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Abstract
Recent developments tools and techniques for structural health monitoring allow the design of early warning systems for
the damage diagnosis and structural assessment. Most methods to damage detection involve vibration data analysis by using
identification systems that generally require amathematical model andmuch information about the system, such as parameters
and states that are mostly unknown. In this paper, a novel frequency domain convolutional neural network (FDCNN) proposed
aims to design an identification system for damage detection based on Bouc–Wen hysteretic model. FDCNN, unlike other
works, only requires accelerationmeasurements for damage diagnosis that are very sensitive to environmental noise. In contrast
to neural network (NN) and time domain convolutional neural network, FDCNN reduces the computational time required for
the learning stage and adds robustness against noise in data. The FDCNN includes random filters in the frequency domain to
avoidmeasurement noise using a spectral pooling operation, which is useful when the system bandwidth is unknown. Incorrect
filtering can produce unwanted results, as a shifted and attenuation signal relative to the original. Moreover, FDCNN allows
overcoming the parameterization problem in nonlinear systems, which is often difficult to achieve. In order to validate the
proposed methodology, a comparison between two different architectures of convolutional neural networks is made, showing
that proposed CNN in frequency domain brings better performance in the identification system for damage diagnosis in
building structures. Experimental results from reducing scale two-storey building confirm the effectiveness of the proposed.

Keywords Structural health monitoring · Damage detection · Convolutional neural network · Identification system

1 Introduction

Structural health monitoring (SHM) of a building struc-
ture during the lifetime, or after a seismic activity, has
gained increasing attention in the engineering field. Over the
past decades, vibration-based damage detection techniques
have been studied extensively and have found increasing
applications in civil and mechanical engineering. Most dam-
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age detection methods typically involve data processing to
explore changes in both the dynamic properties of structures
such as vibration frequency (Farrar et al. 2001; Roux et al.
2014; Vidal et al. 2014) and mode shapes (Maia et al. 2003;
Zhu et al. 2011; Rucevskis et al. 2016) directly related to the
stiffness reduction as a consequence of structural damage.
For practical applications, both methods require to excite a
building at high frequencies, which is not easy to achieve,
and therefore, the damage may go unnoticed. Following this
line, the bulk of research (Doebling et al. 1998; Zou et al.
2000; Carden and Fanning 2004; Fan and Qiao 2011; Pau
and Vestroni 2013) provides an extensive summary review of
vibration-based damage identification methods. The authors
discuss the advantages and limitations of different methods
under this approach. For a recent review based on vibration-
based damage detection, readers can consult Das et al. 2016;
Kong et al. 2017. The accuracy of those methods depends
on many sensors, and they might be biased by measurement
noise (Rahai et al. 2007).
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Other studies as in Loh et al. (2011) suggest that during
earthquakes, buildings structures exhibit a nonlinear and hys-
teretic behavior. Within this context, in Farrar et al. (2007)
authors point out that under cyclic excitation associated with
earthquakes, degradation of a structure manifests itself in the
evolution of the associated hysteresis loop. The idea behind
is that the plastic strain amplitude is related to the number
of cycles to failure, and it can be represented by means of
stress strain loops (Ma et al. 2004). Similarly, in Ikhouane
et al. (2005) it is reported that structural damage caused
by earthquake may be due to excessive deformations, or it
may be in the form of accumulated damage sustained under
repeated load reversals. Under this line, reference (Chatzi
et al. 2010) presents a review of some damage detection
methods, where damage-sensitive data features are based
on nonlinear system response. In Ceravolo et al. (2013), the
Bouc–Wen hysteretic model is employed to identify physical
parameters such as stiffness degradation, strength deteriora-
tion and hysteresis behavior of the reinforced concrete frame,
to be used as a safety assessment index for the seismic assess-
ment of RCbuilding.Moreover, an extensive bulk of research
of vibration-based nonlinear system identification for dam-
age detection can be found inBursi et al. (2013).Applications
of Bouc–Wen model and online identification for full three-
dimensional scale steel-concrete can be found in Shan et al.
(2016) andWan et al. (2018). It is important to note that when
the nonlinearity is known, nonlinear identification may rea-
sonably follow a parametric approach and estimates response
matches experimental data. Otherwise, the estimation is not
always achieved and it is not possible to guarantee parametric
convergence, due to measurement noise, offset and uncer-
tainty. The most usual form to avoid measurement noise and
offset is by using band pass filter. However, a prior system
bandwidth is required to obtain satisfactory results; other-
wise, correct filtering of the signal cannot be guaranteed,
producing unwanted estimated values.
With respect uncertainty during experiments, data collection,
measurement process or when determining the initial val-
ues. Arqub et al. (2016) proposes a new method to solve
numerically fuzzy differential equations based on the use
of the reproducing kernel as a potential tool to model sev-
eral real physical phenomena under possibility uncertainty.
This method yields more accurate approximations, espe-
cially in nonlinear cases. In the same research direction,
a new efficient iterative algorithm for solving the analytic
and approximate solutions of second-order, two-point fuzzy
boundary value problems by using the Reproducing Ker-
nel Hilbert Space method under the assumption of strongly
generalized differentiability is investigated in Arqub et al.
(2017). Similarly, in Arqub and Abo-Hammour (2014) the
employment of continuous genetic algorithms is proposed
in order to numerically approximate a solution of linear and
nonlinear systems of second-order boundary value problems.

Reported results showed that the threemethods are fast, accu-
rate and very effective with a great potential in mathematical
and engineering applications. However, in both cases, meth-
ods have not been evaluated for damage detection task.

Regarding nonlinear system identification, the artificial
neural network approach has been widely used in charac-
terizing structure-unknown nonlinear systems. The neural
network framework offers a rigorous basis for identifica-
tion systems, mainly because this approach does not require
a mathematical model of the system. Neural networks also
overcome the problem of parameterization of nonlinear sys-
tems, and their structure can be modified for each case (Chen
et al. 1990). An exhaustive review of these methods can be
found in Sohn et al. (2003). However, its application to phys-
ical systems is not always robust and accurate, and some
methods demand long-time histories from the undamaged
structure and intensive data processing, which is not always
easy to achieve. Recently, the rapid advances in computation
power has led to the use of deep learning techniques like con-
volutional neural networks (CNN) (LeCun et al. 1989) as a
promising tool. The difference between the classical neural
network (NN) and CNN are

(1) CNN includes at least a convolutional layer, where units
are not connected to all units in previous layer as in a
fully connected layer and they are only connected to
units near to them; it can be said that their receptive field
is small.

(2) The filters of CNN are shared in the same convolution
layers. This allows to reduce the parameters to be trained,
and certain properties or features from input data can be
detected no matter its locations in the data.

(3) The main layers of CNN are the subsample layers or
pooling layers. These layers reduce the sizes of the data
through the neural network, allowing deeper structures
cause these layers do not require updatable parameters.
This characteristic is especially beneficial because they
reduce the number of units in the neural network.

Therefore, CNN is getting popular, especially for image
classificationwith broad usage taking relevance in fields such
as the automotive sector, industries, medicine, robotics and
others. Satisfactory results under this approach are reported
in Kim (2014) and Simard et al. (2003) that use CNN for sen-
tence classification and document analysis, face recognition
(Lawrence et al. 1997), road sign detection and classification
(Bouti et al. 2018), Chinese license plates recognition (Liu
et al. 2018b), bearing defects classification (Appana et al.
2018) and ImageNet LSVRC-2010 contest (Krizhevsky et al.
2012). Moreover, positive results have also been reported
for detection task by using CNN. An accurate lithography
hotspot detection framework is addressed by a CNN in refer-
ence (Shin and Lee 2016), obtaining better results and higher
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performance in the ICCCAD 2012 dataset, also achieving a
time reduction compare to optical simulation methods and
SVM.Within some new CNN applications, we have an auto-
mated identification of abnormal EEG signals (Yıldırım et al.
2018), Alzheimer’s disease detected by using magnetic reso-
nance images and CNN (Vu et al. 2018), real-time ozone
concentration prediction system (Eslami et al. 2019) and
application on rotating machines failure detection (Udmale
et al. 2019; Ma et al. 2019). Another recent application of
CNN arisen in recent years is in civil engineering. CNN
applied to buildings is very sensitive to damage assessment,
because CNN takes advantage of minimal engagement of
signal processing and automated features extraction for the
fault diagnosis. In Cha et al. (2017), the convolutional neural
network is used as a classifier over concrete cracks images
to determine damage. In Lin et al. (2017), a convolutional
neural network is used as a classifier for damage detec-
tion from data obtained from a low-level sensor and for
feature detection at the same time. One-dimensional CNN
for real-time damage detection is proposed in Abdeljaber
et al. (2017); they propose to use a CNN for each joint and
this way they can determine whether there is damage and
locate it in a fast fashion. Following this line, Modarres et al.
(2018) proposes a convolutional neural network basis on a
computer vision approach in automated inspection to iden-
tify the presence and type of structural damage. Conducted
simply from images Atha and Jahanshahi (2018), evaluates
corrosion assessment on metallic surfaces using a different
convolutional neural network and images. Other applications
and variations of CNN to other specific damage detection
contexts can be found in Zhao et al. (2019) and Liu et al.
(2018a). In the latter, several algorithms with applications
in rotary machines are presented. Note that most methods
for damage diagnosis under CNN approach have reported
satisfactory results in the analysis of images, and generally,
they are developed on time domain. Since CNN incorporates
random filters in its design, it reduces measurement noise.

