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Abstract
Fuzzy set, intuitionistic fuzzy set, hesitant fuzzy set can be regarded as a special case of dual hesitant fuzzy set. Therefore, dual
hesitant fuzzy set is a more comprehensive set. Further, Archimedean t-norm and t-conorm provides generalized operational
rules for dual hesitant fuzzy set. And geometric Heronian mean have advantages when considering the interrelationship of
aggregation arguments. Thus, it is necessary to extend the geometric Heronian mean operator to the dual hesitant fuzzy
environment based on Archimedean t-norm and t-conorm. Comprehensive above, in this paper, the dual hesitant fuzzy
geometricHeronianmean operator and dual hesitant fuzzy geometricweightedHeronianmean operator based onArchimedean
t-norm and t-conorm are developed. Their properties and special case are investigated. Moreover, a multiple attribute decision
making method is proposed. The effectiveness of our method and the influence of parameters on multiple attribute decision
making are studied by an example. The superiority of our method is illustrated by comparing with other existing methods.

Keywords Dual hesitant fuzzy set · Archimedean t-norm and t-conorm · Geometric Heronian mean · Multiple attribute
decision making

1 Introduction

Intuitionistic fuzzy set (IFS)wasfirst introducedbyAtanassov
(1986) and it is a generalization of fuzzy set (FS) (Zadeh
1965). On the basis of the FS, the non-membership function
and hesitant membership function are added in IFS. Torra
and Narukawa (2009) developed hesitant fuzzy set (HFS)
to express the membership degree of elements as a set of
possible values, which is a very useful tool for express-
ing people’s hesitation in our daily life. HFS has attracted
more and more attention in multiple attribute decision mak-
ing (MADM) (Xia and Xu 2011; Zhang and Wei 2013; Wei
et al. 2017; Yu 2017; Tang et al. 2018), clustering (Chen
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et al. 2013; Zhang and Xu 2015; Liu et al. 2017), pattern
recognition (Sun et al. 2018; Zhang et al. 2018b) and so on.

Zhu et al. (2012) combined the IFS with HFS, proposed
the dual hesitant fuzzy set (DHFS). Similar to IFS, DHFS are
also composed ofmembership function and non-membership
function. But different from IFS, their membership func-
tion and non-membership function are expressed by several
numbers rather than a single number. FS, IFS and HFS can
be regarded as special cases of DHFS. Therefore, DHFS
has attracted the attention of many scholars. Ye (2014),
Tyagi (2015) and Wang et al. (2013) proposed different
correlation coefficients for DHFS and their applications.
Singh (2015) and Wang et al. (2014) introduced some new
distance measures and similarity measures for DHFS and
applied to MADM. Zhang et al. (2018a) developed cosine
similarity measures which have the ability to model vari-
ous problems for DHFS in MADM. There are also many
achievements in the research of aggregation operators. Yu
et al. (2016) introduced dual hesitant fuzzy Heronian mean
(DHFHM) operator and dual hesitant fuzzy geometric Hero-
nian mean (DHFGHM) operator and their application to
supplier selection.Wang et al. (2014) developed dual hesitant
fuzzy weighted average (DHFWA) operator, dual hesitant
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fuzzy weighted geometric (DHFWG) operator, dual hesi-
tant fuzzy ordered weighted average (DHFOWA) operator,
dual hesitant fuzzy ordered weighted geometric (DHFOWG)
operator, dual hesitant fuzzy hybrid average (DHFHA) oper-
ator and dual hesitant fuzzy hybrid geometric (DHFHG)
operator and applied to MADM. Ju et al. (2014) proposed
dual hesitant fuzzy Choquet ordered geometric (DHFCOG)
operator, generalized dual hesitant fuzzy Choquet ordered
average (GDHFCOA) operator and generalized dual hesitant
fuzzy Choquet ordered geometric (GDHFCOG) operator for
MADM. Gao et al. (2018) introduced dual hesitant bipolar
fuzzy Hamacher prioritized average (DHBFHPA) operator,
dual hesitant bipolar fuzzy Hamacher prioritized geometric
(DHBFHPG) operator, dual hesitant bipolar fuzzyHamacher
prioritized weighted average (DHBFHPWA) operator and
dual hesitant bipolar fuzzy Hamacher prioritized weighted
geometric (DHBFHPWG) operator. Many other aggrega-
tion operators are also proposed, such as dual hesitant fuzzy
Frank aggregation operators (Tang et al. 2018), generalized
dual hesitant fuzzy Choquet ordered aggregation operator
(Wang et al. 2014), dual hesitant fuzzy weighted interaction
averaging operator, dual hesitant fuzzy weighted interac-
tion geometric operator (Xu et al. 2015), dual hesitant fuzzy
aggregation operators Bonferroni means (Tu et al. 2017) and
so on.

Based on Archimedean t-norm and t-conorm (Klir and
Yuan 1995; Nguyen and Walker 1997; Klement and Mesiar
2005), FS (Tchamova 2006), IFS (Liu and Chen 2017; Das
et al. 2017; Xia et al. 2012) and HFS (Xia and Xu 2017;
Tan et al. 2015; Xia and Xu 2012) have many researches
on their properties and aggregation operators. DHFS also
has some researches. Yu (2015) introduced dual hesitant
fuzzyweighted averaging (ADHFWA)operator anddual hes-
itant fuzzy weighted geometric (ADHFWG) operator based
on Archimedean t-norm and t-conorm under dual hesitant
fuzzy environment. Wang et al. (2016) proposed a wide
range of dual hesitant fuzzy power aggregation operators
based onArchimedean t-norm and t-conorm. These aggrega-
tion operators based on Archimedean t-norm and t-conorm
are generalized forms of existing aggregation operators.
But these operators do not consider the interrelationship
of aggregation arguments. Although Bonferroni mean (BM)
(Bonferroni 1950) operator consider the interrelationship of
aggregation arguments, Yu and Wu (2012) pointed out that
compared with BM operator, Heronian mean (HM) (Beli-
akov et al. 2007) operator considers the relationship between
attribute criteria Ci and itself. And the correlation between
criteria Ci and C j (i �= j) is equal to the correlation between
criteriaC j andCi (i �= j), thus, theHMoperator avoiding the
calculation redundancy. Therefore, the HM operator is better
for aggregation. Similar toHMoperator, geometric Heronian
mean (GHM) (Yu 2013) operator has the same advantage. In
our real life, many things are related to each other. Therefore,

the GHM operator provides a powerful tool for consider-
ing the inter-dependent phenomena among the arguments.
But at present it is only used for the operational rules of
DHFS based on Algebraic operators. The Archimedean t-
norm and t-conorm provides a general rule of operation and
more choices for decision makers. Therefore, it is necessary
and meaningful to extend the GHM based on Archimedean
t-norm and t-conorm and apply to deal with MADM prob-
lems under dual hesitant fuzzy environment. So, this paper
presents dual hesitant fuzzy geometric Heronian mean and
dual hesitant fuzzygeometricweightedHeronianmeanbased
onArchimedean t-normand t-conorm.When the special case
is taken, it will be reduced to the form of an existing oper-
ators in studies (Yu et al. 2016; Yu 2013). The validity and
superiority of the proposed operators are verified by explor-
ing the influence of parameter values on the ranking results
and comparing with other existing operators.

