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Abstract
Information measures play a fundamental role in single-valued neutrosophic set (SVNS) theory. The main purpose of this
paper is to study the similarity and entropy measures of SVNS with applications in multi-attribute decision making. We
proposed the axiomatic definitions of similarity and entropy for single-valued neutrosophic values (SVNVs) with respect to a
new kind of inclusion relation between SVNVs. On the basis of Hamming distance, cosine function and cotangent function,
three similarity measures and three entropies for SVNVs are constructed. Then, we extended the definitions and construction
methods of similarity and entropy for SVNVs to SVNSs by using some aggregation operators. Finally, by using the new
similarity and entropy measures we presented a SVNSs based multi-attribute decision making method. It demonstrated that
the new information measures presented in this study are applicable and efficient.

Keywords Single-valued neutrosophic set · Inclusion relation · Similarity measure · Entropy · Multi-attribute decision
making

1 Introduction

Because of different types of uncertainties in realworld, there
are many mathematical tools for dealing with incomplete,
indeterminate and inconsistent information. Zadeh (1965)
firstly proposed the theory of fuzzy set which is applied
successfully in various fields. Subsequently, several new con-
cepts of high-order fuzzy sets have been presented. Among
them, intuitionistic fuzzy set (IFS) introduced by Atanassov
(1986) is a typical generalization of fuzzy set.An IFS consists
of a membership function and a non-membership func-
tion of the universe and provides a flexible mathematical
framework to uncertain information processing. Smaran-
dache (1998) originally proposed thenotionof a neutrosophic
set which is a generalization of fuzzy set and intuitionis-
tic fuzzy set (Smarandache 2005). A neutrosophic set is
characterized independently by a truth membership func-
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tion, a falsity membership function and an indeterminacy
membership function and is more suitable to handle incom-
plete, indeterminate and inconsistent information. In order
to easily use the neutrosophic set in real scientific and engi-
neering fields, Wang et al. (2010) proposed the notion of
single-valued neutrosophic set (SVNS), which is an instance
of neutrosophic set, and provided some set-theoretic opera-
tions on SVNSs. The single-valued neutrosophic set theory
has been proven to be useful in many scientific fields, such as
multi-attribute decision making, machine learning, medical
diagnosis, fault diagnosis and so on (seeDeli 2017; Guo et la.
2014; Guo and Cheng 2009; Liu et al. 2014; Peng et al. 2016;
Ye 2015, 2016, 2017a; Zhan et al. 2017; Zhang 2017; Zhang
et al. 2017, 2018c). Moreover, several new neutrosophic the-
ories have been proposed, for examples, neutrosophic cubic
set (Jun et al. 2017), neutrosophic rough set (Crispin and
Arockiarani 2017; Liu and Yang 2017; Yang et al. 2017)
and neutrosophic concept lattice (Singh 2017).

Entropy, similarity and cross-entropy are three important
and related information measures. They have been widely
used in feature selection, clustering analysis, pattern recog-
nition and so on (Abualigah 2019; Abualigah and Khader
2017). Entropy is usually designed for measuring uncer-
tain degree of information. Similarity and cross-entropy are
mainly used to measure the discrimination degree of two
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objects. Usually, entropy can be constructed by using sim-
ilarity or cross-entropy. The study of similarity measure is
of particular importance because, in many practical situa-
tions, we need to compare two objects in order to determine
whether they are identical or approximately identical or at
least towhat degree they are identical (Abualigah andHanan-
deh 2015; Abualigah et al. 2018a, b, c). Up to now, a lot
of research has been done about information measures with
applications in the field of neutrosophic set theory. Broumi
and Smarandache (2013) presented a method to calculate the
distance between SVNSs on the basis of Hausdorff distance
and proposed some similaritymeasures by using distance and
matching function. Ye (2013) presented the correlation coef-
ficient of SVNSs based on the correlation of intuitionistic
fuzzy sets. A decision-making method is proposed by using
weighted correlation coefficient and theweighted cosine sim-
ilarity measure of SVNSs. Majumdar and Samanta (2014)
presented several similarity measures for SVNSs based on
Hamming (Euclidian) distance and normalized Hamming
(Euclidian) distance between two SVNSs. Furthermore, an
entropy function to measure the uncertainty involved in a
SVNS is also presented. Ye (2014b) presented three vector
similarity measures for simplified neutrosophic sets (SNSs),
including the Jaccard, Dice and cosine similarity measures
for SNSs and applied them to multicriteria decision-making
problems under a simplified neutrosophic environment. By
combining the interval neutrosophic sets and interval-valued
hesitant fuzzy sets, Liu andShi (2015) proposed the notion of
interval neutrosophic hesitant sets.Also they developed some
new aggregation operators for interval neutrosophic hesitant
fuzzy information. Sahin (2017) proposed two techniques
converting an interval neutrosophic set into a fuzzy set and a
single-valued neutrosophic set, respectively. Based on exten-
sion of fuzzy cross-entropy and single-valued neutrosophic
cross-entropy the interval neutrosophic cross-entropy is con-
structed. Additionally, two multi-criteria decision-making
methods are developed by using the interval neutrosophic
cross-entropy between an alternative and the ideal alterna-
tive. Ye (2017b) proposed two cotangent similarity measures
for SVNSs based on cotangent function. Furthermore, these
cotangent similarity measures have been applied to the fault
diagnosis of steam turbine. Wu et al. (2018) proposed some
formulas to construct information measures on the basis of
the cosine function. The relationship among entropy, sim-
ilarity measure and cross-entropy as well as their mutual
transformations are further discussed.Moreover, an approach
to multi-attribute decision making based on these informa-
tion measures is presented. Pramanik et al. (2018) proposed
a new cross entropy measure under SVNS environment,
namely NS-cross entropy. A novel multi-attribute group
decision-making strategy is developed which is capable of
dealing with unknown weight of attributes and unknown
weight of decision-makers.

The definitions and construction methods of entropy, sim-
ilarity and cross-entropy are closely related to the inclusion
relation for neutrosophic sets. There are two widely used
definitions of inclusion relation (Smarandache 1998; Wang
et al. 2010; Borzooei et al. 2014), called type-1 and type-2
inclusion relations. Recently, Zhang et al. (2018a, b) noted
that there are some shortcomings of the existing inclusion
relations. These two inclusion relations divide actually three
membership functions into two groups and do not really take
advantage of the three membership functions. Accordingly,
Zhang et al. (2018a) proposed a newkindof inclusion relation
for SVNSs (called type-3 inclusion relation) and presented
the union and intersection operations on SVNSs correspond-
ing to type-3 inclusion relation. The algebraic structure of
SVNSs has also been investigated.

