FOUNDATIONS

Multiplicative derivations and *d*-filters of commutative residuated lattices

Michiro Kondo¹

Published online: 9 March 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

In this paper, we consider some properties of multiplicative derivations and *d*-filters of commutative residuated lattices and show that, for an ideal derivation *d* of a residuated lattice $L = (L, \land, \lor, \odot, \rightarrow, 0, 1)$, (1) the set $\operatorname{Fix}_d(L) = (\operatorname{Fix}_d(L), \land, \lor, \odot, \mapsto, 0, d1)$ of all fixed points of *d* forms a residuated lattice and *d* is a homomorphism from *L* to $\operatorname{Fix}_d(L), (2)$ for a *d*-filter *F*, a map $d/F : L/F \rightarrow L/F$ defined by (d/F)(x/F) = dx/F is also an ideal derivation of L/F and (3) two quotient residuated lattices $\operatorname{Fix}_{d/F}(L/F)$ and $\operatorname{Fix}_d(L)/d(F)$ are isomorphic as residuated lattices, that is, $\operatorname{Fix}_{d/F}(L/F) \cong \operatorname{Fix}_d(L)/d(F)$.

Keywords (Multiplicative) derivations · Ideal derivations · Monotone · Residuated lattices

1 Introduction

A notion of derivation whose origin is in analysis has been applied to theory of algebras with two operations + and \cdot , especially to the theory of rings (Posner 1957). For an algebra $A = (A, +, \cdot)$, a map $f : A \rightarrow A$ is called a derivation in Posner (1957) if it satisfies the conditions: For all $x, y \in A$,

$$f(x + y) = f(x) + f(y)$$

$$f(x \cdot y) = f(x) \cdot y + x \cdot f(y).$$

It was applied to the theory of lattices (Ferrari 2001; Szász 1975; Xin et al. 2008), where operations + and \cdot were interpreted as lattice operations \vee and \wedge , respectively. In particular, it has been proven in Szász (1975) that if f is a derivation of a bounded lattice L, that is, f satisfies two conditions:

$$f(x \lor y) = f(x) \lor f(y)$$

$$f(x \land y) = (f(x) \land y) \lor (x \land f(y)),$$

Communicated by A. Di Nola.

Michiro Kondo mkondo@mail.dendai.ac.jp

¹ Tokyo Denki University, Tokyo, Japan

then f just has a form $f(x) = x \wedge f(1)$. Since then, every type of derivations is defined as a map $f : X \to X$ satisfying only a condition:

$$f(x \cdot y) = f(x) \cdot y + x \cdot f(y),$$

where $(X, +, \cdot)$ is an algebra. Thus, in the case of lattices, a derivation f of a lattice L is defined a map $f : L \to L$ satisfying the condition:

$$f(x \land y) = (f(x) \land y) \lor (x \land f(y)).$$

By the use of derivations of lattices, characterization theorems of distributive lattices and of modular lattices were proven in [6]:

Let L be a lattice and f a derivation.

- (1) The condition that f is monotone ⇔ f(f(x) ∨
 y) = f(x) ∨ f(y) (∀x, y ∈ L) holds if and only if L is a modular lattice.
- (2) The condition that f is monotone ⇔ f(x ∨ y) = f(x) ∨ f(y) (∀x, y ∈ L) holds if and only if L is a distributive lattice.

Further, it is also applied to other algebras, such as MV algebras (Alshehri 2010; Ghorbani et al. 2013; Yazarli 2013), where operations + and \cdot were interpreted as \oplus and \odot , respectively. In He et al. (2016), another type of derivations, multiplicative derivations, are defined on residuated

lattices, where operations + and \cdot are interpreted as \vee and \odot , respectively. By this definition of derivations, we have several interesting properties about residuated lattices. For example, in He et al. (2016), it is shown that if *d* is an ideal derivation of a residuated lattice *L*, then the set $\operatorname{Fix}_d(L)$ of all fixed elements formed a residuated lattice. Thus, it is expectable for residuated lattices with multiplicative derivations to have other deeper properties. Indeed, we show some interesting properties here, for example, for every residuated lattice *L* with an ideal multiplicative derivation *d*, the set $\operatorname{Fix}_d(L)$ is isomorphic to $L/\ker(d)$ and hence $\operatorname{Fix}_d(L)$ is a residuated lattice.

