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Abstract

In this paper, we consider some properties of multiplicative derivations and d-filters of commutative residuated lattices
and show that, for an ideal derivation d of a residuated lattice L = (L, A,V,®,—,0,1), (1) the set Fixy(L) =
(Fixg(L), A, V, ©,+,0,d1) of all fixed points of d forms a residuated lattice and d is a homomorphism from L to
Fixs(L), (2) for a d-filter F, amap d/F : L/F — L/F defined by (d/F)(x/F) = dx/F is also an ideal derivation
of L/F and (3) two quotient residuated lattices Fixg,r(L/F) and Fixy(L)/d(F) are isomorphic as residuated lattices, that

is, Fixg/r(L/F) = Fixq(L)/d(F).
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1 Introduction

A notion of derivation whose origin is in analysis has been
applied to theory of algebras with two operations + and -,
especially to the theory of rings (Posner 1957). For an algebra
A= (A, +,-),amap f : A — A is called a derivation in
Posner (1957) if it satisfies the conditions: For all x, y € A,

fa+y) =@+ f()
fx-»=Ffx)-y+x-f.

It was applied to the theory of lattices (Ferrari 2001; Szész
1975; Xin et al. 2008), where operations + and - were
interpreted as lattice operations V and A, respectively. In
particular, it has been proven in Szdsz (1975) that if f is
a derivation of a bounded lattice L, that is, f satisfies two
conditions:

fxvy)=fx)Vv ()
fEA) =@ AV EA L),
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then f just has a form f(x) = x A f(1). Since then, every
type of derivations is defined asamap f : X — X satisfying
only a condition:

J-y)=f@)-y+x-f),

where (X, 4+, -) is an algebra. Thus, in the case of lattices,
a derivation f of a lattice L is defined amap f : L — L
satisfying the condition:

fxA =@ AV XALFY)).

By the use of derivations of lattices, characterization the-
orems of distributive lattices and of modular lattices were
proven in [6]:

Let L be a lattice and f a derivation.

(1) The condition that f is monotone < f(f(x) V
y) = f(x)V f(y) (Vx,y € L) holds if and only if
L is a modular Iattice.

(2) The condition that f is monotone < f(x V y) =
f(x) Vv f(y) (Vx,y € L) holds if and only if L is
a distributive lattice.

Further, it is also applied to other algebras, such as MV
algebras (Alshehri 2010; Ghorbani et al. 2013; Yazarli 2013),
where operations + and - were interpreted as @ and O,
respectively. In He et al. (2016), another type of deriva-
tions, multiplicative derivations, are defined on residuated
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lattices, where operations + and - are interpreted as V and ©,
respectively. By this definition of derivations, we have several
interesting properties about residuated lattices. For example,
in He et al. (2016), it is shown that if d is an ideal derivation
of a residuated lattice L, then the set Fixy(L) of all fixed
elements formed a residuated lattice. Thus, it is expectable
for residuated lattices with multiplicative derivations to have
other deeper properties. Indeed, we show some interesting
properties here, for example, for every residuated lattice L
with an ideal multiplicative derivation d, the set Fix (L) is
isomorphic to L/ ker(d) and hence Fixy(L) is a residuated
lattice.

In this paper, we show the following results. Let L be a
commutative residuated lattice and d be an ideal derivation
of it. Then, we have

(1) The set Fixy (L) of all fixed points of d forms a residuated
lattice and L /ker(d) = Fix4(L);

(2) Amapd/F : L/F — L/F definedby (d/F)(x/F) =
dx/F is also an ideal derivation of L/ F’;

(3) The quotient residuated lattices Fixg/p(L/F) and
Fix4(L)/d(F) are isomorphic, namely Fixq/p(L/F) =
Fixq(L)/d(F).

We also show the characterization theorem of d-filters,
which says that for an ideal derivation d and a non-empty
subset S, the smallest d-filter containing S is identical with
the filter containing S U d(S), that is, [S)g = [S U d(S)).

