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Abstract
Semi-supervised classification has become an active topic recently, and a number of algorithms, such as self-training, have
been proposed to improve the performance of supervised classification using unlabeled data. Considering the influence of
spatial distribution of data set and mislabeled samples on the classification performance of self-training method, an improved
self-training algorithm based on density peaks and cut edge weight statistic is proposed in this paper. Firstly, the representative
unlabeled samples are selected for labels prediction by space structure, which is discovered by clustering method based on
density peaks. Secondly, cut edge weight is used as statistics to make hypothesis testing for identifying whether samples are
labeled correctly. Thirdly, the labeled data set is gradually enlargedwith correctly labeled samples. The above steps are iterated
until all unlabeled samples are labeled. The framework of improved self-training method not only makes full use of space
structure information, but also solves the problem that some samples may be classified incorrectly. Thus, the classification
accuracy of algorithm is improved in a great measure. Extensive experiments on benchmark data sets clearly illustrate the
effectiveness of proposed algorithm.

Keywords Semi-supervised classification · Self-training · Density peaks · Cut edge weight · Hypothesis testing

1 Introduction

Classification is an active research problem in the field of
machine learning (Domingos 2012; Jm and Mitchell 2015).
It has been widely used in many areas, including docu-
ment classification (Manevitz and Yousef 2002), biological
medicine (Zeng et al. 2016) and face recognition (Cao et al.
2011; Su et al. 2009). Traditional classification paradigm
only relies heavily on labeled data to achieve an efficient
classifier. However, a large amount of labeled instances are
often difficult, expensive or time-consuming to obtain, as
they require a lot ofmanpower andmaterial resources.Mean-
while, unlabeled instances may be easy to obtain. Therefore,
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a great quantity of unlabeled data and few labeled data
often appear in many practical applications. In this scenario,
traditional supervised classification often fails to learn an
appropriate classifier. Nevertheless, semi-supervised classi-
fication (SSC) (Zhu and Goldberg 2009; Sakai et al. 2017)
addresses this problem. SSC researches on training better
classifiers by using the abundant unlabeled data, together
with few labeled data. Various SSC methods have been pro-
posed. The common methods are as follows:

Generative method (Narayanaswamy et al. 2017; Nigam
et al. 2000). This method assumes that all data, including
labeled data and unlabeled data, are generated by the same
model. The assumption allows us to utilize techniques, such
as the expectation maximization (EM) algorithm, to esti-
mate model parameters and labels of unlabeled data. The
main difference of generative method is hypothesis model,
and different hypothesis models will produce different meth-
ods. In addition, EM algorithm has a strong dependence on
the selection of initial value. The common solution is that
using multiple initial values for repeated calculation to select
the best value, or the optimal solution of parameters can be
obtained by optimization algorithm. These methods reduce
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the sensitivity of initial value selection, but increase the com-
putational complexity.

Graph-based method (Wang et al. 2013; Liu et al. 2014).
This method maps all samples into a weighted graph. The
nodes of graph are labeled or unlabeled samples, and the
undirected edges between two vertices xiand x j represent
the similarity of the two samples. Then, semi-supervised
learning corresponds to the process of label propagation on
the graph. A graph corresponds to a matrix, and the semi-
supervised learning could be inferred based on matrix. Thus,
graph-based method is easy to explore the properties of algo-
rithm through the analysis of matrix operation, but it has
some obvious defects. For example, in the storage aspect,
if the number of samples is m, the size of matrix in algo-
rithm is O(m2). It is difficult to directly deal with large-scale
data.

Semi-supervised support vector machine (S3VM) (Chen
et al. 2014). S3VM attempts to find a partition hyperplane
that separates the two classes of labeled data and traversed
a low-density region. The most prominent of S3VM is
transductive support vector machine (TSVM). Similar to
the standard SVM, TSVM is also proposed for two clas-
sification problems. TSVM tries to consider various label
assignments to unlabeled samples. Each unlabeled sample
is labeled positive or negative. Then, in all of these results,
TSVMattempts to find a partition hyperplane thatmaximized
the margin in all samples. Once the partition hyperplane
is determined, the final label assignment of unlabeled data
is the predicted result. Obviously, it is an exhausting pro-
cess to attempt various assignments in the case of massive
unlabeled samples. And more efficient optimization strate-
gies must be considered. Therefore, one of the key research
problems of S3VM is how to design efficient optimization
strategies.

Co-training method (Zhou and Li 2010; Zhang et al.
2014).Co-training is oneof an important disagreement-based
method, and it is originally designed for multi-view data. Co-
training assumes that the data have two ormore sufficient and
conditionally independent views. Each view trains a classifier
individually based on labeled data. Then, classifiers learned
from each other to well predict labels of unlabeled data. Two
processes continue until the classifiers are no longer changed
or a preset number of iterations is reached. In co-training
algorithm, if sufficient and conditionally independent fea-
tures can be divided, the performance of trained classifierwill
be improved greatly. However, the conditional independence
of features is often difficult to satisfy in practical applica-
tions, so the classification accuracy cannot be enhanced by
co-training method.

Self-training method (Yun et al. 2012; Tanha et al. 2017).
As its name implies, it attempts to iteratively enlarge the
labeled training sets. First, an initial classifier is trained with
the small amount of labeled data. Second, unlabeled samples,

which are selected with the highest confidence, are added
incrementally into the labeled set with their predicted labels.
The classifier is retrained. The procedures are repeated until
convergence.

