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Abstract
In this paper, we consider some properties of multiplicative derivations and d-filters of commutative residuated lattices
and show that, for an ideal derivation d of a residuated lattice L = (L,∧,∨,�,→, 0, 1), (1) the set Fixd(L) =
(Fixd(L),∧,∨,�, �→, 0, d1) of all fixed points of d forms a residuated lattice and d is a homomorphism from L to
Fixd(L), (2) for a d-filter F , a map d/F : L/F → L/F defined by (d/F)(x/F) = dx/F is also an ideal derivation
of L/F and (3) two quotient residuated lattices Fixd/F (L/F) and Fixd(L)/d(F) are isomorphic as residuated lattices, that
is, Fixd/F (L/F) ∼= Fixd(L)/d(F).
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1 Introduction

A notion of derivation whose origin is in analysis has been
applied to theory of algebras with two operations + and ·,
especially to the theory of rings (Posner 1957). For an algebra
A = (A,+, ·), a map f : A → A is called a derivation in
Posner (1957) if it satisfies the conditions: For all x, y ∈ A,

f (x + y) = f (x) + f (y)

f (x · y) = f (x) · y + x · f (y).

It was applied to the theory of lattices (Ferrari 2001; Szász
1975; Xin et al. 2008), where operations + and · were
interpreted as lattice operations ∨ and ∧, respectively. In
particular, it has been proven in Szász (1975) that if f is
a derivation of a bounded lattice L , that is, f satisfies two
conditions:

f (x ∨ y) = f (x) ∨ f (y)

f (x ∧ y) = ( f (x) ∧ y) ∨ (x ∧ f (y)),

Communicated by A. Di Nola.

B Michiro Kondo
mkondo@mail.dendai.ac.jp

1 Tokyo Denki University, Tokyo, Japan

then f just has a form f (x) = x ∧ f (1). Since then, every
type of derivations is defined as a map f : X → X satisfying
only a condition:

f (x · y) = f (x) · y + x · f (y),

where (X ,+, ·) is an algebra. Thus, in the case of lattices,
a derivation f of a lattice L is defined a map f : L → L
satisfying the condition:

f (x ∧ y) = ( f (x) ∧ y) ∨ (x ∧ f (y)).

By the use of derivations of lattices, characterization the-
orems of distributive lattices and of modular lattices were
proven in [6]:

Let L be a lattice and f a derivation.

(1) The condition that f is monotone ⇔ f ( f (x) ∨
y) = f (x) ∨ f (y) (∀x, y ∈ L) holds if and only if
L is a modular lattice.

(2) The condition that f is monotone ⇔ f (x ∨ y) =
f (x) ∨ f (y) (∀x, y ∈ L) holds if and only if L is
a distributive lattice.

Further, it is also applied to other algebras, such as MV
algebras (Alshehri 2010; Ghorbani et al. 2013; Yazarli 2013),
where operations + and · were interpreted as ⊕ and �,
respectively. In He et al. (2016), another type of deriva-
tions, multiplicative derivations, are defined on residuated
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lattices, where operations+ and · are interpreted as∨ and�,
respectively.By this definition of derivations,we have several
interesting properties about residuated lattices. For example,
in He et al. (2016), it is shown that if d is an ideal derivation
of a residuated lattice L , then the set Fixd(L) of all fixed
elements formed a residuated lattice. Thus, it is expectable
for residuated lattices with multiplicative derivations to have
other deeper properties. Indeed, we show some interesting
properties here, for example, for every residuated lattice L
with an ideal multiplicative derivation d, the set Fixd(L) is
isomorphic to L/ ker(d) and hence Fixd(L) is a residuated
lattice.

In this paper, we show the following results. Let L be a
commutative residuated lattice and d be an ideal derivation
of it. Then, we have

(1) The set Fixd(L) of all fixed points of d forms a residuated
lattice and L/ker(d) ∼= Fixd(L);

(2) A map d/F : L/F → L/F defined by (d/F)(x/F) =
dx/F is also an ideal derivation of L/F ;

(3) The quotient residuated lattices Fixd/F (L/F) and
Fixd(L)/d(F) are isomorphic, namely Fixd/F (L/F) ∼=
Fixd(L)/d(F).

We also show the characterization theorem of d-filters,
which says that for an ideal derivation d and a non-empty
subset S, the smallest d-filter containing S is identical with
the filter containing S ∪ d(S), that is, [S)d = [S ∪ d(S)).