In this paper, we show the following results. Let L be a commutative residuated lattice and d be an ideal derivation of it. Then, we have

- (1) The set $\operatorname{Fix}_d(L)$ of all fixed points of *d* forms a residuated lattice and $L/\ker(d) \cong \operatorname{Fix}_d(L)$;
- (2) A map $d/F : L/F \to L/F$ defined by (d/F)(x/F) = dx/F is also an ideal derivation of L/F;
- (3) The quotient residuated lattices $\operatorname{Fix}_{d/F}(L/F)$ and $\operatorname{Fix}_d(L)/d(F)$ are isomorphic, namely $\operatorname{Fix}_{d/F}(L/F) \cong \operatorname{Fix}_d(L)/d(F)$.

We also show the characterization theorem of *d*-filters, which says that for an ideal derivation *d* and a non-empty subset *S*, the smallest *d*-filter containing *S* is identical with the filter containing $S \cup d(S)$, that is, $[S]_d = [S \cup d(S))$.

2 Derivations of residuated lattices

We recall a definition of bounded integral commutative residuated lattices (Galatos et al. 2007; Ward and Dilworth 1939). An algebraic structure $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a bounded integral commutative residuated lattice (simply called a *residuated lattice*) if

- (1) $(L, \wedge, \vee, 0, 1)$ is a bounded lattice;
- (2) $(L, \odot, 1)$ is a commutative monoid with unit element 1;
- (3) For all $x, y, z \in L, x \odot y \le z$ if and only if $x \le y \to z$.

For all $x \in L$, by x', we mean $x' = x \rightarrow 0$, which is a negation in a sense.

In what follows, let $L = (L, \land, \lor, \odot, \rightarrow, 0, 1)$ be a residuated lattice. An element $x \in L$ is called *complemented* if there exists an element $y \in L$ such that $x \land y = 0$ and $x \lor y = 1$. By B(L), we mean the set of all complemented elements of L, i.e.,

$$B(L) = \{ x \in L \mid \exists y \in L \text{ s.t. } x \land y = 0, x \lor y = 1 \}.$$

It is easy to show the following results, so we omit their proofs.

Proposition 1 (Galatos et al. 2007) *For a residuated lattice L*, *we have*

- (1) $x \in B(L)$ if and only if $x \lor x' = 1$;
- (2) If $x \in B(L)$, then $x \wedge y = x \odot y$ for all $y \in L$;
- (3) If $x \oplus y = x \lor y$ for all $y \in L$, then $x \lor x' = 1$, where $x \oplus y = (x' \odot y')'$;
- (4) B(L) is a Boolean subalgebra of L.

We note that $a \odot (a \to x) = a \odot x$ for all $a \in B(L)$ and $x \in L$, because, since $a \in B(L)$ and $a \odot (a \to x) \le x$, we have $a \odot (a \to x) = a \odot a \odot (a \to x) \le a \odot x$. Conversely, it follows from $x \le a \to x$ that $a \odot x \le a \odot (a \to x)$. Therefore, we get $a \odot (a \to x) = a \odot x$ for all $a \in B(L)$ and $x \in L$.

We have the following basic properties of residuated lattices (Galatos et al. 2007).

