
Soft Computing (2020) 24:15317–15326
https://doi.org/10.1007/s00500-020-04865-0

METHODOLOGIES AND APPL ICAT ION

Non-convex low-rank representation combined with rank-one matrix
sum for subspace clustering

Xiaofang Liu2 · Jun Wang1 · Dansong Cheng1 · Daming Shi3 · Yongqiang Zhang1

Published online: 18 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Exploring the multiple subspace structures of data such as low-rank representation is effective in subspace clustering.
Non-convex low-rank representation (NLRR) via matrix factorization is one of the state-of-the-art techniques for subspace
clustering. However, NLRR cannot scale to problems with large n (number of samples) as it requires either the inversion of
an n × n matrix or solving an n × n linear system. To address this issue, we propose a novel approach, NLRR++, which
reformulates NLRR as a sum of rank-one components, and apply a column-wise block coordinate descent to update each
component iteratively. NLRR++ reduces the time complexity per iteration fromO(n3) toO(mnd) and thememory complexity
fromO(n2) toO(mn), wherem is the dimensionality and d is the target rank (usually d � m � n). Our experimental results
on simulations and real datasets have shown the efficiency and effectiveness of NLRR++. We demonstrate that NLRR++ is
not only much faster than NLRR, but also scalable to large datasets such as the ImageNet dataset with 120K samples.

Keywords Subspace clustering · Non-convex low-rank representation · Block coordinate descent · Rank-one matrix

1 Introduction

Many datamining andmachine learning applications involve
high-dimensional data, such as images, videos and docu-
ments (Wang et al. 2019; Zhang et al. 2019; Tang and Wei
2019; Ding et al. 2018; Fan et al. 2016; Du et al. 2017, 2018).
In practice, such high-dimensional datasets can often be well
approximated by multiple low-dimensional subspaces corre-
sponding tomultiple classes or categories (Fahmi et al. 2018;
Wang et al. 2018; Amin et al. 2019; Tang et al. 2019). In
the past decades, the subspace clustering as one of the most
important machine learning technologies has been widely

Communicated by V. Loia.

B Dansong Cheng
cdsinhit@hit.edu.cn

1 School of Computer Science and Technology, Harbin
Institute Technology, 92 West Dazhi Street, Nan Gang
District, Harbin, People’s Republic of China

2 School of Electrical Engineering and Automation, Harbin
Institute of Technology, 92 West Dazhi Street, Nan Gang
District, Harbin, People’s Republic of China

3 College of computer and software, Shenzhen University,
3688 Nanhai Ave, Nanshan District, Shenzhen, People’s
Republic of China

used in computer vision (Wang et al. 2016; Zhou et al.
2013) and machine learning (Bian et al. 2017; Du et al.
2017, 2016; Jia et al. 2017; Cheng et al. 2013). For instance,
low-rank representation (LRR) (Liu et al. 2013) and sparse
subspace clustering (SSC) (Elhamifar and Vidal 2013) aim
to obtain a low-rank structure of multiple subspaces to fit
high-dimensional data. However, both LRR and SSC require
O(n3) time complexity, so they are not able to scale to prob-
lemswith large n (number of samples).Moreover, since LRR
involves a nuclear norm regularization penalty of an n-by-
n matrix, it requires computing singular value decomposi-
tion (SVD) (Wall et al. 2003) of an n-by-n matrix in every
iteration.

In order to scale up to larger datasets, some subspace
clustering methods have been proposed to mitigate the
computation and memory cost. Non-convex low-rank rep-
resentation (NLRR) (Shen and Li 2016) was proposed to
alleviate the computational cost of LRR. The main idea is
to take a non-convex reformulation of nuclear norm into
account to avoid the repeated SVD computations in nuclear
norm optimization solvers. However, it is not efficient to
solve NLRR directly due to the use of an auxiliary vari-
able, which leads to solving an n × n linear system at
each step. To further address this computation issue, online
low-rank subspace clustering (OLRSC) (Shen et al. 2016)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-04865-0&domain=pdf

15318 X. Liu et al.

and online robust PCA (ORPCA) (Feng et al. 2013) were
proposed. Despite that the time and memory cost per iter-
ation are independent of n, OLRSC and ORPCA suffer
from much slower convergence compared with batch NLRR
algorithms.

Instead of using online updates, we propose a scalable
algorithm NLRR in this paper, called NLRR++, which
reduces the time complexity from O(n3) to O(mnd) (usu-
ally d � m � n). NLRR++ is based on the main finding
that by formulating UVT in Eq. (3) (NLRR problem) as sum
of rank-one matrices and updating the variables in a block
coordinate descentmanner, theNLRRproblem can be solved
without adding any auxiliary variable. However, the update
for ui (a column of U) involves inverting an m-by-m matrix
which leads toO(m3) computational cost. By exploiting the
structure of the linear system and pre-computing the SVD of
the inverse part, NLRR++ is able to solve this linear system in
O(mn) time. We show that NLRR++ converges to stationary
points. Moreover, to address the issue of the high demand in
memory and computational time for the final spectral clus-
tering phase, we also propose an efficient clustering scheme
that can further boost the performance of subspace clustering.
Our experiments results on synthetic and real-world datasets
show that the proposed algorithm is much faster than state-
of-the-art space clustering approaches such as LRR (Liu et al.
2013), SSC (Elhamifar and Vidal 2013), NLRR (Shen and Li
2016), OLRSC (Shen et al. 2016) and ORPCA (Feng et al.
2013).

