Soft Computing (2020) 24:16057-16079
https://doi.org/10.1007/s00500-020-04923-7

METHODOLOGIES AND APPLICATION l‘)

Check for
updates

A forefront to machine translation technology: deployment on the
cloud as a service to enhance QoS parameters

Muskaan Singh' - Ravinder Kumar? - Inderveer Chana?

Published online: 28 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Machine translation system (MTS) constitutes of functionally heterogeneous modules for processing source language to a given
target language. Deploying such an application on a stand-alone system requires much time, knowledge and complications. It
even becomes more challenging for a common user to utilize such a complex application. This paper presents a MTS that has
been developed using a combination of linguistic rich, rule-based and prominent neural-based approach. The proposed MTS
is deployed on the cloud to offer translation as a cloud service and improve the quality of service (QoS) from a stand-alone
system. It is developed on TensorFlow and deployed under the cluster of virtual machines in the Amazon web server (EC2).
The significance of this paper is to demonstrate management of recurrent changes in term of corpus, domain, algorithm and
rules. Further, the paper also compares the MTS as deployed on stand-alone machine and on cloud for different QoS parameters
like response time, server load, CPU utilization and throughput. The experimental results assert that in the translation task,
with the availability of elastic computing resources in the cloud environment, the job completion time irrespective of its size

can be assured to be within a fixed time limit with high accuracy.

Keywords Machine translation system - Amazon web server - Elastic computing unit - Quality of service

1 Introduction

Soft computing (SC), introduced by Yager et al. (1994), is
endeavoured to provide the imprecision of the real world
(Zadeh 1996). It provides a reliable solution for complex
problems such as estimation with adequate precision (Nader-
pour and Mirrashid 2020b). It comprises of three models
fuzzy systems, artificial neural network (ANN) and optimiza-
tion algorithm. The ANN model computations are inspired
by the biological neural network of the brain. It provides
approximate solutions for a nonlinear function as it com-
prises of several neurons as nonlinear components (Siddique
and Adeli 2013). It has applications in various diverse areas
such as control (Kim et al. 2019), classification (Naderpour

Communicated by V. Loia.

B Muskaan Singh
muskaan_singh @thapar.edu

Language Technology and Machine Learning Research Lab,
CSED, Thapar Institute of Engineering and Technology,
Patiala, Punjab, India

CSED, Thapar Institute of Engineering and Technology,
Patiala, Punjab, India

and Mirrashid 2019), biology (Dunn et al. 2019), construc-
tion (Naderpour et al. 2018), secure data aggregation and
efficient data processing in the large-scale wireless sensor
network (Shobana et al. 2020), remote sensing image clas-
sification of natural terrain features (Kundra and Sadawarti
2015), electric load forecasting (Zhang and Hong 2019; Dong
et al. 2018) and forecasting the motion of a floating platform
(Hong et al. 2019). Fuzzy systems are based on the ability
of human brain reasoning. To determine the fuzzy output of
nonlinear system provided with an input vector uses a rule-
base (Gorzalczany and Gluszek 2002). These techniques can
be merged to form a hybrid model such as a neuro-fuzzy
model. This hybrid model is used in several application
areas such as strength (Naderpour et al. 2019), earthquake
(Polykretis et al. 2019), power amplifier (Galaviz-Aguilar
etal. 2019), security threats detection (Neelaveni and Sridevi
2019), speechrecognition (Asemi et al. 2019), machine trans-
lation (Singh et al. 2019b) joints (Naderpour and Mirrashid
2019) and columns (Naderpour and Mirrashid 2020a). The
computational intelligence problems also involve soft com-
puting approach to solve such complex problems (Naderpour
and Mirrashid 2020b). One such computational intelligence
problem is natural language processing (NLP); it involves

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-04923-7&domain=pdf

16058

M. Singh et al.

Artificial Intelligence

Computational

Computer Science NLP G

Machine Learning Deep Learning

Fig.1 Natural language processing

computers to understand and process the text in natural lan-
guage such as German, French, Sanskrit, Hindi, Tamil and
Telugu. It is a multidisciplinary field involving computer sci-
entist and computational linguistics as shown in Fig. 1. The
goal of NLP is to build a computational model for its anal-
ysis and generation. NLP involves technological motivation
for developing intelligent computer system such as machine
translation, sentiment analysis, information extraction, ques-
tion answering system and speech recognization as exhibited
in Fig. 2. There is also cognitive and linguistic motivation
for processing natural language. It involves natural language
understanding and its generation as in Fig. 3. Machine trans-
lation (MT) is one of the many applications of NLP (Bharati
et al. 1995; Chowdhury 2003). MT is a process of trans-
lating source language to target language using computing
technology. Human translators or editors can be involved in
the process of MT, although minimal human aid is the goal
of MT. The field of man—machine interaction and artificial
intelligence involves the processing of natural language. A
translation provided by the MTS involves both syntactic and
semantic aspects of language to ensue for the correctness of
the translation. Cloud computing is a model which enables
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (networks,
servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management efforts
or service provider interaction (Fox et al. 2009). Clouds are
classified based on service type or deployment type (Foster
et al. 2008). It consists of three service models SaaS, PaaS
and IaaS (Ahmad and Ranka 2016; Rimal et al. 2009).

1.1 Need of MT deployment on cloud

Numerous applications are being deployed on cloud nowa-
days as listed in Table 1. It includes MT application offered

@ Springer

through the cloud and its outcome achieved by reducing the
deployment time and auto-scaling of applications.

Many factors are governing the need for MTS deployment
on the cloud such as deployment faster and easier, handling of
frequent updates, manageability, speed, reliability, quality of
service (QoS), enhancement, rapid provisioning, elasticity
and resilience also exhibited in Fig. 4. An experiment on
deploying MT system (Hindi to Punjabi) on the cloud was
conducted. It took a book of 70 pages to translate on stand-
alone machine 71 min, whereas on the cloud it turned down
to Smin (Kumar et al. 2013c). Hence, deployment of MT
systems on the cloud is a viable option for future users.

1.2 Problem statement

MT is a highly compute-intensive application including less
amount of input data but more processing. Therefore, such
applications when processed on a simple computer do not
offer adequate performance and accuracy of the application.
MTS consists of various heterogeneous modules which com-
prise of large code blocks. It is a complex NLP application
containing heterogeneous modules. Deployment of such a
complex system on the stand-alone system is cumbersome,
time-consuming and knowledge intensive. It takes hours to
load, configure and run the system. To overcome, MTS can be
configured on cloud infrastructure to exhibit better accuracy
and performance. This will facilitate the auto-scaling of com-
putational resources for changing load conditions (Ahmad
2013). The deployment on cloud to deliver Quality of Ser-
vice (QoS) to the end-user.

1.3 Contribution

Neural machine translation (NMT) has been outperforming
traditional statistical phrase-based and RBMT (Singh et al.
2019a). Driven by its performance, we implemented a neural
model by training linguistic rich features drawn from the rule-
based system for Indian language pair, i.e. Sanskrit—Hindi.
After the development of MTS, we build a website for a better
user experience. Later, the web interface was deployed on the
cloud to provide the MTS as a service.

— Initially parallel corpus was gathered which was avail-
able from different sources and rest of the data was
manually created for building a neural model using
encoder—decoder architecture with attention mechanism
(Ahmad et al. 2011a).

— We trained and tested the NMT system with different
models, activation functions, training data, epochs, sen-
tence lengths to yield better accuracy of the proposed
system.

— We then merged linguistic tools output from the classi-
cal rule-based approach as features embedding matrices

A forefront to machine translation technology: deployment on the cloud as a service... 16059
Fig.2 Natural language [] [
.. . . Source Natural [l Natural
processing involving translation | Target
Language :(J guage Language | DA Language
Understand < ———3 Generated
Fig 1: NLP Processing
Information
Retreival
Sentiment
Analysis Sentiment Analysis is a process of computationally identifying and

?

categorizing opinions expressed in a piece of text either positive,
negative, or neutral.

Information retrieval is the science of searching for information in a
document, searching for documents themselves, and also searching
for the metadata that describes data, and for databases of texts,
images or sounds.

Fig.3 Natural language processing applications

in NMT to test whether it guides for the disambiguation
translation of words as the same word may have a differ-
ent meaning in a different context. We also tested whether
it reduces the data sparseness and performs meaningful
tokenization.

— An web interface was developed for better user-interface.

— The web interface was deployed on AWS cloud with EC2
which eases time, knowledge and complications. It even
becomes challenging for a common user to utilize such
a complex application. It elevates the MTS performance
by managing recurrent changes in term of either corpus,
domain, algorithm and rules.

As the workload increases changing the deploying envi-
ronment is needed for such complex compute-intensive
applications. It improves throughput, response time and
reduces deployment time. These systems are offered by both
academic and commercial organizations and have been pro-
viding services to the end-users.

1.4 Paper organization

The remaining of the paper is designed with review of the
existing state-of-art literature in Sect. 2. Section 3 demon-

strates the proposed Sanskrit to Hindi MTS as a Service.
Section 4 describes its experimental details along with its
results in Sect. 5. Lastly, the paper is concluded in Sect. 6.

2 Review of the existing work
2.1 MTS on cloud

The MTS development is prominently using deep neural
network-based approach It has been producing significant
improvement in the results after statistical MT. These systems
deployed on the cloud provide a scalable service with vari-
ous benefits. Some of the translation system earlier deployed
on the cloud has been discussed in this section. Kiyurkchiev
etal. (2019) developed a DisPeL learning portal whichis an e-
learning portal for learners and tutors. Itis implemented using
a combination of Angular 4 and a proprietary SPA frame-
work based on jQuery and vanilla JavaScript. It provides
better scalability and cognitive services like automatic trans-
lations and search. The advanced reporting instruments via
dedicated reporting databases and PowerBI. The application
skeleton is developed in NET Framework 4.6. The system

@ Springer

16060

M. Singh et al.

Fig.4 Need for cloud
computing in machine
translation systems

Table 1 Existing deployment of applications on clouds

Domain

Specific application

Outcome achieved

Natural language processing

Cloud-based application

Geospatial research

Operating system

Educational field

Server dependencies

Machine translation system (Kumar et al. 2013c)

3-D application (Shi et al. 2011)

Model processing (Schwartze et al. 2011)

File system related development (Abd-El-Malek
etal. 2012)

Teaching operating system (Laadan et al. 2010)

Legacy distributed system (Machida et al. 2010)

— Deployment time reduced

— Provision for auto-scaling of application

— Virtual graphics processing optimized

— Cloud-based framework for 3-D virtual
appliance

— It takes task of model processing field

— Open source software is used

— Virtual machine can be migrated

— Cache for unified buffering
— File system is portable

— Helpful to students for assignment, as can be
deployed on the students computer

— Can be practised without the facility in
laboratories and gives kernel level project
experience

— Generates graphs with dependency
representation

— Optimum deployment on server framework

provides a quick implementation of report generator job as
another type of application, supported by NET Core. Huang
etal. (2019) provides a scalable model-parallelism library for
training giant networks. The single model achieved 84.4%

@ Springer

and top-5 validation accuracy with single-crop 97%, the re-
computation time 23%, load imbalance 3.2% and minimizes
the performance overhead. Chen etal. (2019) provides a fully
synthesizable C++ template library with the considerations of

A forefront to machine translation technology: deployment on the cloud as a service...

