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Abstract
As an important operation in data cleaning, near duplicate Web pages detection and data mining, similarity joins have
received much attention recently. Existing similarity joins fall into two broad categories—the similarity-threshold-based
similarity join and top-k similarity join (TopkJoin). Compared with the traditional one, TopkJoin is more suitable for cases
where the similarity threshold is unknown before hand. In this paper, we focus on the performance optimization problem
of TopkJoin. Particularly, we observed that the state-of-the-art TopkJoin algorithm has three serious performance issues,
i.e., the inappropriate application of hash table, inefficient use of suffix filtering and unnecessary evaluation of excessive
unqualified candidates. To resolve these problems, we proposed a novel algorithm, SETJoin, by combining the existing event-
driven framework with three simple yet efficient optimization techniques, viz., (1) reducing the cost in hashing by rearranging
the orders of the candidate filtering and hash table lookup operations; (2) maximizing the pruning capability of suffix filtering
by judiciously choosing the (near) optimal recursion depth; and (3) terminating join operations earlier by setting a much
tighter stop condition for iteration. The experimental results show that SETJoin achieves up to 1.26x–3.49x speedup over the
state-of-the-art algorithm on several real datasets.

Keywords Set similarity join · Query processing · Candidate filtering

1 Introduction

Similarity joins have a wide range of applications in domains
such as data cleaning (Hernández and Stolfo 1998), near
duplicate Web page detection (Bayardo et al. 2007) and data
mining (Baraglia et al. 2010). For example, recommendation
algorithms often need to compute pair-wise similarity among
users or items and thenmake a recommendation to users who
share similar interests. In data cleaning tasks, similarity join
can serve as a primitive operation to identify different (but
similar) representations of the same entity.

Similarity joins have attracted much attention in recent
years (Arasu et al. 2006; Xiao et al. 2008; Lam et al. 2010;
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Bayardo et al. 2007; Jiang et al. 2014; Chaudhuri et al.
2006; Li et al. 2015). Existing similarity joins fall into
two broad categories—the similarity-threshold-based sim-
ilarity join (SimJoin) and top-k similarity join (TopkJoin).
SimJoin returns pairs of records whose similarities are no
less than a user-specified similarity threshold, whereas Top-
kJoin computes the k most similar record pairs under the
given similarity function.

SimJoin assumes that users can issue an appropriate sim-
ilarity threshold, which is, however, not always available
before hand, especially when one deals with a collection of
records for the first time. To this end,TopkJoin is proposed to
provide the most similar pairs in an alternative way and elim-
inate the guess work users have to do in terms of similarity
threshold. Moreover, TopkJoin is able to support interactive
applications by presenting the k most similar pairs progres-
sively (Xiao et al. 2009; Kim and Shim 2012).

Answering TopkJoin queries involves many challenging
issues. By using an innovative event-driven framework, Xiao
et al. introduced topk-join, the state-of-the-art TopkJoin
algorithm, to address the self-join problem over records in
the form of sets (Xiao et al. 2009). Driven by the prefix
event stream, topk-join performs join operation iteratively
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till the top-k similar pairs are found. The design principles
and implementation details of topk-joinwill be discussed in
Sect. 3.

We observed that topk-join has three serious performance
issues, viz. the inappropriate application of hash table, inef-
ficient use of suffix filtering and evaluating too much totally
unqualified candidates. To resolve these problems, we pro-
posed a novel TopkJoin algorithm, SETJoin, by combining
the event-driven framework with three simple yet efficient
optimization techniques, namely, Switching the positions of
the candidate filtering and hash table lookup operations,
Enhancing the pruning capability of suffix filtering by choos-
ing the near optimal recursion depth and Terminating the
iteration earlier by setting a much tighter stop condition. The
technical contributions of this paper are summarized as fol-
lows.

• In topk-join, a candidate pair may be assembled multi-
ple times. To ensure every candidate is evaluated only
once, a hash table is consulted for each newly generated
candidate pair. This design, however, imposes substan-
tial overhead in performance, which will be discussed
in Sect. 3. To address this problem, we proved that the
simplified pruning conditions of positional and suffix
filtering are applicable on all occasions no matter how
many times a candidate pair has been assembled, based
on which we eliminated the performance bottleneck by
simply rearranging the orders of lookup and filtering
operations.

• Suffix filtering is an efficient pruning technique intro-
duced in Xiao et al. (2008), which recursively compares
the Hamming distance of a candidate pair with the
given maximum possible Hamming distance. Its prun-
ing capability relies heavily on the recursion depth. The
conventional wisdom is that the recursion depth should
not be too large, and thus it is often set to a small integer,
say 2, in existing algorithms (Jiang et al. 2014; Wang
et al. 2012; Xiao et al. 2009, 2008). We made an obser-
vation that this widely practicedmethod underutilizes the
pruning power of suffix filtering. To this end, we devel-
oped a cost model to identify the determining factors that
affect the performance. Based on thismodel, a thumb rule
is introduced for choosing the (near) optimal recursion
depth, which suggests that, counter intuitively, the recur-
sion depth should not be too small.