For type-3 inclusion relation, the truth membership func-
tion, falsity membership function and indeterminacy mem-
bership function of SVNS are considered to be of different
importance. The existing similarity measures and entropies
for SVNSs are mainly designed with respect to type-1 and
type-2 inclusion relations and are not suitable to type-3
inclusion relation. So, in the present paper, we study the
entropy and similarity measures of SVNSs with respect to
this new kind of inclusion relation. The axiomatic definitions
of similarity and entropy for single-valued neutrosophic val-
ues (SVNVs) with respect to type-3 inclusion relation are
proposed and some construction methods for similarity and
entropy are presented. By using these information measures
and aggregation operators, some similarity and entropy mea-
sures for SVNSs are examined. The paper is organized as
follows: In Sect. 2, we recall some notions and properties
related to SVNS and its algebraic structure. In Section 3, we
point out that, with respect to type-3 inclusion relation, the
threemembership functions of SVNSs are not of same impor-
tance and the existing measures of similarity and entropy for
SVNSs are not suitable by some examples. Then, we propose
the axiomatic definitions of similarity and entropy measures
for SVNVs. By using Hamming distance, cosine function
and cotangent function, three similarity measures and three
entropies for SVNVs are constructed. In Sect. 4, we extend
the definitions and construction methods of similarity and
entropy for SVNVs to SVNSs. In Sect. 5, we present a multi-
attribute decisionmakingmethod by using the new similarity
and entropy measures proposed in this paper. It shows that
these new information measures are effective and efficient.
The paper is completed with some concluding remarks.

2 Overview of neutrosophic set

In this section, we recall some fundamental notions and prop-
erties related to neutrosophic set.
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Definition 1 (Smarandache 1998) Let X be a space of
points (objects), with a generic element in X denoted by
x . A neutrosophic set A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x),
where TA(x), IA(x) and FA(x) are real standard or non-
standard subsets of ]−0, 1+[ such thatTA(x) : X →]−0, 1+[,
IA(x) : X →]−0, 1+[ and FA(x) : X →]−0, 1+[, and
the sum of TA(x), IA(x) and FA(x) satisfies the condition
−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

In order to easily apply neutrosophic set theory to science
and engineering, Wang et al. (2010) presented the concept of
single-valued neutrosophic set (SVNS) as follows.

Definition 2 (Wang et al. 2010) Let X be a space of points
(objects), with a generic element in X denoted by x . A single-
valued neutrosophic set A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership
function IA(x) and a falsity-membership function FA(x). A
single-valued neutrosophic set A can be denoted by

A = {(x, TA(x), IA(x), FA(x))|x ∈ X} (1)

where TA(x), IA(x), FA(x) ∈ [0, 1] for each x ∈ X .

In this paper, a single-valued neutrosophic set A in X is
also denoted by

A = {(x, A(x))|x ∈ X} (2)

where A(x) = (TA(x), IA(x), FA(x)) and TA(x), IA(x),
FA(x) ∈ [0, 1] for each x ∈ X .We use the symbol SVNS(X)

to denote the set of all single-valued neutrosophic sets in X .
Two single-valued neutrosophic sets A and B are equal,

written as A = B, if and only if TA(x) = TB(x), IA(x) =
IB(x) and FA(x) = FB(x) for any x ∈ X . For the inclusion
relation of neutrosophic sets, an original definition is pro-
posed by Smarandache (see Smarandache 1998, 2005). It is
called type-1 inclusion relation in (Zhang et al. 2018a, b) and
denoted by ⊆1. Another one is denoted by ⊆2 and is called
type-2 inclusion relation.

Definition 3 (Smarandache 1998, 2005) Let X be a finite set
and A, B ∈ SVNS(X). A is contained in B, denoted by A ⊆1

B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x)
for any x ∈ X .

Definition 4 (Wang et al. 2010; Borzooei et al. 2014) Let X
be a finite set and A, B ∈ SVNS(X). A is contained in B,
denoted by A ⊆2 B, if TA(x) ≤ TB(x), IA(x) ≤ IB(x) and
FA(x) ≥ FB(x) for any x ∈ X .

With respect to inclusion relations ⊆1 and ⊆2, there are
two kinds of union and intersection operations on single-
valued neutrosophic sets.

Definition 5 (Smarandache 1998, 2005) Let X be a finite set
and A, B ∈ SVNS(X) with

A = {(x, TA(x), IA(x), FA(x))|x ∈ X},
B = {(x, TB(x), IB(x), FB(x))|x ∈ X}.

(1) The type-1 union of A and B is a single-valued
neutrosophic set C , written as C = A ∪1 B, whose
truth-membership, indeterminacy-membership and falsity-
membership functions are given by: for any x ∈ X ,

TC (x) = max{TA(x), TB(x)},
IC (x) = min{IA(x), IB(x)},
FC (x) = min{FA(x), FB(x)}.

(2) The type-1 intersection of A and B is a single-valued
neutrosophic set D, written as D = A ∩1 B, whose
truth-membership, indeterminacy-membership and falsity-
membership functions are given by: for any x ∈ X ,

TD(x) = min{TA(x), TB(x)},
ID(x) = max{IA(x), IB(x)},
FD(x) = max{FA(x), FB(x)}.

Definition 6 (Wang et al. 2010; Borzooei et al. 2014) Let X
be a finite set and A, B ∈ SVNS(X) with

A = {(x, TA(x), IA(x), FA(x))|x ∈ X},
B = {(x, TB(x), IB(x), FB(x))|x ∈ X}.

(1) The type-2 union of A and B is a single-valued
neutrosophic set C , written as C = A ∪2 B, whose
truth-membership, indeterminacy-membership and falsity-
membership functions are given by: for any x ∈ X ,

TC (x) = max{TA(x), TB(x)},
IC (x) = max{IA(x), IB(x)},
FC (x) = min{FA(x), FB(x)}.

(2) The type-2 intersection of A and B is a single-
valued neutrosophic set D, written as D = A ∩2 B, whose
truth-membership, indeterminacy-membership and falsity-
membership functions are given by: for any x ∈ X ,

TD(x) = min{TA(x), TB(x)},
ID(x) = min{IA(x), IB(x)},
FD(x) = max{FA(x), FB(x)}.

For any (β1, β2, β3) ∈ [0, 1]3, we denote by (β1, β2, β3)

the single-valued neutrosophic set {(x, β1, β2, β3)|x ∈ X}.
That is, (β1, β2, β3)(x) = (β1, β2, β3) for each x ∈ X .
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Definition 7 (Zhang et al. 2018a) (M,∨,∧,− , 0, 1) is called
a generalized De Morgan algebra if (M,∨,∧, 0, 1) is a
bounded lattice with the bottom element 0 and top element 1,
and− : M → M is an unary operation satisfies the identities:

GM1: x = (x−)−;
GM2: (x ∧ y)− = x− ∨ y−;
GM3: 1− = 0.