16061

FPGA implementation. An optimized system configuration
is developed to maximize overall performance. The soft-
ware stack is merged with the DNN accelerator, to provide a
complete system-level solution for the users who need accel-
eration services. Vaswani et al. (2018) developed a library
by Google Brain and DeepMind. This library of deep learn-
ing models and datasets designed to make deep learning
research faster and more accessible Tensor to Tensor uses
TensorFlow throughout the implementation. It benefits the
researcher to train models on CPU, GPU (single or multi-
ple), and TPU, locally and in the cloud, usually with no or
minimal device-specific code or configuration. There have
been a strong focus on performance as well as usability. The
future work may reduce this scaling factor of encoder and
decoder model. Venugopal and Zollmann (2009) proposed
an end-to-end grammar-based statistical MTS running on
Hadoop. This system was able to scale to build grammars
for large scale in reasonable time frames. Ferrandez-Tordera
etal. (2016) proposed CloudLLM, an open-source cloud-based
language model intended for MT with distributed archi-
tecture. This proposed system is stable, robust and is very
efficient. Ahmad et al. (2011b) proposed a Map reduced
based framework for machine translation which enhances the
throughput of the system. Kumar et al. (2013b) proposed a
MTS using MapReduce Framework to assure QoS. With the
experimental analysis, they show that job completion time
for any translation is within a fixed time limit irrespective of
its size. There are a few others MTS proposed with cloud-
based framework (Ahmad et al. 2011a; Kumar et al. 2013a, c;
Vasiljevs et al. 2011) to achieve better performance for cur-
rent MTSs. Another experiment of deployment by Ahmad
etal. (2014) using Storm, a distributed computing framework
is used for deploying on cloud. It reduces job completion
time, gives very good user experience by web interface and
response time. The elapsed time for a translation job after the
submission of the job is 4. In a future modification of the
storm topology to apply parallelism at word level processing,
different MT systems developed on the cloud have been com-
pared based on their techniques used, technical specifications
employed and the outcome achieved with their limitations
and future work. A comparative analysis of various cloud-
based approaches for MT is presented in Tables 2 and 3.

2.2 MTS for the Sanskrit language

In this paper, Sanskrit-Hindi hybrid MT system is pro-
posed where hybrid mechanism (a combination of linguistic
and neural-based) will be applied for translation and cloud
resources are used for processing and computation for trans-
lating Sanskrit to the Hindi Language. Sanskrit is one of
the oldest Indo-European languages. In Uttarakhand, San-
skrit is used as their official language and it is also known as
the mother of the other languages. This language was used

by Hinduism, Buddhism and Jainism in their holy books,
Vedas and other philosophical texts. One language helps to
unite the world culturally, technologically and socially and
MTS is used for the same purpose. A very few researchers
developed systems for translation of ancient morphological
rich language, i.e. Sanskrit. Early efforts included the use
of a rule-based approach for translation of English—Sanskrit.
Rathod and Sondur (2012) involves parsing of the sentence
performed along with the module such as a token generator,
vichcchceda, translator and in the final phase the translated
output is converted speech output. For smaller and simple
sentences, translation provided is correct. Complex sentences
cannot be handled by the system. There is no informa-
tion regarding the semantics of the text. This drawback was
overcome by Barkade and Devale (2010) with the semantic
mapper, translator, composer and lexical parser. Information
can be obtained through introspection and analysis. Seman-
tic analysis is considered in this system and provided by
the system for translation. Accuracy of the entire system is
dependent on each module. E-Trans system (Bahadur et al.
2012) based on formulation of context-free grammar. The
results produced by this system were quite promising for
small and large sentences of English to Sanskrit. For han-
dling spoken translation, English—Sanskrit translation system
and synthesizer (Rathod and Sondur 2012) is developed. It
consist of various modules for processing such as a token
generator, parser generator, RBMT/EBMT engine, bilingual
database, text output and waveform generator. The research
work is useful for sharing worldwide knowledge with Indian
translation approach. Another system for speech translation,
TranSish (Upadhyay Pankaj 2014) provides an interactive
interface for people to interact with the Sanskrit language
in speech form. It provides translation for the present tense
only. Employing example-based approach ANN and rule-
based model for English—Sanskrit translation (EST) were
developed where they proposed detection rules using ANN
mechanism for divergence related sentences and imple-
mented some rules for its adaptation (Mishra and Mishra
2009). Feedforward ANN to make a selection of Sanskrit
words and adjective from English to Sanskrit user data vector
(UDV). Evaluation measures are used to calculate the perfor-
mance of the system; BLEU provides 0.325 accuracies for a
random sentence, precision, recall and F-measure provides
0.8, and METEOR provides 0.811. This system provides
translation for an English sentence of only 6 types of sentence
structure. The current research work integrates ANN with
java. To improve typo errors, CBS (case-based reasoning)
and data mining techniques can be considered to integrate
for the future work. All these systems were developed for
translating English—Sanskrit. There are very few attempts for
translation of Sanskrit to Hindi. A proposed SaHit-statistical
approach for Sanskrit-Hindi translation (Pandey and Jha
2016) where they trained their system on the platform—the

@ Springer

M. Singh et al.

16062

Surssaooid [oA9] pIom T
wistpo[rered Ajdde 0y A3010do) wri0)s
dy) JOo uopedyIpouwl AIMny A} uf

(uonoauuod 2y}
uadoar 03 paau jou seop A1onb mou e
Jey) 0S) I[0S PUB SISOJA]) U2amlaq
QATe uonoouuod oy Jurdooy Aq
swmn pue Aousroyje ay) Suroueyuyg

[opow
IOPOJOp puE ISPOdUd JO I0Jov) Jul
-[e9S STY) 20npal AL YIoM dIning

VN

peayIoA0 doueuriofrad

QU) SZIWIUIW PUB 95,7°¢ dUR[RQUI
peol ‘9¢g owm uoneindwoo-oy

210D TAN £q pajroddns ‘uoneorjdde
Jo od£) 1oyjoue se qol 1ojerouad
yjodor jo uoneyuowedwr ome)

9t JIomowrely
IAN ur uojerays uoneordde oy,

St st qol oY) Jo uoIssIwqns Ay} I3y
qol uone[suen 1oy awn pasde[d oy,
o asuodsoy

QorJIAIUI gam Kq

Qouaradxo 19sn poo3 A19A SOAIS I
wmn uonardwod qol ayy soonpar i

SOURIUIS ()] 0}
(] 10J JOMO[S pUB (I)SBJ 95 4) SAOU)
-uas | Surpodop uaym sorenb yoorg
%561

£q sjuowaIoul pasn Alowow pue
9,68 2Uyoed Juisn Aq awn YY) 0NpaI
SQOUUAS ())] SUIPOIIP SAOUAUIS
907 Aq Juowngie pasn AIOWIIA
93esn AIOWAW 9,()/ SAONPAI AYOBD)

Aypiqesn se [[om

se ooueurojrad uo snooj Juons y
uoneIm3yuod Jo Apod dyroads
-Q0IAQp [eUWIIUILI JO OU M A[[e
-nsn ‘pnoyo ay) ur pue A[[edo] ‘Nd.L
pue (ordnnut 10 d[3uts) NdD ‘NI
Uuo S[OpOW UIBI) UBD SISYIILASIY
S90IA

-IOS UOIIRIO[OOE PIdU OyM S$Iasn
Y} J0J UONIN]OS [9A] WASAS 9)91d
-wod & ap1aoid 03 10je1s[o0e NNJ
Y yNm 1oy1e30) oe)S aIemijos
Qouew

-loyrod [[BIOAO Q) JZIWIXBW O}
uoneIn3yuod weysAs pazrumndo uy
9% 16 St doro-o[3urs

ym Aoeinooe uoneprea ¢-dojy,
%% 8 PAARIYdE [opowr d[3urg
1g1omoq

pue soseqejep Suniodor pajeoIpap
BIA SjuawNNsul Juniodal padueApy
3ur

-yoIBas pue Suone[suel} JNewoine
OYI] SOOIAIRS QANTUZO0D YIIM TSI
Apiqeress 1enog

pnoro uo
Surkojdop 10J pasn ST yI0mawesj
Sunndwos peInqLisIp € ‘wWIo}§

K1anb yoo[q pue ayoeo

Kq juowoueyUe AduQroyyg
SOSOJA] UI SI JA] Paseq-pno[)
1108 oyoedy

ur (WD a3en3ue]

[°POIN
no

-ySnoIy) MO[JI0SU], Sasn [7]
9[QISSAI0E QIOW pUE IJ)Sk)
yo1easar Surured] doop axyeuwr 0}
pouSIsop sjeseiep pue S[opowt
Surured) doop jo Areiqr sey If

uonejuow[dw YO Jo suon
-BIOPISU0D oY) YIm Areiqry aed
W) ++)) J[qRZISAYIUAS AN} Y
SYIoM

-jou juerd Jumuren 1oy Areiqr
wistofered-fopowr J[qe[Rds Y
jduogeaer eppiuea pue Arondl
uo paseq Jlomowely yVds AIe
-udoxd e pue 4 13Uy jo uon
-eUIqUOD B Jursn pjuswdury
s10)1}

pue s1oured[Joj [eyod Jurures|
-9 ® s1 [eyod Jurures] Togsiq

[eonsnels

[eonsnelS

Jiomiau [eanau dod(q

SI0MION [BINON

SHOMIAU [BINAN

[eINON + [BOnSIeIS

(#102)
Te 9
peqeropAH LI ‘DY 10T peuyy
(9100)
pueaa] ‘AIsIoArun A1) T 10
uqng ‘Supndwod jo eI9pIoL,

[o0ydS ‘Dnud) 1dVAV 910C -Zopupliog

SUOTJORIIP YOIBASAI
amny pue uonEIWI]

SISy

K30[0pPOYIdIN

weang

(8100)

PUIN ™ R»

-doo pue urerg 9[S00n 8107 IUBMSEBA
vSn (6100)
‘usredwey)-eueqin e ™' 10
stout[[[jo A)sIoATU() 610¢ uayd
(6100)

™' R

VN 610C Sueny

(6100)

™' R

Ayis1oATun) AIpAO[d 610T ASTYONINAT]

yIom

uonezZIuesIo YoIeasay IeQX UOIedsay

pnopo uo pakordop uone[sues} dUIYOLW JO YIom Sunsixyg g ajqel

pringer

Qs

16063

A forefront to machine translation technology: deployment on the cloud as a service...