The structure of the paper is as follows: in Sect. 2, some
basic notions are reviewed. In Sect. 3, we develop dual hesi-
tant fuzzy geometric Heronian mean and dual hesitant fuzzy
geometric weighted Heronian mean based on Archimedean
t-norm and t-conorm. We also explore some properties and
special cases of the proposed operators. In Sect. 4, we pro-
pose a MADM method based on the proposed operators. In
Sect. 5, we give an example to explain the application of our
method, and also investigate the influence of parameter val-
ues on the ranking results and comparison with the methods
presented in studies (Yu et al. 2016; Wang et al. 2014; Yu
2015). In Sect. 6, we conclude this paper.

2 Preliminaries

In 2012, Zhu et al. first proposed the concept of dual hesitant
fuzzy set (DHFS).

Definition 1 (Zhu et al. 2012) Let X be a fixed set, then a
DHFS D on the set X is described as:

D = {〈x, μ(x), ν(x)〉 |x ∈ X},

where μ(x) and ν(x) are two sets of some values in
[0, 1], denoting the possible membership degrees and non-
membership degrees of the element x ∈ X to the set D,
respectively, with the following conditions:

0 ≤ γ, η ≤ 1, 0 ≤ γ + + η+ ≤ 1

whereγ ∈ μ(x), η ∈ ν(x), γ + ∈ μ+(x) = ∪γ∈μ(x)max{γ },
and η+ ∈ ν+(x) = ∪η∈ν(x)max{η} for all x ∈ X . For conve-
nience, the pair α(x) = (μ(x), ν(x)) is called a dual hesitant
fuzzy element (DHFE), denoted by α = (μ, ν).
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In order to rank the DHFEs, Zhu et al. presented the fol-
lowing score function and accuracy function.

Definition 2 (Zhu et al. 2012) Let αi = (μαi , ναi )(i = 1, 2)
be any twoDHFEs. The score function and accuracy function
of αi are defined as follows:

S(αi ) = 1

#μαi

∑
γ∈μαi

γ − 1

#ναi

∑
η∈ναi

η;

P(αi ) = 1

#μαi

∑
γ∈μαi

γ + 1

#ναi

∑
η∈ναi

η;

where #μαi and #ναi are the numbers of the elements in μαi

and ναi , respectively.
By the score function and accuracy function, Zhu et al.

gave the following method for ranking DHFEs:

(1) If S(α1) > S(α2), then α1 is superior to α2, denote by
α1 � α2;

(2) If S(α1) = S(α2), then

(i) If P(α1) = P(α2), then α1 is equivalent to α2, denote
by α1 ∼ α2;

(ii) If P(α1) > P(α2), then α1 is superior to α2, denote
by α1 � α2.

Definition 3 (Zhu et al. 2012) Given a DHFE represented
by α = (μα, να) and α �= ∅. Its complement is defined as
follows:

αc =

⎧
⎪⎨

⎪⎩

(να, μα), if μα �= ∅, να �= ∅;
(1 − μα, ∅), if μα �= ∅, να = ∅;
(∅, 1 − να), if μα = ∅, να �= ∅.

Klir and Yuan proposed the t-norm and t-conorm in 1995.

Definition 4 (Klir and Yuan 1995) A function T : [0, 1] ×
[0, 1] → [0, 1] is called a triangular norm. If it satisfies the
following conditions:

(1) T (0, 0) = 0, T (1, 1) = 1;
(2) T (x, y) = T (y, x), for any x and y;
(3) T (x, T (y, z)) = T (T (x, y), z), for any x, y and z;
(4) if x1 ≤ x2, y1 ≤ y2, then T (x1, y1) ≤ T (x2, y2);

Furthermore, for any a ∈ [0, 1], T is a t-norm if T (a, 1) =
a, T is t-conorm if T (0, a) = a.

It is also usually required that t-norm and t-conorm are
continuous functions.

Definition 5 (Klir andYuan1995)A t-norm functionT (x, y)
is called Archimedean t-norm if it is continuous and
T (x, x) < x for all x ∈ (0, 1). An Archimedean t-norm

is called strict Archimedean t-norm if it is strictly increasing
in each variable for x, y ∈ (0, 1).

Definition 6 (Klir and Yuan 1995) A t-conorm function
S(x, y) is called Archimedean t-conorm if it is continuous
and S(x, x) > x for all x ∈ (0, 1). An Archimedean t-
conorm is called strict Archimedean t-conorm if it is strictly
increasing in each variable for x, y ∈ (0, 1).

It is well known (Klement and Mesiar 2005) that a strict
Archimedean t-norm is expressed via its additive generator
g as T (x, y) = g−1(g(x) + g(y)), and similarly, applied to
its dual t-conorm S(x, y) = h−1(h(x) + h(y)) with h(t) =
g(1− t). We notice that an additive generator of a continuous
Archimedean t-norm is a strictly decreasing function g :
[0, 1] → [0, 1] such that g(1) = 0.

Following, we denote Archimedean t-norm and t-conorm
as (T , S). Listedbeloware somecommonlyusedArchimedean
t-norm and t-conorm.

