSD algorithm. a describes the input,
and b shows the first stage of TSD, namely pre-clustering. The pre-
clustering stage obtains the virtual centers c and block density ρ, and c

shows the second stage of TSD, namely the density clustering of virtual
centers. Finally, d shows the cluster results

Step 3. Each new center takes the mean values of all
instances of its block.
Step 4. Repeat Steps 2 and 3 until the cluster centers do
not change.

Because the Euclidean distance is typically used as a sim-
ilarity measure, partition-based clustering algorithms cannot
detect non-spherical clusters.

2.2 Peak density clustering

Density clustering (Ester et al. 1996; Rodriguez and Laio
2014) explores clusters with different shapes based on the
data density. DBSCAN (Ester et al. 1996) can find clus-
ters with various shapes and manage noise. It controls class
growth based on a density threshold. However, it does not
perform well for overlapping densities.

Similar to DBSCAN, CFDP (Rodriguez and Laio 2014)
aims todetect non-spherical clusters.Cluster centers are char-
acterized by a higher density than their neighbors and by a
relatively large distance from instances with higher densi-

ties. For each instance i , CFDP computes two quantities: its
density ρi and its minimum distance δi from instances of a
higher density. Density ρi of instance i is defined as

ρi =
∑

j

χ(di j − dc), (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc is
a cutoff distance. δi is measured by computing the minimum
distance between instance i and any other instance with a
higher density:

δi = min
j :ρ j>ρi

(di j ). (2)

For the instance with the highest density, we conventionally
take δi = max(di j ).

CFDP detects non-spherical clusters and automatically
finds the correct number of clusters. However, it encounters
the following drawbacks in practice:
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(1) High time complexity: The time complexity of the algo-
rithm is O(mn2), where m and n are the number of
attributes and instances, respectively. The high time com-
plexity makes it impossible to use the algorithm for
large-scale data clustering.

(2) Difficult to set dc and accurately select the cluster centers.
The performance of the algorithm depends on user-
specified cutoff distance dc. No specific method was
presented in (Rodriguez and Laio 2014).

Liu et al. (2017b) also discovered this problem. He has the
following description in the abstract of the paper. “However,
the improper selection of its parameter cutoff distance dc will
lead to the wrong selection of initial cluster centers, but the
CFDPcannot correct it in the subsequent assignment process.
Furthermore, in some cases, even the proper value of dc was
set, initial cluster centers are still difficult to be selected from
thedecisiongraph.”Chen et al. (2016) described this problem
in his paper. “But is has two big challenges when selecting
cluster centers. The first challenge is it needs to manually
select cluster centers. Even so, on some datasets, the number
of cluster centers it generates will be either more or less than
the right number. The second one is it is unable to group data
points correctly when a cluster has more than one centers.”

Various methods have been proposed to further improve
the CFDP algorithm. Liu et al. (2017b, 2018), Chen et al.
(2016),Xie et al. (2016),Duet al. (2016) introduced k-nearest
neighbors (KNN) ideas into the CFDP algorithm to improve
its adaptive ability and performance. Xu et al. (2016), Liang
and Chen (2016), Lu and Zhu (2017) combined the idea of
hierarchy with the CFDP algorithm to improve efficiency.

Xie et al. (2016) proposed a new robust fuzzy KNN den-
sity peak clustering (FKNN-DPC) algorithm. The proposed
algorithm introduced a uniform metric to calculate the local
density and developed two assignment strategies to detect
the true distribution of a dataset. Liu et al. (2018) proposed a
shared-nearest-neighbor-based clustering by fast search and
find of density peaks (SNN-DPC) algorithm. They presented
three new definitions: SNN similarity, the local density ρ and
the distance from the nearest larger density point δ. These
definitions take the information about nearest neighbors and
shared neighbors into account. Xu et al. (2016) proposed
a density peak-based hierarchical clustering method (Den-
PEHC) algorithm that directly generates clusters on each
possible clustering layer and introduced a grid granulation
framework to enable DenPEHC to cluster large-scale and
high-dimensional datasets.

As opposed to the above methods, TSD uses two-stage
clustering. The first stage uses a two-round-means algorithm
to better handle spherical datasets. The second stage uses
the improved CFDP algorithm to efficiently process non-
spherical datasets. Thus, TSD effectively integrates the idea

of hierarchical clustering,which can improve the adaptability
of the algorithm.

2.3 Maximummargin clustering

MMC algorithms (Li et al. 2009) aim to find an optimal
(maximum) hyperplane in high-dimensional feature space.
Specifically, the hyperplane and labeled sample can be
obtained by optimizing the following objective function:

min
y∈{±1}n

min
ω,b,ξ

1
2‖ω‖2 + C

n∑
i=1

ξi ,

s.t . yi (ωTφ(xi ) + b) ≥ 1 − ξi ,∀i = 1, . . . , n,

ξi ≥ 0,∀i = 1, . . . , n,

−l ≤
n∑

i=1
yi ≤ l,

(3)

where φ(·) denotes a nonlinear mapping from the original
space to high-dimensional space. ξi ≥ 0 is the relaxation
variable that corresponds to xi . l is the constant controlling
the balance between classes. ω and b uniquely determine the
hyperplane. Naturally, the clustering label is optimized by
the objective function.

MMC is limited to small to medium-sized datasets
because of the semidefinite program. The LGMMC algo-
rithm (Li et al. 2009) improves efficiency and scalability by
maximizing the margin of opposite clusters using label gen-
eration.

2.4 Spectral clustering

Spectral clustering (Chen and Cai 2011; Wang et al. 2011) is
evolved from graph theory. It mainly includes three steps:

Step 1. Construct a new matrix to represent the original
dataset.
Step 2. Compute the eigenvalues and eigenvectors of the
matrix. Map each instance to a low-dimensional repre-
sentation based on the eigenvectors.
Step 3. Assign cluster indices according to the new rep-
resentation.