(6002)
sjuawraAoxdur [rews ur gz 9g a3enSuey 1a81e) o) uuew
INq JULISISUOD YINOY) USAD SIQIYXD 3001 1 JNOET 10 pue Uru 88°Ge Jo 9am os1ed 10y doopey donpax -110Z
wosks oy ‘(TewwrerS pojuow ool I NL9 10 9% NAId-INAI -dewr uo (LNVS) uonesuen vSn Aus pue
-3ne poseq-xeuks) [JNVS Suisn ynm painseaw Ajenb uone[suely, quiyorw pojuowidne XeJukS [eonsnels -IOATU() UO[[IA 2132uIe)) 600 Tedo3nuop
9100s AT IOyl S)nsai jo A1
-pI[eA Y} UO SNo0J [opowt o5enue|
Q0UQI9J JIOPOI9P SASOJAL o) I J[q
-J1p JueoyrugIs ou sey d[qe) aseryd -nedwoo st 9[qe) aseayd jndino sy,
SOSOJAl pue pasn II[00} DseyD) U ¢§ 03 eiep uruSife pue ejep sururen 0102)
Q0uBULIO] ¢ wo1j uonoenxa aseryd 10J swi], 10J pasn AIe SASOJA] PUB ++YZ[D [9SoA
-12d uo so3ueyo ou sey pasn anbru 4§ 0} /{ WOIJ paonpai sI yiomowrely doopey ay) jo vSsn ‘Ais pue
-yod) Juowusdie plom pANQLISI juowuSI[e pIoM JO dWir) SutuTer) Ay, doy ay) uo uni st IN[[00} BSLYD) paseq aseryq -IOATU[) UO[[QJA] d1FouIe)) 010¢ oen
i LIA3T uo Suruuni surSus JA [oaz)) pue ysrjod I0j sud}
payo9res ay) Aq papraoxd suornsad -sAs LINS 91enjead pue urer o)
-3ns SUOIIB[SULI) QAIOOI SIOJR[SUBL], uzopre[d TINSIOT pasn BIAION (1100
eyep [o[ered 10§ Ky1anonpoid Joje[sues) Ul 9SBaIOUl SISOJA] UO JI[00) y3nquipg Jo AJNSIoATUN) ' 1
soLIowaw uone[suer) uo papuadoq Suons © pea 0 sey walsks Ay, Suipooop pue Jururen NS IoJsuel], pue Qe[uAS ‘BIABIOIN 1102 saoffisep
QINJONI)SBIJUT AJTAIIS GIAN UOZ suonn)
-BWY UO PI}Jsoy Ja)snyo uo papuadop -nsur orwapeose J10j asodind Furyoeo)
ST wsAs oy “AN[Iqe[eds Iog pue SurApms I10J 90I0saI Apeay
woIsKs X9} o1y19ads-19sn 10J UONE[SURI) eIARIOIN ‘eesddn (T102)
9} JO UOISIAA STY) Ul papraoid s1jew oy10ads-urewiop pue QJUAUIAUOD Pasn ST SISO ‘uofequodo)y ‘qaidez e 10
-10§ oy1oads owos Auo 10§ oddng ‘uonreindar ‘Kypenb 10)39q poadryoy [00) SuIpodap pue Jururen [N [eonsnels ‘y3anquipg jo AJSIoATUN) 2102 stipeys
uox M §°Q S0y se
(L°6) SO uoNLZI[eNIIA 104
%G waIsAs pnopo ay)
uey) ss9 Aq sesearour jndysnoiyy Suruunx 10y pnopo smdATeong
Sunnd) porqnop st ozis uonnred oy J sqof Suruonn
-wod painqguysip uo pauonnied oq Jnurw -1ed 10J 9onpaideA Jo uonejuSW
ued pue wsiydiowowoy IsIy S}IQIYXd 12d g1 st ndySnoiy) pue 0z6‘Cl -o[dwr oomos uado ‘doopey (®¢102)
ey suonedrdde JIN snouea o} st aindwos 01 oW [0} SAOUIUS pasn ST wA)sKs e 10
SoQ) 103 yoeoidde oy Jo uorsualxyg 009°G7 10} Sopou G JO IS Y uope[suen ouryoew reduweg eIpU[‘peqeropAH LIII €10C Tewny]
QINONI)SEIJUT PNO[d
wWR)SAS AU} UT SA0INOSAT MU A} oy dn Sumos 10y smdAteong
Suruorsiaoxd 10yje uoneosrdde TN Suruonnied peoy
[1om se sayepdn juonbaiy ojpuey 03 oyy dn opeos 0) unug saxmbar Jf plom 10J arema[ppru se doopey
WAISAS [JA 2[qBUS P[NOM JeY) Pno[d S /7 pue uru g wosAs 3unerado I1SOH se /G
oy} ur pakojdep oq ued a1oy) wWoIy 300 JUSWUOIAUR Pno[d ‘smdATeond Aremprey (9€102)
pue sar1031s0daI Se o[qe[IeA. S1ITIey) UO pUE S GZ PUE UIW | / OO} W)SKS JO UOTJBZI[EN}IIA JOJ PIsn ST UaX e 19
os 2ouerjdde remuia oy) SuroueyuUg QUO[E-pUB)S Ul J0Oq B JJB[SURH O, S'Q 1son3 sk £'G SOWRD IoJSuel], BIpU] ‘peqelopAH LIII €10T Tewrny]
SUOT}OAIIP YOILasal yIom
amnjy pue uoOnEIWI] S)NSoY KSojopoyloN weans uonezZIuE3IO YoIeasay Teox [oIeasay

penunuod go|qel

pringer

As

M. Singh et al.

16064

uone[suen

10J SIJIAIQS 9[qepIOfJe pue
2Ind3s ‘9[qrxay Jurrayjo ‘syurod
$s9008 9[dnnur y3noy) 9o1A1s

QOTAISS

uone[sue) [euoIssajold s1ojjo 1] PUQAH LS uoneoridde qopy Joje[suel], ASeq X0IoX Joje[suel], ASeq X0IX
pnopd jo Aiiqrxey
pue romod oy Suisn popraord Xnur ‘OVIA PV UONE[SURL],
S1901A10s LN A)fenb-ySiy uy [eonsnels 6S ‘smopuipy ‘uoneoridde qop QUIYORIA] JOJBI[AOX LIN uejuey]
uin Jo junoure ssof surnnbar
SYORQMEIP JIAU) JNOYIIM
LIN paseq-pnopo Surutiojradino
ouiSuo uone[suen} pazieuosrad st 3| [eonsnels 6¢ ($9-981) XNUI'T ‘SMOPUIAM S[00) UONIB[SURL], UOISIOA] RN
JINS 2IEMIJOS UONEB[SURI)
uorne[suen pajsisse-1oindwod st 3| [eonsnels +I11 uoneorjdde qopy Auewan) ‘sopel], TdS IoAeom a3en3ue] TS
aur (urewop
[e21 Ul SUOIR[SURI) UTRWOP-N[Nul Juded) ¢ ‘(urewop smau) |
1M 9DIAIOS UOTIB[SURI) © ST 1] PUQAH ‘(UrewIop [BUONESIIAUOD) G Q0IAIOS GIM INdI Jore[suel], NG
asn ssaursng (yooads quoyd proipuy
pue osn [euosiad 1oq 10J A[qe[IRAY [eonsnels 10})g pue (3x2) 1I0)) (9 pue oiddy ‘smopuip 1JOSOIDIA J10JB[SURI) 1JOSOIOIIA
juasaid are
SINOAR[JoMAIA Ten3ulflq 4 oFed
qoMm 2I1Ud Ue Fune[suel) 10
QIeMIJOS UOTIR[SURIT)
PUS-OBQ IIM IJTAIDS GIM B ST] [eonsnels 4S uonearjdde qop 1JOSOIOTAL J101R[suRL) Surg
sSurpury yoeoiddy ared oSenSue wiIope[d 1adopareq WJSAS [BIOIWO))

Apmis aaneredwod € SN [BIOIOWWOD JUnsIxyg € ajqel

pringer

Qs

A forefront to machine translation technology: deployment on the cloud as a service...

16065

Microsoft Translator Hub (MTHub) for only simple Sanskrit
prose texts. This system takes input only in Devanagari Uni-
code Script and gives output in same. Sometimes the system
does not response to long and compound sentences. In this
work, MTS is proposed which handles all the limitations of
the existed MTS developed for the Sanskrit language.

3 Sanskrit-Hindi hybrid machine translation
system (SHH-MTS) as a service

The MTS improves performance through recurrent changes
in term of either corpus, domain, algorithm and rules. These
rapid changes are very difficult to be updated in stand-alone
MTS. To facilitate this problem, we have proposed that it
must be deployed on cloud to provide quality of service (QoS)
to the end-user. Firstly, Sanskrit—-Hindi hybrid machine trans-
lation system (SHH-MTS) architecture is designed and
developed. Later, post-development it is deployed on cloud
to test and analyse its performance on various parameters
such as throughput, server load, response time and CPU uti-
lization.

3.1 Characteristics of Sanskrit-Hindi machine
translation system

There are different characteristics listed for Sanskrit—Hindi
machine translation system (SHH-MTS)

— The SHH-MTS developed is the integration of linguis-
tic rich features with prominent result-oriented approach,
i.e. rule-based and neural-based which is gaining signif-
icant attention nowadays.

— As source language, Sanskrit is a linguistically rich lan-
guage having old scriptures like Vedas written in this
language, which are not accessible and understandable
to general people. Through SHH-MTS, the old scriptures
can be easily accessed in other languages.

— The proposed system also benefits the teaching—learning
process by assisting with Sanskrit content. The system
aids the students by illustrations of grammatical informa-
tion for the Sanskrit text such as parts-of-speech tagging,
parsing, Sandhi-splitting, word sense disambiguation and
relations between different words of a sentence.

— The system is readily updated with recurrent frequent
updates of performance in the term is corpus, domain,
algorithm and rules.

— The SHH-MTS is deployed on the cloud and provided
as a service. It enhances the deployment making it easier
to perform and easy to use by the common user as no
pre-requisite or knowledge of NLP required.

— Auto-tuning for neural-based MT used in our proposed
system is not possible at the local host due to memory

issues, but it is possible on the cloud. Several layers are
added automatically to attain maximum accuracy and
high speed.

The following sections contain the details of entire SHH-
MTS developed in phases, i.e. different linguistic tools output
feed for embedding as features in the encoder of neural-based
encoder—decoder architecture which trains the systems for
learning and predicting the translation of Sanskrit words into
Hindi words using linguistic features.

3.2 SHH-MTS: rule-based machine translation
system; extraction of linguistic features

The rule-based system follows pipeline architecture, each
module or tool has been described in this section. Different
linguistic tools have been used as input features in neural
machine translation (NMT) to train system more efficiently.
Some linguistic features are language specific, i.e. Sandhi-
splitter. These tools are mostly rule-based developed under
Project funded by MIT. We have also developed a web inter-
face for better user experience using Anusaaraka Engine
(Chaudhury et al. 2010) for providing translation to common
users.

— Pre-processing of user input: It takes input from user,
cleanses, normalize the text, converts the input notations
into WX notation, call and invokes MT system which
performs computation and shows the output result.

— Tokenizer: Tokenizer receives a flow of character and that
character breaks into individual words called as tokens
(words, punctuation, markers). It removes the formatting
information and add a sentence tag. Here, the term mor-
phology is used for linguistics. It refers to study of words,
their internal process and their word meaning. The model
has stream of words those words are tokenized first and
then morphology gives meaning to those words (Pappu
and Sanyal 2008).

— Sandhi-Splitter: It is invoked only when input text con-
tains Sanskrit sandhied words. It splits these words as
well as compound words (Sachin 2007; Kumar et al.
2010).

— Morphological Analyser: It splits into roots and gram-
matical suffixes. There are different units, and one of each
unit provides meaning as well as grammatical function.
It also provides inflectional analysis, prunes the answer,
uses local morph analysis to handle unrecognized words
and produces derivational analysis of the derived roots
(Bharati et al. 2006; Mittal 2010; Jha et al. 2009).