(1) If additive generators is h(t) = −ln(1− t), g(t) = −lnt ,
then T (x, y) = xy, S(x, y) = x + y − xy are called
Algebraic t-norm and t-conorm;

(2) If additive generators is h(t) = ln 1+t
1−t , g(t) = ln 2−t

t ,

then T (x, y) = xy
1+(1−x)(1−y) , S(x, y) = x+y

1+xy are called
Einstein t-norm and t-conorm;

(3) If additive generators is h(t) = ln θ+(1−θ)(1−t)
1−t , g(t) =

ln θ+(1−θ)t
t , then T (x, y) = xy

θ+(1−θ)(x+y−xy) , S(x, y) =
x+y−xy−(1−θ)xy

1−(1−θ)xy (θ ∈ (0,+∞)) are called Hamacher t-
norm and t-conorm;

(4) If additive generators is h(t) = −ln θ−1
θ1−t−1

, g(t) =
−ln θ−1

θ t−1 , then T (x, y) = logθ

(
1 + (θ x−1)(θ y−1)

θ−1

)
,

S(x, y) = 1−logθ

(
1+ (θ1−x−1)(θ1−y−1)

θ−1

)
(θ ∈ (1,+∞))

are called Frank t-norm and t-conorm.

Based on Archimedean t-norm and t-conorm, Wang et al.
introduced the following operational rules for DHFEs.

Definition 7 (Wang et al. 2016) Let αi = (μαi , ναi )(i =
1, 2) be any two DHFEs, λ > 0. Then

(1) α1 ⊕ α2

= ∪γα1∈μα1 ,ηα1∈να1 ,γα2∈μα2 ,ηα2∈να2

{{
S
(
γα1, γα2

)}
,{

T
(
ηα1 , ηα2

)}}

= { ∪γα1∈μα1 ,γα2∈μα2

{
h−1

(
h
(
γα1

) + h
(
γα2

))}
,

∪ηα1∈να1 ,ηα2∈να2

{
g−1

(
g
(
ηα1

) + g
(
ηα2

))}};
(2) α1 ⊗ α2

= ∪γα1∈μα1 ,ηα1∈να1 ,γα2∈μα2 ,ηα2∈να2

{{
T

(
γα1 , γα2

)}
,{

S
(
ηα1 , ηα2

)}}

= { ∪γα1∈μα1 ,γα2∈μα2

{
g−1

(
g
(
γα1

) + g
(
γα2

))}
,

∪ηα1∈να1 ,ηα2∈να2

{
h−1

(
h
(
ηα1

) + h
(
ηα2

))}};
(3) λα = {∪γα∈μα

{
h−1

(
λh

(
γα

))}
,∪ηα∈να

{
g−1

(
λg

(
ηα

))}};
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(4) αλ = {∪γα∈μα

{
g−1

(
λg

(
γα

))}
,∪ηα∈να

{
h−1

(
λh

(
ηα

))}}
.

3 Dual hesitant fuzzy geometric Heronian
mean operator based on Archimedean
t-norm and t-conorm

In this section, based on the operational rules of the
Archimedean t-norm and t-conorm of DHFEs, we propose
the (T , S)-based dual hesitant fuzzy geometric Heronian
mean ((T , S)-DHFGHM) operator and (T , S)-based dual
hesitant fuzzy geometric weighted Heronian mean ((T , S)-
DHFGWHM) operator. Furthermore, we also discuss their
properties and some special cases.

According to Definition 7, we have the following opera-
tional properties for DHFEs.

Theorem 1 Let α1, α2, α3 be any three DHFEs and λ1, λ2 >

0. Then

(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) α1 ⊗ α2 = α2 ⊗ α1;
(3) (α1 ⊕ α2) ⊕ α3 = α1 ⊕ (α2 ⊕ α3);
(4) (α1 ⊗ α2) ⊗ α3 = α1 ⊗ (α2 ⊗ α3);
(5) λ1α1 ⊕ λ1α2 = λ1(α1 ⊕ α2);
(6) α

λ1
1 ⊗ α

λ1
2 = (α1 ⊗ α2)

λ1;
(7) (α

λ1
1 )λ2 = α

λ1λ2
1 .

Proof The proof is simple, which is omitted here. ��
Aggregation operation is an important tool of multiple

attribute decision making (MADM). For existing operator,
geometricHeronianmean (GHM)can reflect inter-dependent
phenomena among arguments. It can better dealwithMADM
problem. The definition as follows.

Definition 8 (Yu 2013) Let I = [0, 1], p, q ≥ 0, H p,q :
I n → I . The GHM operator is defined by the following
formula:

GHMp,q(a1, a2, . . . , an)= 1

p + q

n∏

i=1

n∏

j=i

(
pai+qa j

) 2
n(n+1) .

According to Definition 8, we have the following defini-
tion under dual hesitant fuzzy environment.

Definition 9 Let αi = (μαi , ναi )(i = 1, 2, . . . , n) be a
collection of DHFEs, a (T , S)-based dual hesitant fuzzy
geometric Heronian mean((T , S)-DHFGHM) is defined as
follows:

(T , S) − DHFGHMp,q(α1, α2, . . . , αn)

= 1

p + q

n⊗
i=1, j=i

(
pαi ⊕ qα j

) 2
n(n+1)

where p, q ≥ 0.

Based on the operational laws of the DHFEs shown in
Definition 7, we can get Theorem 2.

Theorem 2 Let p, q ≥ 0 and αi = (μαi , ναi )(i = 1, 2, . . . ,
n) be a collection of DHFEs , then

(T , S) − DHFGHMp,q (α1, α2, . . . , αn)

= 1

p + q

n⊗
i=1, j=i

(
pαi ⊕ qα j

) 2
n(n+1)

=
{

∪γαi ∈μαi ,γα j ∈μα j

{
h−1

(
1

p + q
h

(
g−1

( n∑

i=1, j=i
(

2

n(n + 2)
g
(
h−1(ph

(
γαi

) + qh
(
γα j

)))))))}
,

∪ηαi ∈ναi ,ηα j ∈να j

{
g−1

(
1

p + q
g

(
h−1

( n∑

i=1, j=i

(
2

n(n + 2)

h
(
g−1(pg

(
ηαi

) + qg
(
ηα j

)))))))}}
.

Proof According to the operations defined in Definition 7,
we get

pαi ⊕ qα j

= { ∪γαi ∈μαi ,γα j ∈μα j{
h−1(h

(
h−1(ph

(
γαi

))) + h
(
h−1(qh

(
γα j

))))}
,

∪ηαi ∈ναi ,ηα j ∈να j{
g−1(g

(
g−1(pg

(
ηαi

))) + g
(
g−1(qg

(
ηα j

))))}}

= { ∪γαi ∈μαi ,γα j ∈μα j

{
h−1(ph

(
γαi

) + qh
(
γα j

))}
,

∪ηαi ∈ναi ,ηα j ∈να j

{
g−1(pg

(
ηαi

) + qg
(
ηα j

))}}
.