Among the above SSC methods, one of the most effec-
tive and concise methods is self-training. The self-training
does not require explicit feature segmentation or specific
assumptions. It has been widely used in many practical
applications, such as text classification (Pavlinek and Pod-
gorelec 2017), semantic segmentation (Zou et al. 2018)and
sentiment classification (Zhang and He 2013). However, the
effect of self-training is limited by the number of initial
labeled data and their distribution. If the amount of initial
labeled data is quite small and the distribution of entire data
sets is not represented, the performance of initial classifier
trained by the initial labeled set may be poor. Therefore, it
is easy to misclassify unlabeled samples. The updated clas-
sifier will be worse along with mislabeled samples which
are added directly into next iteration. Iterating in accordance
with that will lead to errors accumulation. Consequently, the
performance of trained classifier is extremely poor. Thus,
identification of mislabeled data and distribution of entire
data set play an important role in the self-training algo-
rithm.

In order to solve the influence of the distribution of data
set and mislabeled samples on the performance of classi-
fier simultaneously, in this paper, a self-training algorithm
based on density peaks and cut edge weight statistic (ST-DP-
CEWS) is proposed. In ST-DP-CEWS, the underlying space
structure of entire data set is found by density peak cluster-
ingmethod. In the process of discovering space structure, the
representative unlabeled samples are selected previously to
predict labels. Then, the cut edge weight statistic (CEWS)
is used to determine whether the predicted labels are cor-
rect. Density peak clustering method and CEWS take full
advantage of space structure and information of unlabeled
samples. They also deal with the problem that some sam-
ples may be misclassify. Thereby, the error accumulation in
iterative process is decreased and the performance of trained
classifier is increased effectively. The proposed framework
has two main advantages: (a) It is not limited by the number
of initial labeled data and distribution of entire data space.
(b) It identifies the mislabeled instances during self-training
process without prior conditions. The experimental results
on thirteen benchmark data sets clearly demonstrate the effi-
ciency of the proposed algorithm, which is superior to some
previous works.

The remainder of the paper is organized as follows: Sect. 2
reviews the related works. In Sect. 3, the proposed frame-
work and algorithm are described. Section 4 provides the
experimental study on twelve benchmark data sets. The con-
clusion of this paper and some future plans are discussed in
Sect. 5.
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2 Related works

In SSC, a sample is described by a d-dimensional vector of
attributes plus class label as follows:

xi = (x1i , x
2
i , . . . , x

d
i , yi ) (1)

where xi is the i th instance and i = 1, 2, . . . ,m. yi indicates
the label of xi and yi ∈ {ω1, ω2, . . . , ωr }. r is the number
of class. L is the labeled set with yi known, and U is the
unlabeled set with yi unknown. Particularly, the number of
data in U is much larger than that in L for a typical SSC
problem. L ∪U forms the training set TR. In addition, there
are some unseen data which have the same characteristics as
xi with y unknown to form the testing set Ts. The purpose of
SSC is to learn a better classifier C by using TR instead of L
only to predict the class labels of unlabeled setU or test set Ts.

2.1 Previous algorithms to improve self-training

Self-training is an iterative and autonomous learning process.
The iterative procedure needs to constantly strengthen the
requirements for new sample selection. This process needs to
be done with cautious, as inappropriate operations will make
the unlabeled samples to be labeled incorrectly. Thus, it will
not get a proper classifier with good performance. In order
to improve the performance of self-training algorithm and
increase the classification accuracy, many algorithms have
been researched. The details are as follows:

Zhou and Li proposed the Tri-training algorithm (Li and
Guo 2012), and it is a co-training style SSC algorithm. In
contrast to previous algorithm that uses two classifiers, it
generates three classifiers from initial labeled data set and
then they are refined by unlabeled data set in the Tri-training
process. In detail, an unlabeled data point is labeled for a
classifier if the other two classifiers agree on the labeling
under certain conditions. Tri-training does not require suffi-
cient and conditionally independent views, and it is applied
to common data sets. But the performance of Tri-training
algorithm is usually not stable because the unlabeled sam-
ples may often be wrongly labeled during training process.
Moreover, the important information of unlabeled samples
is not utilized.

As unlabeled data may contain crucial information about
the data space, Gan et al. proposed to improve self-training
algorithm with fuzzy c-means clustering (ST-FCM) (Gan
et al. 2013). The fuzzy c-means (FCM) clustering is inte-
grated into self-training as a helping strategy. It is employed
to reveal the underlying space structure by using labeled set
and unlabeled set. In the process of iteration, FCM gen-
erates the membership degree of each unlabeled sample
to different classes. The unlabeled sample that has higher
degree is labeled by the classifier trained using labeled

data. Nevertheless, ST-FCM algorithm is not appropriate
for the non-Gaussian distribution of data sets, which appear
quite often in real application. And ST-FCM algorithm may
not find the real decision boundary. The reason may be
FCM algorithm cannot discover the space structure of non-
Gaussian distribution of data.

In order not to be limited by the distribution of initial
labeled samples and entire data space, a self-training SSC
algorithm based on density peaks of data (ST-DP) (Wu
and Shang 2018) was proposed. It improves the ST-FCM
algorithm. In ST-DP, the underlying data space structure
is discovered by clustering based on density peaks of data
(Rodriguez and Laio 2014a). Then, structure is integrated
into self-training process to train a better classifier. Clustering
based on density peaks of data could discover the underlying
structure of data sets, whether they are spherical distributed
or non-spherical distributed. However, ST-DP cannot work
on the data set with large amounts of strongly overlapping
data.

Then, Wu et al. proposed a self-training SSC algorithm
based on density peaks of data and differential evolution
(ST-DP-DE)(Wu et al. 2018). ST-DP-DE utilizes differen-
tial evolution (DE) algorithm to optimize the position of
newly labeled data (Di et al. 2017) during the self-training
process. This optimization process is incorporated into the
framework proposed in ST-DP. Although ST-DP-DE solves
the problem of samples overlapping to some extent, it does
not fundamentally deal with the defect of ST-DP. Moreover,
the optimization algorithm introduces too much computa-
tion. The main reason is that overlapping samples are easy
to be misclassified in self-training process, and DE cannot
solve the trouble of wrong labels.