Proposition 2 For all $x, y, z \in L$, we have

(1)
$$0' = 1, 1' = 0;$$

(2) $x \odot x' = 0;$
(3) $x \le y \iff x \to y = 1;$
(4) $x \odot (x \to y) \le y;$
(5) $x \le y \implies x \odot z \le y \odot z, z \to x \le z \to y, y \to z \le x \to z;$
(6) $1 \to x = x;$
(7) $(x \lor y) \odot z = (x \odot z) \lor (y \odot z);$
(8) $(x \lor y)' = x' \land y';$
(9) $(x'' \odot y'')'' = (x \odot y'')'' = (x \odot y)''.$

We define derivations of residuated lattices according to He et al. (2016). A map $d : L \rightarrow L$ is called a *multiplicative derivation* (or simply *derivation* here) of L if it satisfies the condition:

 $d(x \wedge y) = (dx \odot y) \lor (x \odot dy) \quad (\forall x, y \in L).$

We simply denote dx instead of d(x). A derivation d is called *monotone*; if $x \le y$, then $dx \le dy$, that is, d is orderpreserving. A derivation d is good when $d1 \in B(L)$. If a derivation d is monotone and good, then it is said to be *ideal*. We note that any multiplicative derivation d is *contractive*, $dx \le x$ for all $x \in L$, because we have $dx = d(x \land x) = (dx \odot x) \lor (x \odot dx) = dx \odot x \le x$. This result was not referred in He et al. (2016).

Example Let $X = \{0, a, 1\}$ with 0 < a < 1 be a residuated lattice if we define $x \land y = x \odot y = \min\{x, y\}, x \lor y = \max\{x, y\}$ and

A map d_a defined by $d_a(x) = x \wedge a$ for all $x \in X$ is a monotone derivation, but not good. As another example of derivation, we have $f : X \to X$ defined by f1 = 0 = f0, fa = a. It is easy to show that f is a good derivation, but it is not monotone.

We have fundamental results about derivations of residuated lattices.

Proposition 3 (He et al. 2016) Let d be a derivation of L. For all $x, y \in L$,

(1) d0 = 0;(2) $dx \ge x \odot d1;$ (3) $dx^n = x^{n-1} \odot dx$ for all $n \ge 1;$ (4) If $x \odot y = 0$ then $dx \odot y = x \odot dy = dx \odot dy = 0;$ (5) $d(x') \le (dx)'.$

In He et al. (2016), the following characterization theorem about an ideal derivation was proven.

Theorem 1 (He et al. 2016) *Let d be a derivation of L and* $d1 \in B(L)$. *Then, the following are equivalent: for all x*, $y \in L$,

- (1) *d* is an ideal derivation;
- (2) $dx \le d1;$
- (3) $dx = x \odot d1 = x \land d1;$
- (4) $d(x \wedge y) = dx \wedge dy;$
- (5) $d(x \lor y) = dx \lor dy;$
- (6) $d(x \odot y) = dx \odot dy$.

From the above, we see that dx = d(dx) for all $x \in L$ for an ideal derivation d, that is, $d = d^2$, because, since d is the ideal derivation, we have $dx = x \wedge d1$ and thus $d^2x = d(dx) = d(x \wedge d1) = (x \wedge d1) \wedge d1 = x \wedge d1 = dx$ for all $x \in L$. This means that $d^2 = d$.

For a derivation *d* of *L*, we denote by $\operatorname{Fix}_d(L)$ the set of all fixed elements of *L* for *d*, that is, $\operatorname{Fix}_d(L) = \{x \in L \mid dx = x\}$.

It is easy to show the next result; hence, we omit its proof.

Proposition 4 For an ideal derivation d of a residuated lattice L, we have $Fix_d(L) = d(L)$.

Lemma 1 Let d be an ideal derivation. Then, we have $d(dx \rightarrow dy) = d(x \rightarrow y)$ for all $x, y \in L$.

Proof Suppose that *d* is an ideal derivation. Since $dz = z \odot$ $d1 = z \land d1$ for all $z \in L$, we have

$$d(dx \to dy) = (dx \to dy) \odot d1$$

$$= (x \land d1 \to y \land d1) \odot d1$$

= {(x \land d1 \to y) \land (x \land d1 \to d1)} \odot d1
= (x \land d1 \to y) \odot d1
= d1 \odot (d1 \odot x \to y)
= d1 \odot (d1 \to (x \to y))
= d1 \odot (x \to y) (d1 \in B(L))
= d(x \to y).