Spectral clustering has advantages in managing sparse and
high-dimensional datasets. The disadvantage is that the time
complexity is too high and cannot manage intersections.
Chen and Cai (2011) proposed the landmark-based spectral
clustering algorithm to improve efficiency.Wang et al. (2011)
proposed the spectral multi-manifold clustering (SMMC)
algorithm to manage intersections.
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2.5 Balanced clustering

Balanced clustering (Liu et al. 2017a) is required in a variety
of applications, such as photo query systems (Dengel et al.
2011) and wireless sensor networks (Chuang et al. 2009).
These balanced algorithms can be categorized into two types:
hard-balanced and soft-balanced. Liu et al. (2017a) proposed
a soft-balanced BCLS algorithm based on least square linear
regression. It considers a balance constraint to regularize the
clustering model. The purpose is to minimize

c∑

k=1

s2k = ‖s‖22 =
∥∥∥1T Y

∥∥∥
2

2
= tr(Y T 11T Y ). (4)

The algorithm achieves balanced clustering by minimizing
the square sum of instances in each cluster.

3 Proposed algorithm

In this section, we present the TSD algorithmwith time com-
plexity analysis.

3.1 Algorithm description

Figure 2 shows our TSD clustering framework. Table 1 is the
symbols and variables used in Fig. 2. Stage I is pre-clustering.
The dataset is divided into e clusters using the two-round-
means algorithm (Algorithm 1), e = √

n.
√
n is an empirical

value used in many studies. In Yu and Cheng (2001), the
authors have provided a theoretical explanation for this rule.
Therefore, we set

√
n as the block number in Algorithm 1.

This stage computes block information b1×e and determines
virtual centers c1×e. Simultaneously, we obtain block size
array ρ = [|b1| , |b2| , . . . , |be|] for the next stage. We do not
use the k-means algorithm directly. Instead, we control the
iteration to exactly two to save runtime because more itera-
tions requiremore time, but the performance of the clustering
cannot be substantially improved. We discuss this issue in
Sect. 4.

Stage II is the density clustering of all virtual centers
(Algorithm2). This stage acquires cluster indices cl1×e. First,
density ρi of each virtual center is obtained directly from the
first stage. Second, we construct master tree ms1×e based
on density ρ and minimal distance δ. Finally, we cluster the
virtual centers according to the master tree. The algorithm
has the following advantages compared with CFDP. First,
we only need to cluster e virtual centers. This is the major
technique that reduces the time complexity. Second, density
ρi is redefined as the size of bi without setting cutoff distance
dc.

Algorithm 1 two-round-means
Input: Dataset with n instances U = {x1, . . . , xn}.
Output: b = [b1, b2, . . . , be], where bi denotes the set of all instances
in block i and c = [c1, c2, . . . , ce] denotes the virtual centers array.

1: b1 = b2 = · · · = be = ∅;
2: Randomly select e virtual centers c = [c1, c2, . . . , ce].
3: for r = 1 to 2 do
4: for i = 1 to n do
5: m = 0, dist = ∞;
6: for j = 1 to e do
7: if (d(xi , c j ) < dist) then
8: dist = d(xi , c j );
9: m = j ;
10: end if
11: end for
12: bm = bm ∪ {xi };
13: end for
14: Recompute the virtual centers according to Equation (5).
15: end for
16: return b, c;

Finally, all remaining instances in each block have the
same cluster indices as the virtual centers. They are assigned
cluster indices l = [l1, l2, . . . , ln], that is, ∀x ∈ bi , lx = cli .

3.1.1 Stage I: Two-round-means

Algorithm 1 lists the two-round-means algorithm. It
mainly includes three steps:

Step 1. Initialization. Line 1 initializes b1 = b2 = · · · =
be = ∅. Line 2 initializes virtual centers cl1×e using
random sampling.
Step 2. Compute block information. Lines 6–11 find the
nearest center of each instance and assign it to the corre-
sponding block. Line 9 finds the nearest center c j for xi ,
denoted as m. Line 12 adds the instance xi to block bm .
Step 3. Recalculate the virtual centers. The virtual centers
need to be updated based on the generated block infor-
mation. Line 14 recalculates the virtual center ck of block
k according to Eq. (5).

ck =
∑

xi∈bk xi
|bk | . (5)

The loop terminates after two iterations for the following
reason: For the k-means algorithm, k is often a small integer
that corresponds to the number of clusters. Hence, the algo-
rithm may run many iterations to converge to k clusters. By
contrast, in Algorithm 1, the number of blocks is e, which is
quite large. These e local blocks influence, but do not deter-
mine, the final clusters.
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Fig. 2 TSD algorithm framework

Table 1 Notation and variables
used in Fig. 2

Notation Meaning Comments

U All instances U = {x1, . . . , xn}
e e = ⌊√

n
⌋

ρi The density of xi See Eq. (6)

δi The minimum distance of xi See Eq. (2)

b Block information e clusters

|bi | The size of the i th block |bi | = ρi

ci The i th virtual center e virtual centers

msi The master index of xi
cli The cluster indices of ci cl = [cl1, cl2, . . . , cle]
li The cluster indices of xi l = [l1, l2, . . . , ln]

3.1.2 Stage II: Density clustering

Algorithm 2 lists the density clustering algorithm. It
mainly includes the following two steps:

Step 1. Construct the master tree.
Lines 2–3 obtain density ρ and sort. In CFDP, density

ρ is computed based on Eq. (1). However, it requires the
manual setting of cutoff parameter dc. Considering the local
distribution characteristics and nonparametric properties, the
density ρi is redefined as

ρi = |bi |, (6)

where |bi | is the size of block i . It can be obtained directly
from the first stage of pre-clustering.

Lines 4–12 calculate minimum distance δ and construct
the master tree. From lines 5–12, δ is computed based on Eq.
(2). δi is the minimum distance between instance i and any
other instance with a higher density. Line 6 indicates that the

search ranges from cq1 to cqi−1 , where q = [q1, . . . , qe] is the
index array according to ρ in descending order, ρq1 ≥ ρq2 ≥
· · · ≥ ρqe . In line 8, closest distanced(cqi , cq j ) is determined,
and termed δqi . According to Definition 1, a master is the
nearest neighbor with a higher density. Line 9 updates the
master of qi as q j . Thus, the master tree is built. When there
are multiple masters, we choose that with the smallest index.