These previous algorithms have shown the promising
prospect, but there are several issues to be considered. These
methods may work ineffectively in some circumstances. The
four self-training techniques update the classifier by adding
unlabeled samples with their predicted labels to labeled data
set. However, the predicted labels may be incorrect if the
number of initial labeled samples is very small. The perfor-
mance of trained classifier will be decreased by mislabeled
data. Therefore, how to identify themislabeled samples plays
an important role in self-training algorithm.

2.2 Works related tomislabeled data

There are two main methods to identify the mislabeled sam-
ples (Triguero et al. 2014): One is based on the nearest
neighbor rule, and the other is based on the classifier.

Methods based on the nearest neighbor include edited
nearest neighbor (ENN), all KNN (ALLKNN), modified
edited nearest neighbor (MENN) and nearest centroid neigh-
bor edition (NCNEdit). ENN method depends only on the
distances from the sample to be classified. For each data
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sample, it is mislabeled if its label does not agree with the
majority of its k-nearest neighbors. ALLKNN is an extension
of ENN. In this algorithm, the NN rule varies the number of
neighbors from 1 to k; therefore, the NN rule is applied k
times. For each example xt , its label removed at once if it is
misclassified by all the NN rule. MENN is a modified tech-
nique of ENN. Each data point xt is mislabeled if its label
does not agree with all of its k+ l-nearest neighbors, where l
is the number of samples in L ′ which were the same distance
as the last neighbor of xt . NCNEdit has a slight modification
to ENN. For a given data xt , the concept of its neighbors
is defined considering not only the proximity of xt , but also
their symmetrical distribution around xt . Particularly, it takes
count into the k-nearest centroid neighbors (k NCNs). These
k neighbors are searched for through the iteration. The first
neighbor of xt is its nearest neighbor x1r . The i th neighbor, x

i
r ,

i = 2, . . . , k is such that the centroid of this and previously
selected neighbors, x1r , . . . , x

i
r , is the closest to xt . The main

thoughts of method based on classifier are as follows: The
existing labeled set is divided into n subsets in each iteration.
For each of these n parts, a learning algorithm, such as C4.5,
is trained on the other n − 1 parts, resulting in n different
classifiers. Then, unlabeled samples are classified by these
classifiers. The final labels of unlabeled samples are decided
by consensus or majority voting schemes.

Note that the nearest neighbor rule needs to set the distance
measure and the value of k in advance. The classifier-based
identification method has a high demand for the division
of samples and the selection of learning algorithm. Inap-
propriate selection of these parameters will lead to errors
of identification and affect the final classification effect. In
addition, these two methods do not utilize the valuable infor-
mation of unlabeled samples, which will reduce the accuracy
rate of identification.

In recent, cut edge weight statistic (CEWS) was pro-
posed to identify mislabeled instances (Muhlenbach et al.
2004). For a given sample, CEWS utilized its sum of cut
edge weights as a statistic for hypothesis testing to determine
whether the label of the data was correct or not. The CEWS
was originally proposed to calculate the separability index in
supervised learning (Zighed et al. 2002). Moreover, CEWS
does not need to set any parameters in advance, but also can
make full use of the information of unlabeled samples. Thus,
in this paper, CEWS is integrated into the self-training pro-
cess to identify the mislabeled samples. CEWS is introduced
briefly in next section.

3 Self-training based on density peaks and
cut edge weight statistic

To improve the performance of self-training algorithm, two
respects including the distribution of entire data set and the

identification of mislabeled samples are considered. In this
paper, an improved self-training method based on density
peaks of data and cut edge weight statistic (ST-DP-CEWS)
is proposed and is described in this section. In ST-DP-CEWS,
first, the density peaks clustering method is used to discover
the underlying space structure of data set, including labeled
samples and unlabeled samples. Then, the CEWS technique
is used to identify the mislabeled data. The space structure
and the process of identification are integrated into each itera-
tion of self-training framework. The proposed algorithm not
only decreases the negative impact of mislabeled data on
trained classifier, but also takes into account the structure of
data space.

3.1 Clustering using density peaks for finding
structure of data set

Clustering is a typical unsupervised learningmethod without
labels for analyzing unlabeled data (Jain 2010). The cluster-
ing skill helps discover the underlying structure of data space.
Recently, a density peaks clustering algorithm was achieved
to detect non-spherical clusters (Rodriguez and Laio 2014b).
And the correct number of clusters was found automatically.
Density peaks clustering algorithm is an important cluster-
ing method and can discover the underlying structure of data
space of any data set, no matter it is spherical distribution or
non-spherical. For each sample xi , this clustering algorithm
computed two quantities: its local density and its distance
from points of higher local density. The local density ρi of
each data point xi is defined as:

ρi =
∑

j

χ(di j − dc), χ(x) =
{
1, x < 0

0, others
(2)

where χ(x) is the indicator function of x , and di j is the dis-
tance between data points xi and x j . dc is a cutoff distance
without a fixed value, and its value is related to data set (Wang
and Xu 2017). The second measure δi is the minimum dis-
tance between xi and any other data point with higher local
density:

δi =
{
min j (di j ), ρi < ρ j

max j (di j ), ∀ j, ρi ≥ ρ j
(3)

Note that the process of how to find underlying structure
of data space by density peaks clustering has introduced in
great detail in (Wu and Shang 2018). Here, we just provide
a brief introduction. In the process of calculating these two
quantities ρi and δi of all samples, the real structure of entire
data space can be discovered by pointing each point xi to
its corresponding sample x j , which is the nearest point with
higher local density of xi . The samples that like x j being
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pointed to are defined “next” samples; meanwhile, samples
that like xi are referred to as the “previous” sample of x j .

3.2 Cut edges weight statistic to identify mislabeled
data

Cut edge weight statistic (CEWS) is a technology of identi-
fying and handling mislabeled instances. Its main idea is as
follows: To begin with, create a relative neighborhood graph
in data set and assign weights to each edge. Then, calculate
the sum of cut edges weight for each data point. Finally, two-
side hypothesis test is applied for identifying the mislabeled
instances. The details are described below.