However, the convolution in the time domain is incre-
ment operation that can require higher computation timewith
respect to other algorithms. Moreover, supposing that ran-
dom filters do not completely eliminate measurement and
offset, estimation can be biased of real data. An alternative to
avoid these problems is to introduce frequency domain CNN
(FDCNN) that adds an spectral polling layer to reduce the
measurement noise. The detailed reasons for using frequency
domain CNN to estimate the hysteretic displacement are:

(1) CNN is getting popular for image classification with
a broad usage spanning across automotive, industrial,
medicine, robotics and others. The convolution opera-
tion is change for a element-wise product that reduces
the operations amount. This advantage is reflected on the
training stage because the algorithm requires to realize

on each iteration many of these operations. CNN takes
advantage of minimal engagement of signal processing
and automated features extraction for the fault diagno-
sis. CNNapplied to buildings is very sensitive to damage
assessment.

(2) FDCNN avoids memory size growth compared to tradi-
tional CNN based approach. FDCNN avoid the convo-
lution stage.

(3) FDCNN does not require any assumption on the type
and localization of structural nonlinearity.

(4) FDCNN does not require preprocessing stage and auto-
matically learns directly from the vibration data and
eliminates the noise components of the signal aug-
menting the system response that makes it robust to
identification task.

In the past, several new research projects have been funded
to improve the damage detection methods, including the use
of innovative signal processing, new sensors and control the-
ory. This paper highlights these new research directions and
uses FDCNN to learn features directly from frequency data of
vibration signals for damage detection in a building structure.
The damage detection method is based on dissipated energy.
Since the earthquake introduces several stress cycles in dif-
ferent directions in the structure, load-strain curves can be
used as an indicator of damage. To represent these phenom-
ena, a Bouc–Wen model is used, which is estimated through
frequency domain CNN. It has been previously described
that CNN has an outstanding performance as a classifier, but
in the authors knowledge, there are not reported works that
show FDCNN is used for system identification. The objects
of the paper are:

(1) We use the frequency domain CNN to model the hys-
teretic displacement via vibration data. Then, we apply
the hysteretic displacement for the damage diagnosis.

(2) Since the measurement noise and offset affect the iden-
tification systems, we use FDCNN to overcome it . The
combination of frequency random filters and spectral
pooling avoids measurement noise effect in the identi-
fication process. Therefore, the robustness of proposed
algorithm is evaluated.

The main result in this paper is to show that the properties
of FDCNN have some advantages over the time domain ones
and NN when measurement noise in data exists as follows:

(1) FDCNN overcome nonlinear parameterization in the
identification system that is generally difficult to achieve.
It can extract most important damage-sensitive charac-
teristics automatically from acceleration signals.

(2) The proposed algorithm is alternative solutions to
the identification methods, which is robust to high-
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frequency measurement noise. In the frequency domain,
the convolution stage is replaced by elements-wise prod-
uct that reduces computational complexity, aswell as the
execution time.

(3) The proposed method avoids long-time histories from
the undamaged structure and intensive data processing.
Moreover, it can work at both large and small scales,
depending on the number and location of sensors. In our
paper, the intermediate scale approach is taken focusing
on the detection of damage at a storey level.

The structure of the paper is the following: First, themath-
ematical model of a building structure and the Bouc–Wen
hysteretic model are presented in Sect. 2. The architecture
of proposed frequency domain convolutional neural net-
work (FDCNN) for system identification task is described in
Sect. refSec:CNNf, as well as a frequency analysis in a con-
volutional layer and a sensibility analysis of FDCNN to noise
data. Section 4 contains the experimental results conducted
in a reduced scale two-storey building prototype in order
to investigate the damage detection capability. Moreover, a
comparison study between neural network (see “Appendix
C”), time domain CNN (see “Appendix B”) and proposed
FDCNN is carried out to evaluate the performance of pro-
posedmethod. Finally, a summary of the findings is provided
in Sect. 5.

2 Mathematical model of building structure

The dynamics of a multiple degrees of freedom (MDOF)
shear building structures subject to seismic activity is
described by

Mẍ(t) + Cẋ(t) + Kx(t) = −Mlẍg(t) (1)

where

x(t) = {x1(t), x2(t), . . . , xn(t)}T ∈ �n×1, (2)

ẋ(t) = {ẋ1(t), ẋ2(t), . . . , ẋn(t)}T ∈ �n×1, (3)

ẍ(t) = {ẍ1(t), ẍ2(t), . . . , ẍn(t)}T ∈ �n×1, (4)

l = {1, 1, . . . , 1}T ∈ �n×1, (5)

ẍa(t) = ẍ(t) + l ẍg(t) ∈ �1×1 (6)

The term n indicates the number of floors; the entries
xi (t), ẋi (t)and ẍi (t), with i = 1, 2, . . . , n, are the relative
displacement, velocity and acceleration of each floor, respec-
tively, measured with respect to the basement. Signal ẍa(t)
represents the absolute acceleration, and ẍg(t) is the ground
acceleration induced by the earthquake that is distributed by
the influence vector l. Moreover, M , K and C are the mass,

stiffness and damping matrices, respectively, defined as

M =

⎡
⎢⎢⎢⎣

m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

⎤
⎥⎥⎥⎦ > 0 ∈ �n×n (7)

C =

⎡
⎢⎢⎢⎣

c1 + c2 −c2 · · · 0
−c2 c2 + c3 · · · 0

...
...

. . .
...

0 0 · · · cn

⎤
⎥⎥⎥⎦ ≥ 0 ∈ �n×n (8)

K =

⎡
⎢⎢⎢⎣

κ1 + κ2 −κ2 · · · 0
−κ2 κ2 + κ3 · · · 0

...
...

. . .
...

0 0 · · · κn

⎤
⎥⎥⎥⎦ > 0 ∈ �n×n (9)

where parameters ci and κi are, respectively, the lateral col-
umn damping and stiffness between the ith and (i − 1)th
storey.
Note that the damping at the building structure is represented
by Rayleigh model, Chopra (1995) defined by

C = a0M + a1K (10)

where the Rayleigh parameters a0 and a1 are calculated by
using the first and third eigen-frequenciesωi , in the following
expression

1

2

[
1
ωi

ωi
1
ω j

ω j

][
a0
a1

]
=
[
ξi
ξ j

]
(11)

where ξ j ωi with i = j = 1, 2, . . . , n are the damping
ratio and the vibration frequency of the ith structural mode,
respectively. Note that model (1) assumes that the building
structure is undamaged and operates in its elastic range.

Remark 1 Initially the building is at rest, that is, x(0) =
ẋ(0) = ẍ(0) = 0. Moreover, ground acceleration is zero
before an earthquake ẍg = 0.

Remark 2 Acceleration measurements of each storey and
basement are available, and they are affected by offset and
high-frequency measurement noise.