2 Derivations of residuated lattices

We recall a definition of bounded integral commutative
residuated lattices (Galatos et al. 2007; Ward and Dilworth
1939). An algebraic structure (L, A, V, ©, —, 0, 1) is called
a bounded integral commutative residuated lattice (simply
called a residuated lattice) if

(1) (L, A,V,0,1)is abounded lattice;

2) (L, ®, 1) is a commutative monoid with unit ele-
ment 1;

(3) Forallx,y,z € L,x ®y < zifand only if x <
y — Z.

For all x € L, by x’, we mean x’ = x — 0, which is a
negation in a sense.

In what follows, let L = (L, A, V, ®, —, 0, 1) be aresid-
uated lattice. An element x € L is called complemented if
there exists an element y € L such that x Ay = 0 and
x vy =1.By B(L), we mean the set of all complemented
elements of L, i.e.,

B(Ly={xeL|3yeLst.xAny=0,xVvy=1}
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It is easy to show the following results, so we omit their
proofs.

Proposition 1 (Galatos et al. 2007) For a residuated lattice
L, we have

(1) x € B(L) ifand only if x v x' = 1;

(2) Ifx e B(L), thenx Ny =x QO Yyforally € L;

B)Ifx®y=xVyforally € L, thenx Vv x' = 1, where
x®y=@"0y);

(4) B(L) is a Boolean subalgebra of L.

We note thata ® (¢ — x) =a © x foralla € B(L) and
x € L, because, sincea € B(L)anda ® (a — x) < x, we
havea®(a — x) =a®a® (a - x) < a®x.Conversely,
it follows from x < a — xthata ®©x < a ® (a — x).
Therefore, we geta © (a — x) = a O x foralla € B(L)
and x € L.

We have the following basic properties of residuated lat-
tices (Galatos et al. 2007).

Proposition2 Forall x, v,z € L, we have

1 o=1,1=0;

2) xOx'=0;

B)x<y <= x—>y=1;

@) xOx—=>y <y

B)x<y = x0z<y0z,z—>x<z7—>y,y—
2<x >z

6) 1 > x=x;

(M xvy)Oz=x02)V(yO2);

®) (xvy) =x"Ay;

@ "oy =xoy) =@xoy"

We define derivations of residuated lattices according to
Heetal. (2016). Amapd : L — L is called a multiplicative
derivation (or simply derivation here) of L if it satisfies the
condition:

dxAy)=WdxOy)V(xOdy) (Vx,yelLlL).

We simply denote dx instead of d(x). A derivation d is
called monotone; if x < y, then dx < dy, thatis, d is order-
preserving. A derivation d is good when d1 € B(L). If a
derivation d is monotone and good, then it is said to be ideal.
We note that any multiplicative derivation d is contractive,
dx < x for all x € L, because we have dx = d(x A x) =
(dx ©®x) vV (x ©dx) = dx ® x < x. This result was not
referred in He et al. (2016).

Example Let X = {0, a, 1} with 0 < a < 1 be a residuated
lattice if we define x Ay = x © y = min{x, y},x Vy =
max{x, y} and
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1 (fx<y)
TTY= {y (otherwise)
A map d, defined by d,;(x) = x Aaforallx € Xisa
monotone derivation, but not good. As another example of
derivation, we have f : X — X defined by f1 = 0 =
f0, fa = a. It is easy to show that f is a good derivation,
but it is not monotone.

We have fundamental results about derivations of residu-
ated lattices.

Proposition 3 (He et al. 2016) Let d be a derivation of L.
Forallx,y € L,

(1) d0 =0;

(2) dx = x O dl;

(3) dx" =x""'Odx foralln > 1;

@) IfxOy=0thendx ©y=x0dy=dxOdy=0;
(5) d(x') < (dx)".

In He et al. (2016), the following characterization theorem
about an ideal derivation was proven.

Theorem 1 (He et al. 2016) Let d be a derivation of L and
dl € B(L). Then, the following are equivalent: forallx, y €
L,

(1) d is an ideal derivation;
2) dx <dl;
B)dx=x0dl =xndl;
@) d(x Ay) =dx Ndy;
®) d(xVvy) =dxVvdy;
(6) dix©y) =dx ©dy.