— Parsing: Parser is used as compiler and interpreter that
break data into smaller units for easy translation of
one language to another. Parsers takes input from the

@ Springer

16066

M. Singh et al.

sequence of words or tokens those inputs are translated
in the form of parse tree or an abstract syntax tree. It
converts the source language to target language in the
form of tree like noun, verbs and attribute. It produces
morph analysis according to context along with karaka
analysis. According to computational Paninian grammar,
it identifies and names the relation between verb and
its participants (Kulkarni et al. 2010; Goyal et al. 2009;
Kulkarni and Kumar 2011; Kulkarni and Ramakrishna-
macharyulu 2013; Kulkarni 2013).

— Shallow Parsing: If the parser fails on any input, it does
minimum parsing of the sentence and produces pruned
morph analysis to the next layer (Huet 2006; Kumar et al.
2010; Kulkarni et al. 2010).

— Word Sense Disambiguation (WSD): The modules per-
forms word sense disambiguation of input sentence
words roots, vibhakti and lakara. Identifies correct sense
of a Sanskrit word (Bharati and Kulkarni 2007).

— Parts of Speech Tag (POS): It adds parts of speech tags to
each word such as adjective, verb or noun. tags (Hellwig
2009, 2010).

— Chunker: This phase performs minimum grouping of
words in a sentence such as noun phrase, verb phrase,
adjective phrase. The rule base allocates a appropriate
chunk tag to it. Nandi and Ramasree (2013).

— Hindi Lexical Transfer: The Sanskrit Lexicon is trans-
ferred to Hindi identifying root words using dictionary.
The output is formatted according to Hindi Generator,
which generates the output in Hindi Language corre-
sponding to the Sanskrit language. This module also
performs transliteration in case translation fails (Kumar
et al. 2009).

— Hindi Generator: This phase involves sentence-level
generator performs agreement between noun, adjective
and verb in the target language; addition of vibhakti
markers 'ne’ and dropping ko’ at required positions.
Final generation involves root words and their associ-
ated grammatical features, corresponding suffixes and
concatenates them and also concatenates the generated
words into a sentence (Bharati and Kulkarni 2007).

Hence, translation of each Sanskrit word to its correspond-
ing Hindi word is performed using linguistic rules and tools.
Further, these data are passed to consequent phase. The data
passed to the next phase are converted into comma-separated
values (CSV) format suitable for training, model develop-
ment and fitting the values for neural-based encoder—decoder
architecture for predicting translation of Sanskrit word to
Hindi word. These linguistic tools output is embedded as
features for input encoding of source sentence as they help
better in disambiguation of words.

@ Springer

3.3 SHH-MTS: neural network-based RNN approach

The encoder—decoder recurrent neural network consisting
of encoder reading a variable length input sequence and
decoder predicting a variable length output sequence. The
dense output layer is used to predict each character in the
output sequence in one time rather recursively during train-
ing. Firstly, we define a model and once it fits it can be used to
make translation predictions. The model defined for training
has learned weights for this operation, but the structure of the
model is not designed for calling recursively to be generate
one character at a time. The encoder model takes input layer
from the encoder in the trained model and gives output as hid-
den layer and cell state tensors. On the other hand, decoder
needs hidden layer and cell state from encoder as initial state
for the model defined. Both the encoder and decoder will be
called recursively for each character that is to generated in
the translation sequence (Cho et al. 2014).

The neural network encoder—decoder architecture with
bidirectional RNN (Bahdanau et al. 2014) is implemented
for predicting Hindi translation corresponding to Sanskrit
translation. It consists of grated recurrent units (GRU) for
computation. The implementation (Bahdanau et al. 2014)
consists of input sequence feed with linguistic features
(Sennrich and Haddow 2016). Given a source sentence
x = (x1,x2,...,%y) is read and computes hidden states
for forward direction (fz 1, fzz, 53 .. l_in) and for backward
states (hhl , hhz, A hhn). The detailed computations have been
displayed in Algorithm. Both of these forward computa-
tion and backward computation are then merged to form
an annotation vector (h;) as explained in Algorithm 2.
The encoder input was a combination of linguistic features
formed as feature embedding matrices as computed in Algo-
rithm 3. The decoder further predicts the target sequence
y = (¥1, y2, - - -, yn) based on context vector (c;) computed
in Algorithm 4 from weighted sum of annotations 4;, recur-
rent hidden state (s;) and previously computed word y;_1.
The alignment model (a;;) models the probability that x;
is aligned to y; or not as in Algorithm 5. It is feedforward
single layer network learned through back-propagation. The
output is predicted using learned distribution. The implemen-
tation was carried out with Tensor flow (Abadi et al. 2016) at
back end with Keras (Ketkar 2017) using encoder—decoder
architecture for developing the system. In addition, we have
considered the state constraints in order to minimize the com-
putational complexity and generalized the results inspired by
the work (Sun et al. 2018).

di iz = fi(ws) + Fi;(Ws, Wy — 1) (1

wherei =1,...,n,ji =1,...,5;— 1,5 > 1l,n > 1 and
both s;, n are positive integers.

A forefront to machine translation technology: deployment on the cloud as a service...

16067

Lingusitic Resources Rule-Based System Neural Network System Hybrid Machine Translation System
—> Tokenizer Tokenizer
v -
Sandhi-Splitter Encoder
v 2 4
Morphological
Padees Ws1.....Wsn
1 v
i I[_ Forward RNN(hj) I
Monolingual D] | : :
Corpus ¥ | |
y |
Shallow «—— NO | | BSﬁN“”(:’)" |
Parsing | - | Machine Translation
Y |____3_____. as a Service
Word Sense I
Y @
Parts of v
Speech P — - Weblnte
L2 =
Pre-processing Text YechonSh
Chunker - — Target
‘ P d1....dn Text Tet
Hindi Lexical
Transfer v 2
¥ Wh1....Whn
Hindi Generator
A 4
Decoder
Fig.5 Flow chart of proposed system
diji =d; jiv1+ F,-,j,-(c?), Jji. 2) where p; (Ws;) = boundedandsatisfied. All other param-
eters of system will remain same, and proposed system
Here, d = Id;, ji,...,d;, ji]T represents the states of satisfies the state constraints for adaptive neural network used
encoder and decoder mechanism. The d; j; = [di1, ..., d;, j,-]T for translating a sentence from source to target language.
€ Ry, The developed system exhibits BLEU, i.e. an automatic mea-
sure for translation accuracy as 61.02% on combining Keras
W, =d;, 1 3) model with bidirectional layer using gated recurrent units

where W, denotes the output of system. Wy =€ R(Ws — 1 =
[W, ..., Ws —1]T) denotes system input. f;(W;) denotes
the hysteresis type of nonlinearity. F; j; (W;, ji) denotes the
smooth function. For the proposed system, the state con-
straints are along with —Q; j; < d; ji < Q,-, ji denotes
the positive design constraints, where i = 1,...,n, ji =
1,...,s;. Considering the state constraints in our system
results in stability of the system. We assume wu;, ¢;, ¥; =
design parameters where ¢; > 0 are slopes of lines and
¢; > ;. It will exhibit the change in Eq. (1). Here, the states
are modified after the constraints imposition as f;(w;) =

¢i (Wi (0))+ pi (Ws;)

di,iz = fi(wg) = ¢; (W; (1)) + pi(Wr,-) + Fi (W, Ws -1
“4)

along with Relu and sigmoid activation function and then
performing auto-tuning. Adam optimizer is also used to opti-
mize the neural model.

3.4 SHH-MTS: hybrid approach

The hybrid approach uses extraction of linguistic feature and
RNN to translate Sanskrit language to Hindi language. In
this translation model, the source language is translated to
the target language having a lexical gap. It is the process
which is deep analysis of the source language and then its
lexical transfer to the target language. Accuracy of hybrid
approach is more than either only rule-based approach or
only phrase-based approach. The SHH-MTS merges the best
of both the approaches as it merges linguistic rich features
with prominent deep learning approach to provide Sanskrit

@ Springer

16068

M. Singh et al.

to Hindi translation. The flow of this system is depicted in
Fig. 5.

3.5 Deploying SHH-MTS on cloud

MTS is composed of multiple heterogeneous modules hav-
ing dependencies according to the task performed. Resolving
these complexities is not easy, and it is also a time-consuming
task. The increasing demand in the request for MTS hinders
the performance of the systems. It leads to slow response and
requires more resources to provide more computation. This
will increase the computational cost for most of the enter-
prises and academic institutions. Innovations are necessary to
ride the inevitable tide of change. Recurrent changes in terms
of either corpus, domain inclusion, the algorithm of modules,
modifying rules or a combination of these to improve the
accuracy, quality and performance of MT systems. Most of
the developments are striving to reduce their computing cost
through the means of virtualization. This demand of reducing
the computing cost has led to the innovation of cloud com-
puting (Qian et al. 2009). It offers better computing through
improved utilization, reduced administration and infrastruc-
ture costs. It is a term used to describe both a platform and
type of application. As a platform, it supplies, configures
and reconfigures servers, while the servers can be physical
machines or virtual machines. On the other hand, as appli-
cations that can be extended to be accessible through the
internet and for this purpose large data centres and power-
ful servers are used to host the web applications and web
services. Our proposed MTS is a web application hosted on
cloud to provide SHH-MTS as a service.

The features of MTS deployed on the cloud are listed
point-to-point below.

— It provides scalability at the same cost.

— Reduces load by the distribution of the task to different
servers.

— Fast processing speed due to virtual machines

— Handling of frequent updates in the algorithm, rules, cor-
pus, dictionary and domain inclusion.

— Enhancement, adaptability and scalability are easier to
perform.

— Easy to use by the common user as no pre-requisite or
knowledge of NLP is required.

These features are adopted by several researchers to develop
MTS and by using MTS-as-a-service higher performance has
been achieved. Nowadays different cloud service providers
are assisting the industries as well as for personal use. Ama-
zon Web Services (AWS) (Amazon 2020) is one of the cloud
service providers, which is a secure cloud services platform
offering compute power, database storage, content delivery
and other functionality to help system scale-up and grow.

@ Springer

Algorithm 1: The Encoding of Input Sentence Algo-
rithm

input : Parallel corpus P. and Monolingual corpus
M_varaince = 0.01, mean = 0,V, =0
output: Context Vector s; as summary of input sentence
Encode Wy = wy,, wy,, Wyy...... wy, ass; € RXs,
// Ks is vocabulary size and z is input
sentence length

-

(8]

Encode Wi, = wp,, Why, Whyy cevvennenne wy, ash; € Rkn

// Kj as vocabulary and x is the output
sentence length

for s = 1, s++, while s < z do

4 Tokenize the input sentenceT (wy, , W, ,Ws,)}

5 Compute probability

w

t ~
iz Pws..wy;_) &
t
[Tici P(wg lwyy.ccws,_)Wy,
// probability of a sequence of token
words conditioned on a window words

rather than all previous words

Pi(ws, Wyy...... s w&z) =

a8

The data-set converted into sequence of
integers-tokens(T (w(s1)...w(s(2)))) are then padded and
truncated and saved as numpy arrays(np).;

for np.w(s) do

8 Apply Bi-directional Recurrent Neural Network(RNN);

9 for <Ts =1, Ts++, while Ts < Tz>do

10 Forward RNN: Compute hidden state

f = (h1, ha, h3..h));

// read the sentence in forward order

=

11 for Ts =z, Ts——, while Tz < Ts do
12 Backward RNN: Compute hidden state (hy, h;..., hrj);
// read the sentence in reverse order

) ~T «T
13 Compute annotation vector: H; = [h; ; h; 1;

14 for Each input word s, map through hidden states hy and hy do
15 L Compute embedding lookup: Hj = f(hi—1, EW;,);

16 The encoder computations are deeply stacked in following
manner:;
17 Compute for first layer if i=1 then
18 | b= filhe—1, Lwst) // he—1i:
stamp value
19 else i = fn,_\;n;_ // hri-1: previous layer

previous time

in sequence value.