Further, we have

n⊗
i=1, j=i

(
pαi ⊕ qα j

) 2
n(n+1)

=
{

∪γαi ∈μαi ,γα j ∈μα j

{
g−1

( n∑

i=1, j=i

g

(
g−1

(
2

n(n + 2)
g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

))))))}
,

∪ηαi ∈ναi ,ηα j ∈να j

{
h−1

( n∑

i=1, j=i

h

(
h−1

(
2

n(n + 2)

h
(
g−1

(
pg

(
ηαi

) + qg
(
ηα j

))))))}}

=
{

∪γαi ∈μαi ,γα j ∈μα j

{
g−1

( n∑

i=1, j=i

(
2

n(n + 2)

g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))))}
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∪ηαi ∈ναi ,ηα j ∈να j

{
h−1

( n∑

i=1, j=i

(
2

n(n + 2)

h
(
g−1

(
pg

(
ηαi

) + (
qg

(
ηα j

)))))}}
.

Thus, we get

1

p + q

n⊗
i=1, j=i

(
pαi ⊕ qα j

) 2
n(n+1)

=
{

∪γαi ∈μαi ,γα j ∈μα j

{
h−1

(
1

p + q
h

(
g−1

( n∑

i=1, j=i
(

2

n(n + 2)
g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))))))}
,

∪ηαi ∈ναi ,ηα j ∈να j

{
g−1

(
1

p + q
g

(
h−1

( n∑

i=1, j=i

( 2

n(n + 2)

h
(
g−1

(
pg

(
ηαi

) + qg
(
ηα j

)))))))}}
.

��
Theorem 3 The aggregated value by using the (T , S)-
DHFGHM operator is also a DHFE.

Proof Let

γ = ∪γαi ∈μαi ,γα j ∈μα j

{
h−1

(
1

p + q
h

(
g−1

( n∑

i=1, j=i
(

2

n(n + 2)
g
(
h−1

(
ph

(
γαi

)) + qh
(
γα j

))))))}

η = ∪ηαi ∈ναi ,ηα j ∈να j

{
g−1

(
1

p + q
g
(
h−1

( n∑

i=1, j=i
(

2

n(n + 2)
h
(
g−1

(
pg

(
ηαi

)) + qg
(
ηα j

))))))}
.

We need to prove the membership degree γ and non-
membership degree η satisfies the following conditions:

(a) 0 ≤ γ, η ≤ 1;
(b) 0 ≤ γ + + η+ ≤ 1.

First, we give the proof of (a). Since h(t) is a monoton-
ically increasing function, h−1(t) is also a monotonically
increasing function. By h(0) ≤ h(γαi ) ≤ h(1), h(0) ≤
h(γα j ) ≤ h(1), we have

h−1
(
(p + q)h(0)

)
≤ h−1(ph(γαi )

+ qh(γα j ) ≤ h−1
(
(p + q)h(1)

)
.

Similarly, since g(t) is a monotonically decreasing func-
tion, g−1(t) is also amonotonically decreasing function, then

n∑

i=1, j=i

g
(
h−1((p + q)h(1)

))

≤
n∑

i=1, j=i

g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))

≤
n∑

i=1, j=i

g
(
h−1((p + q)h(0)

))
.

That is

n(n + 1)

2
g
(
h−1((p + q)h(1)

))

≤
n∑

i=1, j=i

g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))

≤ n(n + 1)

2
g
(
h−1((p + q)h(0)

))
.

Further

g−1
(
g
(
h−1((p + q)h(0)

)))

≤ g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g

(
h−1

(
ph

(
γαi ) + qh

(
γα j

)))
⎞

⎠

≤ g−1
(
g
(
h−1((p + q)h(1)

)))
.

Then

h
(
h−1((p + q)h(0)

))

≤ h

⎛

⎝g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))
⎞

⎠

⎞

⎠

≤ h
(
h−1((p + q)h(1)

))
.

We have

h(0) ≤ 1

p + q

(
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

))))))

≤ h(1).

Therefore

h−1(h(0)
)

≤ h−1
(

1

p + q

(
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)
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+ qh
(
γα j

)))))))

≤ h−1(h(1)
)
.

That is

0 ≤ h−1
(

1

p + q

(
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

)))))))

≤ 1.

Finally, we have

0 ≤ ∪γαi ∈μαi ,γα j ∈μα j
h−1

(
1

p + q

(
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)

g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))))))
≤ 1.

That is, 0 ≤ γ ≤ 1. Similarly, we can prove that 0 ≤ η ≤ 1.
Next, we prove the condition (b): 0 ≤ γ + + η+ ≤ 1. In

the following proof, we will use the following equations:

g(t) = h(1 − t), h(t) = g(1 − t),

g−1(t) = 1 − h−1(t), h−1(t) = 1 − g−1(t).

Since γ +
αi

+η+
αi

≤ 1, γ +
α j

+η+
α j

≤ 1,we have γ +
αi

≤ 1−η+
αi
,

γ +
α j

≤ 1−η+
α j

and ph(γ +
αi

)+qh(γ +
α j

) ≤ ph(1−η+
αi

)+qh(1−
η+

α j
) = pg(η+

αi
) + qg(η+

α j
).

Then

g
(
h−1(ph

(
γ +
αi

) + qh
(
γ +
α j

)))

≥ g
(
1 − g−1(pg

(
η+

αi

) + qg
(
η+

α j

)))

= h
(
g−1(pg

(
η+

αi

) + qg
(
η+

α j

)))
.

Thus

g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
g
(
h−1(ph

(
γ +
αi

) + qh
(
γ +
α j

))))
⎞

⎠

≤ g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)
+ qg

(
η+

α j

))))⎞

⎠

= 1 − h−1
( n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)

+ qg
(
η+

α j

)))))

and

h

⎛

⎝g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
g
(
h−1(ph

(
γ +
αi

) + qh
(
γ +
α j

))))
⎞

⎠

⎞

⎠

≤ h

⎛

⎝1 − h−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1(pg

(
η+

αi

) + qg
(
η+

α j

))))
⎞

⎠

⎞

⎠

= g

⎛

⎝h−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1(pg

(
η+

αi

) + qg
(
η+

α j

))))
⎞

⎠

⎞

⎠ .

