
METHODOLOGIES AND APPLICATION

A hybrid grasshopper and new cat swarm optimization algorithm
for feature selection and optimization of multi-layer perceptron

Priti Bansal1 • Sachin Kumar1 • Sagar Pasrija1 • Sachin Singh1

Published online: 19 March 2020
� Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The classification accuracy of a multi-layer perceptron (MLP) depends on the selection of relevant features from the data

set, its architecture, connection weights and the transfer functions. Generating an optimal value of all these parameters

together is a complex task. Metaheuristic algorithms are popular choice among researchers to solve complex optimization

problems. This paper presents a hybrid metaheuristic algorithm simple matching-grasshopper new cat swarm optimization

algorithm (SM-GNCSOA) that optimizes all the four components simultaneously. SM-GNCSOA uses grasshopper opti-

mization algorithm, a new variant of binary grasshopper optimization algorithm called simple matching-binary grasshopper

optimization algorithm and a new variant of cat swarm optimization algorithm called new cat swarm optimization

algorithm to generate an optimal MLP. Features play a vital role in determining the classification accuracy of a classifier.

Here, we propose a new feature penalty function and use it in SM-GNCSOA to prevent underfitting or overfitting due to the

selected number of features. To evaluate the performance of SM-GNCSOA, different variants of SM-GNCSOA are

proposed and their classification accuracies are compared with SM-GNCSOA on ten classification data sets. The results

show that SM-GNCSOA gives better results on most of the data sets due to its capability to balance exploration and

exploitation and to avoid local minima.

Keywords Simple matching distance � Binary grasshopper optimization algorithm � New cat swarm optimization

algorithm � Feature selection � Multi-layer perceptron

1 Introduction

Artificial neural networks (ANNs) are computational

models that mimic human brain and are widely used to

model complex nonlinear problems. Due to its learning

capabilities, ANNs are widely used in the field of data

classification, forecasting, face identification and pattern

recognition (Chen and Zhang 2009; Rezaeianzadeh et al.

2014; Vázquez et al. 2010; Schmidhuber 2015). Among

ANN topologies, feedforward multi-layer perceptrons

(MLPs) are generally preferred to solve classification

problems. An important characteristic of MLP is its ability

to learn from data. In today’s scenario, tremendous amount

of high dimensionality data is being generated every day

which poses a challenge for data analysts. In addition to

this, data sets may contain redundant and irrelevant fea-

tures which do not contribute much to the classification

process. Therefore, it is vital to select a correct set of

features as it highly influences the performance (classifi-

cation accuracy) of the classifier. Feature selection (FS)

helps in reducing the complexity of MLP architecture as

well as the training time. FS also prevents overfitting as the

classifier will not get an opportunity to make decisions

based on noise due to the removal of redundant and inap-

propriate features within the data set. Different methods

exist in the literature for selecting features and are gener-

ally classified into filter, wrapper and embedded methods

Communicated by V. Loia.

& Priti Bansal

bansalpriti79@gmail.com

Sachin Kumar

sachin.roy@hotmail.com

Sagar Pasrija

thesagarpasrija@gmail.com

Sachin Singh

sachinsngh165@gmail.com

1 Department of Information Technology, Netaji Subhas

Institute of Technology, Dwarka, New Delhi, India

123

Soft Computing (2020) 24:15463–15489
https://doi.org/10.1007/s00500-020-04877-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-04877-w&domain=pdf
https://doi.org/10.1007/s00500-020-04877-w

(Cai et al. 2018). In filter methods, a score is assigned to

each feature within the data set using a statistical measure

(Katrutsa and Strijov 2017). These scores are used to rank

each feature, and finally, features are selected or removed

on the basis of these ranks. Wrapper methods formulate the

feature selection problem as a search problem and try to

obtain an optimal set of features using stochastic algo-

rithms or heuristic (Kohavi and John 1997). Embedded

model (Mirzaei et al. 2017) selects features during the

training process, and the selected features are displayed

once the training is completed. Filter methods are faster

and computationally less expensive as compared to wrap-

per methods (Liu and Motoda 1998); however, wrappers

methods are found to be more effective in finding a subset

of features for a pre-determined classifier thereby opti-

mizing the classifier performance (Zarshenas and Suzuki

2016).

Classification accuracy of MLP also depends on its

architecture that includes the number of hidden layers,

number of hidden neurons and transfer functions. An

optimal MLP architecture is required as an excessively

large architecture may cause overfitting of training data due

to its excessive information processing ability and an

excessively small architecture may cause underfitting of

training data due to its restricted information processing

ability leading to increase in generalization error in both

the scenarios. Earlier, architecture was decided using trial-

and-error methods. Later on, different methods such as

constructive methods (Ma and Khorasani 2005; Islam et al.

2009a), pruning methods (Lauret et al. 2006) and hybrid

methods (Islam et al. 2009b) were proposed by researchers

to design an optimal architecture. These methods explore a

small architectural space and may get trapped in local

optima. Another problem faced while using these approa-

ches is to determine when to halt the process. These issues

motivated researchers to explore alternative approaches,

and the global search abilities of metaheuristic algorithms

make them a popular choice to generate optimal MLP

architecture among the research community.

Another key aspect in determining the classification

accuracy of MLP is the training algorithm. During the

training phase, MLP learns from the training data. It

updates the connection weights and biases continuously, in

an attempt to classify the training data correctly. The

training process continues until the network acquired a

sufficient amount of knowledge or maximum number of

iterations is reached (Garro and Vázquez 2015). To avoid

overfitting during the training process, validation data are

used. Once the training is completed, performance of the

MLP is evaluated by measuring its classification accuracy

on the test data. Training algorithms are broadly classified

into: gradient-based and stochastic-based training algo-

rithms. Gradient methods like back-propagation (BP) have

slow convergence, and they get stuck in local optima. In

gradient-based methods, there is a need to select an

appropriate learning rate also (Hong et al. 1999). On the

other hand, owing to the global search abilities of meta-

heuristic algorithms, they perform better than gradient-

based methods in avoiding local optima and generating an

optimal solution (Zhang et al. 2016).

The contribution of transfer function in determining the

output of a neuron cannot be neglected. They make the

network more powerful by adding to it the ability to learn

nonlinear complex data (Karlik and Olgac 2010). It is

therefore important to choose the transfer function

correctly.

Several approaches exist in the literature to select opti-

mal set of features, connection weights, network architec-

ture, transfer function or a combination of two or more

things using conventional or metaheuristic algorithms.

However, in most of the cases, the importance of transfer

function is often neglected by emphasizing more on its

architecture and training algorithm. Generating an optimal

value of all the four components together is a complex task.

To the best of our knowledge, no method exists in the

literature that evolves all the four components, namely

features, architecture, connection weights and transfer

function of MLP simultaneously. This motivated us to do

the work presented in this paper. We further motivated by

the fact stated in No-Free-Lunch (NFL) theorem (Wolpert

and Macready 1997). It states that no optimization tech-

nique exists to solve all optimization problems which

means that a metaheuristic algorithm may work well for

some data set, but it may underperform for some other data

set.

Metaheuristic algorithms are stochastic search-based

algorithms that are used to solve diverse optimization

problems by searching highly nonlinear and multimodal

search spaces. Due to the growing popularity of meta-

heuristic algorithms in all fields such as computer science,

control systems and signal processing, a number of meta-

heuristic algorithms such as bacterial foraging optimization

(Passino 2002), artificial bee colony algorithm (ABC)

(Karaboga 2005), cat swarm optimization (CSO) (Chu

et al. 2006), firefly algorithm (Yang 2009), kill herd algo-

rithm (Gandomi and Alavi 2012), binary bat algorithm

(BBA) (Mirjalili et al. 2014a), grey wolf optimizer (Mir-

jalili et al. 2014b) and moth flame optimization algorithm

(MFOA) (Mirjalili 2015b) have been recently proposed by

researchers on the basis of intelligent behaviour of swarms.

These algorithms are population-based algorithms that start

with a set of randomly generated solutions in the search

space. Each solution evolves continuously by updating its

position depending on its own position and the target’s

position in an attempt to reach the global optima. Over the

last few years, numerous evolutionary- and swarm-based

15464 P. Bansal et al.

123

algorithms are proposed and applied by researchers for

optimizing ANN. As the performance of metaheuristic

algorithms is highly dependent on their exploration and

exploitation capabilities, it is vital to keep a balance

between exploration and exploitation to avoid local minima

and to achieve convergence. Single solution-based algo-

rithms such as simulated annealing (SA) are good in

exploitation. Hybrid algorithms are often proposed by

researchers to combine and exploit the capabilities of dif-

ferent algorithms. In the field of ANN, hybrid meta-

heuristic algorithms have been proposed by researchers to

optimize architecture, connection weights, feature vector or

a combination of them (Tsai et al. 2006; Carvalho and

Ludermir 2007; Zanchettin et al. 2011; Garro and Vázquez

2015, Bansal et al. 2019).

GOA proposed by Saremi et al. (2017) is a metaheuristic

algorithm based on the behaviour of swarm of grasshopper

for solving continuous optimization problems. Binary

version of GOA (BGOA) is proposed by Mafarja et al.

(2018), to solve the problem of feature selection as the

search space is binary. The capability of GOA in control-

ling the degree of exploration and exploitation using

parameter c enhances its performance when compared

against the existing algorithms. In GOA, the value of c is

decreased proportionally with the number of iterations

which enables GOA to perform exploration in the initial

iterations and exploitation in the later iterations. The per-

formance of GOA and BGOA in solving continuous and

discrete/binary optimization problems, respectively, further

motivated us to explore GOA for optimizing MLP. Our

solution space consists of binary, discrete and continuous

values. Due to the complex nature of our search space, we

propose a new variant of BGOA called simple matching-

binary grasshopper optimization algorithm (SM-BGOA) to

make it better suited to our problem. Unlike Euclidean

distance used in BGOA for feature selection, the proposed

SM-BGOA uses simple matching distance (SMD) to cal-

culate the dissimilarity between the solution vectors and

uses this distance to update the positions of grasshoppers.