• In topk-join, the iteration terminates when the similarity
of the kthmost similar candidate pair seen so far is no less
than the maximum similarity upper bound of the latest
pending prefix event.While this stop condition is correct,
we noticed that quite an amount of time is wasted in
computing the similarities of unqualified candidates. To
improve the performance, we devised amuch tighter stop
condition. Theoretical analysis shows that the new stop

Table 1 Two sets of records

r1 {conf1, is, a, DB, conference}

s1 {conf2, is, a, IR, conference}

r2 {conf3, is, a, DB, workshop}

s2 {conf4, is, a, IR, workshop}

condition does not affect the correctness of the algorithm
and is able to cease join operations much earlier than the
existing one.

• We conducted comprehensive experiments to demon-
strate the efficiency of the proposed algorithm. Exper-
imental results show that SETJoin achieves up to 1.26x–
3.49x speedup over the state-of-the-art algorithm on
several real datasets. Moreover, as k increases and/or the
average record lengths become longer, SETJoin will out-
perform topk-join by a larger margin.

The rest of the paper is organized as follows. Problem
formulation and overview of several filtering techniques
are given in Sect. 2. Section 3 reviews the state-of-the-art
TopkJoin algorithm. The three optimization methods are
discussed in detail in Sect. 4. Experimental studies are con-
ducted in Sect. 5. We present the related work in Sect. 6 and
conclude the paper in Sect. 7.

2 Preliminaries

2.1 Problem formulation

A record is represented as a set of tokens from a finite uni-
verse U . Given two records r and s, a similarity function
sim(r , s) returns a value that indicates the similarity of these
two records. The larger the value is, the more similar the two
records are. In this paper, we consider the following similar-
ity functions.

Definition 1 Assume r and s are two records.

• Jaccard similarity: simJ (r , s) = |r∩s|
|r∪s| .

• Cosine similarity: simC (r , s) = |r∩s|√|r |·|s| .
• Dice similarity: simD(r , s) = 2·|r∩s|

|r |+|s| .• Overlap similarity: simO(r , s) = |r ∩ s|.

where |r | denotes the size of r .
As a running example, consider the following two sets of

records R = {r1, r2} and S = {s1, s2} illustrated in Table 1.
For r1 and s1, we have |r1| = 5, |s1| = 5 and |r1∩s1| = 3.

It is easy to see that simJ (r1, s1) = 3
7 , simC (r1, s1) = 3

5 ,
simD(r1, s1) = 3

5 and simO(r1, s1) = 3.
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Table 2 A global ordering according to DF

Word Token Doc. Freq.

conf1, conf2, conf3, conf4 e1, e2, e3, e4 1

conference e5 2

workshop e6 2

DB e7 2

IR e8 2

a e9 4

is e10 4

Table 3 Sorted tokenized
records r1 {e1, e5, e7, e9, e10}

s1 {e2, e5, e8, e9, e10}
r2 {e3, e6, e7, e9, e10}
s2 {e4, e6, e8, e9, e10}

Definition 2 (Top-k Similarity Join) Given two sets of
records R and S, a similarity function sim and a user-
specified parameter k, a top-k similarity join returns the k
most similar record pairs, that is, {〈r , s〉i |〈r , s〉i ∈ R×S, 1 ≤
i ≤ k} such that ∀〈r , s〉i s.t . sim(r , s) ≥ sim(rr , ss) where
〈rr , ss〉 ∈ R × S\{〈r , s〉i }.

Given records listed in Table 1, Jaccard similarity simJ

and k = 2, the TopkJoin query returns {〈r1, s1〉, 〈r2, s2〉}
since simJ (r1, s1) and simJ (r2, s2) are both equal to 3

7 ,which
are greater than simJ (r1, s2) = 1

4 and simJ (r2, s1) = 1
4 .

To minimize the number of candidates, elements in U are
often sorted according to the increasing order of their doc-
ument frequencies (DF) (Bayardo et al. 2007; Xiao et al.
2009, 2008). Table 2 lists a global ordering of elements and
tokens of all records. Table 3 shows the tokenized records
which have been sorted based on the global ordering.

Similar to Xiao et al. (2009) and Bayardo et al. (2007),
we concentrate on the self-join problem, viz., R = S, in
this paper. Consider the inherent relation between different
similarity functions in Definition 1, we focus on Jaccard sim-
ilarity in the rest of this paper, unless otherwise stated.