For expressing the proximity between examples, a relative
neighborhood graph is used in data set. There exists an edge
between vertices xi and x j if the distance between the two
vertices satisfies the following condition:

d(xi , x j ) ≤ max(d(xi , xm), d(x j , xm)), ∀m �= i, j (4)

where d(xi , x j ) denotes the distance between vertices xi
and x j . Different from the KNN editing technology, for a
given data point xi , its neighbors can be automatically found
through the above definition without setting the number of
neighbors in advance. Two samples connected by edges are
neighbors of each other. A cut edge is defined as the edge con-
necting two samples with different labels. Intuitively, most
examples in a neighborhood possess the same label. The label
of an example is supposed to be wrong if it has many cut
edges. Thus, cut edge plays an important role in identifying
mislabeled examples. In addition, for different samples, they
might have the same number of cut edges, and the impor-
tance of every cut edge is different. Therefore, the weight
is introduced to each edge. We define wi j as the weight of
edge connecting xi and x j . There are two methods based on
distances or ranks of the neighbors to define wi j :

wi j = (1 + di j )
−1 or wi j = 1

r j
(5)

where di j is the distance of xi and x j , and r j is the rank of
the vertex x j among the neighbors of the vertex xi .

In order to test whether a sample xi is mislabeled, the sum
of cut edge weights Ji running from this point is calculated.
Ji is defined as follows:

Ji =
∑ni

j=1
wi j Ii ( j), Ii ( j) =

{
1, yi �= y j
0, yi = y j

(6)

where ni denotes the number of samples belonging to the
neighborhood of xi . yi is the class label of xi .

For xi , it may be considered to be mislabeled supposing
that its Ji value is particularly large. Thus, Ji is selected as

a statistic for hypothesis testing. Firstly, null hypothesis is
defined as:

H0: the samples in the graph are labeled independently
of each other on the basis of the same probability distri-
bution πy , where πy denotes the probability of class y,
y ∈ {ω1, ω2, . . . , ωr }.

H0 specifies a case that for any sample xi , the probability
of examples in its neighborhood possessing labels other than
yi is expected to be no more than 1 − πyi under H0. Hence,
an example xi is considered as a correctly labeled example
if the value of Ji is significantly smaller than its expectation
under H0. And xi is considered as a wrongly labeled example
if the value of Ji is abnormally greater than its expectation
under H0.

To test H0 with statistic Ji , two-side test is used if we are
interested in the significantly smaller value and abnormally
greater value. The distribution to statistic Ji under H0 should
be studied firstly. Ii ( j) are independent and identically dis-
tributed Bernoulli random variables with parameter 1− πyi .
Here, πyi is the global proportion of class yi in the training
set. As a result, the expectation μ0 and variance σ 2 of Ji
under H0 are as follows:

μ0 = (1 − πyi )
∑ni

j=1
wi j (7)

σ 2 = πyi (1 − πyi )
∑ni

j=1
w2
i j (8)

Under null hypothesis H0, Ji is submitted to normal dis-
tribution Ji ∼ N (μ0, σ

2), and the test statistics is selected
as follows:

u = Ji − μ0

σ
(9)

and thus, u ∼ N (0, 1). Given the significance level α, the
rejection domain is concluded as

W = {|u| ≥ u1−α/2} (10)

Thereby, the rejection domain of Ji is

W = [−∞, μ0 − σ · u1−α/2] ∪ [μ0 + σ · u1−α/2,+∞]
(11)

For sample xi , if the value of Ji is significantly less than
the expectation under H0, that is, the value of Ji is in the left
rejection domain, xi is labeled correctly. Otherwise, it may be
labeled wrongly. Detailed identification steps by CEWS are
as follows: a) Create a relative neighborhood graph in data set
S. Initialize correctly labeled data set T = {∅} and wrongly
labeled data set T ′ = {∅}. b) Calculate the weight of each
edge. For each sample xi , calculate Ji , the expectationμi and
variance δ2i of Ji under H0. c) Given the significance level α,
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for xi , the rejection domain can be obtained. d) If the value
of Ji is on the left rejection domain, its label is corrected.
Otherwise, it is a suspect sample. The label of this sample
should be relabeled or be predicted in next iteration. The
pseudo-code of CEWS to identify mislabeled data samples
in data set S is in Algorithm 1.

Algorithm 1 CEWS
Input:

Data set S;
Output:

Correctly labeled set T , Mislabeled set T ′;
1: Generate a relative neighbourhood graph in S according to formula

(4);
2: T = {∅}, T ′ = {∅};
3: Calculate the weight of each edge according to formula (5);
4: for each data xi in S do
5: Calculate Ji , expectation μi and variance δ2i of Ji under H0

according to formulas (6), (7) and (8);
6: Given significant level α, calculate the rejection domain W

according to formulas (9), (10) and (11);
7: if Ji in the left rejection region then
8: T ← T ∪ xi ;
9: else
10: if the neighbours of xi are all in T then
11: relabel xi ;
12: T ← T ∪ xi ;
13: else
14: T ′ ← T ′ ∪ xi ;
15: end if
16: end if
17: end for
18: Return T , T ′

3.3 Proposed framework and algorithm

Self-training is a process of autonomous learning. In each
iteration of self-training algorithm, it is easy to misclassify
the unlabeled samples. These errors will participate in the
next iteration, which will affect the trained classifier, and
reduce the performance of algorithm. It is obvious that iden-
tification of mislabeled samples plays an important role in
self-training process, especially in the early iterations. The
method of CEWS finds the neighbors of a sample accord-
ing to Eq. (4). It can avoid the negative impact caused
by improper selection of parameter. Therefore, in order to
improve the performance of self-training algorithm, CEWS
is integrated into ST-DP for identifying the wrong labels. In
this paper, ST-DP-CEWS is proposed to train a better classi-
fier.