Further

1

p + q
h

⎛

⎝g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)

(
g
(
h−1(ph

(
γ +
αi

) + qh
(
γ +
α j

))))
⎞

⎠

⎞

⎠

≤ 1

p + q
g

(
h−1

( n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)

+ qg
(
η+

α j

))))))

and

h−1
(

1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)

(
g
(
h−1

(
ph

(
γ +
αi

)

+ qh
(
γ +
α j

)))))))

≤ h−1
(

1

p + q
g

(
h−1

( n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)

+ qg(η+
α j

)))))))

= 1 − g−1
(

1

p + q
g

(
h−1

( n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)

+ qg
(
η+

α j

)))))))
.

Then

h−1
(

1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)

(
g
(
h−1

(
ph

(
γ +
αi

)

+ qh
(
γ +
α j

)))))))

+g−1
(

1

p + q
g

(
h−1

( n∑

i=1, j=i

2

n(n + 1)

(
h
(
g−1

(
pg

(
η+

αi

)

+ qg
(
η+

α j

)))))))

≤ 1.

That is 0 ≤ γ + + η+ ≤ 1. Therefore, the aggregated value
of (T , S)-DHFGHM operator is a DHFE. ��
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Following, we will study some properties of (T , S)-
DHFGHM operator.

Theorem 4 (Idempotency) Let αi = (μαi , ναi )

= {∪γαi ∈μαi
{γαi },∪ηαi ∈ναi

{ηαi }} (i = 1, 2, . . . , n) be a col-
lection of DHFEs, if αi = α = {∪γ∈μ{γ },∪η∈ν{η}} for all
i , then

(T , S) − DHFGHMp,q(α1, α2, . . . , αn) = α.

Proof Let (T , S)−DHFGHMp,q(α1, α2, . . . , αn) = (γ ′, η′).
We first prove that γ ′ = γ . Since γαi = γ , γα j = γ , we have

ph(γαi ) + qh(γα j ) = ph(γ ) + qh(γ ) = (p + q)h(γ )

and

h−1
(
ph

(
γαi

) + qh
(
γα j

)) = h−1((p + q)h(γ )
)
.

Then

n∑

i=1, j=i

2

n(n + 1)
g
(
h−1(ph

(
γαi

) + qh
(
γα j

)))

=
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1((p + q)h(γ )

))

= n(n + 1)

2
· 2

n(n + 1)
g
(
h−1((p + q)h(γ )

))

= g
(
h−1((p + q)h(γ )

))

and

g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1(ph

(
γαi

) + qh
(
γα j

)))
⎞

⎠

= g−1
(
g
(
h−1((p + q)h(γ )

)))
= h−1((p + q)h(γ )

)
.

Further, we have

1

p + q
h

⎛

⎝g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1(ph

(
γαi

) + qh
(
γα j

)))
⎞

⎠

⎞

⎠

= 1

p + q
h
(
h−1((p + q)h(γ )

)) = 1

p + q
(p + q)h(γ ) = h(γ )

and

h−1
(

1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

))))))

= h−1(h(γ )
) = γ.

Therefore

∪γαi ∈μαi ,γα j ∈μα j

{
h−1

(
1

p + q
h

(
g−1

( n∑

i=1, j=i

(
2

n(n + 2)

g
(
h−1

(
ph

(
γαi

)) + h−1
(
qh

(
γα j

)))))))}
= γ.

That is γ ′ = γ . The proof of η′ = η is similar to γ ′ = γ .
Thus, we have (γ ′, η′) = (γ, η), i.e.,

(T , S) − DHFGHMp,q(α1, α2, . . . , αn) = α.

��
Theorem 5 (Monotonicity) Let αi = (μαi , ναi ) and α

′
i =

(μ
′
αi

, ν
′
αi

)(i = 1, 2, . . . , n) be two collections of DHFEs,

p, q ≤ 0. If γ
′
αi

≤ γαi and η
′
αi

≥ ηαi for all i , where γαi ∈
μαi , ηαi ∈ ναi , γ

′
αi

∈ μ
′
αi

, η
′
αi

∈ ν
′
αi

, then

(T , S) − DHFGHMp,q(α
′
1, α

′
2, . . . , α

′
n)

≤ (T , S) − DHFGHMp,q(α1, α2, . . . , αn).

Proof Let

(T , S) − DHFGHMp,q(α
′
1, α

′
2, . . . , α

′
n) = (γ

′
, η

′
)

and

(T , S) − DHFGHMp,q(α1, α2, . . . , αn) = (γ, η).

Since γ
′
αi

≤ γαi and γ
′
α j

≤ γα j (1 ≤ j ≤ n), then we have

ph
(
γ

′
αi

) + qh
(
γ

′
α j

) ≤ ph
(
γαi

) + qh
(
γα j

)

and

h−1
(
ph

(
γ

′
αi

) + qh
(
γ

′
α j

)) ≤ h−1
(
ph

(
γαi

) + qh
(
γα j

))
.

Then, we have

n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γ

′
αi

) + qh
(
γ

′
α j

)))

≥
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))

and

g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γ

′
αi

) + qh
(
γ

′
α j

)))
⎞

⎠
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≤ g−1

⎛

⎝
n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

) + qh
(
γα j

)))
⎞

⎠ .

Further, we have

1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γ

′
αi

)

+ qh
(
γ

′
α j

)))))

≤ 1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

)))))

and

h

(
1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γ

′
αi

)

+ qh
(
γ

′
α j

))))))

≤ h

(
1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

))))))
.

Then

∪
γ

′
αi

∈μ
′
αi

,γ
′
α j

∈μ
′
α j
h

(
1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γ

′
αi

)

+ qh
(
γ

′
α j

))))))

≤ ∪γαi ∈μαi ,γα j ∈μα j
h

(
1

p + q
h

(
g−1

( n∑

i=1, j=i

2

n(n + 1)
g
(
h−1

(
ph

(
γαi

)

+ qh
(
γα j

))))))
.

That is γ
′ ≤ γ . The proof of η′ ≥ η is similar to γ ′ ≤ γ .

According to Definition 2, we get

(T , S) − DHFGHMp,q(α
′
1, α

′
2, . . . , α

′
n)

≤ (T , S) − DHFGHMp,q(α1, α2, . . . , αn).

��
Theorem 6 (Boundedness) Let αi = (μαi , ναi )(i = 1, 2,
. . . , n) be a collection of DHFEs, and α− = (min{μαi },
max{ναi }) = {∪γαi ∈μαi

min{γαi },∪ηαi ∈ναi
max{ηαi }}, α+ =

(max{μαi },min{ναi }) = {∪γαi ∈μαi
max{γαi }, ∪ηαi ∈ναi

min{ηαi }}, then

α− ≤ (T , S) − DHFGHMp,q(α1, α2, . . . , αn) ≤ α+.