2 Derivations of residuated lattices

We recall a definition of bounded integral commutative
residuated lattices (Galatos et al. 2007; Ward and Dilworth
1939). An algebraic structure (L,∧,∨,�,→, 0, 1) is called
a bounded integral commutative residuated lattice (simply
called a residuated lattice) if

(1) (L,∧,∨, 0, 1) is a bounded lattice;
(2) (L,�, 1) is a commutative monoid with unit ele-

ment 1;
(3) For all x, y, z ∈ L , x � y ≤ z if and only if x ≤

y → z.

For all x ∈ L , by x ′, we mean x ′ = x → 0, which is a
negation in a sense.

In what follows, let L = (L,∧,∨,�,→, 0, 1) be a resid-
uated lattice. An element x ∈ L is called complemented if
there exists an element y ∈ L such that x ∧ y = 0 and
x ∨ y = 1. By B(L), we mean the set of all complemented
elements of L , i.e.,

B(L) = {x ∈ L | ∃y ∈ L s.t. x ∧ y = 0, x ∨ y = 1}.

It is easy to show the following results, so we omit their
proofs.

Proposition 1 (Galatos et al. 2007) For a residuated lattice
L, we have

(1) x ∈ B(L) if and only if x ∨ x ′ = 1;
(2) If x ∈ B(L), then x ∧ y = x � y for all y ∈ L;
(3) If x ⊕ y = x ∨ y for all y ∈ L, then x ∨ x ′ = 1, where

x ⊕ y = (x ′ � y′)′;
(4) B(L) is a Boolean subalgebra of L.

We note that a � (a → x) = a � x for all a ∈ B(L) and
x ∈ L , because, since a ∈ B(L) and a � (a → x) ≤ x , we
have a� (a → x) = a�a� (a → x) ≤ a� x . Conversely,
it follows from x ≤ a → x that a � x ≤ a � (a → x).
Therefore, we get a � (a → x) = a � x for all a ∈ B(L)

and x ∈ L .
We have the following basic properties of residuated lat-

tices (Galatos et al. 2007).

Proposition 2 For all x, y, z ∈ L, we have

(1) 0′ = 1, 1′ = 0;
(2) x � x ′ = 0;
(3) x ≤ y ⇐⇒ x → y = 1;
(4) x � (x → y) ≤ y;
(5) x ≤ y �⇒ x � z ≤ y � z, z → x ≤ z → y, y →

z ≤ x → z;
(6) 1 → x = x;
(7) (x ∨ y) � z = (x � z) ∨ (y � z);
(8) (x ∨ y)′ = x ′ ∧ y′;
(9) (x ′′ � y′′)′′ = (x � y′′)′′ = (x � y)

′′
.

We define derivations of residuated lattices according to
He et al. (2016). A map d : L → L is called a multiplicative
derivation (or simply derivation here) of L if it satisfies the
condition:

d(x ∧ y) = (dx � y) ∨ (x � dy) (∀x, y ∈ L).

We simply denote dx instead of d(x). A derivation d is
called monotone; if x ≤ y, then dx ≤ dy, that is, d is order-
preserving. A derivation d is good when d1 ∈ B(L). If a
derivation d is monotone and good, then it is said to be ideal.
We note that any multiplicative derivation d is contractive,
dx ≤ x for all x ∈ L , because we have dx = d(x ∧ x) =
(dx � x) ∨ (x � dx) = dx � x ≤ x . This result was not
referred in He et al. (2016).

Example Let X = {0, a, 1} with 0 < a < 1 be a residuated
lattice if we define x ∧ y = x � y = min{x, y}, x ∨ y =
max{x, y} and
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x → y =
{
1 (if x ≤ y)
y (otherwise)

.

A map da defined by da(x) = x ∧ a for all x ∈ X is a
monotone derivation, but not good. As another example of
derivation, we have f : X → X defined by f 1 = 0 =
f 0, f a = a. It is easy to show that f is a good derivation,
but it is not monotone.

We have fundamental results about derivations of residu-
ated lattices.

Proposition 3 (He et al. 2016) Let d be a derivation of L.
For all x, y ∈ L,

(1) d0 = 0;
(2) dx ≥ x � d1;
(3) dxn = xn−1 � dx for all n ≥ 1;
(4) If x � y = 0 then dx � y = x � dy = dx � dy = 0;
(5) d(x ′) ≤ (dx)′.

In He et al. (2016), the following characterization theorem
about an ideal derivation was proven.

Theorem 1 (He et al. 2016) Let d be a derivation of L and
d1 ∈ B(L). Then, the following are equivalent: for all x, y ∈
L,

(1) d is an ideal derivation;
(2) dx ≤ d1;
(3) dx = x � d1 = x ∧ d1;
(4) d(x ∧ y) = dx ∧ dy;
(5) d(x ∨ y) = dx ∨ dy;
(6) d(x � y) = dx � dy.