20 Compute context vector s; as summary of input sentence from
Step 9 and 11

Therefore, according to the need, the model can be accessed
and utilized.

Virtualization (Xing and Zhan 2012) is a viable option,
by making an application function as a repository. The key
benefits of developing virtual appliance are fine granularity
with reducing time for adding and removing computational
resources. It would also increase the mobility of application
and reduce deployment time. The deployment of virtualiza-
tion can be performed on the cloud as well as stand-alone. A
SHH-MTS is deployed on the cloud architecture as in Fig. 6.
The proposed architecture is divided into three layers, i.e.
interface layer, service layer and database layer. The interface

A forefront to machine translation technology: deployment on the cloud as a service...

16069

Algorithm 2: Generation of next hidden state using
Grated Recurrent Unit(GRU) Algorithm

Algorithm 3: Embedding of linguistic features extracted
from pipeline rule-based architecture algorithm

input : Previous state /1, and input wy,
output: Next hidden state &,

Forward States: Bi-Directional Recurrent Neural Network;

// Grated Recurrent Units (GRU) is designed
in a manner to have more persistent
memory thereby making it easier for RNN
to capture long term dependency.

2 foreach s(i) do

3 for i:],i>z,i+tdo L

4 u;’i = O'(WupE.v,- + Ouphifl);

// d =dimensionalityofwordembedding and u
is number of hidden units E € R%*k

-

5 res; = 0 (Wyes Esi + Oreshi_1) ;
1] W, Wap, Wres € R¥4

6 ﬁ,‘ = tanh(WEsi + 5[?55,‘ O] hiil];
/] O, Oup, Ores € REXH

7 hi = (1 — upi) @ hi_y +upi @ hy);

// o is logistic sigmoid function

8 Backward states of bidirectional recurrent Neural network
for i=1,i>z,i++ do

9 u;’i = U(MPES; + Olphiil);

10 ré_S,‘ = U(W:exE_‘si + O:eshi._—l)§

1 hi = tanh(WEs; + Olrés; O h —i — 1];

1 hi = (1= up;) © hi_1 +up; © hy);

13 hi = [i;i +f;] // Combining forward and

backward states

layeris used for user interaction. In the proposed architecture,
the interface is built in the form of a website for SHH-MTS,
delivering Sanskrit—Hindi translation as a service to the users.

All the users requesting for Sanskrit—Hindi translation can
access the system through the interface of the website which
is deployed at the service layer. At the back end of the trans-
lation system, the output is generated by various linguistic
tools and encoder—decoder architecture of RNN. All these
user requests are stored in the cloud storage repository and
passed further for processing into the SHH-MTS. Even load
balancing and auto-scaling are performed on this layer to han-
dle the traffic demands. It also manages to address advance
routing needs by dynamically scaling the web application
to changing traffic on demand. It can create capacity groups
of servers that work accordingly to the demands. The AWS
Elastic Compute Cloud (EC2) allows users to use virtual
machines of different configurations as per requirements. It
provides a more secure model for every host. The database
layer is comprised of the parallel corpus, monolingual corpus
and dictionaries. It is used for the physical interface between
the application and the database. Simple storage service (S3)
is used to allow users to store and retrieve various types of
data API calls. With provisioning of additional hardware

input : Each feature with distinct word embedding s,y and
output: Context Vector s; as summary of input sentence along
with linguistic features

1 Combining all these word vectors s;y form an feature embedding
matrix E € Rxky,

// dk is summation of dimension of all
feature embedding and ky as vocabulary
size of K" feature

2 These embedding are concatenated with total embedding size as

the length matches. The input embedded sentence vectors are

multiplied with these extracted linguistic features.;

// Kj as vocabulary and x is the output

sentence length

for s,y = 1, s;y++, while s;y < z do

h = tanh(W Hf E_yszy + 5%1_1);

for i=1,i>zy,i++ do
Calculates association between input word Wy to produce
the next output wordwy, by calculating the impact of word
representation(i:i, l:,-) hj = (hi, hi);

(= T T Y

7 for i=1,i>zi++ do

8 for j=1,j>z,j++ do

9 Calculate alignment model a;j// Output position
around i to input position around
J.

10 Hidden state d;_y and hj // j™ annotation of
input Sanskrit sentence.
11 aij = J;lanh(Wadi,| + Oa/’lj)

/] W, e R"1, 0, € R”/X", Jo € Ryyo, are
weight matrices
exp(aij) ts
ST exptay) 51 = 2i=1 %M
// S = feed — forwardNeuralNetwork
// The computed scalar attention value
is normalized using softmax
activation function, so all input
words s adds up to 1

12 Qjj =

resources, it is possible to keep the response time within
optimum limits as the load increases but this increases cost.

So, the objective of this proposed work is to deploy
MTS, on the cloud with provisioning of larger computa-
tion resources. It will help to increase the scalability of the
system and to improve response time. Cloud deployment
requires optimum resource utilization which is possible only
when an application can scale-up and scale-down rapidly.
This is easily feasible for our proposed SHH-MTS to scale-
up or scale-down in real-time. In this work, a hybrid MTS
model is deployed on cloud of Amazon (EC2) as depicted
in Fig. 7 having better accuracy, CPU utilization and mini-
mum response time. It also eases the deployment and scope
of extension or manageability due to which the performance
of our proposed system is better than our stand-alone version
of systems.

@ Springer

16070

M. Singh et al.

Algorithm 4: Decoding the target sentence from context
vector of linguistic features extracted from pipeline rule-
based architecture
input : Previous hidden state d;_, some representation of input
context s; and embedding of previous word output Ej, ,
output: New output decoder hidden stated;

1 for i=1,i>z,i++ do

2 if d=o then

3| | do= f(Wah)

// For initial hidden state W; e R?*4.

4 | else d; =

tanh(WEhy,_,) + Olres; +d;—1]1+ Ss;)// hidden

state d; is computed given annotation

from encoder and for update and Reset

5 upi = O‘(Wuth,-fl + OMpdiflsupsi);

6 resi =0 (Wres Ehi—1 + Oreshi—1 + SresSi);

// E= Embedded matrix of word for target
language, u=Number of hidden
units,d=word embedding dimension.

W, Wy, Wyes € R4
/7 0, Oup, Ores € R4*2d gre weight matrices.

Algorithm 5: Decoding the target sentence from context
vector of linguistic features extracted from pipeline rule-
based architecture
input : Decoder hidden state d;_j, input context s; and
embedding of previous output word /; |
output: New word prediction wy,;

The vector for prediction p; for a output word;

for i=1,i>zi++ do

for j=1,j>1j++ do

pi = [maxp;,2j — 1,1, 21']§=14..4,l // Repeat EWh,.,l
for d;_| rather than d; as it
fragments the encoder state
progress from d;_; to d; for
prediction of output word p;

5 foreach Output Word wh do

6 Calculate wy, as highest value in the vector

pi = [maxﬁ,-, 2] -1, 2]’];:1"”[

// Training is performed

accordingly as network being

aware of correct output wy

assigns larger probability wvalue

AW R =

7 prob(hi|di—y,s;) < (h"W,pi) // Activation
function softmax is used to convert
raw vector into a probability
distribution having sum of values
as 1

// ReLu combines input to yield the
next hidden state

4 Experimental details
The experiment has been conducted on developed SHH-MTS

to measure various QoS parameters. The technical specifica-
tions along with its versions are displayed in Table 4. For the

@ Springer

deployment of SHH-MTS on cloud infrastructure, Amazon
Elastic Computer Cloud (EC2) is used. It stimulates scalable
deployment of MTS by providing a web service. It pro-
vides secure, resizable compute capacity through which we
have booted an Amazon Machine Image (AMI) 3.0 for deep
learning to configure a virtual machine (VM), also called an
instance. The developed system includes (dictionaries, paral-
lel corpus, monolingual corpus, program codes, algorithms,
lexical resources, rule database, machine-learned data and
its models) is packed as AMI. The experiment conducted
was based on Linux Kernel version 3.4.34 Operating sys-
tem through which user program interacts with the kernel.
Virtualization was first performed with Xen and later with
Compute Optimized C5 instance, which was based on custom
architecture around kernel-based virtual machine (KVM)
hypervisor. The processor was ported with IA-64. Elastic
Block Store (EBS) volume as a rooted device was used for
storage with G3.4*large type. It provides raw block devices
that can be attached to the Amazon EC2 instance. It also
supports cloning and snapshot, so we have cloned the sys-
tem image to other virtual machines. It is built on replicating
storage when the failure of one component would not cause
data loss. EBS volumes can be attached or detached from
instance or VM, while they are running and moved from one
VM to another VM. A simple storage (S3) is also used which
we access (read and write) through the API. The experiment
was based on 16 core processor and 122 GB RAM. Rule-
based auto-scaling was used which adapts according to the
CPU utilization threshold though it takes several seconds to
scale up and scale down. The VM start-up time is not depen-
dent on VM type, AMI size, data centre location, etc. Still it
took a few seconds to configure.

Each virtual machine has a GPU with 122 GB of RAM
and 16-core processor to achieve a high throughput speed
approximately 2500 words per second. This speed is not pos-
sible for normal systems because in this one epoch will take
approximately 2h to run. We have allocated 5 nodes for this
experiment. On each node, SHH-MTS is pre-installed with
the help of AMI of 1GB size. It takes 60s to boot. For each
instance created, we have 12 elastic computing unit and 4
virtual CPUs and a memory of 61 GB for a single instance
(EBS storage only) with high network performance. After all
the environment set-up, the system is ready to run and per-
form performance testing. The system first runs rule-based
linguistic tools, which gives its output to CSV file. This file
is processed on TensorFlow with Keras with python 3. It has
been evaluated on parameters such as average response time,
cost optimization, throughput, server load, total time taken
concerning rule matching probability. The number of compu-
tational resources (Storage, O.S, Instance type), data, virtual
machines were varied across to evaluate the performance of
the MTS. The interface designed and hosted on the cloud is
shown in Fig. 8.

A forefront to machine translation technology: deployment on the cloud as a service...