Proof According to the proof of Theorems 4 and 5, Theo-
rem 6 can be proved easily. ��
Theorem 7 (Permutation) Let αi = (μαi , ναi )(i = 1, 2,
. . . , n) be a collection of DHFEs. Then

(T , S) − DHFGHMp,q(α1, α2, . . . , αn)

= (T , S) − DHFGHMp,q(α̇1, α̇2, . . . , α̇n),

where (α̇1, α̇2, ..., α̇n) is anypermutationof (α1, α2, . . . , αn).

Proof By the operations of DHFE in Theorem 1, we have

(T , S) − DHFGHMp,q(α1, α2, . . . , αn)

= 1

p + q

n⊗
i=1, j=i

(
pαi ⊕ qα j

) 2
n(n+1)

= 1

p + q

n⊗
i=1, j=i

(
pα̇i ⊕ qα̇ j

) 2
n(n+1)

= (T , S) − DHFGHMp,q(α̇1, α̇2, . . . , α̇n),

which completes the proof. ��
The proposed (T , S)-DHFGHM operator only consid-

ers the input parameters p, q, and the relationship between
each input data and the importance of input data is not con-
sidered. Therefore, in order to consider the importance of
each input data and their relationship, we further introduce
(T , S)-based dual hesitant fuzzy geometric weighted Hero-
nian mean((T , S)-DHFGWHM) operator.

Definition 10 Let αi = (μαi , ναi )(i = 1, 2, . . . , n) be a
collection of DHFEs, a (T , S)-based dual hesitant fuzzy
geometric weighted Heronian mean((T , S)-DHFGWHM) is
defined as follows:

(T , S) − DHFGWHMp,q(α1, α2, . . . , αn)

= 1

p + q

n⊗
i=1, j=i

(
(pαi )

ωi ⊕ (qα j )
ω j

) 2
n(n+1)

where p, q ≥ 0 andω = (ω1, ω2, . . . , ωn)
T are theweighted

vector of α1, α2, . . . , αn , ωi ∈ [0, 1],∑n
i=1 ωi = 1.

Based on the operational laws of the DHFEs shown in
Definition 7, we can get Theorem 8.

Theorem 8 Let p, q ≥ 0 and αi = (μαi , ναi )(i = 1, 2,
. . . , n) be a collection of DHFEs, and

(T , S) − DHFGWHMp,q (α1, α2, . . . , αn)

= 1

p + q

n⊗
i=1, j=i

(
(pαi )

ωi ⊕ (qα j )
ω j

) 2
n(n+1)
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=
{

∪γαi ∈μαi ,γα j ∈μα j

{
h−1

(
1

p + q
h

(
g−1

( n∑

i=1, j=i
(

2

n(n + 2)
g
(
h−1

(
h
(
g−1

(
ωi g

(
h−1

(
ph

(
γαi

)))))

+h
(
g−1

(
ω j g

(
h−1

(
qh(γα j

)))))))))))}

∪ηαi ∈ναi ,ηα j ∈να j

{
g−1

(
1

p + q
g

(
h−1

( n∑

i=1, j=i

( 2

n(n + 2)

h
(
g−1

(
g
(
h−1

(
ωi h

(
g−1

(
pg

(
ηαi

)))))

+g
(
h−1

(
ω j h

(
g−1

(
qg

(
ηα j

)))))))))))}}
.

the aggregated value by using the (T , S)-DHFGWHM oper-
ator is also a DHFE.

Proof This proof is similar to Theorems 2 and 3. ��
The (T , S)-DHFGWHM operator is also satisfied idem-

potency, monotonicity, boundedness and permutation.

Theorem 9 (Idempotency) Let αi = (μαi , ναi )

= {∪γαi ∈μαi
{γαi },∪ηαi ∈ναi

{ηαi }} (i = 1, 2, . . . , n) be a col-
lection of DHFEs, if αi = α = {∪γ∈μ{γ },∪η∈ν{η}} for all
i , then

(T , S) − DHFGWHMp,q(α1, α2, . . . , αn) = α.

Theorem 10 (Monotonicity) Let αi = (μαi , ναi ) and α
′
i =

(μ
′
αi

, ν
′
αi

)(i = 1, 2, . . . , n) be two collections of DHFEs,

p, q ≤ 0. If γ
′
αi

≤ γαi and η
′
αi

≥ ηαi for all i , where γαi ∈
μαi , ηαi ∈ ναi , γ

′
αi

∈ μ
′
αi

, η
′
αi

∈ ν
′
αi

, then

(T , S) − DHFGWHMp,q(α
′
1, α

′
2, . . . , α

′
n)

≤ (T , S) − DHFGWHMp,q(α1, α2, . . . , αn).

Theorem 11 (Boundedness) Let αi = (μαi , ναi )(i = 1, 2,
. . . , n) be a collection of DHFEs, and α− = (min{μαi },
max{ναi }) = {∪γαi ∈μαi

min{γαi },∪ηαi ∈ναi
max{ηαi }}, α+ =

(max{μαi },min{ναi }) = {∪γαi ∈μαi
max {γαi }, ∪ηαi ∈ναi

min{ηαi }}, then

α− ≤ (T , S) − DHFGWHMp,q(α1, α2, . . . , αn) ≤ α+.

Theorem 12 (Permutation) Let αi = (μαi , ναi )(i = 1, 2,
. . . , n) be a collection of DHFEs. Then

(T , S) − DHFGWHMp,q(α1, α2, . . . , αn)

= (T , S) − DHFGWHMp,q(α̇1, α̇2, . . . , α̇n),

where (α̇1, α̇2, . . . , α̇n) is anypermutationof (α1, α2, . . . , αn).

It is obvious that the proposed (T , S)-DHFGHM and
(T , S)-DHFGWHM operators provide a general expression
with the generators g(x) and h(x). Following, we discuss
some special cases of the proposed (T , S)-DHFGHM and
(T , S)-DHFGWHM operators.

Case 1 When we adopt algebraic operations, the (T , S)-
DHFGHM and (T , S)-DHFGWHM reduce into the
dual hesitant fuzzy geometric Heronian mean and
dual hesitant fuzzy geometric weighted Heronian
mean defined by Yu et al. (2016) in the literature.