ẍm = ẍ + ς + λ (12)

ẍgm = ẍg + ςg + λg (13)

with ẍm = [ẍ1m ẍ2m . . . ẍnm] is the measured accel-
eration vector, ẍgm is the measured ground acceleration,
ς = [ς1 ς2 . . . ςn] and ςg are measurement offsets, and
λ = [λ1 λ2 . . . λn] and λg are high-frequency measurement
noises. For ease ẍm will be considered as ẍ throughout the
article.
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Remark 3 Assuming that the building is damaged, a non-
linear degradation term is introduced in (1) that relates the
strain-stress with damage

M(ẍ + l ẍg) + Cẋ + Tρ(x, z) = 0 (14)

T = diag
[
1, 1, . . . , 1

]
(15)

ρ(x, z) = [ρ(x1, z1), ρ(x2, z2), . . . , ρ(xn, zn)
]T

(16)

where nonlinearityρ(x, z) is representedbyusing the smooth
hysteresis Bouc–Wen model, Wen (1976)

ρ(xi , zi ) =αiκi xi + (1 − αi )κi zi (17)

żi = Ai ẋi − νi (βi |ẋi |zσi−1
i z − γi ẋi |zi |σi )
ηi

(18)

where the subscript i = 1, 2 . . . , n refers to the floor num-
ber; α, κ and γ , are the ratio of postyield, the preyield
stiffness and the yield deformation, respectively, whereas zi
is the hysteretic displacement of the nonlinear shear build-
ing. Generally, β and γ are called loop parameters and they
affect the size, whereas σ > 1 influences the smoothness
on the hysteresis loop. Moreover, ν and η, are strength and
stiffness degradation functions of the dissipated hysteretic
energy, respectively, defined as (Ma et al. 2006),

ηi (Ei ) =1.0 + δη,i Ei (19)

νi (Ei ) =1.0 + δν,i Ei (20)

where δη and δν are the stiffness and strength degradation
ratio, respectively. Generally, these variables are nonnegative
and unknown parameters, that will be estimated.

Remark 4 A convenient measure of degradation as a result
of structural damage is the dissipated energy from structural
hysteresis cycle measured from t = 0 to t

Ei (t) =
∫ t

0
zi ẋidx (21)

Note that the systems described in (14) and (18) can be
rewritten as a set of nonlinear differential equations subjected
to the external force

m1 ẍ1 + c1 ẋ1 + ρ(x1, z1) = m1 ẍg (22)

m2 ẍ2 + c2 ẋ2 + ρ(x2, z2) = m2 ẍg (23)

...

mnẍn + cn ẋn + ρ(xn, zn) = mnẍg (24)

equivalents to

m1 ẍ1 + c1 ẋ1 + α1κ1x1 + (1 − α1)κ1z1 = m1 ẍg (25)

m2 ẍ2 + c2 ẋ2 + α2κ2x2 + (1 − α2)κ2z2 = m2 ẍg (26)

...

mnẍn + cn ẋn + αnκnxn + (1 − αn)κnzn = mnẍg (27)

Taking into account that parameters and the internal state zi
of Bouc–Wen hysteretic model (18) are unknown, then both
must be estimated, as

˙̂zi = Âi ẋi − ν̂i (β̂i |ẋi |ẑσi−1
i ẑ − γ̂i ẋi |ẑi |σi )
η̂i

(28)

η̂i (Ei ) =1.0 + δη,i Êi (29)

ν̂i (Ei ) =1.0 + δν,i Êi (30)

Êi (t) =
∫ t

0
ẑi ẋidx (31)

In this work, FDCNN is proposed to identify the Bouc–
Wen hysteretic displacement 28, as an important application
for damage detection in building structures through an energy
analysis. The use of CNN in real application overcomes the
parameter and state estimation problem. The inclusion of
randomfilters in the FDCNNdesign eliminatesmeasurement
noise in acceleration data, as will be shown later.

3 Frequency domain CNN architecture

In this section, the development of the proposal frequency
domain CNN is presented. Themain differences with respect
time domain CNN is that a discrete Fourier Transform (DFT)
is applied to the inputs and to the filters in convolutional
layers; thus, the operations become simpler from the compu-
tational point of view. Also no activation function is required.
Definition and uses of DFT in the FDCNN are shown in
“Appendix A.”

Consider an unknown discrete-time nonlinear system

y(q) = f (x(q)) . x(q + 1) = g (x(q), u(q)) (32)

where y(q) is the scalar output, x(q) the internal state, u(q)

the input, f (·) and g(·) smooth functions, f , g ∈ C∞ .
A nonlinear autoregressive exogenous (NARX) model

for (32) is defined as

y(q) = Φ [� (q)] (33)

and the system dynamics are represented by the unknown
nonlinear difference equation Φ, where

� (q) = [y (q − 1) , . . . , y
(
q − ny

)
, u (q) , . . . , u (q − nu)]T

(34)
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Fig. 1 Convolutional layer operations

y(q) and u(q) into (34) represent, respectively, the measur-
able output and input for the system, with ny and nu the
regression order, respectively, which are unknown.

Consider the system (33) to be estimated and regard the
same input for the CNN.A discrete Fourier transform (DFT)
is applied to this input to obtain a frequency representation of
the same length, i.e., Φ(0) = F(�̂ ). In this representation,
it is assumed that DC frequencies are shifted to the center of
the domain.

In (35), the output layer of this new frequency domain con-
volutional neural network (DFCNN) is shown, where ŷF (q)

is the scalar output signal of the FDCNN. This layer now is
a fully connected layer, with Υ is the output of the last sub-
sample layer and V (�) ∈ RL2 are the weights in the output
layer.

ŷF (q) = V (�)TΥ (35)

For the convolutional layers, random filters are defined
like �

(�)
i ∈ � f� , where i = 1, 2, . . . , h2. Furthermore, h2 is

the total of filters in the current layer �. These filters also go
through a DFT to match the dimension of the output of the
previous layer (for the first layer, the transformwill match the
size ofΦ(0)), i.e.,Γ (�)

i = F(�
(�)
i ), for this conversion,matrix

F defined in section A, a new matrix is built for each size of
the data. So, the output of a convolutional layer is defined as
the element-wise product (�) of the output of previous layer
and the filters, such as

Ψ
(�)
i = Ψ

(�−1)
i � Γ

(�)
i (36)

Figure 1 showshowboth convolutional layerswork.While
in time domain filters has less elements than the filters in
frequency domain, the convolution between them and the
input requires more operations. Also no activation function
is used in frequency domain as it can be seen.

For the subsample layers, a spectral pooling operation is
applied (Rippel et al. 2015). Here, the idea is to remove high
frequencies to reduce size of the input. s(�) represents the
number of elements to be removed, so output of these layers

Table 1 Algorithm 1: spectral pooling

Algorithm 1: Spectral pooling

Input: Map x ∈ �M×N , output size H × W

Output: Pooled map x̂ ∈ �H×W

1: y ← F(x)

2: ŷ ← CROPSPECTRUM (y, H × W )

3: ŷ ← TREATCORNERCASE (ŷ)

4: x̂ ← F−1(ŷ)

Table 2 Algorithm 2: spectral pooling proposed

Algorithm 2: Spectral pooling

Input: Map Ψ
(�−1)
i ∈ C

N , output size N − s(�)

Output: Pooled map Ψ
(�)
i ∈ C

N−s(�)

1: Ψ
(�)
i ← Shrink(Ψ (�−1)

i , s(�))

is defined as

Ψ
(�)
i = Shrink(Ψ (�−1)

i , s(�)) (37)

The Shrink operation in the spectral pooling removes s(�) ele-
ments in its input, two from the top and two from its bottom,
so the output remains symmetric. Initially, this operation was
introduced by Rippel et al. (2015). The Shrink is defined in
Table 1:

For subsample layer, the shrink operation is based on algo-
rithm presented in Table 2. Since Algorithm 1 is intended for
a general case where matrices are used, some modifications
were made. The first modification consists in eliminating the
two steps where the DFT operation is performed as well as
its inverse. Given the structure of FDCNN, it is not neces-
sary to be passing between domains (time to frequency and
vice versa) in each layer of the network, but only in the input
layer and at the end of the subsampling layers. The second
modification is made by eliminating step 3 of the algorithm,
because this operation dealswith the casewhere the represen-
tations do not have the appropriate dimension and therefore
a real output cannot be obtained. This problem is eliminated
by proposing an input with adequate dimensions in the net-
work, in such a way that the convolutional and subsampling
layers and the inverse DFT are applied; hence, real values
are obtained. Finally, given that the proposed FDCNNworks
with vectors instead of matrices, step 2 is carried out while
retaining the central sub vector of the input. These modifica-
tions are reflected in Table 2.