From the above, we see that dx = d(dx) for all x € L
for an ideal derivation d, that is, d = dz, because, since
d is the ideal derivation, we have dx = x A d1 and thus
d*x =d(dx) =d(x Adl) = (x Ad1)Ad]l = x Ad] = dx
for all x € L. This means that d2 = d.

For a derivation d of L, we denote by Fix, (L) the set of all
fixed elements of L for d, that is, Fix;(L) = {x € L |dx =
x}.

It is easy to show the next result; hence, we omit its proof.

Proposition 4 For an ideal derivation d of a residuated lat-
tice L, we have Fix;(L) = d(L).

Lemma 1 Let d be an ideal derivation. Then, we have
d(dx — dy) =d(x — y) forallx,y € L.

Proof Suppose that d is an ideal derivation. Since dz = z ©
dl =z Adl forall z € L, we have

d(dx — dy) = (dx — dy) ©d1

=@xAdl > yAdl)odl
={(xAdl > A XAl - d)}Od]
=xAdl - y)odl
=dlOodlOx —y)
=dlodl - (x - y))

=dl©(x —y) (dl e B(L))
=d(x — y).

m}

It follows from the characterization theorem about ideal
derivations and above that we define some operations in
Fixgs(L) = d(L) by

dxndy =dx AYy);
dxUdy =d(xVy);
dxHdy =d(x O y);

dx +— dy =d(dx — dy).

Then, we have

Theorem 2 Let L be a residuated lattice and d be an ideal
derivation of L. Then, Fixq(L) = (Fixgz(L), N, U, [, —, 0,
d1) is a residuated lattice. However, it is not a subalgebra of
L in general.

Proof We only show that dx ® dy < dz if and only if dx <
dy +— dzforalldx, dy,dz € d(L) = Fixg(L). Ifdx®dy <
dz, then we have dx < dy — dz and thus dx = d(dx) <
d(dy — dz) = dy — dz. Conversely, suppose that dx <
dy — dz = d(dy — dz). Since d is contractive, we have
d(dy — dz) < dy — dz and hence dx < dy — dz. This
yields dx © dy < dz. O

Remark 1 We note that the theorem above was already
proven as Theorem 3.15 in He et al. (2016), where the meet
operation M is defined by d(dx A dy).

We have proved above that Fix;(L) is a residuated lat-
tice for an ideal derivation d. Moreover, we see that any
ideal derivation d is a homomorphism from L to Fixy(L),
since d(x — y) = d(dx — dy) = dx — dy. The other
cases such as d(x A y) also can be proved easily. There-
fore, d is the homomorphism from L to Fix;(L). It follows
from the homomorphism theorem of residuated lattices that
L/ker(d) = Fix4(L), where ker(d) = {(x, y) |dx = dy}.

Theorem 3 For every ideal derivation d, it is a homomor-
phism from L to Fixy(L) and hence

L/ker(d) = Fixy(L).
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3 Galois connection of derivations

In this section, we consider Galois connections of derivations.
Let P, Q be partially ordered sets and f, g be maps, f :
P — Q,g: Q0 — P.Apair (f,g) of maps is called a
Galois connection if

fx)<py & x=<pg(y) Vvxe P,Vye Q).

A Galois connection (f, g) is simply denoted by f - g.

Let L be a residuated lattice and d be an ideal derivation
of L. By the characterization theorem of ideal derivations, d
has the form dx = x ® d1 = x A d1. In this case, we may
ask

“Is there a map g such thatd - g?”

We have an affirmative solution as follows.

Theorem 4 Letd be an ideal derivation. There exists an ideal
derivation g : L — L such that d 4 g. Moreover, g is
idempotent.

Proof We define gx = d1 — x for all x € L. It is obvious
thatdx = x ©dl < yifandonlyifx <dl — y = gy,
thatis,dx <y < x < gyforall x, y € L. Moreover, since
glgx) =dl - (dl - x)=dl ©dl - x=dl - x =
gx, g is idempotent. O

From the general theory of idempotent Galois connec-
tion, that is, f - g, f> = f and g> = g that two subsets
Fr={x e L|fx =x}and F; = {x € L|gx = x}
are isomorphic as partially ordered sets. Hence, we have the
following result.