In ST-DP-CEWS, the space structure of data set is dis-
covered by density clustering firstly. The representative
unlabeled samples are selected previously for labels pre-
diction by utilizing the structure information in the iterative
process. In this way, the accuracy of the prediction labels is

improved. Then, CEWS is used to determine whether predic-
tion labels are correct. The labeled set is gradually enlarged
by correctly labeled samples for next iteration training. In this
way, the disturbance degree of wrongly labeled samples to
algorithm performance is decreased. The above procedures
are repeated until unlabeled samples are completely labeled.
Figure 1 describes the proposed algorithm scheme.

Step 1. Discover the underlying space structure of entire
data set by finding density peaks of samples. Making each
sample xi points to its unique nearest sample x j with higher
ρi . Then, the underlying structure of entire data space is used
in Step 2 and Step 3, which are two similar steps to train a
classifier.

Step 2. (a) A initial classifier is trained on the labeled set
L with SVM or KNN as the base classifier.

(b) Select a subset L ′ fromU , where each data sample xk
is the “next” sample of L according to the space structure.
These samples are labeled by the trained classifier.

(c) Mislabeled samples in L ′ are identified by CEWS
algorithm. The correctly labeled samples are obtained. Then,
update L and U . After that, update classifier.

(d) Repeat steps from (a) to (c) until all the “next” samples
of L are labeled.

Step 3. (a)Select a subset L ′ fromU , where each data sam-
ple xk is the “previous” sample of updated L . These samples
are labeled by classifier.

(b) Mislabeled samples in L ′ are identified by CEWS
algorithm. The correctly labeled samples are obtained. Then,
update L and U . After that, update classifier.

(c) Repeat steps from (a) and (b) until all the “previous”
samples of L are labeled.

Obviously, Step 3 is similar to Step 2, except replacing
“next” in Step 2 with “previous.” The specific algorithm
pseudo-code of proposed algorithm is described in Algo-
rithm 2.

4 Experimental results and analysis

Twelvebenchmark classificationdata sets are selected to vali-
date the effectiveness of proposed algorithm. These data sets
are from the University of California Irvine (UCI) (Asun-
cion A 2007) and KEEL repositories (Alcalá-Fdez et al.
2011). The more information on these data sets is shown
in Table 1. The samples with missing value are deleted from
data sets Mammographic, Cleveland and Dermatology. The
rest of the data sets do nothing.

4.1 Implementation of experiment

In order to illustrate the effectiveness of proposed algorithm
ST-DP-CEWS, four algorithms: Tri-training (Li and Guo
2012), ST-FCM (Gan et al. 2013), ST-DP (Wu and Shang
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Algorithm 2 ST-DP-CEWS
Input:

Labeled set L , unlabeled set U ;
Output:

A trained classifier C ;
1: for each sample xi in L ∪U do
2: calculate ρi and δi according to formulas (2) and (3);
3: end for
4: Discover the "next" and "previous" sample of each instance in L and U ;
5: Train a classifier C on L;
6: N = {x j }, where x j is "next" samples of L;
7: while N �= {∅} do
8: Classify samples in N by C ;
9: S ← L ∪ N ;
10: Divide N into correctly labeled set T and incorrectly labeled set T ′ by calling Algorithm 1;
11: L ← L ∪ T ;
12: U ← U\T;
13: Update the classifier C with L;
14: N = {x j }, where x j is "next" samples of L;
15: end while
16: P = {xk}, where xk is "previous" samples of L;
17: while P �= {∅} do
18: Classify samples in P by C ;
19: S ← L ∪ P;
20: Divide P into correctly labeled set T and incorrectly labeled set T ′ by calling Algorithm 1;
21: L ← L ∪ T ;
22: U ← U\T;
23: Update the classifier C with L;
24: P = {x j }, where x j is "previous" samples of L;
25: end while
26: Update the classifier C with L;
27: Return the classifier C .

Fig. 1 Proposed algorithm scheme
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Table 1 Experimental data sets Data sets Examples Features Classes

Haberman 306 3 2

Banknote authentic 1372 4 2

Mammographic 830 5 2

Bupa 345 6 2

Ecoli 336 7 8

Glass 214 9 6

Cleveland 297 13 5

Heart 270 13 2

Climate model simulation crashes 540 18 2

Wdbc 569 30 2

Dermatology 358 33 6

Ionosphere 351 34 2

Table 2 Parameters for all
algorithms used in experiments

Algorithm Parameters

KNN K = 3

SVM LIBSVM: all the parameters are set as default values
(Chang and Lin 2011)

Tri-training Base classifier: SVM or KNN

ST-FCM Threshold ε1=1

ST-DP Pa = 2

ST-DP-DE Pa = 2; the parameters of function DE-POAC(L ′,L) are
same as (Wu et al. 2018; Di et al. 2017).

ST-DP-CEWS Pa = 2; significant level α = 0.05

2018) and ST-DP-DE (Wu et al. 2018), are chosen to com-
pare with ST-DP-CEWS. The parameters of these algorithms
are shown in Table 2.

In the experimental part, the tenfold cross-validation strat-
egy is adopted to determine the experimental results. Each of
these ten parts is selected as test set Ts, and the remaining nine
folds are selected as the training set TR . When each experi-
ment is performed, 10% samples of TR are selected as initial
labeled set L by randomized strategy. The rest samples of
TR are as unlabeled setU . Therefore, each data set is divided
into three parts: L ,U and Ts. To ensure the accuracy of exper-
iment, tenfold cross-validation experiment is conducted ten
times. The average of ten experimental results is the final
result. In each tenfold cross-validation experiment, accuracy
rate (AR), mean accuracy rate (MAR) and standard devia-
tion of AR (SD-AR) are selected as the comparison basis
of algorithm performance. They are, respectively, computed
as:

AR= 1

NTs

NTs∑

i=1

ψ(ω, f (xi )) (12)

where

ψ(ω, f (xi )) =
{
1, ω = f (xi )

0, else
.