Note that all representations in frequency domain have an
odd size dimension to simplify calculations and in further
operations we can obtain a time domain representation ade-
quate. As previously mentioned, as many as they are needed,
convolutional and subsample layers can be connected one
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Fig. 2 Frequency domain convolutional neural network for system
identification

after other. After this cascade connection of layers, the out-
put of the last subsample layer has to be mapped back, i.e.,

ψ
(�)
i = F−1

(
Ψ

(�)
i

)
and stacked in a single vector

Υ =
[
ψ

(�)T
1 , ψ

(�)T
2 , . . . , ψ

(�)T
h2

]T
(38)

The complete architecture of FDCNN is illustrated in Fig. 2.
The equations for training are described in the next section.

3.1 Training of frequency domain CNN

The backpropagation algorithm is used for training. The cost
function is

J (q) = 1

2
e2(q) = [ŷF (q) − y(q)

]2 (39)

For the fully connected layer, the gradient of J with respect
to synaptic weights V is:

V (q + 1) = V (q) − ηo
∂ J

∂V
= V (q) − ηFeΥ (40)

ηF is the learning rate defined one for each layer.
The propagated error to the previous layer is

∂ J

∂Υ
= ∂ J

∂e

∂e

∂ ŷF

∂ ŷF
∂Υ

= eV (41)

BecauseΥ is the stacked vector of the inputs of subsample
layers, we take the same amount of elements that each ψ

(�)
1

gave in forward stage. Next, the propagated gradient to each
one of this outputs has to be transformed using the DFT by
applying theDFTmatrix inverse corresponding to the sizewe
want tomatch, so it can be propagated through the subsample
and convolutional layers.

For the subsample layers, the spectrum has to equal the
size of the previous convolutional layer, so, in this layer the
only operation required is to increase the frequency repre-
sentation of the propagated error, i.e.,

∂ J

∂Ψ
(�−1)
i

= up

(
∂ J

∂Ψ
(�)
i

)
(42)

where up(·) is an operation realized to increase the spec-
tral representation. In order to realize this operation after
the gradient goes through a convolutional layer, which is
already in frequency domain, properties of DFT are used
and a series of matrix multiplication are realized to match
the size of previous layers; this prevents in some way mak-
ing the inverse transform to time domain and back again to
frequency domain.

For the convolutional layers, the update is as follows:

∂ J

∂Γ (�)
= ∂ J

∂Ψ (�)
� Ψ (�−1) (43)

This is the element-wise product between the propagated
error and the output of previous layer. Since each element of
the filter can be updated separately, then (43) can be written
as:

∂ J

∂Γ
(�)
a

= ∂ J

∂Γ
(�)
a

Ψ (�−1)
a (44)

Γ �
a is each element of the filters represented in frequency

domain with a = 1, 2, . . . f�.
To obtain the propagated gradient to the previous layers,

we have

∂ J

∂Ψ (�−1)
= ∂ J

∂Ψ (�)
� Γ (�) (45)

which is also the element-wise product between the filters
and the propagated gradient to the current layer.

3.2 Frequency analysis in a convolutional layer

The convolutional layer as defined in (36) represents the
element-wise product between the output of previous layer
and the filters in the current layer, and it is interesting to
obtain some more information about this operation; in that
sense, a proposition is formulated showing the relationship
between the output changes with respect to the input change
into a convolutional layer.

Proposition 1 Consider a convolutional layer in a FDCNN
defined as:

Ψ
(�)
i = Ψ

(�−1)
i � Γ

(�)
i (46)

123



15828 M. Lopez-Pacheco et al.

where Ψ
(�)
i is the output of the current layer �, Ψ (�−1)

i rep-
resent the output of previous layer, in the case � = 1,
Ψ

(0)
i = Φ(0), Γ

(�)
i is the frequency domain representation

of the filters in this layer and i = 1, 2, . . . , h, where h is
total number of hyperparameters in the layer.

The relationship between ΔΨ
(�)
i (q) and ΔΨ

(�−1)
i (q) is

ΔΨ
(�)
i (q)

ΔΨ
(�−1)
i (q)

= Γ
(�)
i (q) (47)

when the filters are updated using the following rule

ΔΓ
(�)
i (q) = Ψ

(�)
i (q − 1) − Γ

(�)
i (q)Ψ

(�−1)
i (q − 1)

ΔΨ
(�−1)
i (q)

(48)

Proof Differentiating (46), it is obtained

ΔΨ
(�)
i (q) = ΔΓ

(�)
i (q)Ψ

(�−1)
i (q) + Γ

(�)
i (q)ΔΨ

(�−1)
i (q)

(49)

with the aid of the definitions ΔΨ
(�−1)
i (q) = Ψ

(�−1)
i (q) −

Ψ
(�−1)
i (q − 1), ΔΨ

(�)
i (q) = Ψ

(�)
i (q) − Ψ

(�)
i (q − 1) and

ΔΓ
(�)
i (q) = Γ

(�)
i (q) − Γ

(�)
i (q − 1), it is followed that

ΔΨ
(�)
i (q) = ΔΓ

(�)
i (q)(Ψ

(�−1)
i (q) + Ψ

(�−1)
i (q − 1))

+ Γ
(�)
i (q)ΔΨ

(�−1)
i (q)

= ΔΓ
(�)
i (q)Ψ

(�−1)
i (q − 1)

+ (ΔΓ
(�)
i (q) + Γ

(�)
i (q))ΔΨ

(�−1)
i (q)

= (Γ
(�)
i (q) − Γ

(�)
i (q − 1))Ψ (�−1)

i (q − 1)

+ (ΔΓ
(�)
i (q) + Γ

(�)
i (q))ΔΨ

(�−1)
i (q)

= Γ
(�)
i (q)Ψ

(�−1)
i (q − 1) − Ψ

(�)
i (q − 1)

+ (ΔΓ
(�)
i (q) + Γ

(�)
i (q))ΔΨ

(�−1)
i (q)

= Γ
(�)
i (q)Ψ

(�−1)
i (q − 1) − Ψ

(�)
i (q − 1)

+ ΔΓ
(�)
i (q)ΔΨ

(�−1)
i (q) + Γ

(�)
i (q)ΔΨ

(�−1)
i (q)

(50)

Defining

ΔΓ
(�)
i (q) = Ψ

(�)
i (q − 1) − Γ

(�)
i (q)Ψ

(�−1)
i (q − 1)

ΔΨ
(�−1)
i (q)

(51)

replacing (51) in (50)

ΔΨ
(�)
i (q) = Γ

(�)
i (q)ΔΨ

(�−1)
i (q) (52)

or

ΔΨ
(�)
i (q)

ΔΨ
(�−1)
i (q)

= Γ
(�)
i (q) (53)

Remark 5 Proposition1 shows that using a different training
rule over the filters of a convolutional layer allows to reach a
proportional relationship between the output variations and
the input variations.

Remark 6 This relationship can be applied for a direct anal-
ysis on several convolutional layers connected in cascade,
showing that variations in the input data are only affected pro-
portionally, decreasing or increasing themain components of
these data according to each filter.