For a generalized De Morgan algebra (M,∨,∧,− , 0, 1),
if (M,∨,∧, 0, 1) is a bounded distributive lattice, then
(M,∨,∧,− , 0, 1) is called aDeMorgan algebra. The follow-
ing theorem presents the algebraic structure of single-valued
neutrosophic sets.

Theorem 1 (Zhang et al. 2018a) Let X be a finite set.

(1) (SVNS(X),∪1,∩1,
c , (0, 1, 1), (1, 0, 0)) is a De Mor-

gan algebra;
(2) (SVNS(X),∪2,∩2,

c , (0, 0, 1), (1, 1, 0)) is a De Mor-
gan algebra;
where the complement Ac of a single-valued neutro-
sophic set A is denote by Ac = {(x, TAc (x), IAc (x),
FAc (x))|x ∈ X} and defined as TAc(x) = FA(x),
IAc (x) = 1 − IA(x), FAc(x) = TA(x).

Zhang et al. (2018a) made a theoretical study on the inclu-
sion relations ⊆1, ⊆2 and pointed out some shortcomings of
these relations. It is noted that, with respect to type-1 and
type-2 inclusion relations, three membership functions of
SVNS are actually divided into two groups, and the order
relation is then determined using the method similar to
intuitionistic fuzzy sets. In other words, the two inclusion
relations do not really take advantage of the three member-
ship functions. Accordingly, a new kind of inclusion relation
is proposed and its basic properties are examined.

Let D∗ = {(x1, x2, x3)|x1, x2, x3 ∈ [0, 1]}. An element
of D∗ is called a single-valued neutrosophic value (SVNV,
or single-valued neutrosophic number). Actually, for any
single-valued neutrosophic set A, (TA(x), IA(x), FA(x)) ∈
D∗. In order to discuss the inclusion relation between single-
valued neutrosophic sets, Zhang et al. (2018a) proposed an
order relation≤ on single-valued neutrosophic values as fol-
lows: for any x = (x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗,

x ≤ y ⇔ ((x1 < y1) ∧ (x3

≥ y3)) ∨ ((x1 = y1) ∧ (x3 > y3))

∨((x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2))

Based on order relation ≤ on D∗, Zhang et al. (2018a) pro-
posed the following inclusion relation on SVNS.

Definition 8 (Zhang et al. 2018a) Let X be afinite set, A, B ∈
SVNS(X) and A = {(x, A(x))|x ∈ X}, B = {(x, B(x))|x ∈
X}. A is contained in B, denoted by A ⊆ B, if A(x) ≤ B(x)
for each x ∈ X .

Theorem 2 (Zhang et al. 2018a) Let X be a space of
points (objects), with a generic element in X denoted by x.
(SVNS(X),∪,∩,c , (0, 0, 1), (1, 1, 0)) is a generalized De
Morgan algebra, where A∪ B and A∩ B are the least upper
bound and greatest lower bound of A and B with respect to
⊆ given by: for any x ∈ X,

(A ∪ B)(x) =
⎧
⎨

⎩

A(x), if B(x) ≤ A(x);
B(x), if A(x) ≤ B(x);
(TA(x) ∨ TB (x), 0, FA(x) ∧ FB (x)), otherwise

(A ∩ B)(x) =
⎧
⎨

⎩

B(x), if B(x) ≤ A(x);
A(x), if A(x) ≤ B(x);
(TA(x) ∧ TB (x), 1, FA(x) ∨ FB (x)), otherwise

3 Similarity and entropymeasures of
single-valued neutrosophic values

The information measures are very useful tools to cope
with uncertainty and vagueness. In general, there are three
important information measures in uncertain information
processing: similarity, entropy and cross-entropy. They are
closely related. Usually, the similarity between two single-
valued neutrosophic sets is constructed from the similarity
between two single-valued neutrosophic values by using
some aggregation operators. Wu et al. (2018) proposed an
axiomatic definition of similarity measure for single-valued
neutrosophic values.

Definition 9 (Wu et al. 2018) A function S : D∗ × D∗ →
[0, 1] is called a similarity measure for single-valued neutro-
sophic values if it satisfy the following properties:

(1) S(x, y) = 0 if and only if xt − yt = 1 or xt − yt = −1
(t = 1, 2, 3);

(2) S(x, y) = 1 if and only if x = y;
(3) S(x, y) = S(y, x);
(4) S(x, z) ≤ S(x, y) and S(x, z) ≤ S(y, z), if xt ≤ yt ≤

zt or xt ≥ yt ≥ zt (t = 1, 2, 3);
where x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2,
z3) ∈ D∗.

There are some formulas for computing the similarity of
single-valued neutrosophic values. For example, for x =
(x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗:

S1(x, y) = 1 − 1
3 (|x1 − y1| + |x2 − y2| + |x3 − y3|)

(Majumdar and Samanta 2014).
S2(x, y) = 1

3(
√
2−1)

∑3
t=1(

√
2 cos xt−yt

4 π − 1) (Wu et al.

2018).
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S3(x, y) = cot(π
4 + π

12 (|x1 − y1|+ |x2 − y2|+ |x3 − y3|))
(Ye 2017b).

The similaritymeasure is actually related to inclusion rela-
tion (seeDefinition 18 in next Section). The abovementioned
similarity measures are proposed based on inclusion rela-
tions ⊆1 or ⊆2 and have been applied successfully to some
decisionmaking problems. However, it seems that these sim-
ilarity measures are not suitable for the inclusion relation ⊆
defined in Definition 7 or order relation ≤. For example, let
x = (0.3, 0.7, 0.6), y = (0.4, 0.2, 0.6), z = (0.6, 0.7, 0.6).
It follows that x ≤ y ≤ z. By routine computation, we
have S1(x, y) = 0.8, S1(y, z) = 0.77, S1(x, z) = 0.9.
Consequently, S1(x, y) < S1(x, z) and S1(y, z) < S1(x, z).
Furthermore,

S2(x, y) = 1

3(
√
2 − 1)

(
√
2 cos

π

40
+ √

2 cos
π

8
+ √

2 − 3),

S2(y, z) = 1

3(
√
2 − 1)

(
√
2 cos

π

20
+ √

2 cos
π

8
+ √

2 − 3),

S2(x, z) = 1

3(
√
2 − 1)

(
√
2 cos

3π

40
+ 2

√
2 − 3).