Case 2 When we adopt the Einstein operations, the (T , S)-
DHFGHM and (T , S)-DHFGWHM reduce into the
(T , S)-based dual hesitant fuzzy geometric Einstein
Heronian mean operator and (T , S)-based dual hes-
itant fuzzy Einstein geometric weighted Heronian
mean operator.

Case 3 When we adopt the Hamacher operations, the
(T , S)-DHFGHM and (T , S)-DHFGWHM reduce
into the (T , S)-based dual hesitant fuzzy geometric
Hamacher Heronian mean operator and (T , S)-
based dual hesitant fuzzy Hamacher geometric
weighted Heronian mean operator.

Case 4 When we adopt the Frank operations, the (T , S)-
DHFGHM and (T , S)-DHFGWHM reduce into the
(T , S)-based dual hesitant fuzzy geometric Frank
Heronian mean operator and (T , S)-based dual hes-
itant fuzzy Frank geometric weighted Heronian
mean operator.

Case 5 When DHFS reduce into intuitionistic fuzzy set
and we adopt Algebraic operations, the (T , S)-
DHFGHM and (T , S)-DHFGWHM reduce into
intuitionistic fuzzy geometric Heronian mean and
intuitionistic fuzzy geometric weighted Heronian
mean defined by Yu (2013) in the literature.

4 Dual hesitant fuzzymultiple attribute
decisionmakingmethod

In this section, we propose a MADM method based on the
(T , S)-DHFGWHMoperator. Let {A1, A2, ...Am} be a set of
alternatives and {C1,C2, . . . ,Cn} be a set of attributes which
weighting vector is ω = (ω1, ω2, . . . , ωn)

T , where ωi ∈
[0, 1],∑n

i=1 ωi = 1. Suppose that R = (ri j )m×n is the deci-
sionmatrix given by decisionmaker, where ri j = (μγi j , νηi j )

denotes the evaluation value represented by a DHFE of alter-
native Ai with respect to attribute C j (1 ≤ i ≤ m, 1 ≤ j ≤
n). The steps of MADM method are as follows.

Step 1 Transform the dual hesitant fuzzy decision matrix
R into the normalized dual hesitant fuzzy decision matrix

123



14730 J. Mo, H.-L. Huang

Table 1 Dual hesitant fuzzy decision matrix R

G1 G2 G3 G4

A1 {{0.3, 0.4}, {0.6}} {{0.4, 0.5}, {0.3, 0.4}} {{0.2, 0.3}, {0.7}} {{0.4, 0.5}, {0.5}}

A2 {{0.6}, {0.4}} {{0.2, 0.4, 0.5}, {0.4}} {{0.2}, {0.6, 0.7, 0.8}} {{0.5}, {0.4, 0.5}}

A3 {{0.5, 0.7}, {0.2}} {{0.2}, {0.7, 0.8}} {{0.2, 0.3, 0.4}, {0.6}} {{0.5, 0.6, 0.7}, {0.3}}

A4 {{0.7}, {0.3}} {{0.6, 0.7, 0.8}, {0.2}} {{0.1, 0.2}, {0.3}} {{0.1}, {0.6, 0.7, 0.8}}

A5 {{0.6, 0.7}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}} {{0.4, 0.5}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}}

Table 2 Ranking results for different values of p and q based on the Einstein operations

p and q Score function Ai (i = 1, 2, 3, 4, 5) Ranking result

p = 1, q = 1 S1 = 0.6297, S2 = 0.6444, S3 = 0.6864, S4 = 0.6084, S5 = 0.7313 A5 � A3 � A2 � A1 � A4

p = 2, q = 2 S1 = 0.272, S2 = 0.284, S3 = 0.3382, S4 = 0.2262, S5 = 0.4334 A5 � A3 � A2 � A1 � A4

p = 3, q = 2 S1 = 0.1639, S2 = 0.1697, S3 = 0.2161, S4 = 0.1086, S5 = 0.3409 A5 � A3 � A2 � A1 � A4

p = 1, q = 5 S1 = 0.0768, S2 = 0.061, S3 = 0.1329, S4 = − 0.0367, S5 = 0.2431 A5 � A3 � A1 � A2 � A4

p = 5, q = 1 S1 = 0.0699, S2 = 0.0601, S3 = 0.0885, S4 = 0.0074, S5 = 0.2633 A5 � A3 � A1 � A2 � A4

p = 4, q = 5 S1 = −0.0627, S2 = − 0.0834, S3 = − 0.0378, S4 = − 0.169, S5 = 0.1257 A5 � A3 � A1 � A2 � A4

p = 5, q = 5 S1 = − 0.0957, S2 = − 0.1212, S3 = − 0.082, S4 = − 0.2071, S5 = 0.0947 A5 � A3 � A1 � A2 � A4

p = 3, q = 7 S1 = − 0.0981, S2 = − 0.1236, S3 = − 0.0736, S4 = − 0.2131, S5 = 0.0925 A5 � A3 � A1 � A2 � A4

p = 10, q = 1 S1 = − 0.14, S2 = − 0.1765, S3 = − 0.1679, S4 = − 0.2443, S5 = 0.0606 A5 � A1 � A3 � A2 � A4

p = 10, q = 10 S1 = − 0.2597, S2 = − 0.3044, S3 = − 0.2935, S4 = − 0.3965, S5 = 0.0617 A5 � A1 � A3 � A2 � A4

p = 12, q = 13 S1 = − 0.2958, S2 = − 0.3427, S3 = − 0.3412, S4 = − 0.4366, S5 = − 0.0962 A5 � A1 � A3 � A2 � A4

R
′ = (r

′
i j )m×n , where

r
′
i j =

{
ri j , for benefit attribute,

(ri j )c, for cost attribute.

Step 2 Choose appropriate (T , S), utilize the (T , S)-
DHFGWHM operator to obtain the aggregation value for
the alternatives

ri = (T , S) − DHFGWHMp,q(r
′
i1, r

′
i2, . . . , r

′
in),

where 1 ≤ i ≤ m.
Step 3 According to Definition 2, the best alternative can

be obtained by ranking the DHFEs ri (i = 1, 2, . . . ,m).