The spectral clustering has been used for subspace clus-
tering (Von Luxburg 2007), which usually follows two steps.
In the first step, a symmetric affinitymatrixW is constructed.
And in the second step, a weighted undirected graph is con-
structed, and the segmentation of the data is then found
by clustering the eigenvectors of the graph Laplacian using
some traditional clustering techniques such as K-means. One
challenge is to build an affinity matrix to capture the relation-
ship among data points. Most recent methods to construct
affinity matrix target the sparse and low-rank representa-
tion of data points. The low-rank representation of the data
matrix is then converted into symmetric and nonnegative
affinity matrix, from which the segmentation is done by
using spectral clustering. However, the spectral clustering-
based methods cannot scale to large datasets due to the high
cost of memory and computation time, as the affinity matrix
W ∈ R

n×n is usually dense, demanding huge memory when
n is large.

In this paper, we focus on LRR, which is guaranteed to
have robust multiple subspace segmentation performance.
LRR is to solve the following optimization problem:

min
X,E

1

2
‖Z − AX − E‖2F + β‖X‖∗ + λ‖E‖2,1. (1)

Here, Z = [z1, z2, . . . , zn] ∈ R
m×n is the observa-

tion matrix with n samples and m features (m � n), and
A ∈ R

m×n is a given dictionary matrix. Without any prior
knowledge of dictionary, it is often assumed thatA = Z. LRR
aims to estimate two matrices: E is a sparse matrix capturing
the corruptions of observations, and X ∈ R

n×n captures the
low-rank structure of the observed data. Finally, the regular-
ization parameters β, λ can be tuned to control the sparsity
and low rankness of the solution.

If all the samples lie exactly in a small number of sub-
spaces, under certain conditions the solutionX of Eq. (1) will
be a block-diagonalmatrix up to permutation. The results can
thus be used for subspace clustering. In practice, the repre-
sentation matrix X = UxΣ xVT

x can be used to construct an
affinity matrix W = VxVT

x , which is then fed into spectral
clustering to get the final clustering result.

Despite the desirable theoretical properties, LRRmethods
cannot scale to large datasets due to high memory and com-
putational cost. To solve Eq. (1), we need to store X matrix,
which needs (O(n2)) memory. Obviously, it is unfeasible
to store for large-scale datasets with millions of samples.
Furthermore, solving an optimization problem with nuclear
norm penalty ‖X‖∗ involves singular values decomposition
in every iteration, which is also computationally expensive
(Recht et al. 2010).

Recently, Shen and Li (2016) mitigated the computation
issue by introducing a non-convex reformulation of Eq. (1).
Assuming the rank of X is at most d, Fazel et al. (2001)
showed that:

min
U,V,X=UV

‖X‖∗ = 1

2
(‖U‖2F + ‖V‖2F), (2)

where U ∈ R
m×d ,V ∈ R

n×d . Therefore, LRR in Eq. (1)
has an equivalent but non-convex formulation (NLRR) as
follows:

min
U,V,E

1

2
‖Z−AUVT − E‖2F+β

2
(‖U‖2F + ‖V‖2F) + λ‖E‖2,1.

(3)

In order to solve this NLRR problem, a straightforward
way is to update the three variables U,V,E alternately until
convergence. However, Shen and Li (2016) pointed out that
this alternating minimization scheme may be intractable.
Assume V,E are fixed, solving the subproblem with respect
to U can be computationally intensive as the optimal U is:

vec(U) = (VTV ⊗ (ATA) + β−1Imn)vec(AT(Z − E)V),

(4)

where⊗ is a Kronecker product. In Eq. (4),VTV⊗ (ATA) is
an mn-by-mn matrix, so the time complexity of solving (4)

123

Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering 15319

is O(m3n3) so that memory cost is O(m2n2) which is not
practical even in small-scale applications. To solve the vari-
able U efficiently, Shen and Li (2016) proposed to add an
auxiliary variable D = AU to Eq. (3), and then, updating U
becomes an ordinary least square problem by differentiating
it with respect to U as follows (details can be found in Ref.
Shen and Li 2016):

(NLRR-1) U = (μAAT + In)−1AT(W + μD). (5)

As we can see from the above equation, introducing aux-
iliary variables can reduce the computational and memory
cost of computing U to O(n3) and O(n2), respectively.

2 Reformulated non-convex low-rank
representationmodel

In this section, we introduce our proposed algorithm,
NLRR++. By reformulating NLRR problem in Eq. (3), we
show that a block coordinate descent algorithm can be used
to solve NLRR efficiently without adding any auxiliary vari-
able. In Sect. 2.1, we describe the one-variable update rule
in detail. And in Sect. 2.2, we discuss how to group variables
into blocks so that the block coordinate descent can be run
efficiently, followed by describing several further improve-
ments and theoretical guarantee in the rest of this section.

2.1 Solving strategy via block coordinate descent
method

We reformulate the NLRR problem in Eq. (3) in order to
mitigate the computational cost and memory requirement.
Note that the solution UVT can be represented as a sum of d
outer products:

X = UVT =
d∑

t=1

utvTt (6)

where ut , vt , (t = 1, . . . , d) are the column vectors of U,V
respectively. From the perspective of latent feature space, ut
and vt correspond to the t th latent feature. Therefore, the
objective function of Eq. (3) can be written as follows:

g({ut }dt=1, {vt }dt=1,E) = 1

2
‖Z − A

d∑

t=1

utvTt − E‖2F

+ β

2

(
d∑

t=1

‖ut‖22 +
d∑

t=1

‖vt‖22
)

+ λ‖E‖2,1.
(7)

In large-scale applications and related optimization prob-
lems, it is difficult to solve all variables at one time in each

iteration because of the large data and variables. The block
coordinate descent (BCD) approach is effective to solve this
problem. It divides variables into smaller blocks and updates
only one of them in each iteration, thus simplifying the solu-
tion of variables. The main idea of BCD is to update only
one block coordinate variable at a time when the other vari-
ables are fixed. Hence, the key of applying BCD is to design
the subproblem of updating single variable and the order of
updating variables.