It is trivial that S2(y, z) < S2(x, y). Furthermore,

S2(x, y) = 1

3(
√
2 − 1)

(

√
2

2
cos

6π

80
cos

4π

80
+ √

2 − 3),

S2(x, z) = 1

3(
√
2 − 1)

(

√
2

2
cos2

3π

80
+ √

2 − 3),

and consequently, S2(y, z) < S2(x, y) < S2(x, z).
As for S3, we have S3(x, y) = cot 3

10π , S3(y, z) =
cot 37

120π , S3(x, z) = cot 1140π and consequently, S3(y, z) <

S3(x, y) < S3(x, z).
The inclusion relations ⊆1 and ⊆2 of single-valued neu-

trosophic sets are based on the following order relations ≤1

and ≤2 on D∗ respectively: for any x = (x1, x2, x3), y =
(y1, y2, y3) ∈ D∗,

x ≤1 y ⇔ (x1 ≤ y1) ∧ (x2 ≥ y2) ∧ (x3 ≥ y3)

x ≤2 y ⇔ (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ (x3 ≥ y3)

Actually, for two single-valued neotrosophic sets A and B
in X , we have A ⊆1 B if and only if A(x) ≤1 B(x), and
A ⊆2 B if and only if A(x) ≤2 B(x) for each x ∈ X .

The order relation≤ on single-valued neotrosophic values
proposed by Zhang et al. (2018a) is essentially different from
≤1 and ≤2. The order relations ≤1 and ≤2 are based on the
assumption that, for a single-valued neotrosophic value, the
truth-membership degree, the indeterminacy-membership
degree and falsity-membership degree are independent and
of same importance. But some times this is not the case.
For example, in case of voting, the vote in favour or the vote

against may bemore important than the vote abstention. That
is to say, they are not of same importance. The order relation
≤ takes this case into consideration. If two single-valued
neotrosophic values x = (x1, x2, x3) and y = (y1, y2, y3)
can be distinguished by their truth-membership degree and
falsity-membership degree, that is (x1 < y1) ∧ (x3 ≥ y3) or
(x1 = y1) ∧ (x3 > y3), then they are ordered by using just
truth-membership degree and falsity-membership degree. In
this case, we do not take the indeterminacy-membership
degree into consideration. If x and y can not be distinguished
by their truth-membership degree and falsity-membership
degree, that is (x1 = y1) and x3 = y3, then they are
ordered by their indeterminacy-membership degrees. Thus,
the order relation≤ is based on the assumption that the truth-
membership degree (or falsity-membership degree) is more
important than the indeterminacy-membership degree.

Based on the above analysis, we propose the following
definition of similarity measure in accordance with the order
relation ≤.

Definition 10 A function S : D∗ × D∗ → [0, 1] is called a
similarity measure for single-valued neutrosophic values if
it satisfy the following properties:

(S1) S(x, y) = 0, if and only if xt − yt = 1 or xt − yt = −1,
t = 1, 3;

(S2) S(x, y) = 1, if and only if x = y;
(S3) S(x, y) = S(y, x);
(S4) S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z) if x ≤ y ≤ z.

Let x = (x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗.
We know that, with respect to order relation ≤, the truth-
membership degree and falsity-membership degree are more
important than the indeterminacy-membership degree. That
is to say, if x1 = y1 and x3 = y3, then x and y should have a
relative larger similarity degree. For example, one may think
that (0.3, 0.9, 0.4) and (0.3, 0.1, 0.4) are more similar than
(0.3, 0.9, 0.4) and (0.5, 0.8, 0.4). We consider the following
information measure formula S(x, y) for x and y:

S(x, y) =
{
1 − |x2−y2|

2 , if (x1 = y1) ∧ (x3 = y3),
2−|x1−y1|−|x3−y3|

4 , otherwise.

(3)

Theorem 3 S(x, y), defined by Eq. (3), is a similarity mea-
sure between x and y.

Proof Let x = (x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗.
We note that if x1 = y1 and x3 = y3, by S(x, y) = 1− |x2−y2|

2
it follows that 0.5 ≤ S(x, y) ≤ 1; if x1 �= y1 or x3 �= y3, by
S(x, y) = 2−|x1−y1|−|x3−y3|

4 we conclude that 0 ≤ S(x, y) <

0.5.
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(S1) If S(x, y) = 0, then |x1 − y1| = 1 and |x3 − y3| = 1,
it follows that xt − yt = 1 or xt − yt = −1 (t = 1, 3).
Conversely, if xt − yt = 1 or xt − yt = −1 (t = 1, 3),
then S(x, y) = 0 is trivial.

(S2) S(x, y) = 1 if and only if x1 = y1, x3 = y3 and
x2 = y2. It follows that S(x, y) = 1 if and only if
x = y.

(S3) S(x, y) = S(y, x) is trivial.
(S4) Assume that x = (x1, x2, x3), y = (y1, y2, y3), z =

(z1, z2, z3) and x ≤ y ≤ z.

Case 1: If (x1 < y1) ∧ (x3 ≥ y3) and (y1 < z1) ∧ (y3 ≥
z3), then (x1 < z1) ∧ (x3 ≥ z3). Consequently, S(x, y) =
2−|x1−y1|−|x3−y3|

4 , S(y, z) = 2−|y1−z1|−|y3−z3|
4 and S(x, z) =

2−|x1−z1|−|x3−z3|
4 . By x1 < y1 < z1 and x3 ≥ y3 ≥ z3, it

follows that S(x, z) ≤ S(x, y) and S(x, z) ≤ S(y, z).
Case 2: If (x1 < y1) ∧ (x3 ≥ y3) and (y1 = z1) ∧ (y3 >

z3), then (x1 < z1) ∧ (x3 > z3). Consequently, S(x, y) =
2−|x1−y1|−|x3−y3|

4 , S(y, z) = 2−|y1−z1|−|y3−z3|
4 and S(x, z) =

2−|x1−z1|−|x3−z3|
4 . By x1 < y1 = z1 and x3 ≥ y3 > z3, it

follows that S(x, z) ≤ S(x, y) and S(x, z) ≤ S(y, z).
Case 3: If (x1 < y1) ∧ (x3 ≥ y3) and (y1 = z1) ∧ (y3 =

z3) ∧ (y2 ≤ z2), then (x1 < z1) ∧ (x3 ≥ z3). Conse-
quently, S(x, y) = 2−|x1−y1|−|x3−y3|

4 , S(y, z) = 1 − |y2−z2|
2

and S(x, z) = 2−|x1−z1|−|x3−z3|
4 . It follows that S(x, z) =

S(x, y) and S(x, z) < 0.5 ≤ S(y, z).
Case 4: If (x1 = y1) ∧ (x3 > y3) and (y1 < z1) ∧ (y3 ≥

z3), then (x1 < z1) ∧ (x3 > z3). Consequently, S(x, y) =
2−|x1−y1|−|x3−y3|

4 , S(y, z) = 2−|y1−z1|−|y3−z3|
4 and S(x, z) =

2−|x1−z1|−|x3−z3|
4 . By x1 = y1 < z1 and x3 > y3 ≥ z3, it

follows that S(x, z) ≤ S(x, y) and S(x, z) ≤ S(y, z).
Case 5: If (x1 = y1) ∧ (x3 > y3) and (y1 = z1) ∧