From the above, we see that dx = d(dx) for all x ∈ L
for an ideal derivation d, that is, d = d2, because, since
d is the ideal derivation, we have dx = x ∧ d1 and thus
d2x = d(dx) = d(x ∧ d1) = (x ∧ d1)∧ d1 = x ∧ d1 = dx
for all x ∈ L . This means that d2 = d.

For a derivation d of L , we denote by Fixd(L) the set of all
fixed elements of L for d, that is, Fixd(L) = {x ∈ L | dx =
x}.

It is easy to show the next result; hence, we omit its proof.

Proposition 4 For an ideal derivation d of a residuated lat-
tice L, we have Fixd(L) = d(L).

Lemma 1 Let d be an ideal derivation. Then, we have
d(dx → dy) = d(x → y) for all x, y ∈ L.

Proof Suppose that d is an ideal derivation. Since dz = z �
d1 = z ∧ d1 for all z ∈ L , we have

d(dx → dy) = (dx → dy) � d1

= (x ∧ d1 → y ∧ d1) � d1

= {(x ∧ d1 → y) ∧ (x ∧ d1 → d1)} � d1

= (x ∧ d1 → y) � d1

= d1 � (d1 � x → y)

= d1 � (d1 → (x → y))

= d1 � (x → y) (d1 ∈ B(L))

= d(x → y).

��

It follows from the characterization theorem about ideal
derivations and above that we define some operations in
Fixd(L) = d(L) by

dx � dy = d(x ∧ y);
dx � dy = d(x ∨ y);
dx � dy = d(x � y);
dx �→ dy = d(dx → dy).

Then, we have

Theorem 2 Let L be a residuated lattice and d be an ideal
derivation of L. Then, Fixd(L) = (Fixd(L),�,�,�, �→, 0,
d1) is a residuated lattice. However, it is not a subalgebra of
L in general.

Proof We only show that dx � dy ≤ dz if and only if dx ≤
dy �→ dz for all dx, dy, dz ∈ d(L) = Fixd(L). If dx�dy ≤
dz, then we have dx ≤ dy → dz and thus dx = d(dx) ≤
d(dy → dz) = dy �→ dz. Conversely, suppose that dx ≤
dy �→ dz = d(dy → dz). Since d is contractive, we have
d(dy → dz) ≤ dy → dz and hence dx ≤ dy → dz. This
yields dx � dy ≤ dz. ��

Remark 1 We note that the theorem above was already
proven as Theorem 3.15 in He et al. (2016), where the meet
operation � is defined by d(dx ∧ dy).

We have proved above that Fixd(L) is a residuated lat-
tice for an ideal derivation d. Moreover, we see that any
ideal derivation d is a homomorphism from L to Fixd(L),
since d(x → y) = d(dx → dy) = dx �→ dy. The other
cases such as d(x ∧ y) also can be proved easily. There-
fore, d is the homomorphism from L to Fixd(L). It follows
from the homomorphism theorem of residuated lattices that
L/ ker(d) ∼= Fixd(L), where ker(d) = {(x, y) | dx = dy}.
Theorem 3 For every ideal derivation d, it is a homomor-
phism from L to Fixd(L) and hence

L/ ker(d) ∼= Fixd(L).
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3 Galois connection of derivations

In this section,weconsiderGalois connections of derivations.
Let P, Q be partially ordered sets and f , g be maps, f :
P → Q, g : Q → P . A pair ( f , g) of maps is called a
Galois connection if

f (x) ≤Q y ⇔ x ≤P g(y) (∀x ∈ P,∀y ∈ Q).

A Galois connection ( f , g) is simply denoted by f � g.
Let L be a residuated lattice and d be an ideal derivation

of L . By the characterization theorem of ideal derivations, d
has the form dx = x � d1 = x ∧ d1. In this case, we may
ask

“Is there a map g such that d � g?”

We have an affirmative solution as follows.

Theorem 4 Let d be an ideal derivation. There exists an ideal
derivation g : L → L such that d � g. Moreover, g is
idempotent.

Proof We define gx = d1 → x for all x ∈ L . It is obvious
that dx = x � d1 ≤ y if and only if x ≤ d1 → y = gy,
that is, dx ≤ y ⇔ x ≤ gy for all x, y ∈ L . Moreover, since
g(gx) = d1 → (d1 → x) = d1 � d1 → x = d1 → x =
gx , g is idempotent. ��

From the general theory of idempotent Galois connec-
tion, that is, f � g, f 2 = f and g2 = g that two subsets
Ff = {x ∈ L | f x = x} and Fg = {x ∈ L | gx = x}
are isomorphic as partially ordered sets. Hence, we have the
following result.