3.2.1 Sensibility of FDCNN to noisy data

Proposition1 shows the relationships in a convolutional layer,
and this result can be extended to a cascade connection of
convolutional layer, using a ReLU activation function after
each operation and spectral pooling layer, it yields

ΔΨ
(�)
i =

SP
(
f
(
Γ

(�)
i � · · · � SP

(
f
(
Γ

(2)
i � SP

(
f
(
Γ

(1)
i � ΔΦ(0)

)))))) (54)

For ease notation, the instant (q) is omitted, but this analysis
can be done in each iteration of the FDCNN. The activation
function f keeps the positive part of its argument; otherwise,
set them to zero and they can be omitted. Hence, the analysis
is carried out by means of positive values after the activation
function. Therefore, Eq. (54) can be rewritten as

ΔΨ
(�)
i =

SP
(
Γ

(�)
i � · · · � SP

(
Γ

(2)
i � SP

(
Γ

(1)
i � ΔΦ(0)

)))

(55)

The spectral pooling operation reduces the frequency rep-
resentation of its arguments by eliminating the highest
frequency component and its conjugate. Thus, elements
in (55) will not be considered for the analysis, reducing the
expression to

ΔΨ
(�)
i,a = Γ

(�)
i Γ

(�−1)
i,a · · ·Γ (1)

i,a ΔΦ(0)
a = ΓTΦ(0)

a (56)

where a = 1, 2, . . . , q, q indicates the remaining elements
that were not eliminated by the spectral pooling. This equa-
tion represents the interaction between the convolutional
output, pooling layers and the FDCNN input. Considering
the input defined in (57) that includes measurement noise,
i.e., Φ(0)

a = Φ
(0)
a,0 + λ, where λ is a high-frequency bounded
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noise, it is also assumed that themain frequency of the system
is much lower than that of the noise.

�̂ (q) = [ŷ (q − 1) , . . . , ŷ (q − r1) , u (q) , . . . , u (q − r2)]T
(57)

with r1 and r2 being the regression order. r1 �= ny and r2 �=
nu . Under this assumption, absolute value of (56) is obtained

|ΔΨ
(�)
i,a | = |ΓT ||Φ(0)

a | (58)

substituting ΔΦ
(0)
a = ΔΦ

(0)
a,0 + Δλ

|ΔΨ
(�)
i,a | = |ΓT ||ΔΦ

(0)
a,0 + Δλ| (59)

using the triangle property,

|ΔΨ
(�)
i,a | ≤ |ΓT ||ΔΦ

(0)
a,0‖ + |ΓT ||Δλ| (60)

finally considering |Δλ| ≤ M, withM ∈ �,M > 0

|ΔΨ
(�)
i,a | ≤ |ΓT ||ΔΦ

(0)
a,0| + |ΓT |M (61)

From (61), the first term corresponds to the system
response through the layers in the FDCNN, whereas the
second one corresponds to the effect of noise across the net-
work. Since the spectral pooling is used, the highest impact
frequency components are eliminated, leaving only the low-
frequency components whose contribution to the response
is minimal. In this way, the first term provides the greatest
response, while the output is bounded to a region very close
to it.

The internal structure of ΓT represents the element-wise
product of filters in each layer that represent filters in fre-
quency domain. Considering that

Γ
( j)
i,a = �|Γ ( j)

i,a | + i�|Γ ( j)
i,a | (62)

for j = 1, 2, . . . , �. For two convolutional layers, the
filters part in (61) can be expressed as

|ΓT | =
∣∣∣Γ (2)

i,a Γ
(1)
i,a

∣∣∣ (63)

Moreover, using (62) a more detailed expression for noise
data is found, where the interaction between real and imagi-
nary parts of filters is shown

|ΓT | =
∣∣∣
(
�(Γ

(2)
i,a ) + i�(Γ

(2)
i,a )
) (

�(Γ
(1)
i,a ) + i�(Γ

(1)
i,a )
)∣∣∣

=
∣∣∣∣
(
�(Γ

(2)
i,a )�(Γ

(1)
i,a ) − �(Γ

(2)
i,a )�(Γ

(1)
i,a )
)

+ i
(
�(Γ

(1)
i,a )�(Γ

(1)
i,a ) + �(Γ

(2)
i,a )�(Γ

(1)
i,a )
) ∣∣∣∣

=
{(

�(Γ
(2)
i,a )�(Γ

(1)
i,a ) − �(Γ

(2)
i,a )�(Γ

(1)
i,a )
)2

+
(
�(Γ

(1)
i,a )�(Γ

(1)
i,a ) + �(Γ

(2)
i,a )�(Γ

(1)
i,a )
)2 }1/2

(64)

In general,when addingmore layers, the operations are repet-
itive and can be denoted as follows:

|ΓT | =
∣∣∣∣∣∣

�∏
j

(
Γ

( j)
i,a

)
∣∣∣∣∣∣

|ΓT | =
∣∣∣∣∣∣

�∏
j

(
�(Γ

( j)
i,a ) + i�(Γ

( j)
i,a )
)
∣∣∣∣∣∣

|ΓT | =
√

(�(ΓT ))2 + (�(ΓT ))2 (65)

The last equation shows the relationships between the real
and imaginary parts of each filter and their interaction with
others in different layers.

4 Experimental validation

The experimental two-storey building prototype used in this
study is depicted in Fig. 3, constructed of aluminum with
dimensions (32.5 × 53) cm and height of 1.2 m. All of
columns have a rectangular cross section with width of
(0.635 × 2.54) cm, with 58 cm of interstorey separation
for the first floor and 62 cm for the remaining floor. The
building is mounted over a shake table actuated by ser-
vomotors from Quanser, model I-40. During experiments,
the structure is excited with the Northridge earthquake for
a duration of 25 seconds that is fitted in amplitude to be
in agreement with the structure and shown in Fig. 4. The
building is equipped with Analog Devices accelerometers
XL403A model, with a measuring range from 1 to 15 g and
width band [1 × 800] Hz, to measure the responses at every
storey and at the base. Data acquisition was carried out by
using a RT-DAC/USB2 series electronic boards from Inteco.
The acquisition programs were operated in Windows 7 with
Matlab 2011a/Simulink. The communication between these
boards and Simulink were carried out using C compiler.

From experiments, vibration frequencies of the reduce
scale building structure are fi = 1.758 Hz and f2 = 4.0
Hz, extracted by means of the Fourier spectra of the building
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Fig. 3 Experimental prototype
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Fig. 4 Northridge earthquake signal

acceleration data. On the other hand, from materials prop-
erties, preliminary information is obtained. Stiffness values
k1 = 12011N/m and k2 = 12108N/m were calculated using
the nominal values of the mechanical properties (Hibberler
2011), whereas the masses were measured directly giving
m1 = 2.034 kg and m2 = 2.534 kg. Based on experimen-
tal data, damping Rayleigh is calculated assuming that the
first two modes of the structure have a damping factor of
2%, i.e., ξ1 = ξ2 = 0.02. The values were fixed, although
during experiments ξ1 and ξ2 varied depending on the excita-
tion signal. Moreover, assuming that during seismic activity
only acceleration can be measured directly, velocity and dis-
placement are estimates from available accelerations data
ẍi , with i = 1, 2 . . . , n. Estimates are obtained employing
the following filter, consisting of two high-pass (hp) filters
connected in cascade with the integrator, defined by

f (s) = s2

s2 + 3.77 + 3.55︸ ︷︷ ︸
hp

× s2

s2 + 3.77 + 3.55︸ ︷︷ ︸
hp

×1

s
(66)

where the cutting frequency is set at 0.3 Hz to removes the
low-frequency components and to avoid drift.

For damage detection propose, the Bouc–Wen hysteretic
model is introduced to represent the load deformation curves
obtained during seismic activity test. The proposed method
here postulated that stiffness loss reduces the capacity of
the building to energy dissipation resulting from structural
damage. In this sense, a system identification based on CNN
is developed following the architecture shown in Fig. 5. From
this, structural parameters are only employed to calculate
analytical Bouc–Wen hysteretic state zi required for CNN
training stage in the identification system, by means of the
backpropagation algorithm defined in previous sections. The
hysteretic displacement signal corresponding to each storey
is estimated by means of frequency domain CNN. Later, the
FDCNN uses acceleration and velocity measured data for
damage assessment, and analytical Bouc–Wenmodel is used
as a reference signal to compare our results.

Despite the success reported in the literature about
TDCNN, most applications to physical systems are mainly
for image recognition. Unlike, this paper evaluates experi-
mentally how the FDCNNperformance can be affectedwhen
measured noise is presented in data. On the other hand, in
most practical applications it is difficult to know accurately
the structural-system bandwidth. So even, the implementa-
tion of signal preprocessing stages through filters also does
not guarantee a good performance if the cutoff frequency
does not match the system bandwidth. Therefore, finding
the correct cutoff frequency can be a fairly difficult task to
achieve. An alternative to these methods is to use FDCNN
which incorporates randomfilters to strengthen the algorithm
againstmeasurement noise. In Sect. 3.2.1, a sensitivity analy-
sis has been carried out that proves the sensitivity of FDCNN
to overcome measurement noise. Moreover, the computing
time is shorter compared to the TDCNN, as will be demon-
strated in the experimental tests evaluated in the next section.