SMD is used as it gives a better measure of dissimilarity/

distance between two binary objects (especially symmetric

binary objects) as compared to Euclidean distance (Han

and Kamber 2006). Secondly, we propose a hybrid algo-

rithm SM-GNCSOA that uses GOA, SM-BGOA and a new

variant of CSOA known as NCSOA to optimize MLP. In

the proposed hybrid algorithm, SM-BGOA performs FS

and GOA optimizes architecture and transfer function

simultaneously. NCSOA is called by GOA for connection

weights and bias optimization. CSO exhibits good perfor-

mance (Saha et al. 2013); however, sometimes it gets stuck

in local optima for complex optimization problem due to

its weak diversity (Kumar and Singh 2018). Many variants

of CSOA exist in the literature (Saha et al. 2013;

Orouskhani et al. 2013; Kumar and Singh 2018; Guo et al.

2018), and their performance motivated us to use CSOA

for weight optimization. Here, we propose NCSOA that

improves the performance of CSOA by increasing diversity

in the population thereby avoiding chances of getting stuck

in local optima thus preventing premature convergence.

The key contributions of this paper are:

1. A variant of BGOA known as SM-BGOA is proposed

to solve optimization problems with binary search

space.

2. A variant of CSOA known as NCSOA is proposed to

solve the problems faced by CSOA.

3. A hybrid algorithm SM-GNCSOA that embeds

NCSOA within SM-BGOA and GOA is proposed to

select an optimal set of features and to design an

optimal MLP.

4. To evaluate the effect of using SM-BGOA and

NCSOA in designing MLP, different variants of SM-

GNCSOA are proposed. The classification accuracy of

MLP obtained using SM-GNCSOA is compared with

MLPs obtained using these variants on ten data sets.

The organization of the paper is as follows. Section 2

presents the related work. Section 3 gives a brief overview

of GOA, BGOA and CSOA. In Sect. 4, SM-BGOA,

NCSOA and the hybrid algorithm SM-GNCSOA are

explained. In Sect. 5, experimental results conducted to

analyse the effectiveness of SM-GNCSOA are presented

and discussed. Finally, conclusion and future work are

discussed in Sect. 6.

2 Related work

Several methods exist in the literature that aimed at gen-

erating optimal ANN architecture, optimal synaptic

weights or both using metaheuristic algorithms. Recently,

due to the global search capabilities of metaheuristic

algorithms, they have also been used by researchers in

generating an optimal set of features.

Carvalho and Ludermir (2007) proposed an algorithm

where PSO is looped inside another PSO to optimize both

the architecture and weight of FNN simultaneously.

Weight and architecture optimization was done by inner

PSO and outer PSO, respectively. Zanchettin et al. (2011)

proposed a hybrid approach (GaTSa) that integrates SA,

tabu search, GA and BP to generate optimal architecture

and weights of MLP with only one hidden layer. The

feature selection method used by GaTSa is a combination

of both wrapper and embedded methods. Garro et al.

(2011) proposed an ABC-based methodology to evolve

synaptic weights, architecture and transfer functions at the

same time. They evolve the transfer function for each

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15465

123

neuron and tested their methodology on various pattern

recognition problems. In Garro and Vázquez (2015), PSO

and its variants such as second generation of PSO (SGPSO)

and a new model of PSO called NMPSO are proposed and

used to evolve architecture, synaptic weights, biases and

transfer function simultaneously. Eight fitness functions are

proposed to measure the fitness of every particle with the

aim of generating an optimal design. However, in both the

cases (Garro et al. 2011; Garro and Vázquez 2015), the

proposed methodologies do not perform feature optimiza-

tion. In Jaddi et al. (2015a) and Jaddi et al. (2015b), several

variants of bat algorithms are proposed and used for opti-

mizing the features, structure and weights of ANN simul-

taneously. To avoid dense architecture, a cost function is

used that acts as a penalty for dense architecture. But the

transfer functions are kept fixed. Bansal et al. (2019) pro-

posed an approach MLP-LOA that uses lion optimization

algorithm to optimize MLP architecture and transfer

function. Training was done using BP; however, learning

rate and momentum were optimized using MLP-LOA.

Many methods exist in the literature that optimizes the

connection weights only keeping the architecture fix.

Karaboga et al. (2007) applied artificial bee colony algo-

rithm (ABC) to train multi-layer feedforward neural net-

work (MLFNN). In Hacibeyoglu and Ibrahim (2018),

multi-mean particle swarm optimization (MMPSO) is

proposed by authors to generate optimal connection

weights of MLFNN. Mirjalili (2015a) applied grey wolf

optimizer (GWO) to train MLP. Faris et al. (2016) pro-

posed nature-based multi-verse optimizer (MVO) to train

MLFNN for binary pattern classification. In Faris et al.

(2017), improved monarch butterfly optimization (IMBO)

algorithm is proposed and used to train a single hidden

layer MLP keeping the architecture and transfer function

fixed. Aljarah et al. (2018) applied whale optimization

algorithm (WOA) to generate optimal set of connection

weights in MLP. In Heidari et al. (2018), grasshopper

optimization algorithm is used to train MLP with one

hidden layer. The proposed GOAMLP algorithm optimizes

the weights and biases of MLP keeping the architecture

fixed.

Recently, metaheuristic algorithms have been applied by

researchers for feature selection also. Xue et al. (2013)

proposed a feature selection method using PSO with novel

initialization and updating mechanism. The main aim of

the proposed strategy was to improve the classification

accuracy and to minimize the number of selected features

and computational time. In Ghaemi and Feizi-Derakhshi

(2016), a feature selection using forest optimization algo-

rithm (FSFOA) was proposed for feature selection in order

to increase the accuracy of classifiers. FSFOA is an adap-

tation of forest optimization algorithm (FOA) which was

initially proposed for continuous optimization problems. A

hybrid WOA with simulated annealing (Mafarja and Mir-

jalili 2017), WOA (Mafarja and Mirjalili 2018) and binary

slap swarm algorithm with crossover scheme (Faris et al.

2018) has been applied by researchers for feature selection.

Recently, a binary variant BGOA of GOA has been pro-

posed and used by Mafarja et al. (2018) for feature

selection.

Recently, many variants of GOA have been proposed by

researchers in order to solve multi-objective problems as

well as to improve the global search capability and the

convergence speed of GOA. Mirjalili et al. (2017) proposed

a multi-objective version of GOA, and its performance is

tested on a set of multi-objective problems. The results

show the effectiveness of the proposed algorithm in solving

multi-objective problems. Wu et al. (2017) proposed an

adaptive grasshopper optimization algorithm (AGOA) for

trajectory optimization of the solar-powered unmanned

aerial vehicle cooperative target tracking in urban envi-

ronment. AGOA uses natural selection strategy and the

democratic decision-making mechanism to avoid getting

trapped in local optima. Tharwat et al. (2017) proposed a

modified version of GOA called multi-objective

grasshopper optimization algorithm (MOGOA) to optimize

multi-objective problems. Unlike GOA which selects the

best solution as target, MOGOA uses Pareto optimal

dominance to select the target. Arora and Anand (2018)

proposed chaotic grasshopper optimization algorithm that

uses chaotic maps to improve the global convergence rate.

In CGOA, instead of linearly decreasing the value of

parameters c1 and c2, chaotic maps are employed to adjust

the values of c1 and c2. Ewees et al. (2018) proposed an

improved version of GOA based on opposition-based

learning (OBL) called OBLGOA. This strategy improves

the exploration capabilities of GOA by using OBL.

OBLGOA consists of two stages: in the first stage, initial

population is generated randomly, and then, OBL is used to

generate its opposite solutions, whereas in the second

stage, OBL is used to update the population of grasshop-

pers in each iteration. However, OBL is applied to only

half of the solutions in order to reduce the time complexity.

Luo et al. (2018) proposed an improved grasshopper opti-

mization algorithm (IGOA) and applied it to financial

stress prediction. IGOA uses Gaussian mutation to improve

the population diversity thereby increasing the local search

capability of GOA, and Levy flight is employed to improve

the randomness of search agent’s movements that improves

the global search capability of GOA and OBL for search of

effective solution space that improves the exploration

capability of the algorithm.

15466 P. Bansal et al.

123

3 Background

Here, a brief overview of GOA, its binary variants and

CSOA is presented.

3.1 Grasshopper optimization algorithm (GOA)

GOA is a swarm-based metaheuristic algorithm that

mimics the foraging behaviour of grasshopper swarms. The

swarm of grasshoppers consists of millions of grasshoppers

which may severely damage the crops. The life cycle of

grasshopper consists of three phases as shown in Fig. 1.

It starts from the egg phase. In the next phase, the eggs

hatch into nymphs. Nymph is a miniature version of an

adult grasshopper, and it does not have wings. This phase

of grasshopper life cycle is characterized by short distance

slow movement with small step size. After few days, wings

develop and the nymph grows into an adult grasshopper.

Unlike nymph phase, grasshoppers in this phase travel long

distances and are characterized by abrupt movements.

These two movements of nymphs and grasshoppers cor-

respond to the exploitation and exploration process of a

metaheuristic algorithm. In addition to this, they have an

excellent food source seeking capabilities. The food-seek-

ing behaviour together with the movements of nymphs and

grasshoppers is mathematically represented as:

Xi ¼ Si þ Gi þ Ai ð1Þ

where Xi is the position of the ith grasshopper, Si is the

social interaction between grasshoppers as shown in Eq. 2,

Gi is the force of gravity on the ith grasshopper, and Ai is

the wind advection. A randomness is added to the beha-

viour of grasshoppers by rewriting Eq. 1 as

Xi ¼ r1Si þ r2Gi þ r3Ai, where r1; r2 and r3 are random

numbers in the range [0, 1].

Sij ¼
XN

j¼1;j 6¼i

s dij
� �

d̂ij ð2Þ

where dij is the Euclidean distance between the ith and jth

grasshopper, d̂ij ¼ xj�xi
dij

is a unit vector from the ith to the

jth grasshopper, and s is the social force strength calculated

as:

s rð Þ ¼ fe
�r
l � e�r ð3Þ

where f is the intensity of attraction, and l is the attractive

length scale. These two parameters are important in

determining the attraction, repulsion and comfort zones

between grasshoppers as shown in Fig. 2.

For further details, readers can refer to the paper by

Saremi et al. (2017). In this paper, we have taken l = 1.5

and f = 0.5 as in the original GOA paper.

Gi ¼ �g� êg ð4Þ

where g is the gravitational constant and êg is a unit vector

towards the centre of the earth.