2.2 Overview of several filtering techniques

Existing similarity join algorithms usually employ a filter-
and-verification framework. In the candidate generation
phase, the inverted indices are probed and a large number
of candidate pairs are generated. To avoid computing the
exact similarities of all candidate pairs, efficient filtering
techniques are solicited to prune those that cannot be similar.
Thereafter, the remaining candidates (verification pairs) are
passed down to the final verification phase. In this section,
we will give a brief overview of three prevailing filtering
methods that are closely related to our work.

2.2.1 Prefix filtering

The basic idea of prefix filtering is that, instead of indexing
all tokens for each record, one only needs to index and exam-
ine the first few tokens of each record during the candidate
generation phase. In this way, the index size and the number
of candidates can be both reduced dramatically. Lemma 1
gives a formal description of the prefix filtering principle.

Lemma 1 (Prefix Filtering Principle) Consider a set of
records, each of which consists of tokens sorted accord-
ing to a global ordering O over the token universe U . If
simO(r , s) ≥ t , then the (|r | − t + 1)-pre f i x of r and the
(|s| − t + 1)-pre f i x of s must share at least one common
token, where the p-pre f i x of r is the first p tokens of r .

Consider records in Table 3 and suppose t = 4, the
2-pre f i xes are {e1, e5}, {e2, e5}, {e3, e6} and {e4, e6} for r1,
r2, s1 and s2, respectively. Since the 2-pre f i xes of r1 and s2
(r2 and s1) have no common token, 〈r1, s2〉 (〈r2, s1〉) can be
pruned safely without checking the remaining tokens.

While the prefix filtering principle is formulated using
Overlap similarity, extensions can bemade to other similarity
functions listed in Definition 1. Particularly, if sim(r , s) ≥ θ ,
we can transform this constraint into its equivalent formusing
Overlap similarity as follows.

• If simJ (r , s) ≥ θ , then |r ∩ s| ≥ |r | · θ , thus t = �|r | · θ�.
• If simC (r , s) ≥ θ , then |r ∩ s| ≥ √|r | · θ , thus t =

�√|r | · θ�.
• If simD(r , s) ≥ θ , then |r ∩ s| ≥ |r | · θ

2−θ
, thus t =

�|r | · θ
2−θ

�.

2.2.2 Positional filtering

The similarity thresholdmapping betweenOverlap and other
similarity functions discussed in Sect. 2.2.1 is over pes-
simistic. During the index construction phase, this treatment
is inevitable because, for any record r , we have no ideawhich
other records r will be paired with. In the candidate gener-
ation phrase, however, one could obtain a larger similarity
threshold by taking the lengths of both records into con-
sideration. The refined similarity threshold mappings are as
follows: (based onwhich amore powerful filtering technique,
i.e., positional filtering)

• If simJ (r , s) ≥ θ , then |r ∩ s| ≥ (|r | + |s|) · θ
1+θ

, thus t

= �(|r | + |s|) · θ
1+θ

�.
• If simC (r , s) ≥ θ , then |r ∩ s| ≥ √|r | · |s| · θ , thus t =

�√|r | · |s| · θ�.
• If simD(r , s) ≥ θ , then |r ∩ s| ≥ |r |+|s|

2 · θ , thus t =

� |r |+|s|
2 · θ�.
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Positional filtering exploits the position information of the
common token(s) between two records to further reduce the
number of candidates. To elaborate the key idea of positional
filtering, an illustrative example borrowed from Xiao et al.
(2008) is given below.

Example 1 Consider two records r and s and suppose the
similarity threshold is 0.8.

r = {e1, e2, e3, e4, e5}
s = {e2, e3, e4, e5, e6}

As discussed earlier, the refined overlap similarity thresh-
old t for 〈r , s〉 is equal to �(5 + 5) · 0.8

1+0.8� = 5. Obviously,
〈r , s〉 does not meet this constraint and thus should be pruned
as early as possible. However, since the prefixes of r and s
(underlined tokens) share a common token, e2, 〈r , s〉 will
be still assembled during the candidate generation phrase.
Please note that the prefix length here is determinedby �|r |·θ�
instead of �(|r | + |s|) · θ

1+θ
�

If we look carefully into r and s, one can see that the
position of the first common token e2 actually matters in
estimating the overlap similarity of 〈r , s〉. Specifically, the
maximum possible overlap between r and s is the sum of the
current overlap value and theminimumnumber of the unseen
tokens between them, that is, 1 + min(3, 4) = 4, which is
less than t = 5. Therefore, 〈r , s〉 can be pruned by exploiting
the position information of their tcommon tokens.

Lemma 2 generalizes the idea of positional filtering.

Lemma 2 (Xiao et al. 2008)Consider a set of records, each of
which consists of tokens sorted according to a global order-
ing O over the token universe U . Let token e = r [i], r is
partitioned by e into the left part rl [e] = r [1 · · · i] and right
part rr [e] = r [i +1 · · · |r |]. If simO(r , s) ≥ t , then for every
token e ∈ r∩s, simO(rl(e), sl(e))+min(|rr (e)|, |sr (e)|) ≥ t .