It follows from the characterization theorem about ideal derivations and above that we define some operations in $Fix_d(L) = d(L)$ by

$$dx \sqcap dy = d(x \land y);$$

$$dx \sqcup dy = d(x \lor y);$$

$$dx \boxdot dy = d(x \odot y);$$

$$dx \mapsto dy = d(dx \to dy).$$

Then, we have

Theorem 2 Let *L* be a residuated lattice and *d* be an ideal derivation of *L*. Then, $Fix_d(L) = (Fix_d(L), \sqcap, \sqcup, \boxdot, \mapsto, 0, d1)$ is a residuated lattice. However, it is not a subalgebra of *L* in general.

Proof We only show that $dx \odot dy \le dz$ if and only if $dx \le dy \mapsto dz$ for all dx, dy, $dz \in d(L) = \operatorname{Fix}_d(L)$. If $dx \odot dy \le dz$, then we have $dx \le dy \to dz$ and thus $dx = d(dx) \le d(dy \to dz) = dy \mapsto dz$. Conversely, suppose that $dx \le dy \mapsto dz = d(dy \to dz)$. Since *d* is contractive, we have $d(dy \to dz) \le dy \to dz$ and hence $dx \le dy \to dz$. This yields $dx \odot dy \le dz$.

Remark 1 We note that the theorem above was already proven as Theorem 3.15 in He et al. (2016), where the meet operation \sqcap is defined by $d(dx \land dy)$.

We have proved above that $\operatorname{Fix}_d(L)$ is a residuated lattice for an ideal derivation *d*. Moreover, we see that any ideal derivation *d* is a homomorphism from *L* to $\operatorname{Fix}_d(L)$, since $d(x \to y) = d(dx \to dy) = dx \mapsto dy$. The other cases such as $d(x \land y)$ also can be proved easily. Therefore, *d* is the homomorphism from *L* to $\operatorname{Fix}_d(L)$. It follows from the homomorphism theorem of residuated lattices that $L/\ker(d) \cong \operatorname{Fix}_d(L)$, where $\ker(d) = \{(x, y) | dx = dy\}$.

Theorem 3 For every ideal derivation d, it is a homomorphism from L to $Fix_d(L)$ and hence

$$L/\ker(d) \cong Fix_d(L).$$

3 Galois connection of derivations

In this section, we consider Galois connections of derivations. Let P, Q be partially ordered sets and f, g be maps, $f : P \rightarrow Q, g : Q \rightarrow P$. A pair (f, g) of maps is called a *Galois connection* if

$$f(x) \leq_Q y \Leftrightarrow x \leq_P g(y) \ (\forall x \in P, \forall y \in Q).$$

A Galois connection (f, g) is simply denoted by $f \dashv g$.

Let *L* be a residuated lattice and *d* be an ideal derivation of *L*. By the characterization theorem of ideal derivations, *d* has the form $dx = x \odot d1 = x \land d1$. In this case, we may ask

"Is there a map g such that $d \dashv g$?"

We have an affirmative solution as follows.

Theorem 4 Let d be an ideal derivation. There exists an ideal derivation $g : L \rightarrow L$ such that $d \dashv g$. Moreover, g is idempotent.

Proof We define $gx = d1 \rightarrow x$ for all $x \in L$. It is obvious that $dx = x \odot d1 \le y$ if and only if $x \le d1 \rightarrow y = gy$, that is, $dx \le y \Leftrightarrow x \le gy$ for all $x, y \in L$. Moreover, since $g(gx) = d1 \rightarrow (d1 \rightarrow x) = d1 \odot d1 \rightarrow x = d1 \rightarrow x = gx$, g is idempotent.