Ai ¼ u� êw ð5Þ

where u is a constant drift and êw is a unit vector in the

direction of the wind. The movement of nymph grasshop-

pers is highly correlated with the wind movement, as they

do not have wings. After replacing the S, G and A com-

ponents in Eq. 1, it becomes:

Xi ¼
XN

j¼1;j6¼i

s xj � xi
�� ��� � xj � xi

dij
� gêg þ uêw ð6Þ

Fig. 1 Life cycle of grasshopper Fig. 2 Social interaction between grasshoppers

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15467

123

GOA starts with a population of randomly selected

grasshoppers. At any time instant t, the position

xi tð Þjxi 2 SD, where SD is the multidimensional search

space and i ¼ 1; 2; . . .N; of a grasshopper represents a

possible solution to the given problem. At any time instant

t, quality of each solution/position xi is evaluated using a

fitness function. The position which has the highest fitness

value is treated as the food source (target), and the posi-

tions of all the other grasshoppers are updated based on

their own positions, positions of other grasshoppers and

position of the target. As reported in Saremi et al. (2017), if

optimization is done using Eq. 6, the grasshoppers will

quickly confine within the comfort zone thereby preventing

the convergence to an optimal solution. To perform

exploration and exploitation properly and to reach an

optimal solution, some modifications are done in Eq. 6, and

the modified equation is as follows:

Xd
i tþ 1ð Þ ¼ c

XN

j¼1;j6¼i

c
ubd � lbd

2
s xdj tð Þ � xdi tð Þ
���

���
� � xj tð Þ � xi tð Þ

dij

 !
þ xdbest tð Þ

ð7Þ

where Xd
i tþ 1ð Þ is the dth dimension of the updated posi-

tion of ith grasshopper, xdj tð Þ and xdi tð Þ are the dth dimen-

sion of the current position of jth and ith grasshopper,

respectively, xdbest tð Þ is the dth dimension of the position of

the target grasshopper, and ubd and lbd are the upper bound

and lower bound of the dth dimension. In Eq. 7, S is similar

to S component in Eq. 6, but the G and A components are

not found and the wind direction is always towards the

target xdbest tð Þ. c is a decreasing coefficient to shrink the

attraction, comfort and repulsion zones. The parameter c is

calculated as:

c ¼ cmax � q
cmax � cmin

Q
ð8Þ

where cmax and cmin are the maximum and minimum value

of c, q is the current iteration, and Q is the maximum

number of iterations. The parameter c has been used twice

to balance exploration and exploitation during the opti-

mization process. The first c from the left reduces the

movement of grasshopper around the target, thereby bal-

ancing exploration and exploitation. The next c reduces the

attraction, comfort and repulsion regions among the

grasshoppers. Value of parameter c is reduced propor-

tionally with the iterations as shown in Eq. 8. This mech-

anism favours exploitation as the number of iterations

increases. In this paper, the values of 1 and 0.00001 are

used for cmax and cmin, respectively, as suggested in Saremi

et al. (2017).

Unlike other swarm-based algorithms such as bat opti-

mization and ABC, GOA updates the position of a

grasshopper depending on its own position, position of the

best grasshopper found so far as well as positions of all the

grasshoppers within the swarm. This makes GOA more

social than other algorithms and helps it to avoid getting

trapped in local optima.

3.2 Binary variants of grasshopper optimization
algorithm

It has been shown in Saremi et al. (2017) that GOA per-

forms better than existing state-of-the-art algorithms for

continuous optimization problems. However, in case of

problems such as feature selection, dimensionality reduc-

tion and ANN architecture optimization where the search

space is discrete and binary, GOA cannot be applied

directly as the solution vectors consist of only 0’s and 1’s.

3.2.1 BGOA-S/BGOA-V

To make GOA capable of solving optimization problems

with binary search space, binary variants of GOA, namely

BGOA-S/BGOA-V and BGOA-M, are proposed by

Mafarja et al. (2018). First, step vector DXd is calculated

as:

DXd
i t þ 1ð Þ ¼ c

XN

j¼1;j 6¼i

c
ubd � lbd

2
s xdj tð Þ � xdi tð Þ
���

���
� � xj tð Þ � xi tð Þ

dij

 !

ð9Þ

In BGOA-S, sigmoidal transfer function and in BGOA-

V hyperbolic tan transfer functions are applied to the step

vector DXd and the ith grasshopper’s position is updated

based on the value of T DXd
i t þ 1ð Þ

� �
as shown below:

Xd
i t þ 1ð Þ ¼ !Xd

i tð Þ if r\T DXd
i t þ 1ð Þ

� �

Xd
i tð Þ if r� T DXd

i t þ 1ð Þ
� �

�
ð10Þ

where T is the transfer function and r is a random number

between [0,1].

3.2.2 BGOA-M

Every grasshopper in BGOA-M updates its position based

on the positions of other grasshoppers in the swarm as well

as the position of the target grasshopper as shown below:

Xd
i t þ 1ð Þ ¼

Xd
best tð Þ DXd

i t þ 1ð Þ� 0

1 r� 0:5
0 r\0:5

�
DXd

i t þ 1ð Þ\0

8
<

: ð11Þ

where r is a random number in [0,1]. In Eq. 11, the first

branch performs exploitation, whereas the second and third

branch performs exploration.

15468 P. Bansal et al.

123

3.3 Cat swarm optimization algorithm (CSOA)

CSOA proposed by Chu et al. (2006) is based on the resting

and hunting skills of cats. These skills are modelled as

seeking mode (SM) and tracing mode (TM), respectively.

During SM, although most of the cat’s time is spent in

resting, it is always in an alert position. In SM, the cat

moves slowly. Unlike SM, cats are very active in TM and

chase their target with high speed and energy.

3.3.1 Seeking mode

In SM, four parameters are used. These are: (i) seeking

memory pool (SMP), (ii) seeking range of the selected

dimension for mutation (SRD), (iii) count of dimension to

change (CDC) and (iv) self-position consideration (SPC).

A mixture ratio (MR) is also taken to limit the number of

cats in SM and TM. The steps of SM are given below:

1. Select MR fraction of population randomly as seeking

cats.

2. Repeat steps 3–6 for each cat in SM

3. Make SMP copies of the ith seeking cat.

4. Depending on the value of CDC, perform the following

operations

i. For each copy of the ith cat, add or subtract SRD

fraction of the present position value randomly.

ii. Replace the old values for each of the copies.

5. Calculate the fitness of each copy.

6. Select the candidate with highest fitness among all the

copies and move it to the ith seeking cat’s position.

In SM, different areas of the search space are explored

which corresponds to the positions of cats in SM; however,

the search is restricted only to the neighbourhood of the

seeking cat’s position. So, it acts like a local search around

the given solutions as shown in Fig. 3.

3.3.2 Tracing mode

During TM, cats move towards the best position by

updating their velocity and position depending on the best

position achieved till now. The steps of tracing mode are as

follows:

1. The velocity of each dimension of cat’s position is

updated by Eq. 12.

2. If the updated velocities are out of range, they are made

equal to the limit.

3. The positions of the cats are updated using Eq. 13.

4. If the positions are not within the range, they are made

equal to the limit.

vdk t þ 1ð Þ ¼ w� vdk tð Þ þ c� r � xdbest tð Þ � xdk tð Þ
� �

ð12Þ

xdk t þ 1ð Þ ¼ xdk tð Þ þ vdk t þ 1ð Þ ð13Þ

where vdk tð Þ and vdk t þ z1ð Þ are the velocities of dth

dimension of kth cat at time t and t ? 1, respectively, xdk tð Þ
and xdk t þ 1ð Þ are the position of dth dimension of kth cat at

time t and t ? 1, respectively, xdbest tð Þ is the position of dth

dimension of the best cat found so far, w is the inertia

weight, c is a constant that affects the variation in velocity

of each dimension, r is a random number between [0,1],

and w is inertia weight.

During TM, the change in position of a cat may be large,

but its aim is to exploit the existing knowledge about the

best position found so far to reach an optimal solution as

shown in Fig. 4.

Due to the local search behaviour of CSOA in SM and

TM, CSOA may get stuck in local optima. Secondly, in

SM, the new positions of the copies of cats are close to the

existing positions due to SRD. Also, the new positions of

cats in TM are closed to the best position achieved till now.

Due to this, the diversity within the population decreases,

especially in those scenarios where the initial population is

not scattered uniformly within the search space as shown in

Fig. 5, thereby leading to premature convergence.

4 The proposed approach

Here, first, we present the proposed variant of BGOA, i.e.

SM-BGOA. Second, we present the proposed variant of

CSOA, i.e. NCSOA, and finally, we present the proposed

hybrid algorithm SM-GNCSOA.

Fig. 3 Seeking of cats

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15469

123

4.1 Simple matching-binary grasshopper
optimization algorithm (SM-BGOA)

As mentioned in Sect. 3.1, in GOA, the position of a

grasshopper is updated depending on its own position,

position of other grasshopper and position of the target. It

can be seen from Eq. 3 that for a particular value of l and f,

the strength of attraction or repulsion (social forces)

between two grasshoppers depends on the distance between

them. Hence, it is very important to calculate the distance

between two grasshoppers properly so as to perform

exploration and exploitation properly. There are many

different distance measures such as Euclidean distance,

Manhattan distance and Minkowski distance which can be

used to calculate distance between vectors in a multidi-

mensional continuous/discrete search space (Choi et al.

2010). In many pattern recognition problems such as

clustering and classification, the search space consists of

binary feature vectors. In such cases, the performance of

the algorithm highly depends on the distance measure

taken to compute the similarity or dissimilarity (distance)

among the feature vectors (Choi et al. 2010). A large

number of distance measures have been proposed by

researchers in past to accurately measure the distance

between binary vectors. BGOA uses Euclidean distance to

compute the distance among binary feature vectors. Due to

the importance of distance between grasshoppers in GOA

and the effect of correct distance measure on the accuracy

of an algorithm, we propose a variant of BGOA known as

SM-BGOA that uses simple matching distance (SMD)

instead of Euclidean distance to compute the distance

among grasshoppers.

SMD calculates the distance among two grasshoppers

using Eq. 14.

DðGijÞ ¼
N10 þ N01

N00 þ N10 þ N01 þ N11

ð14Þ

where DðGijÞ represents the distance between two

grasshoppers Gi and Gj, N00 is the total bit positions which

are 0 in both Gi and Gj, N10 is the total bit positions which

are 1 in Gi and 0 in Gj, N01 is the total bit positions which

are 0 in Gi and 1 in Gj, and N11 is the total bit positions

which are 1 in both Gi and Gj as shown in Fig. 6.