In the following, we propose a BCD algorithm for solving
Eq. (7). In the outer loop, we alternately update U,V when
fixing E and update E when fixing U,V. In the inner loop,
update variables U,V in turn by BCD. First, we discuss how
to update U,V when fixing E. In fact, Shen and Li (2016)
discussed about this approach and found out it is impossible
to update the wholeU orV efficiently. But here, we show that
by splitting these two matrices into columns, each column
actually has a closed form solution that can be computed
efficiently. Minimizing Eq. (7) with respect to ut , vt (t =
1, . . . , d), it can then be written as:

g({ut }dt=1, {vt }dt=1) = β

d∑

t=1

‖ut‖22 + β

d∑

t=1

‖vt‖22

+ ‖Z − A
d∑

t=1

utvTt − E‖2F .

(8)

In the following, we show that the subproblem in Eq. (8)
can be solved efficiently by a column-wise coordinate
descent, where at each step, we update the whole column
of ut or vt together.

– Update ut (t = 1, . . . , d): When E,V,u j (j �= t) are
fixed, differentiating the objective function inEq. (8)with
respect to ut and arranging the other terms yield

ut = (ctATA + βIn)−1ATRtvt (9)

where Rt = Z − A
∑

j �=t u jvTj − E is the t th resid-

ual matrix and ct = ‖vt‖22. However, computing Qv =
(ctATA + βIn)−1v (where v = ATRtvt is a vector and
Q ∈ R

n×n) requires inverting a n-by-n matrix or solv-
ing an n-dimensional linear systems, which takes O(n3)
time.

To resolve this problem, we need to exploit the structure
of theQmatrix. Note thatQ = ct (ATA+ β

ct
In)−1, so the first

part remains unchanged throughout the whole optimization
procedure, andonly the second termchangedby a constant ct .
Therefore, by caching some information about ATA, we can
compute the inverse efficiently. In order to do this, we first use

123

15320 X. Liu et al.

the Woodbury matrix identity1 to transform the dimensions
of the inverse operation from n-by-n tom-by-m (m�n), i.e.,

Q = 1

β
In − 1

β2A
T

(
ct
β
AAT + Im

)−1

A.

Then, Eq. (9) can be written as follows:

ut = 1

β
ATRtvt − 1

β2A
TQmAATRtvt (10)

where Qm = (ct
β
AAT + Im)−1. To update ut , we have to

compute thematrix inverse (ct
β
AAT+Im)−1 in every iteration

which requires the computational complexity of O(m3).
Now, we take the structure of Qm into account and make

adjustments to Qm . Outside the outer loop of the algorithm,
we pre-compute the SVD of AAT = U∗Σ∗VT∗ in the begin-
ning of the algorithm, and then, Qm can be written as

Qm = U∗diag
(

1

1 + ct
β
diag(Σ∗)

)
VT∗ . (11)

It can be seen from the above that in each iteration, only
ct is changeable, but U∗,Σ∗, V T∗ are unchanged. Therefore,
calculating ut only includes the matrix vector product whose
computational complexity is O(mn).

– Update vt (t = 1, . . . , d): When E,V, v j (j �= t) are
fixed, taking the gradient of Eq. (8) with respect to vt and
setting it to zero, we can get the update rule for vt :

vTt = 1

dt + β
(Aut)TRt , (dt = uTt A

TAut). (12)

– We follow Ref. Hale et al. (2008) to find the local min-
imizer of E by the following soft-thresholding operator
when ut , vt are fixed:

[E]:,i = Sλ([R]:,i), (13)

where [E]:,i is i th column vector of matrix E, R = Rt −
AutvTt , and the soft-thresholding operator is defined by

Sλ([R]:,i) = max {‖[R]:,i‖2−λ, 0} [R]:,i
‖[R]:,i‖2 (i = 1, . . . , n).

2.2 Strategy for updating ut, vt

To update the columns of U,V, there are multiple choices of
the update sequence. In this subsection, we investigate two
main inner updating sequences.

1 (A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1.

The first choice is to update all the columns of U and then
all the columns of V:

(I) R1,u1,R,R2,u2,R, . . . ,Rd ,ud ,R︸ ︷︷ ︸
U

,

R1, v1,R,R2, v2,R, . . . ,Rd , vd ,R︸ ︷︷ ︸
V

(14)

Note that before updating ut by Eq. (9) or vt by Eq. (12),
the t th residual matrix Rt = Z − A

∑
j �=t u jvTj − E needs

to be updated at first, and once ut or vt is updated, the real
residual matrix R = Z − A

∑d
i=1 uiv

T
i − E needs to be

calculated too by adding the updated utvTt . The updates of
R,Rt are also included in the update sequence of Eq. (14).
In this approach, each update of ut and vt will trigger the
update of Rt and R.

An alternative “feature-wise approach” is to update ut in
company with vt ; thus, the update frequency of R and Rt

is reduced in half. The detailed updating sequences are as
follows:

(II) R1,u1, v1,R︸ ︷︷ ︸
(U1,V1)

,R2,u2, v2,R︸ ︷︷ ︸
(U2,V2)

, . . . ,Rd ,ud , vd ,R︸ ︷︷ ︸
(Ud ,Vd)

.
(15)

Moreover, between each update of Rt and R, we can
update ut , vt by T times, and within these T inner updates,
we do not need to update residual matrix, as explained in
detail in Sect. 4.