16071

Sanskrit-Hindi Hybrid
Machine Translation

Sanskrit-Hindi Translator

Input Encoding

EBS
Snapshot

| EBS
Snapshot

Amazon S3 ‘

Web Traffic

Tokenizer

|

Output Encoding

(0 @i
w w
O 2 g D
! = =

8] —

User 3 1 Segmentor
Parse
I |
Target Text

User 4 £

[|

Enter Your Sentence

Web Site Interface ‘

Here

CXD P

{
1
1
1
1
1
1
1

~—

User n

Interface Layer \
Fig.6 Architecture for proposed system
Table 4 Technical specifications along with versions
Technical specifications Version/number
Amazon machine image (AMI) 3.0
Linux kernel O.S 3.4.34
Compute-intensive virtual machine C5
Elastic block storage (EBS) G3.4*]arge type
16-core processor 1A-64
RAM 122 GB
Virtual machines 4,8,12,16)
GPU Geforce GTX 980
Memory (for each instance) 61GB
Elastic compute unit 12
CPU 2 (for each VM)
Cache 4MB

REPOSITORY

Sandhi-Splitter

Elastic [
Book
Storage

Morph Analyzer

J

Ephemeral
Storage

—

Word Sense

Disambiguation
us\€=

Parallel Corpus ‘

-

Auto Scaling

—

N ——

Monolingual Corpus

Cloud /
Wach EC 2 Instance
| Amazon .
Avallablllty Zone — Machine RIS j
Image a
Region ‘
/ ; /' Database Layer
py N J

Service Layer

5 Result analysis

The performance analysis of this proposed work was con-
ducted by performing a diverse statistical test. The entire
section is been classified into two subsections. The first
section consists of a comparative analysis of our proposed
SHH-MTS as a service with the existing works, while the
later subsection focuses on illustrating the performance of
MTS based on different approaches rule-based, neural-based
and hybrid. As the proposed system was built in iterations, i.e.
first rule-based approach was applied. Later neural-based and
at last, the output of rule-based was feed as features to neural-
based forming it as a hybrid approach. The different statistical
tests were conducted for evaluating the performance such
as average response time to rule-matching probability, auto-
tuning process, cost optimization, throughput, performance,
server load and total time is taken to the number of virtual
machines. For each of the statistical test conducted, results
were achieved by implementing multiple runs which mani-
fested multiple units of values at different time instances.

@ Springer

16072

M. Singh et al.

Edge Location

Edge Location

Edge Location

i Static

Amazon S3 Contents

Edge Caching

2

Inte:

Amazon
CIoZFFron‘
@ Static Contents Cache) % h
L L Machine Translation Rule-based Approach
! Availabilty Zone Y Bastc & Availabiltty Zone i
1 ! 1 !
Y S A T T R N Load | TR TR A N
: : Auto Scaling group : : Balancing : : Auto Scaling group : :
i : : : | : : : Static
b N : ! L Contents
: ! . . L ! | . [(HTTP GET) Machine Translation Neural-Based
I 1
,| I i . I ch
Il Amazon EC2 Amazon EC2 | ! Il AmazonEC2 Amazon i !
1 WAF MTWeb 11 11 WAF MT eb I
! | gateway Application | | ! | gateway Appligation | | REST
I i S S e L S A S A S /7 . N VPR \S—— o

! ! ! :d_b APL,SOAP “
1 ! | !
1 ! 1 L
1 ! | I
! r] i ! r | Anflazon Amazon
1 T I ! PC VPC
: Uploa : : Uploa . : Router Router JDBC
1 d ! | d !
: Amdzon Logs : Amazon S3 : Logs Amazon EC2 :
| | Systemlogs | I .
! Monitoring] : ; Corpus Dictjona Rules
: Information : : a : = -

I 1
: I : I . - -
1 ! 1 !
! ! ! Amazon RDS !
| Amazon RDS Zabbix Master 1 | Zabbix Standby 1 v
| D8 ; | 58 ; AWS Direct
\ 1 Irec

¢ Sommom- MEOL— - oo - ’ Sommmm- e ¢ Y, Connect s J
Data center(Machine Translation
AWS cloud System)
contents
Fig.7 AWS infrastructure used for deploying SHH-MTS as a service

5.1 Comparative analysis of our proposed work with

earlier research work

Throughput is directly proportional to the number of pro-
cesses completed, and it is also used to analyse the perfor-
mance of the translation system. It is calculated based on
resources used and time consumed.

— Throughput on stand-alone MTS: Its calculation is done

by executing a whole book of sentences using 16 core
processor, 122 GB RAM, EBS only instances and G3.4x
large type. The same job is divided into several tasks to
execute on different computing resources. Table 5 high-
lights the results of the stand-alone system of earlier
proposed work (Ahmad et al. 2011a) on Hindi to Punjabi
Cloud-based Sampark MTS tested on dual-core CPU and
1 GB of RAM and our proposed SHH-MTS as a service.
Throughput on virtual machine: at first we allocated 2 vir-
tual machine which took 5440s for processing, later we

@ Springer

experimented with 4 virtual machine which took 2113,
this time for processing reduced rapidly on using more
number of virtual machine as it took 790s for 8 virtual
machines and 320s for 12 virtual machines. Comparing
with CBSMTS, it took 970s on 12 virtual machines as
depicted in Table 6.

Computing nodes reducing the time for computation: As
depicted in Figs. 9 and 10, we performed the test for
different sentence lengths, i.e. 20, 50, 100, 150, 200 and
250 and for varying computing nodes 2, 3,4, 5,6 and 7.
The results can be seen that on increasing the nodes the
time is decreasing.

Response time: The response time is the time required
for output sentence after providing the input sentence
to MTS. It can be seen from the results in Fig. 11 the
time taken for our proposed CBSHH-MTS and previ-
ous research work for different sentence lengths, i.e.
20, 50, 100, 150, 200, 250.

A forefront to machine translation technology: deployment on the cloud as a service...

us-east-2.compute.amazonaws.com

Home

Sanskrit-Hindi Translator

Input Encoding
Unicode-Devanagari
Output Encoding

Devanagari

Segmentor

Fig.8 SHH-MTS as a service

Table 5 Throughput results on stand-alone

Book Total time taken on stand-alone

Nirmal by Kumar et al. (2013a)

Sankshepa RaamaayaNam (on
SHH-MTS)

198 min + 135
130min + 50s

Table 6 Throughput calculation on virtual machines

Number Throughput on CBSHH- Throughput on Kumar
of VM MTS et al. (2013a)
90min +40s 112min + 19s
35min + 60s 54min + 65
8 13min + 13s 26min + 26
12 Smin +20s 16min + 10s

5.2 Performance analysis on deployment of
rule-based MT, neural MT and hybrid MT on
cloud

The elaborate description of rule based used in the devel-
opment of our proposed system is given in Sect. 3.1, neural
based in Sect. 3.2 and hybrid in Sect. 3.3. These have been
deployed on cloud individually, and their performance is
analysed based on various parameters. The average response
time which would depend on the matching of rules from
the rule database is depicted in Fig. 12, while the average

Sanskrit-Hindi 2

Sanskrit-Hindi Hybrid Machine Translation System

- #- Computing Node#7
- ®- Computing Node#6
- - Computing Node#5

- - Computing Node#4
100 < - ¢- Computing Node#3
Computing Node#2 A=m=ns gz «
-4 i ==
a----- <
98 ’
’ o 4
’ P e
P e e e
/! - *-- .
~ 96+ 1
\Z‘/ / /
= r
g oy
] r .-
94 ’ oy -&=Z--
1y K==e--hk--""7 g-=r==® o
1y ’
1y ,,’
————— L J
92 ‘/I/// _—"'.
2 L7, Ce----"® Cme . -
L W o--"" _ma--""
" £ 7 _m----- a -’
- . .2
T s T ¥ T ¥ T * T L T
$=20 $=50 S=100 S$=150 $=200 $=250

Different Sentence length

Fig.9 Deployment and usage of cloud infrastructure for (Kumar et al.
2013a)

response time on the number of match action rules is depicted
in Fig. 13. The CPU utilization on cloud-based on the packet
arrival rate is shown in Fig. 14. Though the AWS provides pay
as you use service, the cost according to resources required is
displayed in Fig. 15. The throughput which is directly propor-
tional to the number of processes completed and calculated
based on resources used and time consumed in Fig. 16. The

@ Springer

16074

M. Singh et al.

100 + v
.......... B
< \\~ -
/ \~‘1_.\,__.._..__::‘ -------- *
98 e, PRI | Adyul " W
i Maereener s R ' § v
f
/ - —m— Computing Node#7
A -® Computing Node#6
= 96 iy - -A- Computing Node#5
z /, R —w- Computing Node#4
.E 5 -49-- Computing Node#3
s --4- Computing Node#2
94 - 1
Y ®----- Gs==s o
J K p-==-= ®
. 4
A #
92 i
/7
/
7/
' 4
90 -
T T T g T v T d T v T
S=20 S=50 S=100 S=150 S=200 S$=250

Sentence Length(#)

Fig. 10 Deployment and usage of cloud infrastructure for SHH-MTS
as a service

[46]
CBSHH-MTS
[44]

[43]
(301
[49]
[47)
(as]

50

40

30

Time(s)

10

S$=20 S$=50 S=100 S=150 S$=200 S$=250
Sentence Length(#)

Fig. 11 Comparison of SHH-MTS as a service with the existing work
based on the time consumed for different sentence lengths

throughput will increase by increasing the number of vir-
tual machines as in Fig. 17. The server load will decrease in
hybrid approach as in Fig. 18 as compared to rule based and
neural based. The auto-tuning process (addition of hidden
layers automatically) which reduced significantly for both
systems after the deployment of the proposed system on the
cloud. The graphs depict SHH-MTS, i.e. hybrid performs
better than rule-based approach and neural-based approach.

6 Open challenges and future research
directions

Based on the literature survey, following challenges have
been recognized and listed for the future research in this area.

@ Springer

1. QoS enhancement of MTS for the end-users needs to be
provided (Dastjerdi et al. 2011). The three dimensions
of QoS (job completion time, system throughput, system
performance) can be applied to other applications of NLP
that exhibits list homomorphism behaviour and applica-
tions which can be partitioned for distributed processing
like cloud computing (Kumar et al. 2013a).

2. Evaluation of cloud-based models for huge data sets
needs to be performed. A comparison of various cloud-
based language models based on various parameters is
also desirable (Ferrandez-Tordera et al. 2016).

3. Developing an MTS as the virtual appliance can han-
dle the most common problem of MTS, i.e. updates by
making it function as a repository. The key benefit of
developing virtual appliance is the fine granularity with
reducing time for adding and removing computational
resources. Virtualization also increases the mobility of
application and reduces deployment time. The virtualiza-
tion can be deployed both on the cloud and stand-alone
systems (Kumar et al. 2013c).

4. Cloud-based deployment can be performed for various
other NLP applications such as text to speech, auto-
matic speech recognition and transliterated system for
enhanced performance (Ahmad et al. 201 1a).

5. The experiment performed on deploying MT on cloud
needs to be performed on public cloud service providers
with symmetric computing resources in cloud environ-
ment (Ahmad et al. 2011a).

6. There is a need for a special version of the platform
for compute-intensive NLP application. As such appli-
cations which require more time in computing rather
than processing data, cloud platform needs to adopt such
applications and develop a special version that can be
used by others with an ease (Ahmad et al. 2011a).

7. The scalable model-parallelism library available for
training giant neural networks (Huang et al. 2019)
needs to decrease the re-computation time, load imbal-
ance, reducing the scaling time for encoder and decoder
(Vaswani et al. 2018), parallelism at word level pro-
cessing (Ahmad et al. 2014) and also minimizes the
performance overhead.