MAR = 1

n

n∑

k=1

ARk . (13)

SD − AR =
√√√√1

n

n∑

k=1

(ARk − MAR)2. (14)

Here, f (xi ) is the predicted label of algorithm to xi , and ω

is the original label. ψ is an indicator function to determine
whether prediction label and original label are the same. NTs
is the number of samples in test set Ts. n is the repeated times
of computing AR, and ARk is result of of the k-th calculating
AR .MAR represents the classification performance of algo-
rithms, and SD-AR represents the robustness of algorithms.

4.2 Analysis of experimental results

The classification results of tenfold cross-validation on data
sets Glass and Ionosphere are shown in Tables 3, 4, 5 and
6. As shown in these tables, Tri-training, ST-FCM, ST-DP
or ST-DP-DE may have worse classification accuracy than
KNNor SVM.The reason for this circumstancemight be that
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Table 3 Experimental results of tenfold cross-validation on data set Glass with KNN as base classifier (MAR±SD-AR, %)

Tenfold cross-validation Base classifier: KNN

KNN only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

#1 57.14 61.90 61.90 52.38 52.38 61.90

#2 57.14 52.38 50.00 66.67 47.62 76.19

#3 63.64 57.14 66.67 52.38 76.19 57.14

#4 57.14 57.14 59.09 61.90 54.55 72.73

#5 63.64 57.14 66.67 71.43 59.09 72.73

#6 52.38 38.10 54.55 63.64 68.18 71.43

#7 45.45 59.09 52.38 57.14 61.90 90.91

#8 54.55 50.00 61.18 59.09 71.43 71.43

#9 52.38 59.09 61.90 59.09 68.18 71.43

#10 52.38 54.55 33.33 63.64 57.14 63.64

MAR 55.58 54.65 57.47 60.74 61.67 70.95

SD-AR 5.21 6.42 9.99 5.71 8.68 8.71

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm

Table 4 Experimental results of tenfold cross-validation on data set Glass with SVM as base classifier (MAR±SD-AR, %)

Tenfold cross-validation Base classifier: SVM

SVM only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

#1 52.38 61.90 45.45 52.38 33.33 57.14

#2 36.36 36.36 57.14 57.14 38.10 36.36

#3 31.82 47.62 33.33 59.09 59.09 52.38

#4 57.14 42.86 47.62 42.86 42.86 42.86

#5 38.10 40.91 38.10 28.57 50.00 72.73

#6 42.86 33.33 38.10 45.45 57.14 47.62

#7 47.62 31.82 59.09 50.00 59.09 57.14

#8 54.55 47.62 47.62 52.38 50.00 59.09

#9 57.14 45.45 50.00 57.14 42.86 52.38

#10 40.91 38.10 59.09 45.45 61.90 59.09

MAR 45.89 42.6 47.55 49.05 49.44 53.68

SD-AR 8.70 8.34 8.66 8.59 9.36 9.50

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm

some unlabeled data samples are misclassified and directly
used in the next iteration. As a result, Tri-training, ST-FCM,
ST-DP and ST-DP-DE fail to improve the performance of
classification. However, ST-DP-CEWS has better classifi-
cation accuracy than the base classifier or the other four
methods.We believe the reason is that ST-DP-CEWS utilizes
CEWS to identify the mislabeled data and utilizes distribu-
tion of entire data during the self-training process.

The comparative experimental results of the remaining
ten data sets are shown in Tables 7 and 8. As shown in these
two tables, when KNN is used as base classifier, the pro-
posed algorithm may be less effective than other algorithms
in some data sets. In order to analyze reason, four of the
data sets are visualized. As shown in Fig. 2, the data with
different classes can be distinguished by the distribution of

four data sets of Haberman, Banknote authentication, Wdbc
and Heart. By contrast, the data sets of Haberman, Banknote
authentication and Wdbc all have an area, in which various
classes of samples are densely distributed. Samples in this
area are difficult to classify KNN classifier and hard to distin-
guish whether they are labeled incorrectly. The distribution
of Heart is obviously different from the other three data sets.
Its distribution is relatively balance. In addition, note that the
classification accuracy of proposed algorithm in Cleveland
and Climate... is not increased when SVM is base classifier.
The reason may be that most attributes values in data sets are
close to 0. For the same feature, the difference of each sam-
ple is tiny, resulting in the tiny difference between samples.
Hence, it is hard to find the decision boundary, which will
affect the classification effect.
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Table 5 Experimental results of tenfold cross-validation on data set Ionosphere with KNN as base classifier (MAR±SD-AR, %)

Tenfold cross-validation Base classifier : KNN

KNN only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

#1 77.11 78.31 71.08 54.22 72.29 78.31

#2 78.31 77.11 72.29 71.08 72.29 77.11

#3 73.49 78.31 81.93 77.11 77.11 74.70

#4 67.47 73.49 72.29 75.90 81.93 72.29

#5 73.49 68.67 69.88 79.52 84.34 81.93

#6 73.49 66.27 74.70 71.08 73.49 75.90

#7 72.29 62.65 74.70 69.88 77.11 75.90

#8 73.49 69.88 71.08 84.34 71.08 71.08

#9 80.72 74.70 77.11 75.90 73.49 81.93

#10 80.72 75.90 73.49 85.54 69.88 77.11

MAR 75.06 72.53 73.86 74.46 75.30 76.63

SD-AR 3.92 5.13 3.37 8.43 4.52 3.37

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm

Table 6 Experimental results of tenfold cross-validation on data set Ionosphere with SVM as base classifier (MAR±SD-AR, %)