SMD between two grasshoppers will always lie in the

range [0,1]. To make it compatible with BGOA, the dis-

tances between grasshoppers are mapped in the interval [1,

4]. For each grasshopper Gi in the search space, SM-BGOA

calculates SMD of Gi with all the other grasshoppers

Gjjj 6¼ i. After calculating SMD, step vector DXi t þ 1ð Þ is
calculated as:

DXi tþ 1ð Þ ¼ c
XN

j¼1;j6¼i

c
ubd � lbd

2
s DðGt

ijÞ
� �Gj tð Þ �Gi tð Þ

DðGt
ijÞ

 !

ð15Þ

In Eq. 15, if DXi t þ 1ð Þ\0;, it means Gi is in repulsion

zone and it needs to move away from the target solution to

explore the search space. If DXi t þ 1ð Þ� 0, it means Gi is

in attraction zone and it needs to move towards the target

solution Gbest to exploit the regions near it. Exploration is

performed by selecting N number of bit positions of Gi

randomly that matches the target solution and mutating

Fig. 4 Tracing mode of cats

Fig. 5 Unexplored region in CSOA Fig. 6 SMD between two grasshoppers G1 and G2

15470 P. Bansal et al.

123

them in order to move Gi away from the target. Similarly,

exploitation is performed by selecting N number of bit

positions of Gi randomly that do not match the target

solution and mutating them in order to move Gi closer to

the target. The N bits are selected using Eq. 16:

N ¼ HD Gi;Xbestð Þ=BFÞ DXi t þ 1ð Þ� 0

Len Gið Þ � HD Gi;Xbestð Þð Þ=BF DXi t þ 1ð Þ\0

�

ð16Þ

BF ¼ max iter� m� 1ð Þ DXi t þ 1ð Þ� 0

mþ 1ð Þ DXi t þ 1ð Þ\0

�
ð17Þ

where HD Gi;Gbestð Þ is the hamming distance between Gi

and Gbest, len(Gi) is the length of grasshopper Gi, max_iter

and m represent the maximum number of iteration and the

present iteration, respectively, and BF is a balance factor

that maintains the degree of exploration and exploitation as

the iterations increase. As the iterations increase, the area

which a grasshopper can explore will reduce, i.e. they

cannot move far away from the target. This helps in con-

verging the algorithm to an optimal solution. On the other

hand, the exploitation speed will increase with the itera-

tions thereby helping the algorithm to reach an optimal

solution quickly.

4.2 NCSOA

Here, we present NCSOA, a variant of CSOA, that helps

CSOA to avoid getting stuck in local optima hence pre-

venting its premature convergence. This is achieved by

increasing diversity of the population thereby enabling

CSOA to explore new regions of the search space.

In NCSOA, all cats are arranged in descending order of

their fitness after SM and TM are completed in an iteration.

Once the cats are sorted, N numbers of lower fitness cats

are replaced with randomly generated cats in an attempt to

enhance diversity in the population. Due to the introduction

of N number of randomly generated cats in every iteration,

the algorithm may take more time to converge. It is

therefore important to decide the number of cats that are

required to be replaced in each iteration. Since exploration

is desirable in early iterations as compared to exploitation

which is desirable in later iterations, we decrease the value

of N with the increase in number of iterations. N is cal-

culated using Eq. 18.

N ¼ ; � 1� tcurrent=tmax

� �
� TP ð18Þ

where tcurrent and tmax represent the present and maximum

number of iterations, respectively, TP is population size,

and ; is a factor which linearly decreases from 0.25 to 0.

4.3 The proposed algorithm: SM-GNCSOA

The proposed hybrid algorithm SM-GNCSOA to design an

optimal MLP and to select an optimal feature set is pre-

sented here.

4.3.1 Representation of solution vectors

An important aspect of any metaheuristic algorithm is the

correct representation of the solution vector. SM-GNCSOA

uses two solution vectors to codify the parameters whose

optimal values need to be searched. First, solution vector

consists of five dimensions and is known as feature and

architecture vector (F&A vector). This vector codifies the

information related to features, architecture and transfer

functions. Based on the F&A vector, a second solution

known as weight vector (W vector) is generated that con-

tains the weights and biases among different layers of

MLP.

Binary encoding is employed to codify parameters in

F&A vector. The length of each dimension and hence the

total length of F&A vector are determined based on the

range of values which each parameter can take. The first

dimension of F&A vector contains information about the

features of a data set. The length of this dimension is

equivalent to the number of features (N) in the data set.

Every bit position corresponds to a feature in the data set. If

a bit position contains ‘1’, it means the corresponding

feature in the data set is selected for the training process.

During the optimization process, if all the bit positions

become ‘0’, then SM-GNCSOA randomly makes 40% of

the bit positions ‘1’, as the number of features selected

cannot be zero. The second and third dimensions of F&A

vector contain information about the number of hidden

neurons in first and second hidden layers, respectively. In

this work, we have taken two hidden layers only as they are

often sufficient for simple data sets. More than two hidden

layers are generally required for complex data sets asso-

ciated with time-series or computer vision problems which

will lead to deep neural network architecture (Heaton

2008) The maximum hidden neurons which are permissible

in each hidden layer are 2 9 N ? 1, where N is equal to

the total features in a data set, as suggested in Wdaa (2008).

The number of bits required to represent (2 9 N ? 1)

neurons will be M such that 2� N þ 1ð Þ�
PM�1

i¼0 2i. The

bit combinations which make the number of neurons

greater than (2 9 N?1) are not allowed. Also, the number

of neurons in the first hidden layer cannot be zero; hence,

the bit combination corresponding to 0 hidden neuron is

not allowed. During the optimization process, if the value

of number of hidden neurons goes out of bound, a value is

selected randomly from the set of its possible values. The

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15471

123

fourth and fifth dimensions of F&A vector codify the

transfer function of first and second hidden layers,

respectively. Here, we use four transfer functions; hence,

two bits are required to codify the transfer function. The

transfer functions along with their encoded values are

shown in Table 1. The length of fourth and fifth dimension

is two bits each. The transfer function used for the neurons

in output layer is sigmoid and softmax for binary and

multi-class classification, respectively. The total length of

F&A vector (len(F&A) is calculated as:

Len F&Að Þ ¼ N þ 2M þ 4 ð19Þ

The second solution vector, i.e. W vector, uses real

encoding scheme to encode the weight and bias informa-

tion. The W vector consists of six different segments. The

first three segments contain weights between different

layers, and the last three segments contain the encoded bias

values. The length of W vector depends on F&A vector.

Based on the values of first three dimensions of F&A

vector, length of W vector (len(W)) is calculated as:

Len Wð Þ ¼ Nselected � N1 þ N1 � N2 þ N2 � K
þ N1 þ N2 þ Kð Þ ð20Þ

where Nselected is the number of bits positions out of N bits

which are ‘1’ in the first dimension of F&A vector, N1 and

N2 are the number of neurons in first and second hidden

layers, respectively, and K is equal to the neurons in output

layer. N1 is calculated from the second dimension of F&A

vector using Eq. 21,

N1 ¼
XM�1

i¼0

2i � bi

 !
ð21Þ

where bi is the value of ith bit of second dimension of F&A

vector. Similarly, N2 is calculated using Eq. 21, the only

difference is that now bi is the value of ith bit of third

dimension of F&A vector. F&A vector along with W

vector represents an MLP along with the feature set. All

F&A vectors in the population will be of same length,

whereas the length of W vector may vary as it depends on

the number of features selected and the number of hidden

neurons. The representation of solution vector is shown in

Fig. 7.

The domain of our search space consists of discrete,

binary as well as continuous values, which makes our

problem a mixed optimization problem. Due to the nature

of search space, the proposed SM-GNCSOA employs three

algorithms, namely SM-BGOA, GOA and NCSOA, to

generate an optimal solution. Due to the binary nature of

feature vector, SM-BGOA is used to optimize it. The

architecture and transfer function part of F&A vector,

which consist of discrete values, is optimized using GOA,

and the weight vector, which consists of continuous values,

is optimized by NCSOA.

4.3.2 Generation of initial population

In SM-GNCSOA, an initial population of F&A vectors

(grasshoppers) is generated randomly within the specified

range. Let NF&A be the number of F&A vectors in the

initial population. For each F&A vector in the initial

population, an initial population of W vectors (cats) is

generated with random positions and velocities based on

the information coded in the F&A vector as shown in

Fig. 8. Let Nw be the number of W vectors corresponding

to a F&A vector. The value of weights and biases in each

W vector is chosen randomly within the range [- 5, 5].

The velocity of each dimension of a W vector is chosen in

the range [- 0.1. 0.1] as suggested in Saha et al. (2013).

After population initialization, the fitness of each W vector

corresponding to a F&A vector is calculated and a set of

optimal weights are obtained using NCSOA. F&A vector

along with its W vector of optimal weights and biases

obtained using NCSOA represents an MLP.

4.3.3 Fitness function

Each MLP in the population is evaluated using two fitness

functions. The first fitness function calculates the quality of

W vector corresponding to a F&A vector, whereas the

second fitness function measures the quality of F&A vec-

tor. It is essential to use a separate fitness function for W

vector so as to generate a set of optimal weights for a

particular F&A architecture using NCSOA. The fitness

function of W vector, denoted by FW, is calculated using

cross-entropy error on the training data set. Equations 22

and 23 give the fitness function of W vector for binary and

multi-class classification, respectively.

Fij
W ¼ � 1

N

XN

k¼1

yk log ŷk þ ð1� yk
� �

logð1� ŷkÞÞ ð22Þ

where Fij
W represents the fitness of jth weight vector of ith

F&A vector, yk and ŷk are the predicted and actual output,

respectively, of the kth instance of training data set, and N

is the total instances in the training data set.

Table 1 Transfer functions and their encoded values

S. no. Transfer function Encoded value

1. Sigmoidal 00

2. Tanh 01

3. Relu 10

4. ArcTan 11

15472 P. Bansal et al.

123

Fij
W ¼ � 1

N
� 1

M

XN

k¼1

XM

l¼1

ðykl log ŷkl Þ ð23Þ

where ykl and ŷkl are the predicted and actual values,

respectively, of lth output neuron of the kth instance of the

training data set, M is the number of output classes, and N

is the total instances in the training data set.