4.1 System identification task

To validate the performance of frequency domain CNN,
obtained results are compared with two different identifi-
cation system scheme based on time domain convolutional
neural network (TDCNN) and neural network (NN), respec-
tively, described in “Appendices B and C.” All tests consist
of vibration data containing measurement noise and offset.
The final goal is to investigate the versatility to estimate the
hysteretic state by using CNN and then make the damage
diagnosis using the energy dissipated in the hysteretic cycle.
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Fig. 5 System identification process

Experiments were carried out in a 2.6 GHz Intel Core i7
processor with 16 GB in RAM.

4.1.1 Identification system using frequency domain CNN

In this subsection, the frequency domain CNN is used to
identify the hysteretic state zi at each storey. Is important to
note that the FDCNN results will be used as reference to be
compared with results employing TDCNN and NN.

The proposed frequency domain convolutional neural net-
work (FDCNN) consists of 2 convolutional layers Conv1 f
and Conv3 f each one with 5 filters, h2 = 5, the length of
the filters are f1 = f3 = 3. Two subsample layers Sub2
and Sub4; here, the frequency spectrum is reduced by 4
elements in each layer, eliminating the frequency compo-
nents, i.e., s(2) = s(4) = 4. Then, the fully connected layer
has 35 synaptic weights. For this proposed architecture, the
input (57) only take 3 elements for each signal that consist of
acceleration at each storey plus acceleration at ground level,
velocity, position and hysteretic displacement estimated by
the FDCNN.

�̂ (q) =[ŷ (q − 1) , . . . , ŷ (q − 3) , ẍ (q − 1) , . . . , ẍ (q − 3) ,

ẋ (q − 1) , . . . , ẋ (q − 3) ,

ẍg (q) , . . . , ẍg (q − 2)]T
(67)

Experimental data consist of 11 different tests, fromwhich
9 of them are used for training and two for testing. Each
experiment lasts 25 s with sampling time of 5 ms. The exci-
tation signal comes from the Northridge earthquake, shown
in Fig. 4, which is adjustment to match with building struc-
ture prototype. Experiments consist in using the row data just
as it is acquired from the sensors, hoping the FDCNN can
deal with the noisy data. Figures 6 and 7 show the results
corresponding with the identification of the internal state
zi of the hysteretic model. From both figures, it is evident
that an accurate estimation of the hysteretic state is achieved,
since estimate zi converges to reference signal. The inclusion
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Fig. 6 First-storey hysteretic displacement using FDCNN with noisy
data
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Fig. 7 Second-storey hysteretic displacement usingFDCNNwith noisy
data

of spectral pooling operation in FDCNN eliminates mea-
surement noise and offset in acceleration data. The mean
square error obtained is 2.0901 × 10−9, which is also less
than when time domain CNN is used. Computational time is
3.0164 × 10−9 s for a 5-epoch training.

Moreover, note that Figs. 6 and 7 present an oscillatory
behavior. Since the seismic excitation signal is oscillatory
(harmonic motion), the response measured in each floor is
also oscillatory. Therefore, the estimated hysteretic state is
also oscillatory because it depends on the estimated velocities
at each floor, as defined in Eq. (18).
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4.1.2 Identification system using time domain CNN

In this subsection, the time domain CNN presented in
“Appendix B” is used to identify the hysteretic state zi at
each storey. For each one of them, a different CNN is used
and they do not depend on each other. Furtherworkwill focus
on the design of a single architecture that describes the com-
plete building dynamics. The seismic excitation used here
for data test is also the Northridge earthquake. For the time
domain CNN, the hyperparameters are: 2 convolutional lay-
ers Conv1 and Conv3, each one with 5 filters, h = 5, the
length of the filters f1 = f3 = 3, and two subsample lay-
ers Sub2 and Sub4, in each layer every 2 elements; one is
removed and only the one with the highest value is kept,
s2 = s4 = 2. Given the proposal architecture, the fully con-
nected layer Fu5 will have 50 synaptic weights, L = 50.
The learning rate for all the layers is set to 0.3; the input of
CNN is a vector building by 4 data of ŷ estimated by the
CNN, 8 acceleration data, of which 4 correspond to the exci-
tation in the ground level and the remaining four correspond
to the acceleration of each floor. Finally, 4 velocities plus 4
displacement data were also used. Therefore, (77) can be
described as (68)

�̂ (q) =[ŷ (q − 1) , . . . , ŷ (q − 4) , ẍ (q − 1) , . . . , ẍ (q − 4) ,

ẋ (q − 1) , . . . , ẋ (q − 4) ,

ẍg (q) , . . . , ẍg (q − 3)]T
(68)

Hyperparameters initialization for TDCNN are randomly
choose. The output synaptic weights are between [−1, 1],
and filters in convolutional layers are within the range[
− 1√

j
, 1√

j

]
, where j is the length of the input. It is important

to point that like in the previous section, experimental data
are from 11 tests, of which 9 of them are used for training
and two for testing. Each experiment lasts 25 s with sampling
time of 5 ms. In order to identify the hysteretic displacement
of the building, two different identification tasks were carried
out.

(a) The first of them consists in using the row data just as it
is acquired from the sensors. Figures 8 and 9 show the iden-
tification results of Bouc–Wen hysteretic state for the first
and second floors, respectively. From these figures, it can be
observed that in both cases the parametric convergence is not
achieved, which was expected due to the presence of noise in
the measurement and offset. The means square error (MSE)
obtained for the first floor is 1.0127×10−7 and 1.5168×10−7

for the second that is too small because of the magnitude of
the signal, which is in order of 10−4. Computational time
required in this experiment was 158.52 s for a 5-epoch train-
ing.
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Fig. 8 First-storey hysteretic displacement using TDCNN with noisy
data
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Fig. 9 Second-storeyhysteretic displacement usingTDCNNwithnoisy
data

(b) The second identification task consists in using time
domain CNN plus filter to eliminate measurement noise
and therefore improve the performance of the identification
scheme using CNN. The network configuration is the same,
previously described in this section. For data processing, a
third-order Butterworth filter is added to clean the signal,
reducing the components of high and low frequencies. The
bandwidth of this filter goes from 0.3 Hz to 5 Hz and was
designed in Matlab. However, to get a good performance, a
previous knowledge of building bandwidth is required; oth-
erwise, the filter does not reduce the important component
of frequency where the system is matching. Experimental
results are shown in Figs. 10 and 11. From these figures, it is
evident that due to filtering, the estimation of the hysteretic
model is improved as shown in Figs. 8 and 9. Despite the
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ż
×10-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Reference
CNN

Fig. 10 First-storey hysteretic displacement using TDCNN with fil-
tered data
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Fig. 11 Second-storey hysteretic displacement using TDCNN with fil-
tered data

improvement, convergence is not yet achieved, as a result
of the exact lack of bandwidth. However, this situation is
so common that it occurs in most systems, because char-
acterization of a building structures is a complicated task.
The mean square error (MSE) for stories is 2.34 × 10−8

and 1.984 × 10−8 for the first storey and the second storey,
respectively. It is important to note that experiments with 5
epochs of training took 165.7371 s, which is greater than the
previous result without filters.

4.1.3 Identification system using neural network (NN)

In this subsection, a system identification based on neural
network (NN) presented in “Appendix C” is used to estimate
the hysteretic displacement zi , with i = 1, 2. Used vibration
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Fig. 12 First-storey hysteretic displacement using NN with noisy data

data are from11 tests, ofwhich 9 of them are used for training
and two for testing, all of them with duration of 25 s and
sampling time of 5 ms. A two-layered neural network (NN)
is used for comparisons. Its structure is made up of a hidden
layer with 35 nodes, to which a tanh(·) activation function is
applied; it has only one node in the output layer. The training
is done using the BP algorithm with the same amount of data
that were used with both CNN methods. In order to identify
the hysteretic state at each storey, two different identification
tasks were also carried out. The input defined in (65) is also
used with the same structure as the one used in the FDCNN.