Tenfold cross-validation Base classifier: SVM

SVM only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

#1 68.57 80.00 85.71 82.86 77.14 82.86

#2 74.29 88.89 82.86 82.86 80.00 91.43

#3 74.29 65.71 77.14 85.71 88.89 91.43

#4 86.11 94.29 74.29 88.57 88.57 94.29

#5 85.71 74.29 88.89 85.71 85.71 74.29

#6 85.71 82.86 77.14 80.00 80.00 91.43

#7 80.00 71.43 82.86 77.14 80.00 88.57

#8 88.57 85.71 74.29 80.00 94.29 91.67

#9 77.14 68.57 85.71 71.43 77.14 85.71

#10 68.57 85.71 77.14 83.33 80.00 82.86

MAR 78.90 79.75 80.60 81.76 83.17 87.45

SD-AR 7.06 8.93 4.97 4.66 5.52 5.76

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm

Table 7 Experimental results of tenfold cross-validation on different data sets with KNN as base classifier (MAR±SD-AR, %)

Data sets Algorithms with base classifier: KNN

KNN only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

Haberman 71.88 ± 7.06 71.28 ± 6.78 74.45 ± 6.68 72.65 ± 9.70 73.45 ± 8.26 73.84 ± 7.39

Banknote... 97.96 ± 1.87 98.76 ± 1.09 98.32 ± 0.98 99.49 ± 0.66 97.30 ± 2.23 96.76 ± 2.45

Mammographic 72.89 ± 5.78 73.73 ± 3.80 74.30 ± 4.94 74.49 ± 5.01 74.80 ± 3.48 77.59 ± 5.71

Bupa 56.52 ± 8.54 54.75 ± 10.56 54.17 ± 10.57 57.41 ± 9.56 59.70 ± 5.46 62.89 ± 5.67

Ecoli 63.68 ± 6.49 71.84 ± 5.37 64.3 ± 7.52 70.29 ± 7.19 69.46 ± 8.12 77.66 ± 5.06

Cleveland 47.86 ± 8.5 46.11 ± 7.53 48.18 ± 9.03 47.52 ± 7.94 48.16 ± 8.65 51.17 ± 6.45

Heart 61.48 ± 6.46 62.59 ± 8.19 61.85 ± 7.78 62.96 ± 8.45 64.81 ± 7.99 68.15 ± 6.67

Climate... 90.93 ± 3.15 91.11 ± 3.69 91.30 ± 3.71 91.30 ± 4.15 91.48 ± 4.70 91.48 ± 3.90

Wdbc 89.28 ± 3.27 89.63 ± 3.87 92.27 ± 2.39 92.79 ± 1.65 92.79 ± 3.37 87.35 ± 7.00

Dermatology 54.44 ± 9.98 55.57 ± 6.16 55.37 ± 10.06 73.54 ± 7.17 71.81 ± 8.40 77.86 ± 11.68

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm
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Table 8 Experimental results of tenfold cross-validation on different data sets with SVM as base classifier (MAR±SD-AR, %)

Data sets Algorithms with base classifier: SVM

SVM only Tri-training ST-FCM ST-DP ST-DP-DE ST-DP-CEWS

Haberman 72.19 ± 5.09 73.88 ± 5.68 72.6 ± 7.81 73.53 ± 3.97 73.47 ± 8.90 75.16 ± 7.08

Banknote... 94.09 ± 3.99 94.31 ± 5.02 95.04 ± 3.64 97.02 ± 3.79 96.06 ± 3.66 98.03 ± 1.30

Mammographic 80.84 ± 5.24 80.96 ± 2.99 80.72 ± 6.17 80.36 ± 5.39 81.08 ± 5.39 81.81 ± 2.50

Bupa 58.76 ± 10.14 57.75 ± 11.57 59.76 ± 9.05 59.97 ± 7.96 60.18 ± 8.55 68.7 ± 8.18

Ecoli 42.51 ± 8.80 42.54 ± 5.86 42.55 ± 8.95 42.55 ± 9.04 42.58 ± 5.26 42.66 ± 9.81

Cleveland 53.86 ± 7.96 53.90 ± 8.01 53.90 ± 7.09 53.84 ± 6.77 53.90 ± 6.89 53.93 ± 7.17

Heart 66.67 ± 9.66 71.11 ± 7.37 62.59 ± 8.68 64.07 ± 8.12 64.81 ± 6.68 78.15 ± 5.35

Climate... 91.48 ± 4.4 91.48 ± 3.90 91.67 ± 4.70 91.67 ± 3.01 91.85 ± 3.12 91.85 ± 3.43

Wdbc 92.79 ± 3.12 92.27 ± 4.45 92.8 ± 3.87 94.02 ± 2.39 94.02 ± 1.62 95.25 ± 2.10

Dermatology 57.26 ± 8.16 58.67 ± 8.24 59.21 ± 7.2 65.9 ± 8.58 69.82 ± 5.32 85.45 ± 9.64

Bold indicates the highest value ofMAR and the best performance of corresponding algorithm
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Fig. 2 The distribution of four data sets
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Fig. 3 The relationship between MAR and the ratio of labeled data with KNN as base classifier

In summary, we can draw a conclusion from the experi-
mental results that the performance of proposed algorithm
ST-DP-CEWS is better than other algorithms. The main
reason is that ST-DP-CEWS utilizes CEWS to identify the
mislabeled samples. Furthermore, the space structure infor-
mation of entire data set and the valuable information of
unlabeled samples are used to full advantage in ST-DP-
CEWS.