Our experiments show that approach (II) demonstrates
better clustering performance and higher efficiency than the
approach (I) does. The algorithm outline of the approach (II)
is presented in Algorithm 1.

2.3 Accelerate NLRR++

We accelerate the NLRR++ based on the approach (II) (in
Eq. (15)) by controlling the number of inner iterations T for
updating ut , vt (Yu et al. 2012). NLRR++ could be slightly
more efficient when T > 1 due to the benefit brought by
the “delayed residual update.” Note that R and Rt are fixed
during NLRR++ iterations for each rank-one approximation
problem in Eq. (8). Therefore, R and Rt are required to be
updated only when we switch to the next subproblem cor-
responding to another feature. Moreover, the more the inner
iterations we use, the better the approximation to subproblem
in Eq. (8). Hence, a direct approach to accelerate NLRR++ is
to increase T . But a large andfixed T might result in overhead
on a single subproblem.

We close this section by a comparison between NLRR
and NLRR++ in Fig. 1. Here, we compare four settings with
the ImageNet dataset: Two settings are NLRR-1, and three
others are NLRR++ with fixed T = 1 (NLRR++T1) (using
the (II) approach), fixed T = 4 (NLRR++T4) (using the (II)

123

Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering 15321

Algorithm 1 NLRR++ by Solving Eq. (7)
1: Input: Matrix Z, the parameters d, ε, β, λ > 0
2: Output: U,V,E.
3: Initialization: Generate ut , vt from Gaussian distribution;

4: R = Z − A
d∑

i=1
uTt vt − E; AAT = U∗Σ∗VT∗ ; i = 1 ; L0 =

g({ut }dt=1, {vt }dt=1,E).
5: While not converged do
6: for t = 1 · · · d
7: Update Rt = R + AutvTt ;
8: for i ter = 1 · · · T
9: Update ut in U using (10) and (11);
10: Update vt in V using (12);
11: endfor
12: Update R = Rt − AutvTt ;
13: endfor
14: Update E via (13),
15: Update object value:
16: Li = 1

2‖R‖2F + 1
2β(‖U‖2F + ‖V‖2F) + λ‖E‖1

17: If Li−1−Li
L0−L1

< ε

18: converged = true;
19: endif
20: i = i + 1;
21: end while
22: Return U = [u1 · · ·ud],V = [v1 · · · vd],E

Computation Time

0 1000 2000 3000 4000 5000 6000 7000

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

×108

1

2

3

4

5

6 NLRR++(T=4)
NLRR++(T=1)
NLRR-1

Fig. 1 The objective function value versus computation time with the
comparison among NLRR++(T = 1), NLRR++(T = 4), NLRR++b
(via the update approach (I) in Eq. (14)), NLRR-1 using ImageNet
features (N = 62,700).Results show that our proposedupdate sequence
has faster and more stable convergence

approach), NLRR++b (using the (I) approach), respectively.
As shown in Fig. 1, the “feature-wise” update strategy by
NLRR++ using approach (II), even when T = 1, converges
faster than NLRR. We also observe that a larger T improves
convergence of NLRR++.

Table 1 Comparison of time complexity memory cost of NLRR,
NLRR++, OPRCA and OLRSC

Time complexity Memory cost

NLRR++ O(mnd) O(mn)

NLRR (Shen and Li 2016) O(n3) O(n2)

OLRSC (Shen et al. 2016) O(mnd2) O(md)

ORPCA (Feng et al. 2013) O(mnd2) O(md)

2.4 Time complexity andmemory cost

Our NLRR++ via column-wise BCD is summarized in
Algorithm1.Toanalyze the computational andmemory com-
plexity, we assume d � m < n, since the sample dimension
m is fixed, and the estimation d of subspace rank is gener-
ally smaller than the sample dimension. Only the number of
samples n will increase with the increase in the dataset, and
the rank d is usually less than 100.

In the inner iteration (t = 1, . . . , d), both the updates of
Rt and R in the step 7 and 12 cost O(mn). The updates of
ut and vt in the step 9 and 10 cost O(3Tmn + 2Tm2) and
O(2Tmn), respectively, where T is a small fixed constant.
Therefore, the time complexity of the inner iteration in Algo-
rithm 1 can be summarized as O(dmn), and thus, the total
time complexity of NLRR++ is O(T1mnd), where T1 is the
number of outer iterations scaling asO(1

ε
) (Richtrik and Tak

2014). In all the experiments shown in Sect. 4, T1 is no more
than 5. In terms of the memory cost, each of the steps in
Algorithm 1 needs O(mn) memory.

We also compare our time complexity with other methods
in Table 1 to clearly demonstrate the difference of time com-
plexity and memory cost of NLRR++, NLRR (Shen and Li
2016), OLRSC (Shen et al. 2016) and ORPCA (Feng et al.
2013). Note that OLRSC and ORPCA are two online meth-
ods with the lowest memory cost which is in the sacrifice of
the computational efficiency.