(y3 > z3), then (x1 = z1) ∧ (x3 > z3). Consequently,
S(x, y) = 2−|x1−y1|−|x3−y3|

4 , S(y, z) = 2−|y1−z1|−|y3−z3|
4

and S(x, z) = 2−|x1−z1|−|x3−z3|
4 . It follows that S(x, z) ≤

S(x, y) and S(x, z) ≤ S(y, z).
Case 6: If (x1 = y1) ∧ (x3 > y3) and (y1 = z1) ∧ (y3 =

z3) ∧ (y2 ≤ z2), then (x1 = z1) ∧ (x3 > z3). Conse-
quently, S(x, y) = 2−|x1−y1|−|x3−y3|

4 , S(y, z) = 1 − |y2−z2|
2

and S(x, z) = 2−|x1−z1|−|x3−z3|
4 . It follows that S(x, z) =

S(x, y) and S(x, z) < 0.5 ≤ S(y, z).
Case 7: If (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2) and

(y1 < z1) ∧ (y3 ≥ z3), then (x1 < z1) ∧ (x3 ≥ z3). Conse-
quently, S(x, y) = 1 − |x2−y2|

2 , S(y, z) = 2−|y1−z1|−|y3−z3|
4

and S(x, z) = 2−|x1−z1|−|x3−z3|
4 . By x1 = y1 < z1 and

x3 = y3 ≥ z3, it follows that S(x, z) < 0.5 ≤ S(x, y) and
S(x, z) = S(y, z).

Case 8: If (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2) and
(y1 = z1) ∧ (y3 > z3), then (x1 = z1) ∧ (x3 > z3). Conse-
quently, S(x, y) = 1 − |x2−y2|

2 , S(y, z) = 2−|y1−z1|−|y3−z3|
4

and S(x, z) = 2−|x1−z1|−|x3−z3|
4 . By x1 = y1 = z1 and

x3 = y3 > z3, it follows that S(x, z) < 0.5 ≤ S(x, y) and
S(x, z) = S(y, z).

Case 9: If (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2) and (y1 =
z1) ∧ (y3 = z3) ∧ (y2 ≤ z2), then (x1 = z1) ∧ (x3 = z3) ∧
(x2 ≤ z2). Consequently, S(x, y) = 1 − |x2−y2|

2 , S(y, z) =
1− |y2−z2|

2 and S(x, z) = 1− |x2−z2|
2 . It follows that S(x, z) ≤

S(x, y) and S(x, z) ≤ S(y, z). ��
Theorem 3 presents a method to construct similarity

between two SVNVs with respect to order relation ≤ by
using Hamming distances. The following theorem shows
that the similarity between two SVNVs can also be con-
structed by using cosine function and cotangent function.
Let x = (x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗. S′(x, y)
and S′′(x, y) are defined as:

S′(x, y) =
⎧
⎨

⎩

1
2 (1 + cos (x2−y2)

2 π), if (x1 = y1) ∧ (x3 = y3);
1
4 (cos (x1−y1)

2 π + cos (x3−y3)
2 π), otherwise.

(4)

S′′(x, y) =
⎧
⎨

⎩

1
2 (1+ cot( π

4 +|x2−y2| π
4 )), if (x1 = y1) ∧ (x3 = y3);

1
4 (cot( π

4 + |x1 − y1| π
4 ) + cot( π

4 + |x3 − y3| π
4 )), otherwise.

(5)

Theorem 4 S′(x, y) and S′′(x, y) are similarity measures
between x and y.

The proof of this theorem is similar to that of Theorem 3.
Besides similarity measure, entropy is also an important
uncertainty measure in uncertain information analysis. In
accordance with order relation ≤, we propose the notion
of entropy measure for single-valued neutrosophic values as
follows:

Definition 11 A function E : D∗ → [0, 1] is called an
entropy measure for single-valued neutrosophic value if it
satisfy the following properties:

(E1) E(x) = 0 if and only if xt = 1 or xt = 0 (t = 1, 3);
(E2) E(x) = 1 if and only if xt = 0.5 (t = 1, 2, 3);
(E3) E(x) = E(xc);
(E4) E(x) ≤ E(y) if y is more uncertain that x , that is

xt ≤ yt when yt ≤ 0.5 and xt ≥ yt when yt ≥ 0.5
(t = 1, 2, 3).

Usually, entropy can be computed by using the similarity
degree S(x, xc) between a single-valued neutrosophic value
x and its complement xc. But here it seems unreasonable to
take S(x, xc) as entropy. We consider the similarity measure
S(x, y) defined by (3). For x = (x1, x2, x3) ∈ D∗, xc =
(x3, 1 − x2, x1) and hence
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S(x, xc) =
{
1 − |2x2−1|

2 , if x1 = x3;
1
2 (1 − |x1 − x3|), otherwise.

It follows that S(x, xc) = 1 if and only if x1 = x3 and x2 =
0.5. Thus, for x = (0.2, 0.5, 0.2) we have S(x, xc) = 1. We
conclude that E2 does not hold. Furthermore, we note that
S(x, xc) > 0 for any x ∈ D∗.

In order to constructing entropy measure by using simi-
larity measure, we consider another kind of complement of
single-valued neutrosophic value presented by Peng et al.
(2014). For any x = (x1, x2, x3) ∈ D∗, let xc = (1− x1, 1−
x2, 1 − x3). It follows that

E(x) = S(x, xc) =
{
1 − |2x2−1|

2 ; if x1 = x3 = 0.5,
2−|2x1−1|−|2x3−1|

4 ; otherwise.
(6)

Theorem 5 E(x), defined by Eq. (6), is an entropy measure
for single-valued neutrosophic values.

Proof (E1): E(x) = 0 if and only if |2x1 − 1| = 1 and
|2x3 − 1| = 1, if and only if x1 = 1 or x1 = 0, and
x3 = 1 or x3 = 0.

(E2): E(x) = 1 if and only if x1 = x3 = 0.5 and x2 = 0.5.
(E3): E(x) = E(xc) is trivial.
(E4) Let x = (x1, x2, x3) ∈ D∗, y = (y1, y2, y3) ∈ D∗ and

y is more uncertain than x , that is xt ≤ yt if yt ≤ 0.5 and
xt ≥ yt if yt ≥ 0.5 (t = 1, 2, 3).
Case 1: x1 = x3 = 0.5. It follows that y1 = y3 = 0.5.

In fact, if y1 > 0.5, then x1 ≥ y1 > 0.5; if y1 < 0.5, then
x1 ≤ y1 < 0.5, a contradiction. It follows that y1 = 0.5.
Similarly, we conclude that y3 = 0.5. It follows that E(x) =
S(x, xc) = 1− |2x2−1|

2 and E(y) = S(y, yc) = 1− |2y2−1|
2 .

By x2 ≤ y2 if y2 ≤ 0.5 and x2 ≥ y2 if y2 ≥ 0.5, we conclude
that |2x2 − 1| ≥ |2y2 − 1| and hence E(x) ≤ E(y).