4.3 Impact of labeled data ratio

The performance of proposed algorithm with respect to the
labeled data ratio is discussed. Figures 3 and 4, respectively,
show the trend ofMAR of different algorithms with the ratio
of initial labeled data. The labeled samples ratio increases
from 10% to 50%.
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Fig. 4 The relationship between MAR and the ratio of labeled data with SVM as base classifier

It can be seen fromFigures 3 and 4 that the performance of
ST-DP-CEWS is better than other algorithms on the whole.
When the ratio of labeled samples is very little, the clas-
sification accuracy of ST-DP-CEWS is significantly higher
than other algorithms. The reason is that ST-DP-CEWS uti-
lizes CEWS to identify mislabeled samples during labeled

set which is gradually expended. The error accumulation
caused by mislabeled samples is reduced in iterative process.
Thereby, the classification accuracy is improved. Figures 3
and 4 also show that the classification accuracy of ST-DP-
CEWS is close to other algorithms as the ratio of labeled
data gradually increases. This is because when the number of
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Table 9 Result of the Wilcoxon test with KNN as base classifier

Algorithm versus ST-DP-CEWS R+ R− P value

KNN 76.0 2.0 0.00297

Tri-training 76.0 2.0 0.00297

ST-FCM 73.0 5.0 0.006272

ST-DP 73.0 5.0 0.006272

ST-DP-DE 64.0 2.0 0.004623

Table 10 Result of the Wilcoxon test with SVM as base classifier

Algorithms versus ST-DP-CEWS R+ R− P value

SVM 77.5 0.5 0.001944

Tri-training 77.5 0.5 0.001944

ST-FCM 77.5 0.5 0.001944

ST-DP 77.0 1.0 0.002813

ST-DP-DE 65.0 1.0 0.003775

labeled samples is sufficient, the average classification accu-
racy of these algorithms is relatively stable. ST-DP-CEWS is
proposedbasedon the situation that there are very few labeled
samples. ST-DP-CEWS is mainly used in semi-supervised
classification, and it is more suitable for classification in the
environment with low ratio of labeled samples.

4.4 Comparison with previous algorithms

To validate the effectiveness of our self-training algorithm,
ST-DP-CEWS is compared with Tri-training, ST-FCM, ST-
DP and ST-DP-DE. The Wilcoxon’s test and the Friedman’s
test, executed by KEEL software Zhou and Li (2010), are
used to detect the statistical differences of the compared
methods based on the PR values (Wang et al. 2015). Tables 9
and 10 collect the Wilcoxon’s test results, and Table 11 col-
lects the average rankings of algorithms by Friedman’s test.
As shown in Tables 9 and 10, ST-DP-CEWS achieves higher
R+ values than R− values in all cases.Moreover, the P value
is less than 0.05 which means that ST-DP-CEWS has more
reliable performance. In addition, according to Friedman test
in Table 11, ST-DP-CEWS exhibits the best ranking.

Furthermore, to verify whether the accuracy improvement
of the proposed ST-DP-CEWS algorithm is statistical signif-
icant, the classification results of KNN, SVM, Tri-training,
ST-FCM, ST-DP, ST-DP-DE and ST-DP-CEWS algorithms
are determined by the Friedman’s test (Fan et al. 2018; Zhang
and Hong 2019). The Friedman’s test (Derrac et al. 2011) is
a multiple comparisons test that aims to detect significant
differences between the results of two or more algorithms.

Table 11 Average rankings of algorithms by Friedman test

Algorithms Ranking with KNN Ranking with SVM

KNN/SVM 4.8333 5.2083

Tri-training 4.75 4.4583

ST-FCM 4.0417 4.1667

ST-DP 3.1667 3.625

ST-DP-DE 2.6667 2.5

ST-DP-CEWS 1.5417 1.0417

Table 12 Friedman test for ST-DP-CEWSagainst comparedother algo-
rithms

ST-DP-CEWS versus
compared algorithms

Significant level α = 0.05

(KNN as base classifier) H0 : e1 = e2 = e3 = e4 = e5 = e6

KNN

Tri-training F = 28.3706

ST-FCM p = 7.84478e−09

ST-DP

ST-DP-DE

(SVM as base classifier) H0 : e1 = e2 = e3 = e4 = e5 = e6

SVM

Tri-training F = 38.8799

ST-FCM p = 7.8448e−09

ST-DP

ST-DP-DE

The statistic F of Friedman test is shown as follows:

F = 12N

q(q + 1)

⎡

⎣
q∑

j=1

Rank2j − q(q + 1)2

4

⎤

⎦ (15)

where N is the total number of data sets; q is the number
of compared algorithms. Rank j is the average rank sum
received from each classification value for each algorithm.
The null hypothesis for Friedman test is that equality of clas-
sification errors among compared algorithms. The alternative
hypothesis is defined as the negation of the null hypothesis.
The test results are shown in Table 12, at the 0.05 significance
level in one-tail test. Clearly, the proposed ST-DP-CEW self-
training algorithm is significant superior to other algorithms.

5 Conclusion

In this paper, an improved self-trainingmethod based on den-
sity peaks and cut edge weight statistic is proposed. First,
clustering based on density is used to discover the underly-
ing space structure of data set. The representative unlabeled
samples are selected priority to be classified by utilizing
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information of space structure. Second, TheCEWSmethod is
used to identify the mislabeled data. The incorrectly labeled
samples are added to enlarge the labeled set. The above
procedures are repeated until unlabeled samples are labeled
completely. In proposed algorithm, the valuable information
of unlabeled samples is excavated in the course of discov-
ering space structure. And in the process of self-training,
mislabeled samples are handled by CEWS, which reduces
the negative impact of wrong labels on the performance of
algorithm. The experimental results in this paper show the
superiority of ST-DP-CEWS over the compared algorithms.

Certainly, the proposed algorithmmayhave aweakness. In
the identification process, the predicted labels are either cor-
rect or incorrect. In essence, the identification method adopts
one-zero sampling. There are two types of errors during the
mislabeled data identifying. Type 1, a correctly labeled sam-
ple is regarded as mislabeled data and relabel. Type 2, a
mislabeled sample is regarded as correctly labeled data and
retained. Two types of errors may harm the classification per-
formance. Therefore, in the future plan, the probability that
may be mislabeled is assigned to each sample. The samples,
which have higher probability, will be regarded asmislabeled
data.Wewill further study how to use the probability concept
to improve the performance of self-training.
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