From the general theory of idempotent Galois connection, that is, $f \dashv g$, $f^2 = f$ and $g^2 = g$ that two subsets $F_f = \{x \in L \mid fx = x\}$ and $F_g = \{x \in L \mid gx = x\}$ are isomorphic as partially ordered sets. Hence, we have the following result.

Theorem 5 For an ideal derivation d, $Fix_d(L) = F_d(L) \cong F_g(L) = Fix_g(L)$ as partially ordered sets.

4 d-filter and its characterization

We define a filter of a residuated lattice which plays an important role in this paper. Let *F* be a non-empty subset of *L*. We call *F* a *filter* of *L* if it satisfies the following conditions: For all $x, y \in L$,

(F1) if $x, y \in F$, then $x \odot y \in F$;

(F2) if
$$x \in F$$
 and $x \leq y$, then $y \in F$.

Let *d* be an ideal derivation of *L*. A filter *F* of *L* is called an *ideal derivation filter* (simply *d*-filter here) if $x \in F$ implies $dx \in F$ for all $x \in L$. By $\mathcal{F}(L)$ (or $\mathcal{F}_d(L)$), we mean the set of all filters (or *d*-filters) of *L*. By [*S*) (or [*S*)_{*d*}), we mean the generated filter (or generated *d*-filter, respectively) by *S*. At first, we provide a characterization theorem about *d*-filters.

Theorem 6 Let d be an ideal derivation of L. For a nonempty subset S of L, we have $[S]_d = [S \cup d(S))$.

Proof It is sufficient to show that $[S \cup d(S))$ is the least *d*-filter including *S*. It is obvious $S \subseteq [S \cup d(S))$. We show that $[S \cup d(S))$ is a *d*-filter, that is, if $x \in [S \cup d(S))$, then $dx \in [S \cup d(S))$. Suppose that $x \in [S \cup d(S))$. There exist $a_i, b_j \in S$ such that $a_1 \odot \cdots \odot a_m \odot db_1 \odot \cdots db_n \leq x$. Since *d* is the ideal derivation, we have $da_1 \odot \cdots \odot da_m \odot db_1 \odot \cdots db_n = da_1 \odot \cdots \odot da_m \odot d(db_1) \odot \cdots d(db_n) = d(a_1 \odot \cdots \odot a_m \odot db_1 \odot \cdots db_n) \leq dx$. It follows from $da_i, db_j \in d(S) \subseteq S \cup d(S)$ that $dx \in [S \cup d(S))$. Therefore, $[S \cup d(S))$ is the *d*-filter. Lastly, for any *d*-filter *F* including *S*, we have $d(S) \subseteq d(F) \subseteq F$ and hence $S \cup d(S)$ is the least *d*-filter containing *S* and thus $[S)_d = [S \cup d(S))$.

Corollary 1 (Theorem 3.19 He et al. 2016) *The class* $\mathcal{F}_d(L)$ *of all d-filters forms a complete Heyting subalgebra of the class* $\mathcal{F}(L)$ *of all filters of a residuated lattice L*

Corollary 2 If *F* is a filter, then $[F]_d = [d(F))$.

Corollary 3 For any $F \in \mathcal{F}(L)$, F is a d-filter if and only if F = [d(F)).

Proof It is easy to show that if *F* is a *d*-filter, then $F = [F)_d = [d(F))$. Conversely, suppose that $x \in F = [d(F))$. There exist $a_i \in F$ such that $da_1 \odot \cdots \odot da_n \leq x$. If we take $a = a_1 \odot \cdots \odot a_n \in F$, then $da \in d(F)$. Moreover, we have $da = d(a_1 \odot \cdots \odot a_n) = da_1 \odot \cdots \odot da_n \leq x$ and thus $da = d(da) \leq dx$. This implies that $dx \in [d(F)) = F$, namely *F* is the *d*-filter.