Definition 1 (Wang et al. 2017) Let xi , x j ∈ U and d(xi , x j )
be the distance between xi and x j . x j ∈ U is called a master
of xi iff

1. ρ(x j ) > ρ(xi ); and
2. ∀xl ∈ U , ρ(xl) > ρ(xi ) ⇒ d(xi , x j ) ≤ d(xi , xl).

Step 2. Cluster and assign cluster indices to all virtual
centers.

The cluster centers are characterized by a higher den-
sity than their neighbors and by a relatively large distance
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Algorithm 2 density clustering
Input: b = [b1, b2, . . . , be], where bi denotes the set of all instances
in block i and c = [c1, c2, . . . , ce] denotes the virtual centers.
Output: cl = [cl1, . . . cle] denotes the cluster indices for the virtual
centers.

1: cl = ms = [−1, . . . ,−1]1×e; //ms is the master array
//Step 1 Construct the master tree
//Step 1.1 Obtain ρ and sort

2: ρ = [ρ1, . . . , ρe] = [|b1|, . . . , |be|];
3: q = [q1, . . . , qe] = sort(ρ); //ρq1 ≥ ρq2 ≥ · · · ≥ ρqe

//Step 1.2 Compute δ and construct the master tree
4: δ = [δ1, . . . , δe] = [MAX, …, MAX];//Initialized as the maximal

value
5: for (i = 2 to e) do
6: for ( j = 1 to i − 1) do
7: if (d(cqi , cq j ) < δqi ) then
8: δqi = d(cqi , cq j );
9: msqi = q j ; //Update the master
10: end if
11: end for
12: end for

//Step 2. Clustering
//Step 2.1 Compute γ and sort

13: γ = [r1, . . . , re] = [ρ1 . . . δ1, . . . , ρe . . . δe];
14: p = [p1, . . . , pe] = sort(γ );//γp1 ≥ γp2 ≥ · · · ≥ γpe

//Step 2.2 Assign cluster indices to k cluster centers
15: for (i = 1 to k) do
16: clpi = i ;
17: end for

//Step 2.3 Assign cluster indices to other virtual centers
18: for (i = 1 to e) do
19: if (clqi == −1) then
20: clqi = clmsqi

;
21: end if
22: end for
23: return cl;

from instances with higher densities (Rodriguez and Laio
2014). To consider both density and distance, we introduce
the importance measure:

γ = ρ · δ. (7)

Lines 13–14 compute γ and sort. p = [p1, . . . , pe] is
the index array according to γ in descending order, and
γp1 ≥ γp2 ≥ · · · ≥ γpe . Lines 15–17 select k centers in
turn according to p = [p1, . . . , pe]. k is given by the user,
and it is usually set to the actual number of clusters. Line
16 assigns the cluster index i to the i th center. Lines 18–
22 assign cluster indices to non-center instances. The cluster
assignment is performed in a single step (line 20), in contrast
to other clustering algorithms, where an objective function
is optimized iteratively (MacQueen et al. 1967; Kaufman
2008). We prove that each block is assigned a real label.

Property 1 On the completion of Algorithm 2, ∀1 ≤ i ≤ e,
cli �= −1.

Proof We prove the property using mathematical induction.

Table 2 Space complexity of the TSD algorithm

Algorithm Complexity Description

Algorithm 1 O(n) Block information b

Algorithm 1 O(n
1
2 ) Virtual centers c

Algorithm 2 O(n
1
2 ) ρ, δ, γ , master tree ms

Algorithm 2 O(n
1
2 ) Clusters indices cl

Algorithm 2 O(n) Clusters indices l

Total 2O(n) + 5O(n
1
2 ) = O(n)

(Basis) From Eq. (6) and line 3, we know that q1 corre-
sponds to the instance with the maximal density. Because it
also has the maximal distance, according to Eq. (7) and Line
14, q1 = p1.

Line 16 assigns clp1 = 1, which also indicates that clq1 =
1 �= −1.

(Induction) Suppose that clqk �= −1 for 1 ≤ k ≤ i − 1
while executing line 20.

Because msqi is the master of qi , we have ρmsqi
> ρqi .

Moreover, blocks are sorted in line 3. Let q j = msqi , then
naturally j < i . According to the hypothesis, clq j �= −1,
and clqi �= −1 after executing line 20.

Combining the basis and induction, the property holds.
This completes the proof. �

3.2 Complexity analysis

We analyze the space and time complexities of the algorithm.

Proposition 1 Let m and n be the number of attributes and
instances, respectively. For Algorithm TSD, the space and

time complexity are O(n) and O(mn
3
2 ), respectively.

Proof Table 2 lists the space complexity. ρ, δ and γ require

O(n
1
2 ) of space. Virtual center c and its cluster index cl also

require O(n
1
2 ) of space. Block information b and cluster

index l require O(n) of space. Thus, the total space com-
plexity is

3O(n
1
2 ) + 2O(n

1
2 ) + 2O(n) = O(n). (8)

Table 3 lists the time complexity. Algorithm 1 takes

O(mn
3
2 ) of time. Algorithm 2 takes O(mn) of time. The final

step for cluster index sharing takes O(n) of time. Therefore,
the time complexity of Algorithm TSD is

O(mn
3
2 ) + O(mn) + O(n) = O(mn

3
2 ). (9)

This completes the proof. �
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Table 3 Time complexity of the
TSD algorithm

Algorithm Lines Complexity Description

Algorithm 1 Line 2 O(mn
3
2 ) Stage I two-round-means

Algorithm 2 Lines 2–3 O(me2) = O(mn) Stage II compute ρ and sort

Algorithm 2 Lines 5–12 O(me2) = O(mn) Stage II compute δ and updata master

Algorithm 2 Lines 13–14 O(me2) = O(mn) Stage II compute γ and sort

Algorithm 2 Lines 15–22 O(n
1
2 ) Stage II clustering

O(n
1
2 ) Cluster indices sharing

Total O(mn
3
2 ) + O(n

1
2 ) + 3O(mn) + O(n) = O(mn

3
2 )

4 Experiments

We conduct experiments to analyze the adaptability, cluster-
ing performance and efficiency of the TSD algorithm and to
answer the following question:

(1) Does the TSD algorithm have better clustering per-
formance than classical and state-of-the-art clustering
algorithms, such as k-means, CFDP, CFSFDP+A and
SNN-DPC?