Case 2: x1 �= 0.5 or x3 �= 0.5, y1 = y3 = 0.5. It fol-
lows that E(x) = S(x, xc) = 2−|2x1−1|−|2x3−1|

4 < 0.5 ≤
S(y, yc) = E(y).

Case 3: x1 �= 0.5 or x3 �= 0.5, y1 �= 0.5 or y3 �= 0.5. It
follows that E(x) = S(x, xc) = 2−|2x1−1|−|2x3−1|

4 , E(y) =
S(y, yc) = 2−|2y1−1|−|2y3−1|

4 . By xt ≤ yt if yt ≤ 0.5 and
xt ≥ yt if yt ≥ 0.5 (t = 1, 3) we have |2y1 − 1| ≤ |2x1 − 1|
and |2y3 − 1| ≤ |2x3 − 1|. Consequently, E(x) ≤ E(y). ��

Similar to Eq. (6), by using (4) and (5), for any x =
(x1, x2, x3) ∈ D∗ we have

S′(x, xc) =
{

1
2 (1 + cos 2x2−1

2 π); if x1 = x3 = 0.5,
1
4 (cos (2x1−1)

2 π + cos (2x3−1)
2 π); otherwise.

(7)

S′′(x, xc) =
{ 1

2 (1 + cot(π
4 + |2x2 − 1|π

4 )), if x1 = x3 = 0.5;
1
4 (cot(

π
4 + |2x1 − 1|π

4 ) + cot(π
4 + |2x3 − 1|π

4 )), otherwise.
(8)

Theorem 6 E ′(x) and E ′′(x) are entropy measures for
single-valued neutrosophic values,where E ′(x) = S′(x, xc),
E ′′(x) = S′′(x, xc).

4 Similarity and entropymeasures of
single-valued neutrosophic sets

In this section, we extend the notions of similarity measure
and entropy measure of single-valued neutrosophic values to
single-valued neutrosophic sets.

Definition 12 Let X be a finite set of objects. A function
S : SVNS(X) × SVNS(X) → [0, 1] is called a similarity
measure for single-valued neutrosophic sets if it satisfy the
following properties:

(S1) S(A, B) = 0, if and only if |TA(x) − TB(x)| = 1 and
|FA(x) − FB(x)| = 1 for any x ∈ X ;

(S2) S(A, B) = 1, if and only if A = B;
(S3) S(A, B) = S(B, A);
(S4) S(A,C) ≤ S(A, B), S(A,C) ≤ S(B,C) if A ⊆ B ⊆

C .

Definition 13 Let X be a finite set of objects. A function E :
SVNS(X) → [0, 1] is called an entropy measure for single-
valued neutrosophic set if it satisfy the following properties:

(E1) E(A) = 0 if and only if TA(x) = 1 or TA(x) = 0, and
FA(x) = 1 or FA(x) = 0 for any x ∈ X ;

(E2) E(A) = 1 if and only if A(x) = (0.5, 0.5, 0.5) for any
x ∈ X ;

(E3) E(A) = E(Ac);
(E4) E(A) ≤ E(B) if B is more uncertain that A, that is

|TA(x)−0.5| ≥ |TB(x)−0.5|, |IA(x)−0.5| ≥ |IB(x)−
0.5| and |FA(x)−0.5| ≥ |FB(x)−0.5| for any x ∈ X .

Theorem 7 Let X = {x1, x2, . . . , xn}. Assume that s :
D∗ × D∗ → [0, 1] is a similarity measure for single-valued
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neutrosophic values. S : SVNS(X) × SVNS(X) → [0, 1] is
given by: for any A, B ∈ SVNS(X),

S(A, B) = 1

n

n∑

i=1

s(A(xi ), B(xi )) (9)

Then, S(A, B) is a similarity measure between A and B.

Proof Let A = {(xi , A(xi ))|1 ≤ i ≤ n}, B = {(xi , B(xi ))
|1 ≤ i ≤ n}, A(xi ) = (TA(xi ), IA(xi ), FA(xi )) and B(xi ) =
(TB(xi ), IB(xi ), FB(xi )).

(S1) Assume that S(A, B) = 0. It follows that s(A(xi ),
B(xi )) = 0 for each xi (1 ≤ i ≤ n). We note that s is a simi-
larity measure for SVNVs and hence |TA(xi ) − TB(xi )| = 1
and |FA(xi ) − FB(xi )| = 1.

Conversely, assume that |TA(xi ) − TB(xi )| = 1 and
|FA(xi ) − FB(xi )| = 1 for each xi (1 ≤ i ≤ n). It follows
that s(A(xi ), B(xi )) = 0 and consequently S(A, B) = 0.

(S2)Assume that S(A, B) = 1.By0 ≤ s(A(xi ), B(xi )) ≤
1, it follows that s(A(xi ), B(xi )) = 1 and hence A(xi ) =
B(xi ) for each xi (1 ≤ i ≤ n). Consequently, A = B as
required.

Conversely, assume that A = B. It follows that A(xi ) =
B(xi ) for each xi and hence s(A(xi ), B(xi )) = 1. Conse-
quently, S(A, B) = 1.

(S3) is trivial.
(S4) Assume that A ⊆ B ⊆ C . It follows that

A(xi ) ≤ B(xi ) ≤ C(xi ) for each xi . We conclude that
s(A(xi ),C(xi )) ≤ s(A(xi ), B(xi )) and hence S(A,C) ≤
S(A, B). Similarly, we have S(A,C) ≤ S(B,C). ��

This theoremshows that the similarity between two single-
valued neutrosophic sets can be constructed by aggregating
the similarities between related single-valued neutrosophic
values. The following theorem presents a general method to
construct the entropy of a single-valued neutrosophic set by
aggregating entropies of related single-valued neutrosophic
values.

Theorem 8 Let X = {x1, x2, . . . , xn}. Assume that e :
D∗ → [0, 1] is an entropy measure for single-valued neu-
trosophic value. E : SVNS(X) → [0, 1] is given by: for any
A ∈ SVNS(X),

E(A) = 1

n

n∑

i=1

e(A(xi )) (10)

Then, E(A) is an entropy measure for single-valued neutro-
sophic set.

Proof (E1)Assume that E(A) = 0. It follows that e(A(xi )) =
0 for each xi (1 ≤ i ≤ n). We note that e is an entropy mea-
sure for SVNVs and hence TA(xi ) = 1 or TA(xi ) = 0, and
FA(xi ) = 1 or FA(xi ) = 0.

Conversely, assume that TA(xi ) = 1 or TA(xi ) = 0, and
FA(xi ) = 1 or FA(xi ) = 0 for each xi . It follows that
e(A(xi )) = 0 and hence E(A) = 0 as required.