7 Conclusion

SHH-MTS is the integration of linguistically rich approach,
i.e. rule-based with prominent result-oriented approach, i.e.
neural-based which is gaining significant attention nowa-
days. It is a complex application with a large number of
heterogeneous modules. Deploying such a complex appli-
cation on a stand-alone machine becomes a difficult and
time-consuming task. The existing Sanskrit—Hindi MTS has

A forefront to machine translation technology: deployment on the cloud as a service... 16075
1 T T 1 T T 4 r T T T
T 33 T 33 T a5} .
X X B
= 3r 1 > 3 1 = 3 8
E D =
g 25} | 25 { £ 25} 1
T ol P e ol |
5 “ g “ 5 °
= 15F : - E3 1 & 151 —
E e B C
= = =
;" l i Jf 1 l \ ?‘ I - 4
g T £ T g
Z0s i Ty Bost o4 ¢ o0 o§ 1T £ o5 E
0 1 il il]] 1 1 0] i] i 1 1 1 0 - ! L il i L A i
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
Rule matching probability(x10-%) Rule matching probability(x10-%) Rule matching probability(x10-?)
(a) (b) (¢
Fig. 12 Average response time pertaining to rule matching probability, a hybrid MTS, b neural-based MTS and ¢ rule-based MTS
45 T T T 15 15
T oaf . L 4} 4
< 35 1 = 35
= z
E 3f P E £ 3f
& 25t // ; 5 1 % 25 -
: : g
g2 // 1 g o2f | o : :
To1r — o 1B e e ——— = gl a
=;& 15k = o & 1.5 = = g 1.5 5
£ il e 1 5 1 / 1 ; 1 1
- e - o~
U'gl 0 1,000 1,500 2,000 2,500 0'100 1,000 1,500 2,000 2,500 0";00 1,000 1,500 2,000 2,500
No. of Match Action Rules No. of Match Action Rules No. of Match Action Rules
(a) (b) (©)
Fig. 13 Average response time pertaining to number of matching action rules, a hybrid MTS, b neural-based MTS and ¢ rule-based MTS
50 T T T T 50 T T 50
401 » 1 40 - 40}
o . N -
é 301 " 4 . 4 4 % 30}
= 20f | I {1 Z=
& F 5
- v
10 b 10}
0 i ; ; H 0 H ; i i 0 L ; H 1
0 0.2 04 0.6 08 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1
Packet Arrival Rate(\)10-* Packet Arrival Rate(A\)10+ Packet Arrival Rate(A)10-4
() (b) (©

Fig. 14 CPU utilization pertaining to packet arrival rate, a hybrid MTS, b neural-based MTS and ¢ rule-based MTS

many drawbacks such as slow speed, less data accuracy and
low response time. All these factors adversely affect the per-
formance of the system. It has been observed that local server
takes more time to respond and provides lesser accuracy.
Therefore, offering MTS as a cloud service is a better propo-
sition for increasing its performance in terms of accuracy
and response time. Moreover, auto-tuning for neural-based
MT is not possible at the local host due to memory issues,
but it is possible on the cloud. Several layers are added
automatically to attain maximum accuracy and high speed.

The proposed CBSHH-MTS provides better throughput, rule
matching probability and number of matching rules in com-
parison to the stand-alone systems.

8 Future work
In future, massive data can be accessed using the multi-

lingual platform, and the cloud can support this environment
too. It can also be released as a virtual appliance repository,

@ Springer

16076 M. Singh et al.
80 T 80 T T T 80 T T T
70} . 70 . |
60 |- E 60 : 60 |-
50} . 50[50 |
@ @ 4
% 40 . Z 40 . z 40} o :
(& &) oS
30} - 30 - 30
20} 20 i g 20
10} // 10 . 10 o
— i i 1 i i i i i
0
0‘2 4 6 8 10 4 6 8 10 02 4 6 8 10
Resources Resources Resourees
(a) (b) (©)
Fig. 15 Cost pertaining to resources, a hybrid MTS, b neural-based MTS and ¢ rule-based MTS
T T T 50 T T 50 T T
i 1 wl wl 4
10} 1 o
g & 30 A £ W0 :
g g E
2 20 { Z B
Z z z
= = 20 : = 20| g 1
20} e =5
--"‘—..--— o
/' B - -
1ok - 10 10
01 1.5 2 25 3 0 L5 2 25 3 01 1.5 2 25 3
Time(h) Time(h) Time(h)
(@ (b) (©)
Fig. 16 Throughput, a hybrid MTS, b neural-based MTS and ¢ rule-based MTS
Performance Evalaution of VM 125
6000 T T T J T —— Rule based MTS
12 | |7 Neural MTS
Hybrid MTS
5000 |
L o
c 4000 8
3 p
— 3000 g
©
£)
i w
2000 |
1000 [

Fig. 17 Time taken with respect to number of virtual machines

which can be downloaded easily and used. It will handle
the most common problem of MTS, i.e. frequent updates.
Also, we would extend our work by using the aforementioned
one-to-one nonlinear mapping, the strict-feedback system

@ Springer

2 4 6 8 10 12
Number of virtual Machines

150
Time

Fig. 18 Server load with respect to time

200

250 300

with full-state constraints which will be converted into a
pure-feedback system without state constraints. This will sig-
nificantly reduce the computational complexity, and stability
of the nonlinear system will be enhanced (Sun et al. 2018).

A forefront to machine translation technology: deployment on the cloud as a service...

16077

Compliance with ethical standards

Conflict of interest All the authors declare that there is no conflict of
interest.

Human or animal participants This article does not contain any studies
with human or animal participants performed by any of the authors.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghe-
mawat S, Irving G, Isard M et al (2016) Tensorflow: a system for
large-scale machine learning. OSDI 16:265-283

Abd-El-Malek M, Wachs M, Cipar J, Sanghi K, Ganger GR, Gibson
GA, Reiter MK (2012) File system virtual appliances: portable file
system implementations. ACM Trans Storage (TOS) 8(3):9

Ahmad R (2013) Engineering machine translation for deployment on
cloud. PhD thesis. International Institute of Information Technol-
ogy Hyderabad, India

Ahmad I, Ranka S (2016) Handbook of energy-aware and green
computing-two volume set. CRC Press, Boca Raton

Ahmad R, Kumar P, Rambabu B, Sajja P, Sinha MK, Sangal R (2011a)
Enhancing throughput of a machine translation system using
mapreduce framework: an engineering approach. In: ICON

Ahmad R, Rathaur A, Rambabu B, Kumar P, Sinha MK, Sangal R
(2011b) Provision of a cache by a system integration and deploy-
ment platform to enhance the performance of compute-intensive
NLP applications. In: African conference on software engineering
applied computing

Ahmad R, Kumar P, Kumar A, Sinha MK, Chaudhary B (2014) Improve
user experience on web for machine translation system using
storm. In: IEEE 4th international conference on big data and cloud
computing. IEEE, New York, pp 243-248

Amazon E (2020) Amazon web services. Accessed on 28 Mar 2020

Asemi A, Salim SSB, Shahamiri SR, Asemi A, Houshangi N (2019)
Adaptive neuro-fuzzy inference system for evaluating dysarthric
automatic speech recognition (ASR) systems: a case study on
MVML-based ASR. Soft Comput 23(10):3529-3544

Bahadur P, Jain A, Chauhan D (2012) EtranS-A complete framework
for English to Sanskrit machine translation. In: International jour-
nal of advanced computer science and applications (IJACSA) from
international conference and workshop on emerging trends in tech-
nology. Citeseerx, New York

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by
jointly learning to align and translate. Preprint arXiv:1409.0473

Barkade V, Devale PR (2010) English to Sanskrit machine translation
semantic mapper. Int J Eng Sci Technol 2(10):5313-5318

Bharati A, Kulkarni A (2007) Sanskrit and computational linguistics. In:
Ist international Sanskrit computational symposium. Department
of Sanskrit Studies, University of Hyderabad

Bharati A, Chaitanya V, Sangal R, Ramakrishnamacharyulu K (1995)
Natural language processing: a paninian perspective. Prentice-
Hall, New Delhi

Bharati A, Kulkarni AP, Sheeba V (2006) Building a wide coverage
Sanskrit morphological analyser: a practical approach. In: The 1st
national symposium on modelling and shallow parsing of Indian
Languages. IIT, Bombay

Chaudhury S, Rao A, Sharma DM (2010) Anusaaraka: an expert system
based machine translation system. In: Proceedings of the 6th inter-
national conference on natural language processing and knowledge
engineering (NLPKE-2010). IEEE, New York, pp 1-6

Chen Y, He J, Zhang X, Hao C, Chen D (2019) Cloud-DNN: an open
framework for mapping DNN models to cloud FPGAs. In: Pro-

ceedings of the 2019 ACM/SIGDA international symposium on
field-programmable gate arrays, pp 73—82

Cho K, Van Merriénboer B, Bahdanau D, Bengio Y (2014) On the prop-
erties of neural machine translation: encoder—decoder approaches.
Preprint arXiv:1409.1259

Chowdhury GG (2003) Natural language processing. Ann Rev Inf Sci
Technol 37(1):51-89

Dastjerdi AV, Garg SK, Buyya R (2011) Qos-aware deployment of net-
work of virtual appliances across multiple clouds. In: IEEE 3rd
international conference on cloud computing technology and sci-
ence. IEEE, New York, pp 415-423

Dong Y, Zhang Z, Hong WC (2018) A hybrid seasonal mechanism with
a chaotic cuckoo search algorithm with a support vector regression
model for electric load forecasting. Energies 11(4):1009

Dunn NA, Unni DR, Diesh C, Munoz-Torres M, Harris NL, Yao E,
Rasche H, Holmes IH, Elsik CG, Lewis SE (2019) Apollo: democ-
ratizing genome annotation. PLoS Comput Biol 15(2):e1006790

Ferrandez-Tordera J, Ortiz-Rojas S, Toral A (2016) Cloudlm: a cloud-
based language model for machine translation. Prague Bull Math
Linguist 105(1):51-61

Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid com-
puting 360-degree compared. In: Grid computing environments
workshop. IEEE, New York, pp 1-10

Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson
D, Rabkin A, Stoica I (2009) Above the clouds: a Berkeley view
of cloud computing. Dept Electrical Eng and Comput Sciences,
University of California, Berkeley, Rep UCB/EECS 28(13):2009

Galaviz-Aguilar JA, Roblin P, Cardenas-Valdez JR, Emigdio Z, Trujillo
L, Nuilez-Pérez JC, Schiitze O et al (2019) Comparison of a genetic
programming approach with anfis for power amplifier behavioral
modeling and FPGA implementation. Soft Comput 23(7):2463—
2481

Gao Q, Vogel S (2010) Training phrase-based machine translation mod-
els on the cloud: open source machine translation toolkit chaski.
Prague Bull Math Linguist 93:37-46

Gorzalczany MB, Gluszek A (2002) Neuro-fuzzy systems for rule-
based modelling of dynamic processes. In: Zimmermann HIJ,
Tselentis G, van Someren M, Dounias G (eds) Advances in compu-
tational intelligence and learning. Springer, Dordrecht, pp 135-146

Goyal P, Arora V, Behera L (2009) Analysis of Sanskrit text: parsing
and semantic relations. In: Huet G, Kulkarni A, Scharf P (eds)
Sanskrit computational linguistics. Springer, Berlin, Heidelberg,
pp 200-218

Hellwig O (2009) Sanskrittagger: a stochastic lexical and pos tagger for
Sanskrit. In: Huet G, Kulkarni A, Scharf P (eds) Sanskrit compu-
tational linguistics. Springer, Berlin, Heidelberg, pp 266-277

Hellwig O (2010) Performance of a lexical and pos tagger for San-
skrit. In: Jha GN (ed) Sanskrit computational linguistics. Springer,
Berlin, Heidelberg, pp 162-172