(2) Is the TSD algorithm efficient?

The computations are performed on a Windows 10 64-bit
operating system with 8 GB RAM and Intel (R) Core(TM)
i5-8300H CPU @2.30 GHz processors, using Java and
MATLAB software. The TSD source code is available at
www.fansmale.com/software.html and https://github.com/
FanSmale/TSD.

4.1 Datasets

We chose different types, shapes and sizes of datasets
for the experiments. These included six synthetic datasets
obtained from the literature (Rodriguez and Laio 2014), 12
from the University of California at Irvine (UCI) ML repos-
itory (Blake and Merz 1998) and one from the literature
(Stenger 2011). The six synthetic datasets had typical shape
distributions. The number of instances ranged from 150 to
1,025,009, the number of attributes ranged from 2 to 40, and
the number of classes ranged from 2 to 17. These datasets
are listed in Table 4.

Note that the class attributes of the datasets were not used
in the clustering processing. We first removed the labels for
all instances, then predicted the cluster indices and finally
measured the clustering performance according to the true
label.

Figure 3 illustrates the six synthetic datasets with two-
dimensional visualization graphs. The six synthetic datasets
had different data distributions, shapes, cluster sizes and
numbers of clusters. Figure 3a shows the typical non-

spherical dataset, which was divided into three classes,
thereby forming three semicircular rings. Table 4 (lines 7–11)
lists the selected five typical small UCI datasets. It is perhaps
the best-known database in the clustering, classification lit-
erature (Chiroma et al. 2014). Table 4 (lines 12–21) lists
ten large datasets of different types and different domains.
The Poker (Cattral and Oppacher 2007) dataset contained
1,025,009 instances and 10 attributes, and the DLA (Ugulino
et al. 2012) dataset contained 165,633 instances and 17
attributes.

4.2 Evaluationmeasure

We use four external evaluation functions to evaluate the
clustering algorithm, including purity, JC, FMI and RI.

We assume that the clusters given by the clustering algo-
rithm were divided into C = (C1,C2, . . . ,Ck) and the
clusters given by the reference model were divided into
C∗ = (C∗

1 ,C
∗
2 , . . . ,C

∗
s ). λ and λ∗ denote the cluster index

vectors that correspond to C and C∗, respectively. Accord-
ingly, we compute the following four parameters:

a = |SS|, SS = {(xi , x j )|λi = λ j , λ
∗
i = λ∗

j , i < j}, (10)

b = |SD|, SD = {(xi , x j )|λi = λ j , λ
∗
i �= λ∗

j , i < j}, (11)

c = |DS|, DS = {(xi , x j )|λi �= λ j , λ
∗
i = λ∗

j , i < j}, (12)

d = |DD|, DD = {(xi , x j )|λi �= λ j , λ
∗
i �= λ∗

j , i < j}. (13)

According to Eqs. (10)–(13), we obtain the external eval-
uation functions as follows:

Purity = 1

n

∑

k

max
s

∣∣Ck ∩ C∗
s

∣∣ , (14)

JC = a

a + b + c
, (15)

FMI =
√

a

a + b
∗ a

a + c
, (16)

RI = 2(a + d)

n(n − 1)
, (17)
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Table 4 Dataset information ID Name Source Domain n m k

1 Iris UCI Botany 150 4 3

2 Seeds UCI Biological 210 7 3

3 Glass UCI Material 214 10 6

4 Flame Synthetic N/A 240 2 2

5 Spiral Synthetic N/A 312 2 3

6 Ecoli UCI Life 336 8 8

7 Jain Synthetic N/A 373 2 2

8 Compound Synthetic N/A 399 2 6

9 Led7digit UCI Computer 500 10 10

10 R15 Synthetic N/A 600 2 15

11 Aggregation Synthetic N/A 788 2 7

12 Texture UCI Material 5500 40 11

13 Ring KEEL Historical 7400 20 2

14 Twonorm KEEL Historical 7400 20 2

15 Penbased UCI Computer 10,992 16 10

16 Magic UCI Physical 19,020 10 2

17 Kr-vs-k UCI Game 28,056 6 17

18 ConfLongDemo UCI Life 164,860 8 11

19 DLA DWP Society 165,633 17 5

20 Skin UCI Computer 245,057 3 2

21 Poker UCI Game 1,025,009 10 10

(a) (b) (c)

(d) (e) (f)

Fig. 3 Two-dimensional visualization of six of the datasets
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where n is the number of instances. Obviously, the results
of the above performance metrics were all between zero and
one, the bigger the better.

4.3 Algorithm adaptability

In this section, we design our experiments to observe the
effect of the preporcessing technique for different shapes of
datasets and elaborated the parameter settings.

4.3.1 Impact of parameter settings

In this subsection, wemainly answer the following two ques-
tions through experiments:

(1) Is it appropriate to set the number of iterations to two?
(2) Is it appropriate to divide the dataset into e clusters?

We chose seven different sizes and different types of
datasets, including Iris andSeeds. Figure 4a shows the change
of purity when the number of iterations r varied from 2 to
19. For Twonorm, Magic, Glass and Ring, the purity vari-
ation was small. Increasing the number of iterations cannot
improve its performance. For Seeds, the highest purity was
achieved by iterating twice. For Jain and Iris, the difference
in optimal performance was less than 10%. Therefore, it was
appropriate to set number of iterations r to two. The effi-
ciency of clustering is greatly improved while the clustering
performance is guaranteed.

Figure 4b shows the changeof puritywhennumber of clus-
ters k varied from 0.5e to 1.5e. The performance is the best
when k = e. If the number of clusters continued to increase,
purity no longer increased. Therefore, it was appropriate to
divide the dataset into e clusters.