Proposition 5 *Let d be an ideal derivation of L. Then, we have*

- (1) $F \in \mathcal{F}_d(L) \Rightarrow d(F) \in \mathcal{F}(d(L));$
- (2) $G \in \mathcal{F}(d(L)) \Rightarrow d^{-1}(G) \in \mathcal{F}_d(L)$, where $d^{-1}(G) = \{x \in L \mid dx \in G\}$.
- **Proof** (1) If $dx, dy \in d(F)$, $(x, y \in F)$ then, since $x \odot y \in F$ and d is the ideal derivation, we have $dx \odot dy = d(x \odot y) \in d(F)$. Moreover, if $dx \in d(F)$ for $x \in F$ and $dx \leq dy$, then $dx \in F$ and thus $dy \in F$. Then, $dy = d(dy) \in d(F)$. Therefore, d(F) is a filter of d(L), that is, $d(F) \in \mathcal{F}(d(L))$.
- (2) Let G be a filter of d(L). For all x, y ∈ d⁻¹(G), since dx, dy ∈ G, we get dx ⊙ dy = d(x ⊙ y) ∈ G and x ⊙ y ∈ d⁻¹(G). Next, suppose that x ∈ d⁻¹(G) and x ≤ y. It follows from dx ∈ G and dy ≤ dy that dy ∈ G and hence that y ∈ d⁻¹(G). Lastly, if x ∈ d⁻¹(G), then dx ∈ G and d(dx) = dx ∈ G. This implies dx ∈ d⁻¹(G). Therefore, d⁻¹(G) is the d-filter, that is, d⁻¹(G) ∈ F_d(L).

For a filter *F*, we define a quotient structure L/F, where x/F = y/F is defined by $x \rightarrow y$, $y \rightarrow x \in F$ for all $x, y \in L$. Since the set of all residuated lattices forms a variety, the quotient algebra L/F by a filter *F* is also a residuated lattice.

Proposition 6 Let d be an ideal derivation and F be a dfilter of L. If we define a map $d/F : L/F \rightarrow L/F$ by (d/F)(x/F) = dx/F for all $x/F \in L/F$, then d/F is an ideal derivation of L/F.

Proof At first, we show that d/F is well defined. Suppose that x/F = y/F. Since $x \to y, y \to x \in F(\in \mathcal{F}_d(L))$, we have $d(x \to y), d(y \to x) \in F$. It follows from $d(x \to y) \leq dx \to dy, d(y \to x) \leq dy \to dx$ that $dx \to dy, dy \to dx \in F$. This means that (d/F)(x/F) = dx/F = dy/F = (d/F)(y/F) and hence that d/F is well defined. It is easy to show that d/F is a good derivation of the residuated lattice L/F. It is sufficient to show that d/F is monotone. Suppose that $x/F \leq y/F$. Since $x \to y \in F$ and F is the d-filter, we have $d(x \to y) \in F$ and $dx \to dy \in F$ because of $d(x \to y) \leq dx \to dy$. This implies $dx/F \leq dy/F$ and hence $(d/F)(x/F) = dx/F \leq dy/F = (d/F)(y/F)$, namely d/F is monotone.

We note that d1/F = 1/F, because, since *F* is the *d*-filter, the fact $1 \in F$ implies $d1 \in F$, that is, d1/F = 1/F. It follows from the above that the quotient structure $(d/F)(L/F) = \operatorname{Fix}_{d/F}(L/F) = (\operatorname{Fix}_{d/F}(L/F), \land, \lor, \odot, \mapsto, 0/F, 1/F)$ is also a residuated lattice for any ideal derivation *d* and *d*-filter *F*. Moreover, since *F* is the *d*-filter, d(F) is the filter of d(L) and thus the quotient structure d(L)/d(F) forms a residuated lattice. It is natural to ask what the relation between two residuated lattices (d/F)(L/F) and d(L)/d(F) is. In order to answer the question, we need the following result.