2.5 Theoretical convergence analysis

For NLRR++, g({ut }dt=1, {vt }dt=1,E) is convex in ut , vt or
E separately. Since we follow BCD update rule with 2t + 1
blocks ({ut }dt=1, {vt }dt=1), and E, their corresponding sub-
problems can be written as

min
{ut }dt=1,

g({ut }dt=1, {vt }dt=1,E), (16)

min
{vt }dt=1

g({ut }dt=1, {vt }dt=1,E), (17)

min
E

g({ut }dt=1, {vt }dt=1,E). (18)

According to the proposition 2.7.1 in Bertsekas (1999), if
the solution of Eqs. (16), (17) and (18) is uniquely attained,

123

15322 X. Liu et al.

then every limit point u∗
t of the sequences generated BCD

is a stationary point. For Eqs. (16) and (17), due to the L2-
regularization, the subproblems are strongly convex, so they
clearly satisfy this condition. For Eq. (18), the solution given
by the soft-thresholding is also uniquely attained. Therefore,
ourAlgorithm1will converge to stationary points of problem
in Eq. (7).

However, it is difficult to guarantee that the stationary
point of non-convex optimization is globally optimal (Bert-
sekas 1999). Burer et al.’s work Burer and Monteiro (2005)
shows that the local minimum solution obtained is also the
global maximum solution when the data do not contain noise
and the given rank is large enough. Usually, the algorithm
stops at some stationary points instead of local minimum
solution, but subsequent experiments show that the solution
obtained by Algorithm 1 performs well in subspace cluster-
ing.

3 Clustering pipeline

The original pipeline of clustering is firstly using the repre-
sentation matrix X ≈ UVT to construct the n-by-n affinity
matrix W = |V||VT|, where U,V are produced by the non-
linearLRRapproaches, and then feeding the affinitymatrix to
a spectral clustering algorithm (Ng et al. 2001) to get the final
clustering result. However, the spectral clustering method
is not practical when facing a n-by-n dense affinity matrix,
because the memory cost and time complexity requirements
are O(n3) and O(n2), respectively. Therefore, the spectral
clustering algorithm is not suitable for large datasets.

In this section, the K-means clustering method is imple-
mented directly utilizing the n-by-d (d is the estimation
rank of the dataset) matrix U,V obtained from the non-
convex low-rank representation model. Note that X ≈ UVT

is obtained fromEq. (1) or Eq. (3), and columns inU ∈ R
n×d

denote the basis of X which spans the subspace of X, and V
denotes the corresponding coefficient matrix under the basis
U. Rather than directly feeding V to K-means algorithm as
Shen and Li (2016) do, we introduce a dimension reduc-
tion step to avoid the curse of dimension especially when
d > 100. We select k columns in V (assuming the cluster
number k is known and usually k � d) which corresponds
to the k principal components ofU (measured by the column
vector length) to construct a new dimension reduced repre-
sentation matrix Vk . Then, we normalize the rows of Vk and
feed it to K-means clustering to obtain the final clustering
result.

The comparison of the time-consuming and the clustering
accuracy between the spectral clustering, K-means and our
proposedmethods is shown inTables 2 and3wherewe feedV
obtained byNLRR++ to the clusteringmethods. The spectral
clustering computes SVD for an n-by-n similarity matrix

Table 2 Time cost (seconds) of various post-processing schemes for
subspace clustering

USPS Protein M-20K S-9K I-30K I-60K

Spectral 665.3 5307.1 1.7h 764.6 2h 7h

K-means 10 28.52 28.43 14.22 65.58 1789.2

Ours 4 4.2 8.25 1.95 26.3 207.2

Here, we denote MNIST-20K by M-20K, SVHN-9K by S-9K and
ImageNet-30K/60K by I-30K/I-60K

Table 3 Clustering accuracy (%) of various post-processing schemes
for subspace clustering

USPS Protein M-20K S-9K I-30K I-60K

Spectral 51.76 45.0 63.1 33.25 90.3 76.7

K-means 67.9 42.76 25.01 42.1 65.2 28.7

Ours 66.25 43.2 79.1 41.0 95.69 90.89

Here, we denote MNIST-20K by M-20K, SVHN-9K by S-9K, and
ImageNet-30K/60K by I-30K/I-60K

which is quite slow and always dominates the running time
of the whole task. The performance of K-means is not stable
and not of high efficiency especially for large datasets.

4 Experiments

Parameter settings and Environment We set β = 0.8 for
both NLRR++ and NLRR (Shen and Li 2016), and number
of inner iterations T = 4 for NLRR++. For the compet-
ing methods, i.e., OLRSC (Shen et al. 2016), ORPCA (Feng
et al. 2013), LRR (Liu et al. 2013), SSC (Elhamifar and
Vidal 2013) and CASS (Lu et al. 2014), we follow the default
parameter settings specified in their papers.

All the experiments were executed on Intel Xeon E5-2640
2.4GHz CPU with 64G RAM and Linux OS. Note that our
algorithm can be easily parallelized since all the operations
are matrix multiplications, and in fact, this can be automati-
cally done in MATLAB if we assign more than one thread.
Since all the other algorithms can also be parallelized by
MATLAB,2 we compare the algorithms under both single-
thread and multi-thread settings.

4.1 Subspace clustering on simulation data

We use f our disjoint subspaces{Sk}4k=1 ∈ R
m , whose bases

are denoted by {Lk}4k=1 ∈ R
m×dk . The data matrix Zk ∈

Sk is then produced by Zk = LkRT
k , where Rk ∈ R

nk×dk .
The entries of Lk’s and Rk’s are sampled from the normal
distribution.