4.3.2 Effect of the preprocessing technique for different
shapes of datasets

Figure 5 shows the pre-clustering and sampling process of
the original dataset. We choose synthetic datasets with typ-
ical shape distributions, such as R15, Jain, Aggregation and
Compound. Figure 5a, d, g, j shows the original distribution
of datasets. Jain is two semicircles; Aggregation is seven
clusters with different shapes and sizes; Compound is petals
and scatter patterns; R15was three rings formed by 15 evenly
distributed clusters.

Figure 5b, e, h, k shows the e clusters formed by two-
round-means. Figure 5c, f, i, l shows the e virtual centers.
Figure 5 shows that local blocks b and virtual centers c
maintained good data distribution characteristics. The pre-
clustering process did not destroy the data structure.

4.4 Comparison with state-of-the-art clustering
algorithms

Because a considerable amount of work has been conducted
on clustering, it is interesting and meaningful to com-
pare our proposed TSD algorithm with these state-of-the-art
methods. We compare the TSD algorithm with state-of-
the-art eight clustering approaches, including partition-based
clustering (k-means algorithm) (MacQueen et al. 1967)
and density-based clustering (CFDP (Rodriguez and Laio
2014)1), balanced clustering (BCLS) (Liu et al. 2017a)2,
SNN-DPC (Liu et al. 2018)3, FKNN-DPC (Xie et al. 2016),
DenPEHC (Xu et al. 2016)4, CFSFDP+A and CFSFDP+DE
(Bai et al. 2017).5

k-means is tested using Weka’s built-in codes. CFDP,
SNN-DPC, FKNN-DPC, DenPEHC, BCLS, CFSFDP+A
and CFSFDP+DE use the source code provided by the algo-
rithm authors. We list the URLs of the source code provided
by the author. For SNN-DPC, we adopt the original results
in the paper to avoid parameter adjustment. For datasets not
available in the original paper, we choose k = 11 for testing.
(For k values, the recommended range in the original paper is
5-30.) The CFDP algorithm uses the optimal parameter set-
ting and theGaussian distance described in the original paper.
The TSD algorithm is run ten times, and the average purity
is calculated. At the same time, we list the optimal results of
the TSD algorithm. This result is for reference only and is
referred to as TSD-H for short.

Comprehensive evaluations of clustering performance are
performed on 21 datasets, which cover a wide range of prop-
erties. For CFDP, SNN-DPC, FKNN-DPC, DenPEHC and
BCLS, the code runs on the MATLAB platform. Memory
overflowswhen testing large datasets. Therefore, for the Pen-
based, Magic and Kr-vs-k datasets, we sample 10% of the
instances for each class and formed new datasets. For the
ConfLongDemo, DLA, Poker and Skin datasets, we sample
1% of the instances for each class and formed new datasets.

4.4.1 Comparison on synthetic datasets

Tables 5, 6, 7 and 8 compare the purity, JC, FMI and RI of
TSD with that of the eight state-of-the-art clustering algo-
rithms on synthetic datasets. The mean ranks of algorithms
are listed from a statistical point of view. The best and
second-best results are highlighted in boldface and italic,

1 http://people.sissa.it/~laio/Research/Res_clustering.php.
2 https://github.com/ericstark/BCLS.
3 https://github.com/liurui39660/SnnDpc.
4 https://github.com/alanxuji/DenPEHC.
5 https://www.researchgate.net/publication/317617974_Fast_
density_clustering_strategies_based_on_the_k-means_algorithm.
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(a) (b)

Fig. 4 Impact of parameter settings

respectively. For TSD, the mean ranks are 5.83, 5.33, 6.42
and 4.67, respectively.

4.4.2 Comparison on benchmark datasets

Tables 9, 10, 11 and 12 compare the purity, JC, FMI and
RI of TSD with that of the eight state-of-the-art clustering
algorithms on benchmark datasets. We perform statistical
analysis of the experiments using the methods described in
Reyes et al. (2018) and Zhou (2016). The average ranks are
obtained by applying a Friedman test Reyes et al. (2018),
which is the most well-known nonparametric test. The Fried-
man test analyzes whether there are significant differences
among the algorithms. TSD is generally superior to the eight
clustering algorithms. For purity, the average rank is 3.30.
The average rankings of other eight algorithms are 4.13, 4.37,
7.70, 3.33, 5.17, 8.17, 4.43 and 4.40, respectively. In par-
ticular, the TSD algorithm has the highest purity on three
datasets.

4.4.3 Comparison on domain datasets

We adopt actual line loss data to further verify the per-
formance of TSD. Line loss data contain 2585 instances,
i.e., 2585 electrical transformer districts. The five attributes
are wire size, wire length, active power, reactive power and
energy indication. Decision attributes are five types of dis-
tricts.

Figure 6a illustrates the purity of TSD and the eight clus-
tering algorithms. Figure 6b–d illustrates the comparison of
JC, FMI and RI, respectively. For TSD, purity, JC, FMI
and RI are 0.9280, 0.8109, 0.8955 and 0.9058, respectively.
TSD ranks first among all four indicators. The purity of the

other eight clustering algorithms is 0.6572, 0.8300, 0.6112,
0.6274, 0.6112, 0.6112, 0.6758 and 0.6271. The JC of the
other eight clustering algorithms is 0.5533, 0.3325, 0.4509,
0.1951, 0.2252, 0.4509, 0.4786 and 0.4478. The FMI of the
other eight clustering algorithms is 0.7417, 0.5240, 0.6715,
0.3448, 0.3738, 0.6715, 0.6879 and 0.6516. The RI of the
other eight clustering algorithms is 0.7973, 0.6538, 0.4509,
0.5404, 0.5175, 0.4509, 0.7623 and 0.7389. TSD has good
performance in the actual line loss prediction.

4.4.4 Comparison with CFDP optimization algorithm

Finally, we compare TSD with three CFDP optimization
algorithms:DPCG (Xu et al. 2018a), GDPC (Xu et al. 2018b)
and CDPC (Xu et al. 2018b). DPCG (Xu et al. 2018a) is
an improved grid-based density peak clustering algorithm.
GDPC (Xu et al. 2018b) and CDPC (Xu et al. 2018b) are
two improved density peak clustering algorithms that quickly
find cluster centers. For these three algorithms, the author did
not provide source code. To ensure optimal performance, we
adopt the datasets and results provided in these references for
comparison. There is no need to run the program and adjust
parameters.