The fitness function of a F&A vector is a function of

four parameters: (i) Fbest
W is the fitness of the best W vector

obtained using NCSOA, (ii) validation error denoted by

Evalidation is calculated using Eqs. 22 and 23 on the vali-

dation data set for binary and multi-class classification,

respectively, (iii) architecture penalty (Parch) is a penalty

imposed to avoid complex and dense architecture and is

given by Eq. 24, and (iv) feature penalty (PFV) is a new

penalty function proposed in this paper to avoid selection

of very large or very few features. Selection of large

number of irrelevant features may lead to overfitting,

whereas training based on only few features may lead to

underfitting. Therefore, a penalty is imposed in both the

condition. PFV is calculated using Eq. 25.

Parch ¼
NHL1 þ NHL2

Nmax

ð24Þ

where NHL1 and NHL2 are the neurons in first and second

hidden layers and Nmax is the sum of maximum number of

possible neurons in both the hidden layers.

PFV ¼
NFS=N when DNFS ¼ 0

DEvalidation þ NFS=N

� �
when DNFS 6¼ 0

(

ð25Þ

where NFS is the number of selected features of the data set,

and DNFS and DEValidation are the difference between the

number of selected features and the validation error of an

F&A vector in the successive iteration, respectively.

Finally, fitness of F&A vector which is the measure of total

loss is calculated using Eq. 26.

Fi
F&A ¼ 0:3� Fbest

W þ 0:4� Evalidation þ 0:2� Parch þ 0:1
� PFV

ð26Þ

where FF&A
i is the fitness of the ith F&A vector, Fbest

W is the

fitness of the best W vector obtained using NCSOA, the

Fig. 7 Representation of solution vector (F&A vector and W vector)

Fig. 8 Population of W vectors corresponding to a F&A vector

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15473

123

weighing factors assigned to each term in Eq. 26 define the

contribution/significance of various parameters in deter-

mining the fitness of an MLP, and their values are set

experimentally. A higher weight assigned to feature pen-

alty may lead to sub-optimal solution as sometimes all the

features make significant contribution in classifying the

data samples. To avoid this situation, a small weight of 0.1

is assigned to PFV. Validation error plays a critical role to

avoid overfitting, so highest weightage is given to

Evalidation.

4.3.4 Addition and deletion of neurons

Once a set of optimal weights are obtained for all the F&A

vectors in the initial population, SM-BGOA and GOA are

applied on the feature part and the architecture part of F&A

vectors, respectively, to find an optimal solution. During

the optimization process, when SM-BGOA is applied, the

number of features selected in a F&A vector in the next

iteration may increase or decrease which affect the number

of input neurons. Similarly, when GOA is applied on the

architecture part of F&A vector, the number of neurons in

hidden layers may also change. This change in the number

of neurons in different layers in turn will affect the corre-

sponding W vector, and accordingly, weights and biases

will be added or deleted from the W vector.

a. Addition of new neurons: When a neuron is added, all

the incoming connection weights to the newly added

neuron from the neurons in the previous layer as well

as all the outgoing weights from the newly added

neuron to all the neurons in the next layer need to be

calculated. There are three possible cases as explained

below:

Case I: The incoming connection weight to the

newly added neuron xnew in the ith layer from the

neurons zkjk ¼ 1. . .m, in the previous layer, i.e. kth

layer (input layer) as shown in Fig. 9, is calculated as:

wknew ¼
Xn

i¼1

wki=n ð27Þ

where n is number of neurons in the ith layer.

Case II: The outgoing weight from a newly added

neuron xnew in the ith layer to the neurons ujjj ¼ 1. . .p;

in the next layer, i.e. the jth layer as shown in Fig. 10,

is calculated as:

wnewj ¼
Xn

i¼1

wij
�
n ð28Þ

where n is number of neurons in the ith layer.

Case III: The outgoing weight from a new neuron to

another new neuron in the next layer is chosen ran-

domly in the range [- 5, 5] as shown in Fig. 11.

Biases of the newly added neurons in the hidden

layers are initialized randomly between [-5, 5].

b. Deletion of existing neurons: When one or more

neurons are deleted from any layer, their corresponding

incoming weights (in case of hidden neurons only),

outgoing weights and biases are removed from the

corresponding W vector.

Once all the W vectors are modified, NCSOA is applied

again to obtain an optimal set of connection weights cor-

responding to each of the modified F&A vector. Let Wnew

be the new W vector corresponding to the modified F&A

vector F&Anew. Unlike the generation of initial population

of W vectors in the first iteration of SM-GNCSOA, the

initial population of W vectors for a particular F&Anew

vector is generated greedily using Wnew vector, i.e. by

choosing the weights and biases in the range

Wnew � 2;Wnew þ 2½ � for each dimension of W vector.

Instead of initializing the weights and biases randomly,

they are chosen from the specified range to improve the

convergence speed. This process is repeated until a stop-

ping criterion is met. The algorithm of SM-GNCSOA is

shown in Fig. 12.

The computation complexity of SM-GNCSOA is

obtained by calculating the computational complexity of

Fig. 9 Incoming weights to a newly added neuron

15474 P. Bansal et al.

123

NCSOA that is called by SM-GNCSOA for each F&A

vector in every iteration and the computational complexity

of SM-BGOA/GOA. The computational complexity of

SM-GNCSOA is O T2N NSMNSMP þ NTMð Þ DW þ cof1ð Þð Þ.
Here, the number of iterations of SM-GNCSOA and

NCSOA is equal and is represented by T, N is population

size, i.e. number of F&A vectors, NSM and NTM are the

number of cats in seeking mode and tracing mode,

respectively, NSMP is the number of copies of a cat that are

made in seeking mode, DW is the dimension of W vector,

and cof1 represents the cost of evaluation of fitness function

of W vector.

5 Results and discussion

In Sect. 5.1, we discuss the data sets that are selected to

evaluate the performance of the proposed algorithm. In

Sect. 5.2, variants of SM-GNCSOA are presented. The

implementation details and parameter settings are also

presented in Sect. 5.2. Results are discussed in Sect. 5.3.

5.1 Data set

Ten classification problems are used to evaluate the per-

formance of SM-GNCSOA and its variants. The data sets

are selected from UCI data repository (Frank and Asuncion

2010). Out of ten data sets, five data sets are of binary

classification, while the remaining five data sets are of

multi-class classification problems. The data sets are: dia-

betes, diabetic retinopathy, Haberman’s survival, seismic

bumps, Tic-Tac-Toe endgame, E. coli, Iris, wholesale

customers, website phishing and statlog (Landsat satellite).

The detail of each data set is presented in Table 2. To avoid

overfitting, the total instances in the data set are divided

into three parts. 75% instances are used for training, out of

which 20% are set aside for validation. The remaining 25%

instances in the data set are used for testing.

5.2 Experimental design and set-up

SM-GNCSOA is implemented in Python 3.6.4 using

Anaconda framework. In order to appraise the effect of the

proposed SM-BGOA, NCSOA and the use of penalty

functions while generating an optimal MLP, we propose

different variants of SM-GNCSOA and compare their

training and testing classification accuracy with SM-

Fig. 10 Outgoing weights from a newly added neuron Fig. 11 Weights between two newly added neurons

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15475

123

15476 P. Bansal et al.

123

GNCSOA. The details of SM-GNCSOA and its variant are

presented in Table 3. SM-GNCSOA and B-GNCSOA

compare the effect of SM-BGOA and BGOA, used for

feature selection, on the performance of the classifier. The

effect of NCSOA and CSOA, used for weight and bias

optimization, is measured by comparing the classifier’s

accuracies obtained using SM-GNCSOA and SM-GCSOA.

The effect of using penalty function, namely architecture

and feature penalty, on the classifier’s accuracy is evalu-

ated using SM-GNCSOA and SM-GNCSOA-wp. Finally,

to assess the effect of using NCSOA for training as com-

pared to BP, the performance of SM-GNCSOA is com-

pared with SM-GBP. To measure the accuracy of various

classifiers, each algorithm is made to run on a data set for

30 times. A population size of 30 is taken, and the maxi-

mum number of iterations is taken as 300. The parameter

settings of SM-BGOA, GOA and NCSOA used in SM-

GNCSOA are shown in Table 4. Finally, for each data set,

details of the best MLP (classifier) obtained during each of

the 30 runs are noted for each algorithm and their classi-

fication accuracy is calculated using Eq. 29 by classifying

the testing data. The classification accuracy of the classifier

is calculated as:

Classification Accuracy ¼ NCCTI=TNTI ð29Þ

where NCCTI and TNTI are the number of correctly

classified testing instances and total testing instances,

respectively. Experiments are run on a computer with an

Intel core i5 5200U processor running at 2.2 GHZ with

8 GB of RAM, running Ubuntu version 16.04.

5.3 Results and analysis

Out of the 30 best MLPs obtained during the 30 runs, the

detail of the best MLP, i.e. the number of features selected

(number of input neurons), architecture which includes the

number of neurons in both the hidden layers and the

transfer functions TF1 and TF2 of the first and second

hidden layer obtained using SM-GNCSOA and its variants

along with the number of output neurons on the ten data

sets are presented in Table 5.

The average classification accuracy, standard deviation

and the best classification accuracy of the best MLPs

obtained over 30 runs of SM-GNCSOA and its variants on

ten data sets are given in Table 6. It can be seen from

Table 5 the MLP generated using SM-GNCSOA-wp has

complex architecture and a greater number of features got

selected compared to SM-GNCSOA and its other variants

as there is no penalty for complex architecture and number

of features selected in SM-GNCSOA-wp. However, com-

plex architecture and a greater number of features do not

necessarily result in the improvement of the performance

of MLP as can be seen from Table 6. In case of data sets

like diabetic retinopathy, seismic bumps and statlog

(Landsat satellite) where the number of features is more,

SM-GNCSOA-wp performs better than SM-GNCSOA and

its other variants which uses feature and architecture pen-

alty. This is due to the fact that unlike SM-GNCSOA-wp,

SM-GNCSOA and its other variants prevent complex

architecture and selection of large number of features

which may lead to reduction in performance of the MLP. In

case of Iris data set, the best classification accuracy

obtained using SM-GNCSOA, B-GNCSOA and SM-

GNCSOA-wp is same (100%); however, the architecture of

MLP obtained using SM-GNCSOA-wp is much more

complex than the MLP obtained using SM-GNCSOA and

B-GNCSOA in terms of numbers of neurons in hidden

layers This shows that it is not necessary that a complex

bFig. 12 Algorithm of SM-GNCSOA

Table 2 Data sets

Data set Total no. of features Output classes Total data Training data Validation data Testing data

Diabetes 8 2 768 461 115 192

Diabetic retinopathy 19 2 1151 691 173 287

Haberman’s survival 3 2 306 184 46 76

Seismic bumps 18 2 2584 1550 388 646

Tic-Tac-Toe endgame 9 2 958 575 144 239

E. coli 7 8 335 201 50 84

Iris 4 3 150 90 23 37

Wholesale customers 7 3 440 264 66 110

Website phishing 9 3 1353 946 237 270

Statlog (Landsat satellite) 36 6 6435 3862 965 1608

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15477

123

architecture will always perform better than simple archi-

tecture as complex architecture sometimes leads to

overfitting.