Theorem 5 For an ideal derivation d, Fixy(L) = Fy(L) =
Fo(L) = Fixg(L) as partially ordered sets.

4 d-filter and its characterization

We define a filter of a residuated lattice which plays an impor-
tant role in this paper. Let F be a non-empty subset of L. We
call F afilter of L if it satisfies the following conditions: For
allx,y e L,

(F1) ifx,y e F,thenx ® y € F,
(F2) ifx e Fandx < y,theny € F.

Let d be an ideal derivation of L. A filter F' of L is called an
ideal derivation filter (simply d-filter here) if x € F implies
dx € F forall x € L. By F(L) (or F4(L)), we mean the set
of all filters (or d-filters) of L. By [S) (or [S),), we mean the
generated filter (or generated d-filter, respectively) by S. At
first, we provide a characterization theorem about d-filters.

@ Springer

Theorem 6 Let d be an ideal derivation of L. For a non-
empty subset S of L, we have [S)g = [SUd(S)).

Proof 1t is sufficient to show that [S U d(S)) is the least d-
filter including S. It is obvious S € [S U d(S)). We show
that [S U d(S)) is a d-filter, that is, if x € [S U d(S)), then
dx € [SUd(S)). Suppose that x € [S U d(S)). There exist
aj,bj € Ssuchthata; ©--- O a, ©dby ©---db, < x.
Since d is the ideal derivation, we have da; © - -- ® da;; ©
db1®---db, =da1 ©---Oda, ©d(db1) ©---d(db,) =
dlag © - Oay ©dby © ---db,) < dx. It follows from
da;,db; € d(S) C SUd(S) thatdx € [SUd(S)). Therefore,
[SUd(S)) is the d-filter. Lastly, for any d-filter F including
S, we have d(S) C d(F) C F and hence S U d(S) C F.
This implies [S U d(S)) € F. Therefore, [S U d(S)) is the
least d-filter containing S and thus [S)y = [SUd(S)). O

Corollary 1 (Theorem 3.19 He et al. 2016) The class F4(L)
of all d-filters forms a complete Heyting subalgebra of the
class F (L) of all filters of a residuated lattice L

Corollary 2 If F is a filter;, then [ F)y = [d(F)).

Corollary3 Forany F € F(L), F is a d-filter if and only if
F = [d(F)).

Proof 1t is easy to show that if F is a d-filter, then F =
[F)a = [d(F)). Conversely, suppose that x € F = [d(F)).
There exist a; € F such that da; © - ® da, < x. If we
takea = a1 ©---Oay, € F,thenda € d(F). Moreover, we
haveda =d(a; ®---®ay) =da; ©--- ®da, < x and
thusda = d(da) < dx.Thisimplies thatdx € [d(F)) = F,
namely F is the d-filter. O

Proposition5 Ler d be an ideal derivation of L. Then, we
have

(1) F e Fy(L) = d(F) € F(d(L));
2) G € FA(L)) = d~Y(G) € Fy(L), where d~1(G) =
{x € L|dx € G}.

Proof (1) If dx,dy € d(F), (x,y € F) then, sincex ® y €
F and d is the ideal derivation, we have dx © dy =
d(x ©y) € d(F). Moreover, if dx € d(F) forx € F
and dx < dy, then dx € F and thus dy € F. Then,
dy = d(dy) € d(F). Therefore, d(F) is a filter of d(L),
thatis, d(F) € F(d(L)).

(2) Let G be a filter of d(L). For all x, y € d~1(G), since
dx,dy € G,we getdx ©dy = d(x ®y) € G and
xQye€ d~1(G). Next, suppose that x € d~'(G) and
x < y.lItfollows fromdx € G anddy < dythatdy € G
and hence that y € d~1(G). Lastly, if x € d~'(G),
then dx € G and d(dx) = dx € G. This implies
dx € d~'(G). Therefore, d’](G) is the d-filter, that
is, d"1(G) € Fu(L). O
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For a filter F, we define a quotient structure L/ F, where
x/F = y/F isdefinedbyx — y,y —> x € Fforallx, y €
L. Since the set of all residuated lattices forms a variety, the
quotient algebra L/ F by a filter F is also a residuated lattice.