Table 13 compares the purity of TSD and DPCG. For six
datasets, TSD performed better than DPCG on four datasets
(e.g., Soybean, Ionosphere). The mean rank of TSD and
DPCG are 1.33 and 1.67, respectively. Table 14 compares
the purity of TSD, GDPC and CDPC. For six datasets, TSD
performed better than DPCG on four datasets. The average
rankings of GDPC, CDPC and TSD are 2.33, 2.00 and 1.67,
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5 Effect of the preprocessing technique for different shapes of datasets
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Table 5 Purity of TSD and eight clustering algorithms on synthetic datasets

Purity k-means CFDP BCLS SNN-DPC FKNN-DPC DenPEHC CFSFDP+A CFSFDP+DE TSD TSD-H

Flame 0.7787 1.0000 0.6375 0.9875 0.9875 0.9792 0.9917 0.9204 0.8929 0.9917

Spiral 0.3520 1.0000 0.3397 0.8878 0.6635 0.6763 0.3590 0.4269 0.3907 0.5128

Jain 0.8456 0.8928 0.7399 1.0000 0.7400 0.9464 1.0000 0.8491 0.8515 1.0000

Compound 0.8406 0.8321 0.3960 0.9148 0.8591 0.6266 0.8471 0.8043 0.8191 0.9023

R15 0.8855 0.9967 0.0667 0.9967 0.9000 0.0667 1.0000 0.6830 0.8817 0.9967

Aggregation 0.8111 0.9987 0.3464 0.9911 0.7970 0.8541 0.9937 0.9894 0.9292 1.0000

Mean rank 6.50 2.42 8.92 2.25 4.92 5.58 2.75 5.83 5.83 –

Table 6 JC of TSD and eight clustering algorithms on synthetic datasets

JC k-means CFDP BCLS SNN-DPC FKNN-DPC DenPEHC CFSFDP+A CFSFDP+DE TSD TSD-H

Flame 0.5402 1.0000 0.5359 0.1296 0.9551 0.9265 0.5357 0.6658 0.7409 0.9694

Spiral 0.1962 1.0000 0.3313 0.3125 0.4393 0.6002 0.3251 0.2562 0.2338 0.2839

Jain 0.6240 0.7135 0.6141 0.1240 0.4664 0.9639 1.0000 0.6559 0.6441 1.0000

Compound 0.5764 0.4874 0.2472 0.2509 0.7928 0.4574 0.7851 0.5577 0.4721 0.7771

R15 0.7625 0.9866 0.0651 0.9560 0.6987 0.0651 1.0000 0.4368 0.7339 0.9868

Aggregation 0.5109 0.9966 0.2165 0.3512 0.6166 0.7055 1.0000 0.6111 0.6931 1.0000

Mean rank 5.83 2.33 7.42 7.17 4.17 4.25 3.00 5.50 5.33 –

Table 7 FMI of TSD and eight clustering algorithms on synthetic datasets

FMI k-means CFDP BCLS SNN-DPC FKNN-DPC DenPEHC CFSFDP+A CFSFDP+DE TSD TSD-H

Flame 0.6960 1.0000 0.7320 0.9768 0.9771 0.9619 0.7300 0.7824 0.8456 0.9845

Spiral 0.3280 1.0000 0.5756 1.0000 0.6127 0.7748 0.5595 0.4163 0.3832 0.4621

Jain 0.7673 0.8348 0.7837 1.0000 0.6363 0.9818 1.0000 0.7810 0.7810 1.0000

Compound 0.7296 0.6627 0.4972 0.8463 0.8845 0.6763 0.8843 0.7119 0.6424 0.8773

R15 0.8679 0.9975 0.2552 0.9933 0.8228 0.2552 1.0000 0.6381 0.8433 0.9933

Aggregation 0.6799 0.9983 0.4653 0.9681 0.9886 0.8389 1.0000 0.7530 0.8171 1.0000

Mean rank 7.00 2.92 7.25 2.67 4.17 4.92 3.25 6.42 6.42 –

Table 8 RI of TSD and eight clustering algorithms on synthetic datasets

RI k-means CFDP BCLS SNN-DPC FKNN-DPC DenPEHC CFSFDP+A CFSFDP+DE TSD TSD-H

Flame 0.6849 1.0000 0.5359 0.5324 0.9752 0.9590 0.5406 0.7586 0.8248 0.9834

Spiral 0.5544 1.0000 0.3313 0.7430 0.7181 0.7793 0.3508 0.5229 0.5438 0.6076

Jain 0.7382 0.8080 0.6141 0.4620 0.5643 0.9778 1.0000 0.7372 0.7392 1.0000

Compound 0.8741 0.8516 0.2472 0.8071 0.9423 0.7068 0.9337 0.8468 0.8336 0.9327

R15 0.9808 0.9991 0.0651 0.9971 0.9764 0.0651 1.0000 0.9109 0.9778 0.9991

Aggregation 0.8603 0.9993 0.2165 0.8590 0.8971 0.9103 1.0000 0.8951 0.9261 1.0000

Mean rank 5.00 2.17 8.42 6.50 4.33 4.58 3.33 6.00 4.67 –
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(a) (b)

(c) (d)

Fig. 6 Comparison on domain dataset

Table 13 Purity comparison of
TSD versus DPCG

Dataset Algorithms

DPCG TSD

Iris 0.9600 0.8727

Wine 0.8146 0.7146

Soybean 0.8085 0.9213

Ionosphere 0.6752 0.7578

Sonar 0.5448 0.5582

Seeds 0.7552 0.8443

Mean rank 1.67 1.33

The best results are highlighted
in boldface

4.5 Runtime comparison

First, we compare the TSD algorithm with several state-
of-the-art density peak clustering algorithms on the Matlab
platform, including SNN-DPC, FKNN-DPC, DenPEHC,
CFSFDP+A and CFSFDP+DE. CFSFDP+A and CFSFDP
+DE are two fast optimization algorithms for CFDP (Bai
et al. 2017). For the SNN-DPC algorithm, memory overflow
occurred when computing datasets with more than 30,000
instances. Therefore, we select three datasets, DLA0.2,

Table 14 Purity comparison of TSD versus GDPC, CDPC

Dataset Algorithms

GDPC CDPC TSD

Iris 0.9400 0.9667 0.8727

Seeds 0.8762 0.8671 0.8443

Waveform 0.6100 0.5864 0.6149

Twonorm 0.6977 0.8539 0.9472

Pendigits 0.3684 0.4491 0.6890

Gamma 0.5110 0.6073 0.6813

Mean rank 2.33 2.00 1.67

The best results are highlighted in boldface

Magic and Penbased, to quantify the efficiency of the TSD
algorithm, where DLA0.2 is a 20% random sample of DLA.