(a) The first of them, like in the previous section, consists
in using the row data just as it is acquired from the sensors.
Estimated Bouc–Wen hysteretic displacement correspond-
ing to the first floor and second floor is depicted in Figs. 12
and 13, respectively. From these figures, it can be observed
that in both cases the estimation does not converge to refer-
ence signal, due to measurement noise and offset contained
in vibration data.

The means square error (MSE) obtained for the first floor
is 134.05× 10−10 and 310.54× 10−10 for the second. Com-
putational time required in this experiment was 28.35 s in the
worst case, for a 5-epoch training.

(b) The second identification task consists in using NN
plus filter to eliminate measurement noise from vibration
data. Data processing was carried out by using a third-order
Butterworth filter that reduces the components of high and
low frequencies, with bandwidth between 0.3 and 5 Hz. Fig-
ures 14 and 15 show that due to filtering, the estimation
of the hysteretic model is improved as shown in Figs. 12
and 13. Despite the improvement, convergence is not yet
achieved, evidencing that estimated states almost converge
to reference signal. The mean square error (MSE) for stories
is 2.34 × 10−8 and 1.984 × 10−8 for first storey and sec-
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Fig. 13 Second-storey hysteretic displacement using NN with noisy
data
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Fig. 14 First-storey hysteretic displacement using NN with filterated
data

ond storey, respectively. This experiment with 5 epochs of
training took 27.73 s.

4.1.4 Discussions about identification systems

From obtained results in Sects. 4.1.1, 4.1.2 and 4.1.3, it is
evident that the proposed FDCNN has better performance
compared to the other two methods; even though the NN is
faster in its training, its MSE is higher than the one obtained
through FDCNN. In any cases, applying measurement noise
in data decreases the performance of the identification meth-
ods; however, the FDCNN is barely affected compared to the
TDCNN and NN algorithms. Details about these results can
be found in Tables 3 and 4, where features like precision,
execution time and means square error (MSE) are compared.
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NN

Fig. 15 Second-storey hysteretic displacement usingNNwith filterated
data

Since the structural damage assessment is carried out
offline in all cases, the precision is the most important fea-
ture for a adequate structural health diagnosis. Thus, the
system identification architecture based on FDCNN algo-
rithm is the one has the greatest potential for this task, with
the highest precision and considerably low execution time.
Therefore, once the versatility of the frequency domain CNN
for identification system has been demonstrated under envi-
ronmental noise, we prefer to use only estimation results
from FDCNN for damage detection propose. Hence, in the
following section, we will only present damage detection
results employing data obtained through FDCNN.

4.2 Damage detection in building structure

In this subsection, we investigate damage detection sensibil-
ity basedon thebuilding capacity to dissipate energy,which is
reduced in contrast to nominal conditions. Experiment were
carried out reducing the stiffness k2 on the second storey by
loosened only one screw in one of fourth column that make
up each level. The remaining 3 columns are notmodified. The
next step consists in extracting the features of damage build-
ing from acceleration measurement, when the prototype was
subjected to Northridge earthquake. In consequence, the fun-
damental vibration frequency and the bandwidth also change
due to induced damage, reducing f1 = 1.733 Hz and f2 =
3.97 Hz. From vibrational analysis, we know that changes
in vibration frequencies are a good indicator for damage
detection. Unlike, in this paper we use load-deformation
curves and dissipated energy changes for damage assessment
and diagnosis. This is achieved, employing the frequency
domain CNN for a model-based identification described in
Sect. 4.1.1 that allows to confirm structural damage through
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Table 3 Comparison of
proposed method with a neural
network and TDCNN (first
storey)

Case Training time (s) Testing time (s) MSE (×10−10)

NN

No noise 27.73 0.41 22.378

Noise 28.35 0.40 134.05

TDCNN

No noise 164.41 1.32 313.27

Noise 157.21 1.31 846.71

FDCNN

No noise 44.24 1.07 1.3182

Noise 42.94 1.04 11.991

Table 4 Comparison of
proposed method with a neural
network and TDCNN (second
storey)

Case Training time (s) Testing time (s) MSE (×10−10)

NN

No noise 27.73 0.41 54.484

Noise 28.35 0.40 310.54

TDCNN

No noise 164.41 1.32 234

Noise 157.21 1.31 1012.7

FDCNN

No noise 44.24 1.07 2.4728

Noise 42.94 1.04 2.0901

load-deformation curves, obtained after exciting the exper-
imental prototype at basement. A comparison of hysteretic
cycles between nominal and damage conditions is shown in
Fig. 16 that correspond to the second storey. Results allow to
observe that when there is structural damage, the relationship
between load and deformation is also reduced significantly,
which indicates that the building capacity to dissipate energy
is also reduced in contrast to nominal conditions. Moreover,
fromhysteretic curveswe also calculate the dissipated energy
to be compared with results in nominal conditions, as shown
in Fig. 17 that correspond to the same floor.1 From Fig. 17,
it can be noticed that the energy is much lower in the pres-
ence of damage. Results agree with the raised hypothesis of
the problem. When there is structural damage, the capac-
ity of the building to dissipate energy is reduced, which
indicates that the building changes the elastic to the plas-
tic zone. Results confirm the effectiveness of the proposed
identification scheme for damage detection problem, where
Bouc–Wen hysteretic model is a useful tool to capture the
degrading energy. Similar results are obtained for the first
floor.

1 The energy of the building is estimated using theCNNoutput together
with the velocity of each floor.
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Fig. 16 Second-storey hysteretic cycle

4.3 Discussion

Two different perspectives of CNN and one more based on
NN were presented applying them to a real problem in two
different situations. Tables 3 and 4 compare the obtained
results. The training time is one of the most representative
results, where the FDCNN performs 4 times faster than the

123



15836 M. Lopez-Pacheco et al.

Time [s]
0 5 10 15 20 25

E
ne
rg
y

×10-6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
No damage
Damaged building

Fig. 17 Second-storey energy

TDCNN, and both neural networks have similar architecture,
same number of layers and same number of filters, only dif-
fer in how the operations are treated in the convolutional and
subsample layers. In testing stage, the time does not vary
so much because of the size of elements in the operation.
Nevertheless, it is possible to appreciate that the proposed
frequency domain CNN algorithm improves the execution
time, even though the hyperparameters are also initialized
in the same interval. In the case of the NN-based scheme,
it is faster than FDCNN, but its accuracy in the identifica-
tion system is less, even when both schemes have similar
architecture.

Additionally, in the identification system, FDCNN also
has a better performance than TDCNN and NN even when
they are accompanied by a filter. Under same conditions and
similar neural structure, FDCNN is more suitable for iden-
tification system rather than the TDCNN. Perhaps improve-
ments could be present changing the architecture of TDCNN
with a deeper structure, which is not possible to achieve
with the NN design. Another difference is that the pro-
posed FDCNN does not require any activation function as
the TDCNN and NN; this also contributes to the reduction
in computational time and does not affect the system identi-
fication performance.

5 Conclusions

The frequency domain CNN has been proven in this study to
be more reliable to use as a identification system rather than
time domain CNN in time domain and neural network, as an
alternative approach to damage detection in buildings. The
results demonstrate that the proposed method is able to learn
features from frequency data and achieve higher diagnosis

accuracy. Furthermore, FDCNN introduces the spectral pool-
ing operation in its design that attenuates measurement noise
and ensures the convergence of the identification scheme.
Note that most methods introduce filters as a previous stage
to overcome measurement noise. However, this is difficult to
achieve if the system bandwidth is not known in advance,
unlike FDCNN that does not need this information. Com-
putational time for FDCNN is almost 4 times faster during
the training stage, that is useful for applications with bigger
data sets. Moreover, the inclusion of the dissipated energy by
using the Bouc–Wen hysteretic model to capture the degrad-
ing energy that is directly related to the stiffness loss resulting
from structural damage in buildings is an alternative study
approach. The use of frequency domain CNN for identifica-
tion system is an interesting alternative to signal processing
method. We also recognized that it is necessary to carry out
more and extensive research to assess the potential of this
approach. However, we do find the results of the our experi-
mental results to be a good step in that direction.
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Appendix A: Discrete Fourier transform

Discrete Fourier transform (DFT), denoted by F(·), is a
powerful tool to convert spatial samples into a sequence
of complex-valued samples in the frequency domain. Some
important properties of DFT are as follows: It is linear and
unitary (Cooley et al. 1969), and its inverse transform is given
by F−1(·) = F(·)∗ which is the conjugate of the transform
itself. This last property is useful during the training stage of
CNN. A DFT of n-points is defined as A = F(a), where F
can be expressed as a matrix F ; this matrix is called a DFT
matrix and it is constructed as follows:
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Fn = 1√
n

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω3 . . . ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎦

where ω = exp
−2π i
n .