(E2) Assume that E(A) = 1. By 0 ≤ e(A(xi )) ≤ 1 it
follows that e(A(xi )) = 1 for each xi . Since e is an entropy
measure for SVNVs, we have TA(xi ) = IA(xi ) = FA(xi ) =
0.5.

Conversely, assume that TA(xi ) = IA(xi ) = FA(xi ) =
0.5 for each xi (1 ≤ i ≤ n). It follows that e(A(xi )) = 1 and
hence E(A) = 1.

(E3) is trivial.
(E4) Assume that A, B ∈ SVNS(X) and B is more uncer-

tain that A. It follows that, for each xi , |TA(xi ) − 0.5| ≥
|TB(xi ) − 0.5|, |IA(x) − 0.5| ≥ |IB(x) − 0.5| and |FA(x) −
0.5| ≥ |FB(x) − 0.5|. We note that e is an entropy mea-
sure for SVNVs and hence e(A(xi )) ≤ e(B(xi )) for each xi
and hence E(A) = 1

n

∑n
i=1 e(A(xi )) ≤ 1

n

∑n
i=1 e(B(xi )) =

E(B). ��
The formulas (9) and (10) can be extended to weighted

average model. Assume that W = (w1, w2, . . . , wn) is the
weight vector with wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then, the
similarity and entropy can be extended to the following (11)
and (12) respectively:

S(A, B) =
n∑

i=1

wi · s(A(xi ), B(xi )) (11)

E(A) =
n∑

i=1

wi · e(A(xi )) (12)

5 Applications in multi-attributes decision
making

Netrosophic set theory has been applied to dealing with
multi-attribute decision making problems and several related
decisionmakingmethods have been proposed.Many of these
methods are based on some similarity measures. In this
section, we propose a single-valued neutrosophic set based
decision making method by using the new similarity mea-
sures presented in this paper. We begin this section with a
novel neutrosophic set based multi-attributes decision mak-
ing method, which was presented in (Ye 2014a).

5.1 Ye’s multi-attributes decisionmakingmethod
with analysis

Ye (2014a) presented a multi-attributes decision making
methodbyusing single-valuedneutrosophic set. The approach
can be described as follows. Here some modifications on
notations and technical terms have been made to fit the con-
text of our discussion.
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Assume that A = {Ai |1 ≤ i ≤ m} is the set of alter-
natives, C = {C j |1 ≤ j ≤ n} is a collection of attributes.
For decision making, it is required to provide the informa-
tion that the alternative Ai satisfies the attribute C j . The
decision making information can be represented as a single-
valued neutrosophic value αi j = (α

i j
1 , α

i j
2 , α

i j
3 ) (Ye 2014a;

Wu et al. 2018). When all the performances of the alterna-
tives are provided, the single-valued neutrosophic decision
matrix D = (αi j )m×n can be constructed. Assume that the
weight vector of attributes W = (w1, w2, . . . , wn) is given
by domain experts, where 0 ≤ w j ≤ 1(1 ≤ j ≤ n) and
∑n

j=1 w j = 1.
In order to obtain the optimal alternatives, the description

of each alternative Ai (the i th row of decision matrix D) will
be aggregated to a single-valued neutrosophic value αi by
using the aggregation operator (Ye 2014a):

αi = (1 −
n∏

j=1

(1 − α
i j
1 )

w j , 1 −
n∏

j=1

(1 − α
i j
2 )

w j , 1 −
n∏

j=1

(1 − α
i j
3 )

w j )

(13)

To rank alternatives in the decision-making process, α∗ =
(1, 0, 0) is taken as ideal alternative, and then based on the
cosine similarity measure, the similarity degree S(αi , α∗)
between αi and α∗ is computed:

S(αi , α∗) = αi
1√

(αi
1)

2 + (αi
2)

2 + (αi
3)

2
(14)

where αi = (αi
1, α

i
2, α

i
3). Then, the bigger the measure value

S(αi , α∗) is, the better the alternative Ai is, because the alter-
native Ai is close to the ideal alternative α∗. Through the
cosine similarity measure between each alternative and the
ideal alternative, the ranking order of all alternatives can be
determined and the best one can be easily identified as well.
For illustration, Ye (2014a) considered the following exam-
ple.

Example 1 Let us consider the following decision-making
problem. There is an investment company, which wants to
invest a sum of money in the best option. There is a panel
with four possible alternatives to invest themoney: (1) A1 is a
car company; (2) A2 is a food company; (3) A3 is a computer
company; (4) A4 is an arms company. The investment com-
pany must take a decision according to the following three
criteria: (1) C1 is the risk; (2) C2 is the growth; (3) C3 is the
environmental impact. Then, the weight vector of the criteria
is given by W = (0.35, 0.25, 0.4).

The evaluations of an alternative Ai (i = 1, 2, 3, 4) with
respect to a criterion C j ( j = 1, 2, 3) are obtained from the
questionnaire of a domain expert. For example, when we ask
the opinion of an expert about an alternative A1 with respect

to a criterion C1, he or she may say that the possibility in
which the statement is good is 0.4 and the statement is poor
is 0.3 and the degree in which he or she is not sure is 0.2. By
using the neutrosophic notation, it can be expressed as α11 =
(0.4, 0.2, 0.3). Thus, when the four possible alternativeswith
respect to the above three criteria are evaluated by the expert,
we can obtain the following simplified neutrosophic decision
matrix D:

By using Eq. (13), the weighted arithmetic average value
(aggregating single-valued neutrosophic value)αi for Ai (i =
1, 2, 3, 4) are computed:

α1 = (0.3268, 0.2000, 0.3881), α2 = (0.5627, 0.1414, 0.2000),

α3 = (0.4375, 0.2416, 0.2616), α4 = (0.5746, 0.1555, 0.1663).

Then, by using cosine similarity measure to compute the
similarity between αi and ideal alternative α∗ = (1, 0, 0):
S(α1, α∗) = 0.5992, S(α2, α∗) = 0.9169, S(α3, α∗) =
0.7756, S(α4, α∗) = 0.9297. From these similarity mea-
sures, the ranking order of four alternatives is A4 � A2 �
A3 � A1. Therefore, the alternative A4 is the best choice
among all the alternatives.

The above decision making method is actually a useful
method for selecting the optimal alternative in decision mak-
ing problems based on neutrosophic sets. It is implicit that
the alternative with the maximum similarity degree to ideal
single-valued neutrosophic value should be selected as the
optimum candidate. On the other hand, it seems that the com-
putation of the aggregated single-valued neutrosophic value
is relatively complicated and time-consuming. Additionally,
we note that, for this decision making problem, Zhang et al.
(2018a) obtained exactly the same results as above by using
score function and accuracy function.