Figure 7 shows the relationship between the size n of the
training dataset and the runtime. Note that we use logarith-
mic coordinates for the runtime. The results show that the
TSD algorithm effectively improves efficiency and reduces
running time. It is at least two orders of magnitude faster
than SNN-DPC, DenPHEC and FKNN-DPC. For example,
on the DLA0.2 dataset with n = 3.3 × 104, the runtime for
TSD is 1891ms, compared with 1.7×106 ms for SNN-DPC,
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(a) (b) (c)

Fig. 7 Runtime comparison on Matlab platform

(a) (b)

(c) (d)

Fig. 8 Runtime comparison on JAVA platform

6.1× 105 ms for FKNN-DPC, 2.4 × 107 ms for DenPEHC,
21,561 ms for CFSFDP+A and 624 ms for CFSFDP+DE.
That is, TSD is 12,728 times faster thanDenPEHC, 923 times
faster than SNN-DPC, 323 times faster than FKNN-DPC and
11 times faster than CFSFDP+A. TSD is slightly slower than
CFSFDP+DE algorithm.

Second, we use some larger datasets to compare the TSD
algorithm with the classical CFDP and k-means algorithms
on the JAVA platform. Figure 8 shows the runtime com-
parison for four large datasets. We use four datasets with
more than 160,000 instances, Poker0.5, Skin, DLA and Con-
fLongDemo, to quantify the efficiency of the TSD algorithm,
where Poker0.5 is a 50% random sample of Poker. The num-

ber of instances in Poker0.5, Skin, DLA andConfLongDemo
were 512,504, 245,057, 165,633 and 164,860, respectively.
The TSD algorithm is two ormore orders of magnitude faster
than CFDP and is able to process millions of datasets within
an acceptable runtime. For example, on the Poker0.5 dataset,
with n = 5.1 × 105, the runtimes for CFDP and TSD are
2.2 × 107 ms and 7.4 × 103 ms, respectively. That is, TSD
is 2692 times faster than CFDP.

The experimental results demonstrate that the TSD algo-
rithm was slightly slower than the k-means algorithm. For
example, for the Poker0.5 dataset, with n = 5.1 × 105, the
runtimes for TSD and k-means are 7.4×103 ms and 2.9×103

ms, respectively. Thus, k-means is 3 times faster than CFDP.
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Table 15 Runtime comparison (s)

Dataset Algorithms

DPCG TSD

S1 0.5330 0.0578

R15 0.5450 0.0042

S2 0.7178 0.0582

Aggregation 0.1796 0.0066

Flame 0.1727 0.0017

A2 1.3728 0.0636

Twenty 0.7178 0.0094

Five-cluster 0.5601 0.0183

Iris 0.4531 0.0011

Wine 0.4298 0.0018

Soybean 0.4455 0.0006

Ionosphere 0.5002 0.0046

Sonar 0.5802 0.0036

Seeds 0.5248 0.0017

The best results are highlighted in boldface

Table 16 Runtime comparison (s)

Dataset Algorithms

GDPC CDPC TSD

Twenty 0.1975 0.1638 0.0094

Forty 0.2284 0.1833 0.0091

Five-cluster 2.0201 2.2162 0.0183

S2 2.9277 3.3265 0.0582

A3 1.6744 2.5849 0.1360

A2 4.4183 6.2855 0.0636

Iris 0.5999 0.0764 0.0011

Seeds 0.5165 0.0839 0.0017

Waveform 6.6914 5.5386 0.1414

Twonorm 16.4424 23.7432 0.2647

Pendigits 30.3098 59.9011 0.3935

Gamma 91.8880 110.2128 0.6912

The best results are highlighted in boldface

Also, for the DLA dataset, with n = 1.6 × 105, k-means is
8 times faster than TSD.

According to Table 3, the time complexity of the TSD

algorithm is O(mn
3
2 ), while the time complexity for the

k-means algorithm is O(mn). The experimental results
demonstrate that the theoretical analysis is correct.

Finally, we compare the TSD algorithm on the MATLAB
platform with three CFDP optimization algorithms adopt-
ing the original results in the reference paper (Xu et al.
2018a, b). Table 15 compares the running timeof theTSDand
DPCG algorithms. For the 14 datasets list in reference (Xu
et al. 2018a), TSD is faster than DPCG algorithm. Table 16
compares the running time of the TSD and GDPC, CDPC

algorithms. Similarly, for 12 datasets, TSD is faster than
GDPC and CDPC algorithms.

4.6 Optimization of the TSD algorithm

Essentially, TSD is a two-stage hierarchy clustering algo-
rithm. Therefore, we will further optimize the TSD algo-
rithm from two aspects of time and performance. For time
optimization, it is important to reduce the complexity of two-
round-means. We adopt the idea of grid or wavelet clustering
to optimize the two-round-means to reduce the complexity
to O(n). In this way, the complexity of the optimized TSD
algorithm is O(n).

For performance optimization, the selection of virtual
centers is crucial. If initial centers are well adapted to the
distribution of the data, we will obtain better performances.
Therefore, we design a preprocessing module to make a pre-
liminary estimation on the dataset. The two-stage clustering
algorithms will be selected based on preprocessing judg-
ments. In this way, we design an optimization algorithm for
TSD, namely TSD-Improved (TSD-I).