Hong WC, Li MW, Geng J, Zhang Y (2019) Novel chaotic bat algorithm
for forecasting complex motion of floating platforms. Appl Math
Model 72:425-443

Huang Y, Cheng Y, Bapna A, Firat O, Chen D, Chen M, Lee H, Ngiam
J, Le QV, Wu Y (2019) Gpipe: efficient training of giant neural
networks using pipeline parallelism. In: 33rd conference on neu-
ral information processing systems (NeurIPS 2019). Advances in
Neural Information Processing Systems, Vancouver, Canada, pp
103-112

Huet G (2006) Shallow syntax analysis in Sanskrit guided by semantic
nets constraints. In: Proceedings of the 2006 international work-
shop on research issues in digital libraries. ACM, New York, pp
1-10

Jha GN, Agrawal M, Mishra SK, Mani D, Mishra D, Bhadra M, Singh
SK et al (2009) Inflectional morphology analyzer for Sanskrit.
In: Huet G, Kulkarni A, Scharf P (eds) Sanskrit computational
linguistics. Springer, Berlin, Heidelberg, pp 219-238

@ Springer

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.1259

16078

M. Singh et al.

Ketkar N (2017) Introduction to Keras. In: Deep Learning with Python.
Apress, Berkeley, CA, pp 97-111

Kim HN, Yoo SH, Kim KH, Chung AYJ, Lee JY, Lee SK, Jung JT
(2019) Method for controlling hand-over in drone network. US
Patent 10,230,450

Kiyurkchiev V, Pavlov N, Rahnev A (2019) Cloud-based architecture
of dispel. Int J Pure Appl Math 120(4):573-581

Kulkarni A (2013) A deterministic dependency parser with dynamic
programming for Sanskrit. In: Proceedings of the 2nd international
conference on dependency linguistics (DepLing 2013), pp 157—
166

Kulkarni A, Kumar A (2011) Statistical constituency parser for Sanskrit
compounds. In: Proceedings of ICON

Kulkarni A, Ramakrishnamacharyulu K (2013) Parsing Sanskrit texts:
some relation specific issues. In: Proceedings of the 5th interna-
tional Sanskrit computational linguistics symposium. DK Print-
world (P) Ltd

Kulkarni A, Pokar S, Shukl D (2010) Designing a constraint based
parser for Sanskrit. In: Jha GN (ed) Sanskrit computational lin-
guistics. Springer, Berlin, Heidelberg, pp 70-90

Kumar A, Sheebasudheer V, Kulkarni A (2009) Sanskrit compound
paraphrase generator. In: Proceedings of ICON

Kumar A, Mittal V, Kulkarni A (2010) Sanskrit compound processor. In:
Jha GN (ed) Sanskrit computational linguistics. Springer, Berlin,
Heidelberg, pp 57-69

Kumar P, Ahmad R, Chaudhary B, Sinha M (2013a) An approach
to assure QoS of machine translation system on cloud. In: Pro-
ceedings of the 4th international conference on cloud computing,
GRIDs, and virtualization, pp 179-184

Kumar P, Ahmad R, Chaudhary B, Sinha M (2013b) Dashboard: a tool
for integration, validation, and visualization of distributed NLP
systems on heterogeneous platforms. In: The companion volume
of the proceedings of IJICNLP 2013: system demonstrations, pp
9-12

Kumar P, Ahmad R, Chaudhary BD, Sangal R (2013c) Machine transla-
tion system as virtual appliance: for scalable service deployment on
cloud. In: IEEE 7th international symposium on service-oriented
system engineering. IEEE, New York, pp 304-308

Kundra H, Sadawarti H (2015) Hybrid algorithm of cuckoo search and
particle swarm optimization for natural terrain feature extraction.
Res J Inf Technol 7(1):58-69

Laadan O, Nieh J, Viennot N (2010) Teaching operating systems using
virtual appliances and distributed version control. In: Proceedings
of the 41st ACM technical symposium on computer science edu-
cation. ACM, New York, pp 480-484

Machida F, Kawato M, Maeno Y (2010) Renovating legacy distributed
systems using virtual appliance with dependency graph. In: 2010
international conference on network and service management.
IEEE, New York, pp 17-24

Mishra V, Mishra R (2009) Ann and rule based model for English to
Sanskrit machine translation. INFOCOMP J Comput Sci 9(1):80—
89

Mittal V (2010) Automatic Sanskrit segmentizer using finite state
transducers. In: Proceedings of the ACL 2010 student research
workshop, association for computational linguistics, pp 85-90

Naderpour H, Mirrashid M (2019) Classification of failure modes in
ductile and non-ductile concrete joints. Eng Fail Anal 103:361-
375

Naderpour H, Mirrashid M (2020a) Confinement coefficient predic-
tive modeling of FRP-confined RC columns. Adv Civ Eng Mater
9(1):1-21

Naderpour H, Mirrashid M (2020b) Proposed soft computing models
for moment capacity prediction of reinforced concrete columns.
Soft Comput 2020:1-15

@ Springer

Naderpour H, Vahdani R, Mirrashid M (2018) Soft computing research
in structural control by mass damper (a review paper). In: 4th
international conference on structural engineering, Tehran

Naderpour H, Mirrashid M, Nagai K (2019) An innovative approach
for bond strength modeling in frp strip-to-concrete joints using
adaptive neuro-fuzzy inference system. Eng Comput 2019:1-18

Nandi M, Ramasree R (2013) Rule-based extraction of multi-word
expressions for elementary Sanskrit texts. Int] Adv Res Comput
Sci Softw Eng 3(11):661-667

Neelaveni R, Sridevi B (2019) A novel Neyman—Pearson criterion-
based adaptive neuro-fuzzy inference system (NPC-ANFIS)
model for security threats detection in cognitive radio networks.
Soft Comput 23(18):8389-8397

Pandey RK, Jha GN (2016) Error analysis of sahit—a statistical
Sanskrit-Hindi translator. Proc Comput Sci 96:495-501

Pappu A, Sanyal R (2008) Vaakkriti: Sanskrit tokenizer. In: Proceed-
ings of the 3rd international joint conference on natural language
processing

Polykretis C, Kalogeropoulos K, Andreopoulos P, Faka A, Tsatsaris
A, Chalkias C (2019) Comparison of statistical analysis models
for susceptibility assessment of earthquake-triggered landslides: a
case study from 2015 earthquake in Lefkada Island. Geosciences
9(8):350

Qian L, Luo Z, Du Y, Guo L (2009) Cloud computing: an overview.
In: IEEE international conference on cloud computing. Springer,
Berlin, pp 626-631

Rathod SG, Sondur S (2012) English to Sanskrit translator and synthe-
sizer (ETSTS). Int J Emerg Technol Adv Eng 2(12):379-383

Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud
computing systems. In: INC, IMS and IDC, pp 44-51

Sachin K (2007) Sandhi splitter and analyzer for Sanskrit (with refer-
ence to AC sandhi). Mphil Thesis (SCSS), INU

Schwartze C, Kralisch S, Fliigel WA (2011) Geospatial virtual appli-
ances using open source software. In: International symposium on
environmental software systems. Springer, Berlin, pp 154-160

Sennrich R, Haddow B (2016) Linguistic input features improve neural
machine translation. Preprint arXiv:1606.02892

Shi W, Lu Y, Li Z, Engelsma J (2011) Sharc: a scalable 3D graphics
virtual appliance delivery framework in cloud. J Netw Comput
Appl 34(4):1078-1087

Shobana M, Sabitha R, Karthik S (2020) An enhanced soft computing-
based formulation for secure data aggregation and efficient data
processing in large-scale wireless sensor network. Soft Comput
2020:1-12

Siddique N, Adeli H (2013) Computational intelligence: synergies of
fuzzy logic, neural networks and evolutionary computing. Wiley,
Berlin

Singh M, Kumar R, Chana I (2019a) Neural-based machine translation
system outperforming statistical phrase-based machine translation
for low-resource languages. In: 2019 12th international conference
on contemporary computing (IC3). IEEE, New York, pp 1-7

Singh M, Kumar R, Chana I (2019b) Neuro-FGA based machine trans-
lation system for Sanskrit to Hindi language. In: 2019 international
conference on innovative sustainable computational technologies
(CISCT). IEEE, New York, pp 1-6

Skadin$ R, Tiedemann J, et al. (2012) Letsmt!: a cloud-based platform
for do-it-yourself machine translation. In: Proceedings of the ACL
2012 system demonstrations. Association for Computational Lin-
guistics, pp 4348

Sun K, Mou S, Qiu J, Wang T, Gao H (2018) Adaptive fuzzy control
for nontriangular structural stochastic switched nonlinear systems
with full state constraints. IEEE Trans Fuzzy Syst 27(8):1587—
1601

Upadhyay Pankaj KA, Chandra Jaiswal Umesh (2014) Transish: trans-
lator from Sanskrit to English-A rule based machine translation.
Int J Comput Appl 4(5):2277-4106

http://arxiv.org/abs/1606.02892

A forefront to machine translation technology: deployment on the cloud as a service...

16079

Vasiljevs A, Skadin$ R, Tiedemann J (2011) Letsmt!: cloud-based plat-
form for building user tailored machine translation engines. In:
Proceedings of the 13th machine translation summit, pp 507-511

Vaswani A, Bengio S, Brevdo E, Chollet F, Gomez AN, Gouws S, Jones
L, Kaiser k., Kalchbrenner N, Parmar N, et al. (2018) Tensor2tensor
for neural machine translation. Preprint arXiv:1803.07416

Venugopal A, Zollmann A (2009) Grammar based statistical MT on
hadoop: an end-to-end toolkit for large scale pscfg based mt.
Prague Bull Math Linguist 91:67-78

Xing Y, Zhan'Y (2012) Virtualization and cloud computing. In: Zhang Y
(ed) Future wireless networks and information systems. Springer,
Berlin, Heidelberg, pp 305-312

Yager RR, Zadeh LA, Kosko B, Grossberg S (1994) Fuzzy sets, neural
networks and soft computing. Technical report

Zadeh LA (1996) Fuzzy logic, neural networks, and soft computing.
Communication of the ACM, vol 37, no 3, pp 77-83

Zhang Z, Hong WC (2019) Electric load forecasting by complete
ensemble empirical mode decomposition adaptive noise and sup-
port vector regression with quantum-based dragonfly algorithm.
Nonlinear Dyn 98(2):1107-1136

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1803.07416

	A forefront to machine translation technology: deployment on the cloud as a service to enhance QoS parameters
	Abstract
	1 Introduction
	1.1 Need of MT deployment on cloud
	1.2 Problem statement
	1.3 Contribution
	1.4 Paper organization

	2 Review of the existing work
	2.1 MTS on cloud
	2.2 MTS for the Sanskrit language

	3 Sanskrit–Hindi hybrid machine translation system (SHH-MTS) as a service
	3.1 Characteristics of Sanskrit–Hindi machine translation system
	3.2 SHH-MTS: rule-based machine translation system; extraction of linguistic features
	3.3 SHH-MTS: neural network-based RNN approach
	3.4 SHH-MTS: hybrid approach
	3.5 Deploying SHH-MTS on cloud

	4 Experimental details
	5 Result analysis
	5.1 Comparative analysis of our proposed work with earlier research work
	5.2 Performance analysis on deployment of rule-based MT, neural MT and hybrid MT on cloud

	6 Open challenges and future research directions
	7 Conclusion
	8 Future work
	References