5.2 Multi-attributes decisionmaking based on new
similarity measure

In this subsection, we apply the new similarity measure pro-
posed in this paper to the decisionmaking problem described
in the last subsection. We note that the decision making
method presented in (Ye 2014a) is relatively complicated
because of the computation of aggregated single-valued
neutrosophic value. In order to reduce the computation com-
plexity, we can firstly compute the similarity degree between
the related descriptions and ideal single-valued neutrosophic
value and then aggregate these similarities to obtain the
similarity degree between the alternatives and the ideal
single-valued neutrosophic set. Finally, all the alternatives
will be ranked by the similarities. The computational proce-
dure can be summarized as:
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Step 1: Based on the decision matrix D = (αi j )m×n , we
compute the similarity S(αi j , α∗) by using Eq. (3). We note
that the top element and bottom element in D∗ with respect
to order relation ≤ are (1, 1, 0) and (0, 0, 1) respectively.
Thus, in this case, the ideal single-valued neutrosophic value
should be α∗ = (1, 1, 0).

Step 2: We compute the similarity S(Ai , α
∗) by

S(Ai , α
∗) =

n∑

j=1

w j S(αi j , α∗) (15)

Step 3: Select the best alternative(s) in accordance with the
similarity degrees S(Ai , α

∗). The best alternative(s) is the
one with maxmi=1 S(Ai , α

∗).

Example 2 We reconsider the decision making problem pre-
sented in Example 22.

Step 1:ByEq. (3),wehave S(α11, α∗) = 2−|1−0.4|−|0−0.3|
4= 0.275. Similarly, we have S(α12, α∗) = 0.275, S(α13, α∗)

= 0.175; S(α21, α∗) = 0.35, S(α22, α∗) = 0.35, S(α23, α∗)
= 0.325; S(α31, α∗) = 0.25, S(α32, α∗) = 0.3, S(α33, α∗)
= 0.325; S(α41, α∗) = 0.4, S(α42, α∗) = 0.35, S(α43, α∗)
= 0.3.

Step 2: By Eq. (15), we have

S(A1, α
∗) = 0.35 × 0.275 + 0.25 × 0.275 + 0.4 × 0.175 = 0.235.

Similarly, S(A2, α
∗) = 0.34, S(A3, α

∗) = 0.2925,
S(A4, α

∗) = 0.3475.
Step 3: According to these similarity measures, the rank-

ing order of four alternatives is A4 � A2 � A3 � A1.
Therefore, the alternative A4 is the best choice among all the
alternatives.

For this example, by using the new similarity measure
proposed in this paper, we obtained the same ranking order of
alternatives as in (Ye 2014a). It shows that the new similarity
measures proposed in this paper are effective and efficient.
We note that, if we directly compute the similarity S(αi , α∗)
between the aggregated single-valued neutrosophic values
αi and ideal single-valued neutrosophic value α∗ by using
Eq. (3), then we have S(α1, α

∗) = 0.2497, S(α2, α
∗) =

0.3407, S(α1, α
∗) = 0.2940, S(α1, α

∗) = 0.3521. Thus, the
ranking order of four alternatives is also A4 � A2 � A3 �
A1.

Recently, Wu et al. (2018) presented an approach to
single-valued neutrosophic set based multi-attribute deci-
sion making by using similarity and entropy measures. Here,
besides ideal alternative, anti-ideal alternative has also been
taken into consideration. Similar to Eq. (15), we compute
the similarity measures between the alternative Ai and the
anti-ideal alternative α∗ = (0, 0, 1) as follows:

S(Ai , α∗) =
n∑

j=1

w j S(αi j , α∗) (16)

Then, compute the closeness degree of the alternative Ai to
the ideal alternative by using (Wu et al. 2018)

T (Ai ) = S(Ai , α
∗)

S(Ai , α∗) + S(Ai , α∗)
, i = 1, 2, . . . ,m (17)

The best alternative(s) will be selected in accordancewith the
closeness degree T (Ai ) (i = 1, 2, . . . ,m). The best alter-
native(s) is the one with maxi T (Ai ). In some cases, the
multi-attribute decision making approach presented in (Wu
2018) can derive more accurate results because the anti-ideal
alternative has also been taken into consideration.

In the above example, if we compute the similarity degree
between the alternative Ai and the anti-ideal alternative
α∗ = (0, 0, 1) by using Eq. (3), then we will conclude that
S(A1, α∗) = 0.265, S(A2, α∗) = 0.34, S(A3, α∗) = 0.2075
and S(A4, α∗) = 0.1525. Consequently, we have

T (A1) = S(A1, α
∗)

S(A1, α∗) + S(A1, α∗)
= 0.47,

T (A2) = S(A2, α
∗)

S(A2, α∗) + S(A2, α∗)
= 0.5,

T (A3) = S(A3, α
∗)

S(A3, α∗) + S(A3, α∗)
= 0.585,

T (A4) = S(A4, α
∗)

S(A4, α∗) + S(A4, α∗)
= 0.695.

In this case, the ranking order of four alternatives is A4 �
A3 � A2 � A1.

6 Concluding remarks

The study of information measures is an important topic in
uncertain information processing. This paper is devoted to
the study of similarity and entropy measures under SVNS
environment. In some practical cases, the truth-membership
function, indeterminacy-membership function and falsity-
membership function of a SVNS are not of same importance.
The type-3 inclusion relation between SVNSs proposed
recently by Zhang et al. (2018a, b) is designed to dealing
with this situation.However,we showed by illustrative exam-
ples that the existing similarity and entropy measures are not
suitable for the type-3 inclusion relation between SVNSs. To
cope with this issue, we proposed the axiomatic definitions
of similarity and entropy for SVNVs with respect to type-
3 inclusion relation. Based on Hamming distance, cosine
function and cotangent function, we constructed three sim-
ilarity measures for SVNVs. The entropies are constructed
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by using the similarity between a SVNV and its comple-
ment. Accordingly, the similarity and entropy measures for
SVNSs are presented by using aggregation of the similar-
ity and entropy of SVNVs respectively. Based on the new
similarity and entropy measures proposed in this paper we
present a multi-attribute decision making method. It demon-
strates that these new information measures are applicable
and efficient.

It is worth noticing that the similarity and entropy mea-
sures presented in this study may not suitable for type-1 and
type-2 inclusion relations. Therefore, in further research, the
similarity and entropy measures which are fit for all three
kinds of inclusion relations deserve in-depth investigation.
Moreover, the generalization of the information measures
presented in this paper may be an interesting topic. For
example, the similarity measure presented in Eq. (3) can be
extended to

S(x, y) =
{
1 − (1 − α)|x2 − y2|, if (x1 = y1) ∧ (x3 = y3),
0.5α(2 − |x1 − y1| − |x3 − y3|), otherwise.

(18)

where α ∈ (0, 1) is a threshold value. Furthermore, the appli-
cation of single-valued neutrosophic information measures
in some areas such as pattern recognition, information fusion
system is an important issue to be addressed.
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