2 Our source code is available at https://github.com/junwang929/
subspace-clustering.

123

https://github.com/junwang929/subspace-clustering
https://github.com/junwang929/subspace-clustering

Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering 15323

Rank/Dimension

C
lu

st
er

in
g

A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ORPCA
OLRSC
NLRR++
LRR
NLRR

Rank/Dimension
C

om
pu

ta
tio

na
l T

im
e

0

50

100

150

200

250

300

350

400

450
ORPCA
OLRSC
NLRR++
LRR
NLRR

Number of Samples

C
lu

st
er

in
g

A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ORPCA
OLRSC
NLRR++
LRR
NLRR

Number of Samples

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

C
om

pu
ta

tio
na

l T
im

e

200

400

600

800

1000

1200

1400

1600

ORPCA
OLRSC
NLRR++
LRR
NLRR

Fig. 2 Clustering accuracy and time complexity (in seconds). The first
two subfigures show synthetic data with m = 1000, k = 4, nk = 1000
and ρ = 0.02. The x-axis represents the Rank/Dimension. Note that
NLRR takes less time while staying at bad stationary points with much
lower clustering accuracy, especially when Rank/Dimension is larger

than 0.2. The last two figures show synthetic data with m = 1000, k =
4, dk = 40 and ρ = 0.02. The x-axis represents number of samples in
each subspace. NLRR++ has a nice clustering performance and mean-
while has the lowest computational time

We generate the datawith fixed dimensionm = 1000, cor-
ruption rate ρ = 0.02 and set λ = 1√

m
for both NLRR and

NLRR++. In the first two subfigures of Fig. 2, we fix the num-
ber of samples in each subspace and show how the change
of Rank/Dimension, which represents the ratio between the
number of basis and the ambient dimension, affects the ACC
(clustering accuracy) and the computational time (in sec-
onds). As seen from the first two subfigures, the accuracy of
NLRR++, OLRPCA andOLRSC is not much different, but it
is far better than that of NLRR and LRR algorithms. In terms
of the convergence speed, NLRR and NLRR++ algorithms
are faster than other methods. Although NLRR is sometimes
faster than NLRR++, its accuracy is poor due to the pre-
mature convergence of NLRR. In the last two subfigures of
Fig. 2, we show the effect of the increase in sample number
on the clustering accuracy and the running time of the algo-
rithm. Fixed remaining parameters are m = 1000, k = 4,
DK = 40 and P = 0.02. NLRR++ embodies higher cluster-
ing accuracy and the fastest convergence speed. The increase
in sample size has a relatively small impact on the efficiency
of NLRR++, OLRSC and OLRPCA algorithms. The conver-
gence speed of LRRandNLRRmethods decreases obviously
with the increase in samples.

InFig. 3,weplot the training curve ofNLRRandNLRR++
in terms of objective function since they are solving the same
optimization problem in Eq. (3). We set the Rank/Dimension
as 16% and the number of samples in each subspace as 2800.
The results clearly show that NLRR++ is much faster than
NLRR.

4.2 Subspace clustering on real datasets

We examine the performance for subspace clustering on five
real databases. The first four datasets can be downloaded

Computation Time

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

×10
8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

NLRR++
NLRR

Computation Time
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

A
C

C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NLRR++
NLRR

Fig. 3 Comparison of NLRR and NLRR++ on synthetic data (with
nk = 2800,Rank/Dimension = 16%, ρ = 0.02). The x-axis is training
time in seconds. We compare the objective function value Eq. (3) in the
left figure and clustering accuracy in the right figure.

from the LibSVM website.3 For MNIST and SVHN, we
randomly select 22,700 samples and 9001 samples, to form
MNIST-20K and SVHN-9K. We also evaluate our method
on a real-world dataset, ImageNet.4 ImageNet is an image
database organized according to theWordNet hierarchy (cur-
rently only the nouns), in which each class contains hundreds
or thousands of images. In this experiment, we use the fea-
tures trained by convolutional neural network (Krizhevsky
et al. 2012), to construct the sample set ImageNet-30K,
ImageNet-60K and ImageNet-120K with 30K, 60K and
120K respectively.

In order to evaluate the clustering efficiency of the pro-
posed method, we utilize two evaluation metrics accuracy
(ACC) (Elhamifar and Vidal 2013) and F-measure (Larsen
and Aone 1999). For NLRR and NLRR++, we fix the con-
verge condition parameter ε = 0.005, β = 0.8 and the reg-
ularization parameter λ = 40 for all the datasets. We set the

3 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
4 http://www.image-net.org.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.image-net.org

15324 X. Liu et al.

Table 4 Clustering F-measure
with rank d = {50, 95, 90,
150, 250, 550} for USPS,
Protein, MNIST-20K,
SVHN-9K, ImageNet-30K,
ImageNet-60K

NLRR OLRSC ORPCA LRR SSC CASS NLRR++

USPS 37.02 46.27 49.39 28.06 51.76 65.31 66.37

Protein 48.10 38.10 36.2 34.91 49.27 48.2 48.3

MNIST-20K 75.6 59.02 49.31 27.93 50.10 78.5 78.80

SVHN-9K 39.7 36.1 31.23 33.71 32.4 36.9 37.69

I-30K 87.71 93.71 34.66 6.20 – 92.1 95.75

I-60K 68.78 90.73 39.53 19.01 – 90.8 93.70

As for most of the datasets, NLRR++ has the best performance

Table 5 Clustering ACC (%)
with rank d = {50, 95, 90,
150, 250, 550} for USPS,
Protein, MNIST-20K,
SVHN-9K, ImageNet-30K,
ImageNet-60K

NLRR OLRSC ORPCA LRR SSC CASS NLRR++

USPS 37.19 48.72 53.35 27.38 45.78 66.14 66.25

Protein 43.71 38.12 36.30 35.82 45.0 42.9 43.2

MNIST-20K 76.21 60.0 49.6 28.1 30.7 78.6 79.10

SVHN-9K 38.7 41.0 34.12 36.45 31.2 38.04 38.38

I-30K 83.10 93.50 36.10 6.04 – 91.9 95.69

I-60K 64.9 88.43 33.10 19.20 – 90.02 90.89

As for most of the datasets, NLRR++ has the best performance

Table 6 Computational time (seconds) for each method by automatically parallelized with ten threads versus only one thread in MATLAB