Lemma 2 If $F \in \mathcal{F}_d(L)$, then we have $F \cap d(L) = d(F)$.

Proof For $x \in F \cap d(L)$, since $x \in d(L) = \text{Fix}_d(L)$, we have $x = dx \in d(F)$ and $F \cap d(L) \subseteq d(F)$.

Conversely, suppose $x \in d(F)$. There exists $y \in F$ such that x = dy. Since *F* is the *d*-filter, we get $x = dy \in F$. On the other hand, it follows from dx = d(dy) = dy = x that $x \in \text{Fix}_d(L) = d(L)$ and $d(F) \subseteq F \cap d(L)$. Therefore, $F \cap d(L) = d(F)$.

From the above, we have a following result which answers the question.

Theorem 7 Let d be an ideal derivation and F be a d-filter of L. Then, we have $(d/F)(L/F) = Fix_{d/F}(L/F)$ is isomorphic to d(L)/d(F), that is,

$$(d/F)(L/F) = Fix_{d/F}(L/F) \cong d(L)/d(F).$$

Proof We define a map $\Phi : (d/F)(L/F) \to d(L)/d(F)$ by $\Phi((d/F)(x/F)) = dx/d(F)$. We show that Φ is an isomorphism. We only show that the map Φ is well defined and injective. At first, Φ is well defined, because we have

$$\begin{aligned} (d/F)(x/F) &= (d/F)(y/F) \\ &\Rightarrow dx/F = dy/F \\ &\Rightarrow dx \to dy, dy \to dx \in F \\ &\Rightarrow d(dx \to dy), d(dy \to dx) \in d(F) \\ &\Rightarrow dx \mapsto dy, dy \mapsto dx \in d(F) \\ &\Rightarrow dx/d(F) = dy/d(F). \end{aligned}$$

Hence, Φ is well defined.

Suppose $\Phi((d/F)(x/F)) = \Phi((d/F)(y/F))$. Since dx/d(F) = dy/d(F), we have $dx \mapsto dy, dy \mapsto dx \in d(F)$ and thus $d(dx \to dy), d(dy \to dx) \in d(F) = F \cap d(L)$. This implies $d(dx \to dy), d(dy \to dx) \in F$. Since *d* is contractive, we also get $d(dx \to dy) \le dx \to dy, d(dy \to dx) \le dy \to dx$ and $dx \to dy, dy \to dx \in F$. Therefore, dx/F = dy/F and (d/F)(x/F) = dx/F = dy/F = (d/F)(y/F), namely Φ is injective. \Box

Acknowledgements This work was partly supported by JSPS KAK-ENHI Grant Number 15K00024.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

References

- Alshehri NO (2010) Derivations of MV-algebras. Int J Math Math Sci 2010, Article ID 312027, 7 pp
- Ferrari L (2001) On derivations of lattices. Pure Math Appl 12:365-382
- Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics. In: Studies in logic and the foundations of mathematics, vol 151. Elsevier, Amsterdam
- Ghorbani S, Torkzadeh L, Motamed S (2013) (\odot, \oplus) -Derivations and (\ominus, \odot) -derivations on MV-algebras. Iran J Math Sci Inform 8:75–90
- He P, Xin X, Zhan J (2016) On derivations and their fixed point sets in residuated lattices. Fuzzy Sets Syst 303:97–113
- Kawaguchi MF, Kondo M Some properties on derivations of lattices, Submitted
- Posner E (1957) Derivations in prime rings. Proc Am Math Soc 8:1093– 1100
- Szász G (1975) Derivations of lattices. Acta Sci Math (Szeged) 37:149– 154
- Xin XL, Li TY, Lu JH (2008) On derivations of lattices. Inf Sci 178:307– 316
- Yazarli H (2013) A note on derivations in MV-algebras. Miskolc Math Notes 14:345–354
- Ward M, Dilworth RP (1939) Residuated lattices. Trans Am Math Soc 45:335–354

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.