Table 17 compares TSD-I with the TSD and CFDP algo-
rithms on synthetic datasets. TSD-I effectively improves
the performance of TSD on synthetic datasets. For six syn-
thetic datasets, TSD-I achieved performance improvements
in four of them. Table 18 compares TSD-I with the TSD and
CFDP algorithms on benchmark datasets. For fifteen syn-
thetic datasets, TSD-I achieved performance improvements
in eleven of them.

4.7 Discussions

We are now able to answer the questions posed at the begin-
ning of this work.

(1) The TSD algorithm is more adaptive than popular clus-
tering algorithms. It is effective for datasets of different
types, shapes and sizes.

(2) The TSD algorithm is more accurate than classical and
state-of-the-art clustering algorithms on benchmark and
domain data.

(3) The TSD algorithm is efficient and scalable.

5 Conclusions and future works

In this paper, we proposed a TSD clustering algorithm that
was highly efficient, and had good adaptability to multi-
ple types of datasets, with minimal parameter setting. The
new algorithm explored the use of two-round-means for
pre-clustering so that the time and space complexity could
be minimized. The time complexity of the algorithm was
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Table 17 Comparison TSD-I with the TSD and CFDP algorithms on synthetic datasets

Dataset Purity JC FMI RI

CFDP TSD TSD-I CFDP TSD TSD-I CFDP TSD TSD-I CFDP TSD TSD-I

Flame 1.0000 0.8929 0.9917 1.0000 0.7409 0.9694 1.0000 0.8456 0.9845 1.0000 0.8248 0.9834

Spiral 1.0000 0.3907 0.4744 1.0000 0.2338 0.2499 1.0000 0.3832 0.4021 1.0000 0.5438 0.5740

Jain 0.8928 0.8515 1.0000 0.7135 0.6441 1.0000 0.8348 0.7810 1.0000 0.8080 0.7392 1.0000

Compound 0.8321 0.8191 0.8947 0.4874 0.4721 0.7673 0.6627 0.6424 0.8720 0.8516 0.8336 0.9283

R15 0.9967 0.8817 0.9967 0.9866 0.7339 0.9866 0.9975 0.8433 0.9932 0.9991 0.9778 0.9991

Aggregation 0.9987 0.9292 0.9987 0.9966 0.6931 0.9966 0.9983 0.8171 0.9983 0.9993 0.9261 0.9993

The best results are highlighted in boldface

Table 18 Comparison TSD-I with the TSD and CFDP algorithms on benchmark datasets

Dataset Purity JC FMI RI

CFDP TSD TSD-I CFDP TSD TSD-I CFDP TSD TSD-I CFDP TSD TSD-I

Iris 0.9067 0.8727 0.9733 0.7248 0.6793 0.9007 0.8407 0.8088 0.9478 0.8923 0.8651 0.9656

Seeds 0.9048 0.8443 0.8952 0.7022 0.6108 0.6803 0.8251 0.7566 0.8098 0.8843 0.8317 0.8723

Glass 0.4813 0.5537 0.5421 0.3082 0.2906 0.3558 0.5247 0.4565 0.5662 0.5587 0.6713 0.6543

Ecoli 0.6786 0.6875 0.7530 0.4383 0.3512 0.5411 0.6115 0.5256 0.7032 0.7708 0.7808 0.8300

Led7digit 0.7520 0.6754 0.7580 0.4043 0.3519 0.4088 0.5758 0.5211 0.5804 0.9151 0.8980 0.9156

Texture 0.1818 0.6141 0.5942 0.1299 0.4521 0.3445 0.3538 0.5005 0.5546 0.4191 0.8843 0.8701

Ring 0.5066 0.5634 0.5116 0.4819 0.4060 0.4999 0.6820 0.5499 0.7070 0.5000 0.5095 0.5002

Twonorm 0.6415 0.9472 0.9601 0.4400 0.8188 0.8578 0.6210 0.9002 0.9235 0.5400 0.9001 0.9234

Penbased0.1 0.7352 0.6695 0.5314 0.4585 0.3842 0.2286 0.6292 0.5917 0.3821 0.9230 0.9067 0.8381

Magic0.1 0.6430 0.6728 0.7035 0.2428 0.6434 0.5416 0.4044 0.7169 0.7350 0.4767 0.5694 0.5826

Kr-vs-k0.1 0.2011 0.2332 0.2346 0.0891 0.0662 0.0967 0.1868 0.1242 0.2191 0.7816 0.8118 0.8397

ConfLongDemo0.01 0.3277 0.3259 0.3313 0.0906 0.0930 0.1095 0.1682 0.1720 0.1974 0.7271 0.7173 0.7494

DLA0.01 0.6872 0.7613 0.6902 0.3621 0.5349 0.4217 0.5344 0.7061 0.5989 0.7326 0.7912 0.7581

Skin0.01 0.7935 0.7935 0.8539 0.4628 0.4551 0.7208 0.6328 0.6256 0.8445 0.5112 0.5074 0.7504

Poker0.01 0.0914 0.0929 0.0956 0.0618 0.0566 0.0768 0.1357 0.1165 0.2743 0.7867 0.7743 0.8175

The best results are highlighted in boldface

O(mn
3
2 ), which was lower than O(mn2) for CFDP. Exper-

iments on 21 datasets demonstrated that the new algorithm
was more accurate than state-of-the-art algorithms. It was
two or more orders of magnitude faster than CFDP.

From the viewpoint of algorithms and applications, the
following research problems merit further investigation:

(1) Revising theTSDalgorithm for active learning.TheTSD
algorithm can greatly reduce the time complexity. Natu-
rally, it can be applied to clustering-based active learning
algorithms to improve efficiency.

(2) Nonparametric setting. The TSD algorithm requires the
user to provide the final number of clusters. A better solu-
tion is to avoid the parameter setting altogether without
sacrificing clustering performance.

(3) Adopting other clustering algorithms. We proposed a
specific algorithm under the new local–global granule
idea. We can replace the two-stage clustering algo-

rithm with others (e.g., DBSCAN (Ester et al. 1996),
EM (Langford et al. 2010) and HierarchicalCluster(HC)
(Johnson 1967)) under this framework. A comparison
study on this issue may be interesting.
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