While comparing the results of MLP obtained using

SM-GNCSOA and SM-GCSOA, it can be observed from

Table 6 that SM-GNCSOA outperforms SM-GCSOA.

Even in case of a small data set, i.e. Iris data set, which has

only four features, the performance of SM-GNCSOA,

B-GNCSOA and SM-GNCSOA-wp is comparable,

whereas SM-GCSOA performance is sub-optimal. The

sub-optimal performance of SM-GCSOA is due to the

tendency of CSOA in getting trapped in local optima

during weight optimization which results in sub-optimal

solutions, while the proposed algorithm NCSOA avoids

local optima by introducing diversity in the population

using an adaptive parameter N leading to better explo-

ration. The parameter N is designed in such a way that it

favours exploitation in later iterations and helps in main-

taining a balance between exploration and exploitation

leading to better performance of NCSOA than CSOA.

The performance of MLP obtained using SM-GNCSOA

is better than the MLP obtained using B-GNCSOA as can

be seen in Table 6. In GOA, the social interaction, i.e.

attraction (exploitation) and repulsion (exploration), of

grasshopper depends on the social force which is a function

of distance between the grasshoppers. Unlike BGOA in

B-GNCSOA that uses Euclidean distance to calculate the

distance between grasshoppers, SM-BGOA in SM-

GNCSOA uses SMD to calculate the distances between the

feature vector part of F&A vectors that helps in performing

exploration and exploitation properly thereby resulting in

improved performance of SM-GNCSOA as compared to

B-GNCSOA. It can also be seen in Table 6 that NCSOA

used for optimization of weight vector gives better results

as compared to BP as BP also has a tendency to get stuck in

local optima hence leading to sub-optimal solution.

To ensure that the comparison between the meta-

heuristics is fair, Welch’s t test is performed at a = 0.05 on

the classification accuracy of best MLPs obtained by SM-

GNCSOA and its variants over 30 runs for each data set

given in Table 2. The results of Welch’s t test are shown in

Table 7. The statistical results (p values\ 0.05) confirm

that the performance of SM-GNCSOA on diabetes,

Haberman’s survival, Tic-Tac-Toe endgame, E. coli,

wholesale customer’s and website phishing is significantly

better than its variants. In case of data sets like diabetic

retinopathy, seismic bumps and statlog (Landsat satellite)

which have large number of features, the results of Welch’s

t test confirm that SM-GNCSOA-wp performs better than

SM-GNCSOA and other variants. On the Iris data set,

although the best classification accuracy achieved by SM-

GNCSOA, B-GNCSOA and SM-GNCSOA-wp is equal,

the average classification accuracy of B-GNCSOA and

SM-GNCSOA-wp is better than SM-GNCSOA. However,

the statistical results with p value equal to 0.2388 and

0.3014 for B-GNCSOA and SM-GNCSOA-wp in Table 7

indicate that the difference is insignificant, but the perfor-

mance of SM-GNCSOA is significantly better than that of

SM-GCSOA and SM-GBP in case of Iris data set as can be

seen in Table 7.

As each algorithm runs, the total loss calculated using

Eq. 26, training error and validation error calculated using

Eq. 22 for binary classification and Eq. 23 for multi-class

classification on training and validation data, respectively,

of best MLP obtained using SM-GNCSOA and its variants

on all the ten data sets are noted at an interval of 30 iter-

ations and are plotted to visualize the convergence rate as

Table 3 SM-GNCSOA and its variants

Algorithm Feature selection Architecture optimization Weight and bias optimization Feature and architecture penalty

SM-GNCSOA SM-BGOA GOA NCSOA Yes

B-GNCSOA BGOA GOA NCSOA Yes

SM-GNCSOA-wp SM-BGOA GOA NCSOA No

SM-GCSOA SM-BGOA GOA CSOA Yes

SM-GBP SM-BGOA GOA BP Yes

Table 4 Parameter settings

Algorithms Parameters Values

SM-BGOA/GOA l 1.5

f 0.5

cmax 1

cmin 0.00001

NCSOA/CSOA SMP 5

SRD 20%

CDC 80%

MR 2%

C 2.05

W 0.4

SPC True

15478 P. Bansal et al.

123

Ta
bl
e
5

B
es
t
M
L
P
s
ar
ch
it
ec
tu
re
s

A
lg
o
ri
th
m
s?

S
M
-G

N
C
S
O
A

B
-G

N
C
S
O
A

S
M
-G

N
C
S
O
A
-W

P

D
at
a
se
t;

A
rc
h
it
ec
tu
re

T
F
1

T
F
2

A
rc
h
it
ec
tu
re

T
F
1

T
F
2

A
rc
h
it
ec
tu
re

T
F
1

T
F
2

D
ia
b
et
es

4
9

2
9

2
9

1
T
an
h

T
an
h

4
9

2
9

9
9

1
S
ig
m
o
id
al

T
an
h

5
9

1
0
9

5
9

1
R
el
u

A
rc
T
an

D
ia
b
et
ic

re
ti
n
o
p
at
h
y

8
9

1
5
9

3
9

1
T
an
h

S
ig
m
o
id
al

8
9

1
2
9

7
9

1
S
ig
m
o
id
al

S
ig
m
o
id
al

1
4
9

2
4
9

2
9

1
R
el
u

S
ig
m
o
id
al

H
ab
er
m
an
’s

su
rv
iv
al

3
9

3
9

3
9

1
T
an
h

S
ig
m
o
id
al

3
9

3
9

2
9

1
S
ig
m
o
id
al

T
an
h

3
9

4
9

4
9

1
T
an
h

T
an
h

S
ei
sm

ic
b
u
m
p
s

8
9

5
9

1
6
9

1
S
ig
m
o
id
al

T
an
h

9
9

1
1
9

2
9

1
T
an
h

S
ig
m
o
id
al

1
3
9

4
9
9

2
9

1
A
rc
T
an

A
rc
T
an

T
ic
-T
ac
-T
o
e
en
d
g
am

e
6
9

5
9

2
0
9

1
R
el
u

S
ig
m
o
id
al

8
9

2
9
9

7
9

1
T
an
h

S
ig
m
o
id
al

9
9

4
6
9

6
9

1
R
el
u

S
ig
m
o
id
al

E
.
co
li

5
9

7
9

4
9

8
A
rc
T
an

R
el
u

5
9

7
9

5
9

8
R
el
u

R
el
u

7
9

7
9

6
9

8
T
an
h

A
rc
T
an

Ir
is

4
9

4
9

3
9

3
S
ig
m
o
id
al

T
an
h

4
9

3
9

7
9

3
S
ig
m
o
id
al

T
an
h

4
9

6
9

8
9

3
A
rc
T
an

A
rc
T
an

W
h
o
le
sa
le

cu
st
o
m
er
s

4
9

2
9

4
9

3
T
an
h

S
ig
m
o
id
al

5
9

1
9

2
9

3
R
el
u

A
rc
T
an

5
9

3
9

4
9

3
S
ig
m
o
id
al

S
ig
m
o
id
al

W
eb
si
te

p
h
is
h
in
g

5
9

6
9

5
9

3
R
el
u

T
an
h

5
9

8
9

5
9

3
A
rc
T
an

T
an
h

6
9

1
6
9

3
9

3
S
ig
m
o
id
al

T
an
h

S
ta
tl
o
g
(L
an
d
sa
t
sa
te
ll
it
e)

2
0
9

1
8
9

6
9

6
R
el
u

T
an
h

1
7
9

1
7
9

1
6
9

6
T
an
h

S
ig
m
o
id
al

2
5
9

3
0
9

4
7
9

6
S
ig
m
o
id
al

T
an
h

A
lg
o
ri
th
m
s?

S
M
-G

C
S
O
A

S
M
-G

B
P

D
at
a
se
t;

A
rc
h
it
ec
tu
re

T
F
1

T
F
2

A
rc
h
it
ec
tu
re

T
F
1

T
F
2

D
ia
b
et
es

4
9

3
9

9
9

1
T
an
h

A
rc
T
an

4
9

6
9

6
9

1
A
rc
T
an

R
el
u

D
ia
b
et
ic

re
ti
n
o
p
at
h
y

1
0
9

7
9

7
9

1
R
el
u

T
an
h

9
9

6
9

9
9

1
S
ig
m
o
id
al

T
an
h

H
ab
er
m
an
’s

su
rv
iv
al

3
9

2
9

2
9

1
T
an
h

R
el
u

3
9

2
9

1
9

1
S
ig
m
o
id
al

S
ig
m
o
id
al

S
ei
sm

ic
b
u
m
p
s

1
2
9

7
9

4
9

1
R
el
u

R
el
u

9
9

1
9

1
1
9

1
R
el
u

T
an
h

T
ic
-T
ac
-T
o
e
en
d
g
am

e
8
9

2
9
9

4
9

1
R
el
u

R
el
u

8
9

2
1
9

1
1
9

1
T
an
h

T
an
h

E
.
co
li

5
9

5
9

1
1
9

8
R
el
u

T
an
h

5
9

8
9

5
9

8
S
ig
m
o
id
al

A
rc
T
an

Ir
is

4
9

4
9

3
9

3
A
rc
T
an

A
rc
T
an

4
9

2
9

8
9

3
R
el
u

A
rc
T
an

W
h
o
le
sa
le

cu
st
o
m
er
s

4
9

2
9

2
9

3
S
ig
m
o
id
al

T
an
h

3
9

2
9

1
9

3
S
ig
m
o
id
al

S
ig
m
o
id
al

W
eb
si
te

p
h
is
h
in
g

6
9

8
9

1
0
9

3
T
an
h

S
ig
m
o
id
al

5
9

4
9

1
4
9

3
A
rc
T
an

T
an
h

S
ta
tl
o
g
(L
an
d
sa
t
sa
te
ll
it
e)

2
0
9

2
8
9

4
9

6
S
ig
m
o
id
al

S
ig
m
o
id
al

1
7
9

2
4
9

7
9

6
T
an
h

R
el
u

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15479

123

shown in Figs. 13, 14 and 15, respectively. SM-GNCSOA

has a faster convergence rate as compared to B-GNCSOA.