5 Illustrative example

In order to demonstrate the application of the proposed
MADM method, we adopted the example shown in Wang
et al. (2014) for potential evaluation of emerging technol-
ogy commercialization with dual hesitant fuzzy information.
There is a panel with five possible emerging technology
enterprises Ai (i = 1, 2, 3, 4, 5) to select. The experts select
four attribute to evaluate the five possible emerging tech-
nology enterprises: (1) G1 is the technical advancement;

(2) G2 is the potential market; (3) G3 is the industrializa-
tion infrastructure, human resources andfinancial conditions;
(4) G4 is the employment creation and the development
of science and technology. And the attribute weighted is
ω = (0.20, 0.15, 0.35, 0.30)T . The decision making evalu-
atefivepossible emerging technology enterprise Ai (i = 1, 2,
3, 4, 5) under the above four attributes in anonymity, and the
decision matrix R = (ri j )5×4 is presented in Table 1, where
ri j (1 ≤ i ≤ 5, 1 ≤ j ≤ 4) are in the form of DHFEs.

In the following, we use the proposed method to solve this
MADM problem.

5.1 Multiple attribute decisionmaking

In order to get the best alternative, the following steps are
performed.

Step 1 Normalized the decision matrix. Because all
attribute are benefit, this step is skipped.
Step 2 Based on decision matrix and the (T , S)-
DHFGWHMoperator (wherewe choose Einstein t-norm
and t-conorm, p = 1, q = 1). Take emerging technology
enterprise A1 for example, we have

r1 = (T , S) − DHFGWHMp,q(r11, r12, r13, r14)

= 1

1 + 1

4⊗
j=1,k= j

(
(pr1 j )

ω j ⊕ (qr1k)
ωk

) 2
4(4+1)
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Fig. 1 Score for alternative A1 obtained by (T , S)-DHFGWHM oper-
ator

= {{0.7787, 0.7883, 0.8013, 0.8114, 0.7828,
0.7924, 0.8056,

0.8157, 0.7861, 0.7957, 0.809, 0.8193,

0.7902, 0.7999, 0.8133,

0.8236}, {0.1696, 0.1727}}.

Step 3Calculate the score valued S(ri )(i = 1, 2, 3, 4, 5):
S(r1) = 0.6297, S(r2) = 0.6444, S(r3) = 0.6864,
S(r4) = 0.6084, S(r5) = 0.7313.
According to Definition 2, we have A5 � A3 � A2 �
A1 � A4. Therefore, the best emerging technology enter-
prise is A5.

Because p, q are parameter variables, different parame-
ters may have different influences on decision results. In the
following, we discuss the influences of the parameters p, q
on the ranking results of this example. From Table 2, we can
know that different score functions canbeobtainedwhen p, q
are take different values. The ranking results change from
A5 � A3 � A2 � A1 � A4 to A5 � A3 � A1 � A2 � A4

to A5 � A1 � A3 � A2 � A4. It shows that the ranking
result of A1 is betterwith the increase of p, q. The best choice
is always A5 and the worst choice is always A4. When the
parameter p and q change, the change of the score function
of the five alternatives is shown in Figs. 1, 2, 3, 4 and 5.
Therefore, the decision maker can choose the value of p, q
according to actual needs.

5.2 Comparative analysis

Next, in order to verify the effectiveness and superiority of
our method, we use other existing methods to deal with this
example and compare the result with our method.

(1) Comparing with the dual hesitant fuzzy geometric
weighted Heronian mean (i.e., when we take Algebraic
t-norm and t-conorm in this paper) in the literature (Yu
et al. 2016): According to dual hesitant fuzzy geomet-
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Fig. 2 Score for alternative A2 obtained by (T , S)-DHFGWHM oper-
ator
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Fig. 3 Score for alternative A3 obtained by (T , S)-DHFGWHM oper-
ator
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Fig. 4 Score for alternative A4 obtained by (T , S)-DHFGWHM oper-
ator
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ric weighted Heronian mean, where p = 1, q = 1, we
get the ranking result is: A5 � A3 � A2 � A1 � A4.
Obviously, the method in the literature (Yu et al. 2016)
has the same ranking result as our method. However, our
method adopted the general t-normand t-conorm, and the
literature (Yu et al. 2016) uses theAlgebraic t-norm and t-
conorm. Because the Algebraic t-norm and t-conorm are
only a special case of the general t-norm and t-conorm.
Therefore, the proposed method in this paper is more
general than the method in the literature (Yu et al. 2016).

(2) Comparing with the dual hesitant fuzzy Algebraic
weighted geometric operator in the literature (Wang et al.
2014): As the example used in the literature (Wang et al.
2014) is the same as this paper, we can see from the
literature (Wang et al. 2014) that the ranking result is:
A5 � A3 � A2 � A4 � A1.

(3) Comparingwith thedual hesitant fuzzyEinsteinweighted
geometric operator in the literature (Yu 2015):We get the
ranking result is: A5 � A3 � A2 � A4 � A1.

According to (2) and (3), we compare the character-
istics of our method with studies (Wang et al. 2014; Yu
2015). The method in the literature (Wang et al. 2014)
and the method in the literature (Yu 2015) have the same
ranking result. Although the best alternative is the same
as (T , S)-DHFGWHM (Einstein t-norm and t-conorm) and
dual hesitant fuzzy geometricweightedHeronianmean in the
literature (Yu et al. 2016), the ranking results are different.
The reason is our method considers the inter-dependent phe-
nomena among the arguments, and studies (Wang et al. 2014;
Yu 2015) only can provide the weighted geometric function
and do not take into account interrelationship of aggregation
arguments.

To sum up, the proposed method in this paper combines
the Archimedean t-norm and t-conorm with GHM operator
under dual hesitant fuzzy environment. It not only take into
account interrelationship of aggregation arguments, but also
provides a general and flexible tool to deal with dual hesitant
fuzzy MADM problems.

6 Conclusion

Considering the inter-dependent phenomena among the argu-
ments and the generalization of the existing aggregation
operators by general generators based on the Archimedean
t-norm and t-conorm, this paper combines the GHM and
Archimedean t-norm and t-conorm to propose the (T , S)-
DHFGHM and (T , S)-DHFGWHM operators. Their some
properties have been investigated, such as idempotency,
monotonicity, boundedness, and permutation. Meanwhile,
some special cases have been studied. Based on the (T , S)-
DHFGWHM operator, a method has been developed to deal

with a MADM problem under dual hesitant fuzzy environ-
ment. Finally, an example has been given to demonstrate the
effectiveness of our method. The influence of parameters on
the ranking results has been studied, and the superiority of
this method has been illustrated by comparing with other
existing methods.
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