Theorem 5 For an ideal derivation d, Fixd(L) = Fd(L) ∼=
Fg(L) = Fixg(L) as partially ordered sets.

4 d-filter and its characterization

Wedefine a filter of a residuated latticewhich plays an impor-
tant role in this paper. Let F be a non-empty subset of L . We
call F a filter of L if it satisfies the following conditions: For
all x, y ∈ L ,

(F1) if x, y ∈ F , then x � y ∈ F ;
(F2) if x ∈ F and x ≤ y, then y ∈ F .

Let d be an ideal derivation of L . A filter F of L is called an
ideal derivation filter (simply d-filter here) if x ∈ F implies
dx ∈ F for all x ∈ L . By F(L) (or Fd(L)), we mean the set
of all filters (or d-filters) of L . By [S) (or [S)d ), we mean the
generated filter (or generated d-filter, respectively) by S. At
first, we provide a characterization theorem about d-filters.

Theorem 6 Let d be an ideal derivation of L. For a non-
empty subset S of L, we have [S)d = [S ∪ d(S)).

Proof It is sufficient to show that [S ∪ d(S)) is the least d-
filter including S. It is obvious S ⊆ [S ∪ d(S)). We show
that [S ∪ d(S)) is a d-filter, that is, if x ∈ [S ∪ d(S)), then
dx ∈ [S ∪ d(S)). Suppose that x ∈ [S ∪ d(S)). There exist
ai , b j ∈ S such that a1 � · · · � am � db1 � · · · dbn ≤ x .
Since d is the ideal derivation, we have da1 � · · · � dam �
db1 � · · · dbn = da1 � · · · � dam � d(db1) � · · · d(dbn) =
d(a1 � · · · � am � db1 � · · · dbn) ≤ dx . It follows from
dai , db j ∈ d(S) ⊆ S∪d(S) that dx ∈ [S∪d(S)). Therefore,
[S ∪ d(S)) is the d-filter. Lastly, for any d-filter F including
S, we have d(S) ⊆ d(F) ⊆ F and hence S ∪ d(S) ⊆ F .
This implies [S ∪ d(S)) ⊆ F . Therefore, [S ∪ d(S)) is the
least d-filter containing S and thus [S)d = [S ∪ d(S)). ��
Corollary 1 (Theorem 3.19 He et al. 2016) The class Fd(L)

of all d-filters forms a complete Heyting subalgebra of the
class F(L) of all filters of a residuated lattice L

Corollary 2 If F is a filter, then [F)d = [d(F)).

Corollary 3 For any F ∈ F(L), F is a d-filter if and only if
F = [d(F)).

Proof It is easy to show that if F is a d-filter, then F =
[F)d = [d(F)). Conversely, suppose that x ∈ F = [d(F)).
There exist ai ∈ F such that da1 � · · · � dan ≤ x . If we
take a = a1 � · · · � an ∈ F , then da ∈ d(F). Moreover, we
have da = d(a1 � · · · � an) = da1 � · · · � dan ≤ x and
thus da = d(da) ≤ dx . This implies that dx ∈ [d(F)) = F ,
namely F is the d-filter. ��
Proposition 5 Let d be an ideal derivation of L. Then, we
have

(1) F ∈ Fd(L) ⇒ d(F) ∈ F(d(L));
(2) G ∈ F(d(L)) ⇒ d−1(G) ∈ Fd(L), where d−1(G) =

{x ∈ L | dx ∈ G}.

Proof (1) If dx, dy ∈ d(F), (x, y ∈ F) then, since x � y ∈
F and d is the ideal derivation, we have dx � dy =
d(x � y) ∈ d(F). Moreover, if dx ∈ d(F) for x ∈ F
and dx ≤ dy, then dx ∈ F and thus dy ∈ F . Then,
dy = d(dy) ∈ d(F). Therefore, d(F) is a filter of d(L),
that is, d(F) ∈ F(d(L)).