It is evident from Fig. 14 that CSOA in SM-GCSOA and

BP in SM-GBP used for optimization of W vector often

gets stuck into local optima leading to premature conver-

gence. It can be seen from Fig. 15, sometimes the valida-

tion error increases during the optimization process due to

overfitting which incurs more penalty to the MLP thereby

reducing its fitness. Graphs showing the variation in

architecture penalty and feature penalty are plotted as

shown in Figs. 16 and 17, respectively. It can be inferred

from these graphs that the number of features and the

number of hidden neurons increase and decrease during the

optimization process.

Table 6 Classification accuracy

of SM-GNCSOA and its

variants

Data set\algorithm SM-GNCSOA B-GNCSOA SM-GNCSOA-WP SM-GCSOA SM-GBP

Diabetes

Avg 0.7636 0.7564 0.7546 0.742 0.7002

Std 0.0194 0.0115 0.0132 0.0119 0.0702

Best 0.795 0.7718 0.7671 0.7592 0.7518

Diabetic retinopathy

Avg 0.6876 0.6351 0.6892 0.65 0.5691

Std 0.0311 0.0318 0.0290 0.0292 0.0385

Best 0.7186 0.695022 0.727 0.6883 0.6304

Haberman’s survival

Avg 0.7572 0.7571 0.7525 0.7048 0.7125

Std 0.0467 0.0273 0.0185 0.0320 0.0173

Best 0.8135 0.7903 0.7826 0.7456 0.7336

Seismic bumps

Avg 0.9249 0.9180 0.9273 0.8997 0.9144

Std 0.0058 0.0197 0.0196 0.0181 0.0205

Best 0.9304 0.9332 0.9437 0.9235 0.9313

Tic-Tac-Toe endgame

Avg 0.7754 0.7653 0.7682 0.7345 0.7379

Std 0.0328 0.0136 0.0243 0.0347 0.0323

Best 0.8177 0.7799 0.7917 0.7699 0.7717

E. coli

Avg 0.7760 0.7271 0.6811 0.6825 0.6452

Std 0.0155 0.0366 0.0448 0.0401 0.0568

Best 0.7948 0.7836 0.7259 0.7159 0.7059

Iris

Avg 0.9431 0.9521 0.9508 0.9029 0.8662

Std 0.0349 0.0292 0.0280 0.0568 0.0570

Best 1.0000 1.0000 1.0000 0.9571 0.9371

Wholesale customers

Avg 0.7028 0.6844 0.6889 0.6868 0.6651

Std 0.0156 0.0192 0.0158 0.0298 0.0160

Best 0.7187 0.7067 0.7054 0.7145 0.6854

Website phishing

Avg 0.8380 0.8233 0.8216 0.7890 0.7875

Std 0.0098 0.0272 0.0204 0.0220 0.0222

Best 0.8669 0.8429 0.8383 0.8272 0.8155

Statlog (Landsat satellite)

Avg 0.8052 0.8002 0.8209 0.7869 0.7752

Std 0.0234 0.0235 0.0085 0.0177 0.0207

Best 0.8246 0.8145 0.8388 0.8091 0.7965

The values in bold show the best values of average classification accuracy, best classification accuracy and

standard deviation achieved on the respective data sets

15480 P. Bansal et al.

123

Finally, confusion matrix of the performance of best

MLPs on testing data for each of the ten data sets is plotted

as shown in Fig. 18. Confusion matrix is plotted to define

the performance of a classifier on a set of testing instances

for which the true class labels are known. It depicts the

number of correctly classified as well as incorrectly clas-

sified instances of the data set for binary as well as multi-

class classification problems.

The main limitation of SM-GNCSOA is its high com-

putational complexity. SM-GNCSOA is a hybrid algorithm

in which SM-BGOA is used for feature optimization, GOA

is used for architecture and transfer functions optimization,

and NCSOA is used for weight optimization corresponding

to each F&A vector. SM-GNCSOA calls NCSOA for each

F&A vector in every iteration, which increases its com-

putational complexity.

6 Conclusion and future work

In this paper, SM-BGOA and NCSOA, a variant of BGOA

and CSOA, respectively, are proposed. Then, a hybrid

algorithm SM-GNCSOA is proposed that uses SM-BGOA,

GOA and NCSOA with two penalty functions to optimize

feature set, architecture and weights of an MLP simulta-

neously. To prevent complex architecture, an architecture

penalty function is introduced that penalizes complex

architecture and reduces the fitness of the MLP. Similarly,

to avoid underfitting and overfitting, a feature penalty

function is used that imposes a penalty on the fitness of the

MLP based on the number of features selected. A set of ten

data sets are selected from UCI repository to evaluate the

performance of SM-GNCSOA. The classification accuracy

of the MLP obtained using SM-GNCSOA is compared

with the MLPs obtained using variants of SM-GNCSOA.

The results show that SM-GNCSOA outperforms

B-GNCSOA on almost all the data sets in terms of clas-

sification accuracy except Iris where the performance is

comparable. SM-GNCSOA managed to show superior

results due to its capability in performing exploration and

exploitation effectively by calculating the strength of social

forces between the grasshoppers more accurately. While

comparing the performance of SM-GNCSOA and SM-

GCSOA, the results show that SM-GNCSOA outperforms

SM-GCSOA even in case of a small data set like Iris as

NCSOA used for weight optimization in SM-GNCSOA

explores the search space more efficiently and has high

local optima avoidance as compared to CSOA that is used

Table 7 Result of Welch’s t test
at a = 0.05 on classification

accuracy of SM-GNCSOA

versus its variants

Data set B-GNCSOA SM-GNCSOA-WP

p (two-tailed) t stat p (two-tailed) t stat

Diabetes 0.0208 2.3747 0.0327 2.1875

Diabetic retinopathy 0.0103 2.6496 0.0267 - 2.2729

Haberman’s survival 0.0107 2.6355 0.0193 2.4060

Seismic bumps 0.0003 3.8083 0.0065 - 2.8202

Tic-Tac-Toe endgame 0.0260 2.2837 0.0164 2.4703

E. coli 8.37E-09 6.7283 1.92E-17 12.0600

Iris 0.2388 - 1.1901 0.3014 - 1.0425

Wholesale customers 3.6E-05 4.4770 0.0013 3.3654

Website phishing 0.0117 2.6002 5.21E-05 4.3698

Statlog (Landsat satellite) 0.0117 2.6002 0.0009 - 3.4998

Data set SM-GCSOA SM-GBP

p (two-tailed) t stat p (two-tailed) t stat

Diabetes 6.3961E-07 5.5898 2.670E-06 5.2041

Diabetic retinopathy 5.3E-03 2.8924 3.63E-17 11.876

Haberman’s survival 5.307E-10 7.4415 3.26E-10 7.5675

Seismic bumps 6.110E-11 8.0006 4.2E-03 2.9733

Tic-Tac-Toe endgame 3.202E-06 5.1544 8.18E-06 4.8958

E. coli 5.5E-19 13.106 2.15E-19 13.390

Iris 6.321E-04 3.6291 3.84E-09 6.9300

Wholesale customers 8.9E-03 2.7037 1.05E-12 9.0611

Website phishing 5.62E-14 9.8401 2.33E-14 10.077

Statlog (Landsat satellite) 2.016E-03 3.2362 2.47E-06 5.2255

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15481

123

for weight optimization in SM-GCSOA. In case of data sets

with large number of features like diabetic retinopathy,

seismic bumps and statlog, the MLPs obtained by SM-

GNCSOA-wp perform better as compared to SM-

GNCSOA. It is due to the fact that sometimes all or most of

the features contribute to the classification process and a

Fig. 13 Convergence graphs of total loss of ten data sets

15482 P. Bansal et al.

123

complex architecture is also required. As SM-GNCSOA-

wp does not incur penalties on selection of large number of

features and a complex architecture, hence, it performs

better in cases of data sets with large number of attributes.

The result of statistical test further proves the effectiveness

of our proposed approach.

In future, we plan to implement other metaheuristic

algorithms to generate MLPs and compare the performance

Fig. 14 Convergence graphs of training error of ten data sets

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15483

123

Fig. 15 Convergence graphs of validation loss of ten data sets

15484 P. Bansal et al.

123

Fig. 16 Graphs of architecture penalty of ten data sets

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15485

123

Fig. 17 Graphs of feature penalty of ten data sets

15486 P. Bansal et al.

123

Fig. 18 Confusion matrix of ten data sets on the best MLPs

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15487

123

of SM-GNCSOA with them. We also plan to use meta-

heuristic algorithms to optimize other types of ANNs.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights

in neural networks using the whale optimization algorithm. Soft

Comput 22:1–15

Arora S, Anand P (2018) Chaotic grasshopper optimization algorithm

for global optimization. Neural Comput Appl. https://doi.org/10.