NLRR OLRSC ORPCA LRR SSC CASS NLRR++

USPS 56.1/286.0 14.4/15.5 15.7/16.2 77.5/140.35 71.2/310.38 76.5/130.55 2.6/6

Protein 84.1/505.6 62.0/76 74.3/88.0 260.1/595.2 6700/> 5 h 240.1/550.2 16.25/48.3

MNIST-20K 350.7/2113.6 292.1/516.7 233.1/481.6 481.6/2154.3 13,508/> 5 h 468.7/1955.4 54.8/124.98

SVHN-9K 32.7/176.28 168.9/468.4 174.4/440.3 914.0/4603.3 > 5 h/> 5 h 891.4/4308.5 78.6/248.57

I-30K 249.6/1615.4 5871.3/6174.4 6340.3/6749.6 2198.1/11,871 > 5 h/> 5 h 2108.4/11,673 214.3/391.2

I-60K 3306.41/32,349 37,930/48,826 49,129/55,199 3972.71/22,227 > 10 h/> 10 h 3729.71/22,170 1306.5/2289.8

I-120K – > 10 h/> 10 h > 10 h/> 10 h – – – 1.2h/2.2h

As for most of the datasets, NLRR++ has the best performance

rank to be d = {50, 95, 90, 150, 250, 550, 700} for USPS,
ImageNet-120K, MNIST-20K, SVHN-9K, ImageNet-30K,
ImageNet-60K and Protein respectively. This rank is used
for all the methods. Also note that following (Shen and Li
2016; Shen et al. 2016; Feng et al. 2013), we use the dataset
itself as the dictionary A. We use the proposed clustering
pipeline mentioned in Sect. 3, which suffices to guarantee an
appealing clustering result on the large-scale dataset, for all
the methods except SSC. This is because the representation
matrix obtained by SSC is too sparse to perform singular
value decomposition, so the clustering strategy introduced
in the previous section cannot be used directly. As a result,
only the spectral clustering method can be applied.

We record the F-measure and the accuracy of NLRR,
NLRR++, OLRSC, ORPCA, LRR and SSC in Tables 4 and
5. We also show the computational time via multiple threads
and single thread in Table 6. Our algorithm NLRR++ sig-
nificantly outperforms other state-of-the-art methods both in
accuracy and efficiency on most of datasets. Although SSC

is slightly better than OLRSC on Protein dataset, it takes
almost 2h, while NLRR++ only needs 16.25 s to obtain a
good solution. As mentioned earlier, since SSC requires the
spectral clustering for the final result, it is not applicable to
large-scale clustering. Therefore, we do not report the accu-
racy of SSC on the dataset ImageNet-30K, ImageNet-60K
because the affinity matrix is out of memory when using the
spectral clustering algorithm.

Compared with NLRR, OLRSC and ORPCA, NLRR++
always achieves higher clustering accuracy and takes less
running time. For example, on the USPS dataset, NLRR++
achieves the accuracy of 66.37%, while the second best algo-
rithm can only achieve 51.76% accuracy. In terms of the
computational time, NLRR++ uses only 6 s, which is much
faster than all the other methods. For the ImageNet, MNIST
and USPS datasets, NLRR++ achieves the best performance
both in efficiency and accuracy. However, it is no better
than NLRR in the SVHN dataset due to relatively smaller

123

Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering 15325

amount of data. Clearly, NLRR++ outperforms other meth-
ods in datasets with large amount of samples.

Finally, for the ImageNet-120K, NLRR, SSC and LRR
run out of memory in their first iteration. The online methods
OLRSC and ORPCA take more than 10h to compute while
NLRR++ only needs about 1.2h. Apparently, NLRR++ is
the only method that can scale to 120,000 samples.

5 Conclusions

In this paper,we propose a novel algorithmNLRR++ for scal-
able subspace clustering. It dramatically reduces thememory
cost of NLRR fromO(n2) toO(mn) and the time complexity
per iteration from O(n3) to O(dmn). The two key tech-
niques used in NLRR++ are the rank-one reformulation of
the non-convex subspace recovery problem and the column-
wise block coordinate descent that enables faster variable
updates. we have also analyzed the time complexity and
empirically demonstrated that our algorithm is computation-
allymuchmore efficient comparedwith competing baselines.
Our extensive experimental study on synthetic and realis-
tic datasets also illustrates the robustness of NLRR++. The
results show that NLRR++ is the only method that can solve
an ImageNet problem with 120K samples in about 2h with
one single thread,while othermethods either run out ofmem-
ory or demand more than 10h training time.

Acknowledgements This research was supported by the National Nat-
ural Science Foundation of China (Grant No. 51677042, 61402133).