(2) Let G be a filter of d(L). For all x, y ∈ d−1(G), since
dx, dy ∈ G, we get dx � dy = d(x � y) ∈ G and
x � y ∈ d−1(G). Next, suppose that x ∈ d−1(G) and
x ≤ y. It follows from dx ∈ G and dy ≤ dy that dy ∈ G
and hence that y ∈ d−1(G). Lastly, if x ∈ d−1(G),
then dx ∈ G and d(dx) = dx ∈ G. This implies
dx ∈ d−1(G). Therefore, d−1(G) is the d-filter, that
is, d−1(G) ∈ Fd(L). ��
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For a filter F , we define a quotient structure L/F , where
x/F = y/F is defined by x → y, y → x ∈ F for all x, y ∈
L . Since the set of all residuated lattices forms a variety, the
quotient algebra L/F by a filter F is also a residuated lattice.

Proposition 6 Let d be an ideal derivation and F be a d-
filter of L. If we define a map d/F : L/F → L/F by
(d/F)(x/F) = dx/F for all x/F ∈ L/F, then d/F is
an ideal derivation of L/F.

Proof Atfirst,we show thatd/F iswell defined. Suppose that
x/F = y/F . Since x → y, y → x ∈ F(∈ Fd(L)), we have
d(x → y), d(y → x) ∈ F . It follows from d(x → y) ≤
dx → dy, d(y → x) ≤ dy → dx that dx → dy, dy →
dx ∈ F . This means that (d/F)(x/F) = dx/F = dy/F =
(d/F)(y/F) and hence that d/F is well defined. It is easy to
show that d/F is a good derivation of the residuated lattice
L/F . It is sufficient to show that d/F is monotone. Suppose
that x/F ≤ y/F . Since x → y ∈ F and F is the d-filter, we
have d(x → y) ∈ F and dx → dy ∈ F because of d(x →
y) ≤ dx → dy. This implies dx/F ≤ dy/F and hence
(d/F)(x/F) = dx/F ≤ dy/F = (d/F)(y/F), namely
d/F is monotone. ��

We note that d1/F = 1/F , because, since F is the d-
filter, the fact 1 ∈ F implies d1 ∈ F , that is, d1/F =
1/F . It follows from the above that the quotient structure
(d/F)(L/F) = Fixd/F (L/F) = (Fixd/F (L/F),∧,∨,�,

�→, 0/F, 1/F) is also a residuated lattice for any ideal deriva-
tion d and d-filter F . Moreover, since F is the d-filter, d(F)

is the filter of d(L) and thus the quotient structure d(L)/d(F)

forms a residuated lattice. It is natural to askwhat the relation
between two residuated lattices (d/F)(L/F) andd(L)/d(F)

is. In order to answer the question, we need the following
result.

Lemma 2 If F ∈ Fd(L), then we have F ∩ d(L) = d(F).

Proof For x ∈ F ∩ d(L), since x ∈ d(L) = Fixd(L), we
have x = dx ∈ d(F) and F ∩ d(L) ⊆ d(F).

Conversely, suppose x ∈ d(F). There exists y ∈ F such
that x = dy. Since F is the d-filter, we get x = dy ∈ F .
On the other hand, it follows from dx = d(dy) = dy = x
that x ∈ Fixd(L) = d(L) and d(F) ⊆ F ∩ d(L). Therefore,
F ∩ d(L) = d(F). ��

From the above, we have a following result which answers
the question.

Theorem 7 Let d be an ideal derivation and F be a d-filter
of L. Then, we have (d/F)(L/F) = Fixd/F (L/F) is iso-
morphic to d(L)/d(F), that is,

(d/F)(L/F) = Fixd/F (L/F) ∼= d(L)/d(F).

Proof We define a map � : (d/F)(L/F) → d(L)/d(F) by
�((d/F)(x/F)) = dx/d(F). We show that � is an isomor-
phism. We only show that the map � is well defined and
injective. At first, � is well defined, because we have

(d/F)(x/F) = (d/F)(y/F)

⇒ dx/F = dy/F

⇒ dx → dy, dy → dx ∈ F

⇒ d(dx → dy), d(dy → dx) ∈ d(F)

⇒ dx �→ dy, dy �→ dx ∈ d(F)

⇒ dx/d(F) = dy/d(F).

Hence, � is well defined.
Suppose �((d/F)(x/F)) = �((d/F)(y/F)). Since

dx/d(F) = dy/d(F), we have dx �→ dy, dy �→ dx ∈
d(F) and thus d(dx → dy), d(dy → dx) ∈ d(F) =
F ∩ d(L). This implies d(dx → dy), d(dy → dx) ∈ F .
Since d is contractive, we also get d(dx → dy) ≤ dx →
dy, d(dy → dx) ≤ dy → dx and dx → dy, dy → dx ∈
F . Therefore, dx/F = dy/F and (d/F)(x/F) = dx/F =
dy/F = (d/F)(y/F), namely � is injective. ��
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