Proposition 6 Let d be an ideal derivation and F be a d-
filter of L. If we define a map d/F : L/F — L/F by
d/F)(x/F) = dx/F for all x/F € L/F, then d/F is
an ideal derivation of L] F.

Proof Atfirst, we show thatd/ F is well defined. Suppose that
x/F =y/F.Sincex — y,y - x € F(€ F4(L)), we have
d(x — y),d(y - x) € F. It follows from d(x — y) <
dx — dy,d(y — x) <dy — dx thatdx — dy,dy —
dx € F. This means that (d/F)(x/F) =dx/F =dy/F =
(d/F)(y/F) and hence that d/ F is well defined. It is easy to
show that d/F is a good derivation of the residuated lattice
L/F.1Itis sufficient to show that d/F is monotone. Suppose
thatx/F < y/F.Sincex — y € F and F is the d-filter, we
have d(x — y) € F and dx — dy € F because of d(x —
y) < dx — dy. This implies dx/F < dy/F and hence
(d/F)(x/F) = dx/F < dy/F = (d/F)(y/F), namely
d/F is monotone. O

We note that d1/F = 1/F, because, since F is the d-
filter, the fact 1 € F implies d1 € F, thatis, d1/F =
1/F. 1t follows from the above that the quotient structure
(d/F)(L/F) = Fixg/r(L/F) = (Fixg/r(L/F), A, V, O,
—,0/F, 1/F)isalsoaresiduated lattice for any ideal deriva-
tion d and d-filter F. Moreover, since F is the d-filter, d (F)
is the filter of d (L) and thus the quotient structure d (L) /d (F)
forms a residuated lattice. It is natural to ask what the relation
between two residuated lattices (d/ F)(L/F)andd(L)/d(F)
is. In order to answer the question, we need the following
result.

Lemma2 If F € F4(L), then we have F Nd(L) = d(F).

Proof For x € F Nd(L), since x € d(L) = Fixy(L), we
have x =dx € d(F) and F Nd(L) C d(F).

Conversely, suppose x € d(F). There exists y € F such
that x = dy. Since F is the d-filter, we get x = dy € F.
On the other hand, it follows from dx = d(dy) = dy = x
that x € Fixy(L) =d(L) and d(F) € FNd(L). Therefore,
FNd(L)=d(F). O

From the above, we have a following result which answers
the question.

Theorem 7 Let d be an ideal derivation and F be a d-filter
of L. Then, we have (d/F)(L/F) = Fixq;p(L/F) is iso-
morphic to d(L)/d(F), that is,

(d/F)(L/F) = Fixq/r(L/F) = d(L)/d(F).

Proof We define amap @ : (d/F)(L/F) — d(L)/d(F) by
O((d/F)(x/F)) =dx/d(F). We show that ® is an isomor-
phism. We only show that the map @ is well defined and
injective. At first, ® is well defined, because we have

(d/F)(x/F)=(d/F)(y/F)
= dx/F =dy/F
= dx > dy,dy > dx eF
= d(dx — dy),d(dy — dx) € d(F)
= dx — dy,dy — dx € d(F)
= dx/d(F) =dy/d(F).

Hence, @ is well defined.

Suppose ®((d/F)(x/F)) = ®(d/F)(y/F)). Since
dx/d(F) = dy/d(F), we have dx +— dy,dy — dx €
d(F) and thus d(dx — dy),d(dy — dx) € d(F) =
F Nd(L). This implies d(dx — dy),d(dy — dx) € F.
Since d is contractive, we also get d(dx — dy) < dx —
dy,d(dy — dx) <dy — dx anddx — dy,dy — dx €
F. Therefore, dx/F = dy/F and (d/F)(x/F) = dx/F =
dy/F = (d/F)(y/F), namely ® is injective. O
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