1007/s00521-018-3343-2

Bansal P, Gupta S, Kumar S, Sharma S, Sharma S (2019) MLP-LOA:

a metaheuristic approach to design an optimal multilayer

perceptron. Soft Comput. https://doi.org/10.1007/s00500-019-

03773-2

Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine

learning: a new perspective. Neurocomputing 300:70–79

Carvalho M, Ludermir T (2007) Particle swarm optimization of

neural network architectures and weights. In 7th International

conference on hybrid intelligent systems, pp 336–339

Chen L-H, Zhang XY (2009) Application of artificial neural network

to classify water quality of the yellow river. In: Fuzzy

information and engineering. Advances in soft computing, vol

54, pp 15–23

Choi S, Cha S, Tappert CC (2010) A survey of binary similarity and

distance measures. J Syst Cybern Inform 8(1):43–48

Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific

Rim international conference on artificial intelligence. Springer,

Berlin, pp 854–858

Ewees AA, Elaziz MA, Houssein EH (2018) Improved grasshopper

optimization algorithm using opposition-based learning. Expert

Syst Appl 112:156–172

Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural

networks using multi-verse optimizer for binary classification

problems. Appl Intell 45(2):322–332

Faris H, Aljarah I, Mirjalili S (2017) Improved monarch butterfly

optimization for unconstrained global search and neural network

training. Appl Intell 48:445–468

Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M AZ, Mirjalili S,

Fujita H (2018) An efficient binary salp swarm algorithm with

crossover scheme for feature selection problem. Knowl-Based

Syst 154:43–67

Frank A, Asuncion A (2010) UCI machine learning repository [http://

archive.ics.uci.edu/ml]. University of California, School of

Information and Computer Science, Irvine, CA

Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired

optimization algorithm. Commun Nonlinear Sci Numer Simul

17(12):4831–4845

Garro BA, Vázquez RA (2015) Designing artificial neural networks

using particle swarm optimization algorithms. Comput Intell

Neurosci. https://doi.org/10.1155/2015/369298

Garro BA, Sossa H, Vazquez RA (2011) Artificial neural network

synthesis by means of artificial bee colony (abc) algorithm. In:

Proceedings of the IEEE congress on evolutionary computation

(CEC’11), pp 331–338

Ghaemi M, Feizi-Derakhshi M-R (2016) Feature selection using

forest optimization algorithm. Pattern Recogn 60:121–129.

https://doi.org/10.1016/j.patcog.2016.05.012

Guo L, Meng Z, Sun Y, Wang L (2018) A modified cat swarm

optimization based maximum power point tracking method for

photovoltaic system under partially shaded condition. Energy

144:501–514

Hacibeyoglu M, Ibrahim MH (2018) A novel multimean particle

swarm optimization algorithm for nonlinear continuous opti-

mization: application to feed-forward neural network training.

Sci Program. https://doi.org/10.1155/2018/1435810

Han J, Kamber M (2006) Data mining: concepts and techniques.

Elsevier Inc (chapter 7)

Heaton J (2008) Introduction to neural networks with java

Heidari AA, Faris H, Aljarah I, Mirjalili S (2018) An efficient hybrid

multilayer perceptron neural network with grasshopper opti-

mization. Soft Comput. https://doi.org/10.1007/s00500-018-

3424-2

Hong CM, Chen CM, Fan HK (1999) A new gradient-based search

method: grey-gradient search method. In: Imam I, Kodratoff Y,

El-Dessouki A, Ali M (eds) Multiple approaches to intelligent

systems. IEA/AIE 1999. Lecture notes in computer science, vol

1611. Springer, Berlin

Islam MM, Sattar MA, Amin MF, Yao X, Murase K (2009a) A new

constructive algorithm for architectural and functional adapta-

tion of artificial neural networks. IEEE Trans Syst Man Cybern

Part B Cybern 39(6):1590–1605

Islam MM, Sattar MA, Amin MF, Yao X, Murase K (2009b) A new

adaptive merging and growing algorithm for designing artificial

neural networks. IEEE Trans Syst Man Cybern Part B Cybern

39(3):705–722

Jaddi NS, Abdullah S, Hamdan AR (2015a) Multi-population

cooperative bat algorithm-based optimization of artificial neural

network model. Inf Sci 294:628–644

Jaddi NS, Abdullah S, Hamdan AR (2015b) Optimization of neural

network model using modified bat-inspired algorithm. Appl Soft

Comput 37:71–86

Karaboga D (2005) An idea based on honey bee swarm for numerical

optimization. Technical report-TR-06. Engineering Faculty,

Computer Engineering Department, Erciyes University

Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC)

optimization algorithm for training feed-forward neural net-

works. In: Modeling decisions for artificial intelligence.

Springer, Berlin, pp 318–329

Karlik B, Olgac AV (2010) Performance analysis of various

activation functions in generalized MLP architectures of neural

networks. Int J Artif Intell Expert Syst 1:111–122

Katrutsa A, Strijov V (2017) Comprehensive study of feature

selection methods to solve multicollinearity problem according

to evaluation criteria. Expert Syst Appl 76:1–11

Kohavi R, John G (1997) Wrappers for feature subset selection. Artif

Intell 97(12):273–324

Kumar Y, Singh PK (2018) Improved cat swarm optimization

algorithm for solving global optimization problems and its

application to clustering. Appl Intell 48(9):2681–2697

Lauret P, Fock E, Mara TA (2006) A node pruning algorithm based

on a Fourier amplitude sensitivity test method. IEEE Trans

Neural Netw 17(2):273–293

Liu H, Motoda H (1998) Feature selection for knowledge discovery

and data mining. Kluwer, Boston

Luo J, Chen H, Zhang Q, Xu Y, Huang H, Zhao XA (2018) An

improved grasshopper optimization algorithm with application to

financial stress prediction. Appl Math Model 64:654–668

15488 P. Bansal et al.

123

https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1007/s00500-019-03773-2
https://doi.org/10.1007/s00500-019-03773-2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1155/2015/369298
https://doi.org/10.1016/j.patcog.2016.05.012
https://doi.org/10.1155/2018/1435810
https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1007/s00500-018-3424-2

Ma L, Khorasani K (2005) Constructive feedforward neural networks

using Hermite polynomial activation functions. IEEE Trans

Neural Netw 16(4):821–833

Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm

with simulated annealing for feature selection. Neurocomputing

260:302–312

Mafarja M, Mirjalili S (2018) Whale optimization approaches for

wrapper feature selection. Appl Soft Comput 62:441–453

Mafarja M, Aljarah I, Faris H, Hammouri AI, Ala’M AZ, Mirjalili S

(2018) Binary grasshopper optimisation algorithm approaches

for feature selection problems. Expert Syst Appl 117:267–286

Mirjalili S (2015a) How effective is the grey wolf optimizer in

training multi-layer perceptrons. Appl Intell 43(1):150–161.

https://doi.org/10.1007/s10489-014-0645-7

Mirjalili S (2015b) Moth-flame optimization algorithm: a novel

nature-inspired heuristic paradigm. Knowl-Based Syst. https://

doi.org/10.1016/j.knosys.2015.07.006

Mirjalili S, Mirjalili SM, Yang XS (2014a) Binary bat algorithm.

Neural Comput Appl 25:663. https://doi.org/10.1007/s00521-

013-1525-5

Mirjalili S, Mirjalili SM, Lewis A (2014b) Grey wolf optimizer. Adv

Eng Softw 69:46–61

Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2017)

Grasshopper optimization algorithm for multi-objective opti-

mization problems. Appl Intell 1–16

Mirzaei A, Mohsenzadeh Y, Sheikhzadeh H (2017) Variational

relevant sample-feature machine: a fully Bayesian approach for

embedded feature selection. Neurocomputing 241:181–190

Orouskhani M, Orouskhani Y, Mansouri M, Teshnehlab M (2013) A

novel cat swarm optimization algorithm for unconstrained

optimization problems. Inf Technol Comput Sci 5(11):32–41

Passino KM (2002) Biomimicry of bacterial foraging for distributed

optimization and control. IEEE Control Syst Mag 22(3):52–67

Rezaeianzadeh M, Tabari H, Arabi YA, Isik S, Kalin L (2014) Flood

flow forecasting using ANN, ANFIS and regression models.

Neural Comput Appl 25(1):25–37

Saha SK, Ghoshal SP, Kar R, Mandal D (2013) Cat swarm

optimization algorithm for optimal linear phase fir filter design.

ISA Trans 52:781–794

Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation

algorithm: theory and application. Adv Eng Softw 105:30–47

Schmidhuber J (2015) Deep learning in neural networks: an overview.

Neural Netw 61:85–117

Tharwat A, Houssein EH, Ahmed MM, Hassanien AE, Gabel T

(2017) MOGOA algorithm for constrained and unconstrained

multi-objective optimization problems. Appl Intell 48:1–16

Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters

of a neural network by using hybrid Taguchi-genetic algorithm.

IEEE Trans Neural Netw 17(1):69–80

Vázquez JC, López M, Melin P (2010) Real time face identification

using a neural network approach. In: Melin P, Kacprzyk J,

Pedrycz W (eds) Soft computing for recognition based on

biometrics. Studies in computational intelligence, vol 312.

Springer, Berlin

Wdaa ASI (2008) Differential evolution for neural networks learning

enhancement. Ph.D. thesis, Universiti Teknologi, Malaysia

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

Wu J, Wang H, Li N, Yao P, Huang Y, Su Z, Yu Y (2017) Distributed

trajectory optimization for multiple solar-powered UAVs target

tracking in urban environment by Adaptive Grasshopper Opti-

misation Algorithm. Aerosp Sci Technol. https://doi.org/10.

1016/j.ast.2017.08.037

Xue B, Zhang M, Browne WN (2013) Particle swarm optimisation for

feature selection in classification: novel initialisation and updat-

ing mechanisms. Appl Soft Comput 18:261–276

Yang XS. (2009) Firefly algorithms for multimodal optimization. In:

Watanabe O, Zeugmann T (eds) Stochastic algorithms: founda-

tions and applications. SAGA 2009. Lecture notes in computer

science, vol 5792. Springer, Berlin

Zanchettin C, Ludermir TB, Almeida LM (2011) Hybrid training

method for MLP: optimization of architecture and training. IEEE

Trans Syst Man Cybern Part B Cybern 41(4):1097–1109

Zarshenas A, Suzuki K (2016) Binary coordinate ascent: an efficient

optimization technique for feature subset selection for machine

learning. Knowl-Based Syst 110:191–201

Zhang L, Liu L, Yang X-S, Dai Y (2016) A novel hybrid firefly

algorithm for global optimization. PLoS ONE 11(9):1–17

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and… 15489

123

https://doi.org/10.1007/s10489-014-0645-7
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1016/j.ast.2017.08.037
https://doi.org/10.1016/j.ast.2017.08.037

	A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and optimization of multi-layer perceptron
	Abstract
	Introduction
	Related work
	Background
	Grasshopper optimization algorithm (GOA)
	Binary variants of grasshopper optimization algorithm
	BGOA-S/BGOA-V
	BGOA-M

	Cat swarm optimization algorithm (CSOA)
	Seeking mode
	Tracing mode

	The proposed approach
	Simple matching-binary grasshopper optimization algorithm (SM-BGOA)
	NCSOA
	The proposed algorithm: SM-GNCSOA
	Representation of solution vectors
	Generation of initial population
	Fitness function
	Addition and deletion of neurons

	Results and discussion
	Data set
	Experimental design and set-up
	Results and analysis

	Conclusion and future work
	References