Compliance with ethical standards

Conflict of interest All author declares that he/she has no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Amin F, Fahmi A, Abdullah S (2019) Dealer using a new trape-
zoidal cubic hesitant fuzzy topsis method and application to group
decision-making program. Soft Comput 23:5353–5366

Bertsekas DP (1999) Nonlinear programming. Athena scientific, Bel-
mont

Bian W, Ding S, Yu X (2017) An improved fingerprint orientation field
extraction method based on quality grading scheme. Int J Mach
Learn Cybern 9(8):1–12

Burer S, Monteiro RDC (2005) Local minima and convergence in low-
rank semidefinite programming. Math Program 103(3):427–444

Cheng D, Nguyen MN, Gao J, Shi D (2013) On the construction of the
relevance vector machine based on bayesian ying-yang harmony
learning. Neural Netw 48(6):173–179

Ding S, Xu X, Fan S (2018) Locally adaptive multiple kernel k-
means algorithm based on shared nearest neighbors. Soft Comput
22:4573–4583

Du M, Ding S, Jia H (2016) Study on density peaks clustering based
on k-nearest neighbors and principal component analysis. Knowl
Based Syst 99:135–145

DuM, Ding S, Yu X (2017) A novel density peaks clustering algorithm
for mixed data. Pattern Recognit Lett 97:46–53

DuM,Ding S, YuX, Shi Z (2018) A novel density peaks clusteringwith
sensitivity of local density and density-adaptive metric. Knowl Inf
Syst 1:1–25

Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm,
theory, and applications. IEEE Trans Pattern Anal Mach Intell
35(11):2765–2781

Fahmi A, Abdullah S, Amin F, Khan MSA (2019) Trapezoidal cubic
fuzzy number Einstein hybrid weighted averaging operators and
its application to decision making. Soft Comput 23:5753–5783

Fan S, Ding S, Yu X (2016) Self-adaptive kernel k-means algorithm
based on the shuffled frog leaping algorithm. SoftComput 22(3):1–
12

Fazel M, Hindi H, Boyd SP (2001) A rank minimization heuristic with
application to minimum order system approximation. In: Ameri-
can control conference, vol 6. IEEE, pp 4734–4739

Feng J, Xu H, Yan S (2013) Online robust PCA via stochastic optimiza-
tion. In: Advances in neural information processing systems, vol
26, pp 404–412

Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for l1
minimization: methodology and convergence. SIAM J Optim
19(3):1107–1130

Jia H, Ding S, Du M (2017) A nystrom spectral clustering algorithm
based on probability incremental sampling. Soft Comput 21:5815–
5827

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification
with deep convolutional neural networks. In: Advances in neural
information processing systems, vol 25, no 2, pp 1097–1105

LarsenB,AoneC (1999)Fast and effective textminingusing linear-time
document clustering. In: Proceedings of the fifth ACM SIGKDD
international conference onKnowledge discovery anddatamining.
ACM, pp 16-22

Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of sub-
space structures by low-rank representation. IEEE Trans Pattern
Anal Mach Intell 35(1):171–184

Lu C, Feng J, Lin Z, Yan S (2014) Correlation adaptive subspace seg-
mentation by trace lasso. In: IEEE international conference on
computer vision

Ng AY, JordanMI,Weiss Y et al (2001) On spectral clustering: analysis
and an algorithm. NIPS 14(2):849–856

Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization.
SIAM Rev 52(3):471–501

Richtrik P, Tak M (2014) Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function.
Math Program 144:1–38

Shen J, Li P (2016) Learning structured low-rank representation via
matrix factorization. In: Proceedings of the 19th international
conference on artificial intelligence and statistics (AISTATS), pp
500–509

Shen J, Li P, Xu H (2016) Online low-rank subspace clustering by
basis dictionary pursuit. In: Proceedings of the 33rd international
conference on machine learning (ICML), pp 622–631

Tang X, Wei G (2019) Multiple attribute decision-making with dual
hesitant pythagorean fuzzy information. CognComput 11(2):193–
211

Tang X, Wei G, Gao H (2019) Models for multiple attribute decision
making with interval-valued pythagorean fuzzy muirhead mean

123

15326 X. Liu et al.

operators and their application to green suppliers selection. Infor-
matica 30(1):153–186

Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput
17(4):395–416

WallME, Rechtsteiner A, Rocha LM (2003) Singular value decomposi-
tion and principal component analysis. In: Berrar DP, DubitzkyW,
GranzowM(eds)A practical approach tomicroarray data analysis.
Springer, Boston, MA, pp 91–109

Wang J, Shi D, Cheng D, Zhang Y, Gao J (2016) LRSR: low-rank-
sparse representation for subspace clustering. Neurocomputing
214:S0925231216307573

Wang L, Peng JJ, Wang JQ (2018) A multi-criteria decision-making
framework for risk ranking of energy performance contracting
project under picture fuzzy environment. J Clean Prod 191:105–
118

Wang R,Wang J, Gao H,Wei G (2019) Methods for madmwith picture
fuzzymuirheadmean operators and their application for evaluating
the financial investment risk. Symmetry 11(6):1–21

Yu H-F, Hsieh C-J, Si S, Dhillon I (2012) Scalable coordinate descent
approaches to parallel matrix factorization for recommender sys-
tems. In: IEEE 12th international conference on data mining
(ICDM). IEEE, pp 765–774

Zhang S, Gao H, Wei G, Wei Y, Wei C (2019) Evaluation based
on distance from average solution method for multiple criteria
group decision making under picture 2-tuple linguistic environ-
ment. Mathematics 7(3):1–14

Zhou X, Yang C, Yu W (2013) Moving object detection by detecting
contiguous outliers in the low-rank representation. IEEE Trans
Pattern Anal Mach Intell 35(3):597–610

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering
	Abstract
	1 Introduction
	2 Reformulated non-convex low-rank representation model
	2.1 Solving strategy via block coordinate descent method
	2.2 Strategy for updating ut,vt
	2.3 Accelerate NLRR++
	2.4 Time complexity and memory cost
	2.5 Theoretical convergence analysis

	3 Clustering pipeline
	4 Experiments
	4.1 Subspace clustering on simulation data
	4.2 Subspace clustering on real datasets

	5 Conclusions
	Acknowledgements
	References