Slight modification is made in order to ensure the DC
frequency component in the center row of the matrix.

Remark 7 In frequency analysis, the convolution operation
becomes an element-wise product which makes the analysis
easier and direct. The convolution operation between a, b ∈
�n , using the DFT is:

F(a ∗ b) = F(a) � F(b) (69)

where ∗ denotes the convolution operation and � is an
element-wise product. This product reduces the number of
operations compared to the convolution stage in TDCNNand
it make the training process even faster.

Appendix B: Time domain CNN for modeling
time series

Consider an unknown discrete-time nonlinear system

y(q) = f (x(q)) . x(q + 1) = g (x(q), u(q)) (70)

where y(q) is the scalar output, x(q) the internal state, u(q)

the input, f (·) and g(·) smooth functions, f , g ∈ C∞ .
A nonlinear autoregressive exogenous (NARX) model

for (70) is defined as

y(q) = Φ [� (q)] (71)

The system dynamics are represented by the unknown non-
linear difference equation Φ, where

� (q) = [y (q − 1) , . . . , y
(
q − ny

)
, u (q) , . . . , u (q − nu)]T

(72)

y(q) and u(q)within this equation represent measurable out-
put and input for the system, with ny and nu the regression
order, respectively, which are unknown.

The nonlinear system identification of (71) based on time
domain convolutional neural networks (TDCNN) is shown
in (73),where ŷT (q) is estimation of the real output generated
by TDCNN, which is a scalar element.

ŷT (q) = W (�)Tϑ (73)

This is fully connected layer with W as synaptic weights
vector and ϑ the stacked output of the last subsample layer
of TDCNN.

Two more types of layer are introduced in TDCNN. The
first layer in TDCNN is a convolutional one, where two oper-
ations are made: convolution and an activation function. The
convolution operation is

χ
(�)
h = Kh ∗ y(�−1)

h (74)

� represent the actual layer, h-filters per layer are used, and
each filter is K (�)

h ∈ R f� . For each element i of χ
(�)
h , the

previous operation is equivalent to

χ
(�)
i,h =

f�−1∑
a=0

K (�)
h,a y

(�−1)
h,i+a (75)

The result of this operation χ
(�)
h is called the feature map,

which contains features properties of the input, and each filter
obtains a different feature. These feature maps go through an
activation function, different activation functions are used in
neural networks for specific tasks and unique properties (Glo-
rot and Bengio 2010), but the one used is in this papers is the
rectified linear unit (ReLU). The output of a convolutional
layer is defined by (76)

y(�)
h = max(0, χ(�)

h ) (76)

for the first layer of the CNN, y(�−1)
h is the input vector

�̂ (q) = [ŷ (q − 1) , . . . , ŷ (q − r1) , u (q) , . . . , u (q − r2)]T
(77)

where r1 and r2 denote the regression order. r1 �= ny and
r2 �= nu .

After a convolutional layer, a subsample layer is followed;
this layer is pretended to be used as data reduction stage, so
the strongest response from the filters keeps going through
the TDCNN.

In the subsample layers, the operation used is the max-
pool, which is defined as

y(�)
h = maxpool

(
y(�−1)
h , s�

)
(78)

The input divided in groups of dimension s� and from each
group the highest values remain. The Shrink depends on the
layer where it is applied.

Convolutional and subsample layers can be repeated as
many times as the application require in the TDCNN. As
mentioned earlier, after the last subsample layer, the outputs
of each feature map are stacked to create the vector ϑ
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Fig. 18 Time domain convolutional neural network for system identi-
fication

ϑ =
[
y(�)T
1 y(�)T

2 · · · ; y(�)T
h

]T
(79)

This helps to manage the last layer in terms of vector and
matrices. The complete architecture is shown in Fig. 18.

Training of time domain CNN using backpropagation

The training of the TDCNN’s parameters is realized by the
backpropagation algorithm (BPA), which is used to calcu-
lated the gradient of the cost function respect each parameter
of the TDCNN, propagating it backward through the network
to update these parameters. The cost function is used as a
measurement of the performance, and the most frequently
cost function for identification is the squared error which
measures the difference between the real output and the esti-
mated one.

J (q) = 1

2
e2T (q) (80)

eT (q) is the identification error between the TDCNN output
and the real output in each instant, i.e., eT (q) = ŷT (q)−y(q).

TheBPAuses the gradient of the cost functionwith respect
to each parameter in the neural network. To calculate the
gradient, it uses the chain rule and then each parameter is
updated by the delta rule. In the output layer, the weights are
updated as follows:

w
(�)
i (q + 1) = w

(�)
i (q) − ηT

∂ J

∂w
(�)
i

(81)

where w
(�)
i are the elements of the vectorW (�), ηT the learn-

ing rate defining one for each layer and

∂ J

∂w
(�)
i

= ∂ J

∂eT

∂eT
∂ ŷT

∂ ŷT

∂w
(�)
i

= eTϑi (82)

ϑi are the elements of vector ϑ corresponding to the weight
w

(�)
i . To previous layer, the gradient, using chain rule, is

∂ J

∂ϑ
= ∂ J

∂eT

∂eT
∂ ŷT

∂ ŷT
∂ϑ

= eT W
(�) (83)

For the subsample layer, an reverse operation of maxpool
is used to calculate the gradient

∂ J

∂ y(�−1)
= up

(
∂ J

∂ y(�)

)
(84)

where up(·) is an operation to increase length of the gradient
to match the previous layer and only passing to the posi-
tions where the highest response occurs in the forward stage,
leaving everything else in zeros. For convolutional layer, the
gradient of the cost function with respect to the filters is cal-
culated as

∂ J

∂K (�)
h

= y(�−1)
h ∗ rot180(δ(�)

h ) (85)

with ∗ being the convolution operator and

δ
(�)
h,i = ∂ J

∂ y(�)
h,i

f
′
(χ

(�)
h,i ) (86)

with f
′
(·) being the derivative of the ReLU operation, that is

defined as,

f
′
(Ω) =

{
1 if Ω > 0

0 otherwise

In order to update the filters, delta rule is used, therefore

K (�)
h (q + 1) = K (�)

h (q) − ηT

(
y(�−1)
h ∗ rot180(δ(�)

h )
)

(87)

Finally, to backpropagate the gradient to previous layer of
a convolutional layer, the equation is

∂ J

∂ y(�−1)
h

= δ
(�)
h � rot180(K (�)

h ) (88)

The operator rot180(·) is equivalent to use its parameter from
bottom to top, just like a flip over.
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Fig. 19 Multilayer perceptron architecture for system identification

Appendix C: Multilayer neural network for
systemmodeling

For comparison, a multilayer perceptron (NN for simplicity)
is created. This NN consists of one hidden layer with 35
units, which are paired with activation function tanh(·); its
architecture is shown in Fig. 19.

Consider the nonlinear system to be identify defined in 71
and regard the same input from the CNN described in 35; the
output of the units in the hidden layer is defined as:

XNN = VNN� (89)

VNN are the synaptic weights in the hidden layers written
in matrix form, XNN is the vector output of hidden layer,
and each element corresponds to each one of the units in this
layer. The output of the NN is

ŷN N = WNN XNN (90)

where WNN are the synaptic weights in the output layer,
dimensions match, so the output is scalar. The training of
this NN is done with the backpropagation algorithm. For this
matter, the cost function to be minimized is defined as

J (q) = 1

2
eNN (q)2 (91)

where e(q) = (ŷN N (q) − y(q)
)2 and the update law for the

synaptic weights in output and hidden layer is defined with
the delta rule, i.e.,

WNN (q + 1) = WNN (q) − ηNN
∂ J

∂WNN
(92)

and

VNN (q + 1) = VNN (q) − ηNN
∂ J

∂VNN
(93)

where ηNN is the learning rate for this NN.
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