According to Lemma 2, given an Overlap similarity
threshold t , a candidate pair can be pruned if Eq. (1) holds.

simO(rl(e), sl(e)) + min(|rr (e)|, |sr (e)|) < t (1)

2.2.3 Suffix filtering

The candidate size might still grow quadratically with the
number of records even if positional filtering is used. To fur-
ther reduce the cost of exact similarity computation, suffix
filtering is introduced in Xiao et al. (2008) based on two
important insights.

The first insightful observation is that overlap constraint
can be converted to the equivalent Hamming distance con-
straint as shown in Eq. (2).

simO(r , s) ≥ t ⇐⇒ disH (r , s) ≤ |r | + |s| − 2t (2)

where disH (r , s) denotes the Hamming distance between r
and s.

Let rp and rs denote the prefix and suffix of r . The Ham-
ming distance of 〈rs, ss〉 can be bounded using Eq. (3) if
simO(r , s) ≥ t .

disH (rs, ss) ≤ Hmax = |r | + |s| − 2t

− (|rp| + |sp| − 2simO(rp, sp))

(3)

where (|r |+ |s|−2t) is the maximum possible Hamming
distance of 〈r , s〉 and (|rp|+|sp|−2simO(rp, sp)) is the exact
Hamming distance of 〈rp, sp〉. For any 〈r , s〉, if disH (rs, ss)
is greater than Hmax, it can be pruned safely.

The second observation is that the Hamming distance of
〈rs, ss〉 can be estimated efficiently in a recursive way. Fig-
ure 2gives an illustrative examplewhere r={e1, e3, e5, e7, e8}
and s = {e2, e3, e4, e5, e6}. The estimation algorithm starts
by choosing one record as the probing record. In Fig. 2, r is
selected. Tokens in r can be examined one at a time in an
arbitrary order. As shown in Fig. 2a, suppose the 3rd token
in r (e5) is chosen first. Using e5, r is divided into two sec-
tions. Similarly, we divide s into two sections as well using
e5. While the contents of the left and right sections of r and s
are still unknown (marked with “?”), the Hamming distance
between r and s can be lower bounded by summing up the
difference of the left sections and that of the right sections.

To improve the accuracy of estimation, one can probe the
left and right sections of r and s recursively. As shown in
Fig. 2b, e7 splits the right section of r into an empty subsec-
tion (left) and a subsection with two tokens (right). Similarly,
the right section of s is partitioned into a single-token sub-
section and an empty subsection. Having these subsections,
the Hamming distance between the right sections of r and s
is lower bounded by 3, which is much larger than 1 as shown
in Fig. 2a.

Actually, if all tokens in r are probed in a similar vein, we
can get the exact Hamming distance of r and s as shown in
Fig. 2c. In a nutshell, this estimation method provides much
higher estimation accuracy at the cost of larger probing and
computation time.

3 Topk-Join review

In this section, we will review topk-join, the state-of-the-art
TopkJoin algorithm and discuss its performance issues.

topk-join uses an event-driven framework to perform join
operations incrementally till the k most similar pairs are
found. The key notion in this framework is the prefix event,
which is defined as a 3-tuple (r , pr , ubpr ). For record r ,
pr denotes the position of the token to be processed and
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e1 e3 e5

e2 e3 e5

e1 e4 e5 e6

e2 e4 e5 e6

e1 e5 e6 e7 e8

e2 e5 e6 e7 e8

r1

r2

r3

r4

r5

r6

1 0.67 0.33 1 0.75 0.5 0.25

1 0.8 0.6 0.4 0.2

Fig. 1 Prefix events

ubpr represents the similarity upper bound between r and the
remaining (unseen) records w.r.t. r [pr ]. Equation (4) shows
how ubpr is calculated (Xiao et al. 2009).

ubpr = 1 − pr − 1

|r | (4)

Figure 1 illustrates the prefix events of six records r1–r6.
For each token of a record, the number on top of it represents
the associated similarity upper bound. Take r1 as an example,
the prefix events associated with e1, e3 and e5 are (r1, 1, 1),
(r1, 2, 0.67) and (r1, 3, 0.33), respectively.

Conceptually, topk-join processes prefix events as fol-
lows.

1. Sort all prefix events in descending order of ubpr .
2. Fetch the prefix event with the greatest ubpr . If ubpr >

simk , probe the inverted index using r [pr ] and generate
candidates. Otherwise, the whole procedure terminates.
simk is the similarity of the kth most similar pairs seen
so far.

3. Remove the prefix event that has been processed from
the sorted list and go back to Step 2.

The pseudo-code of topk-join is shown in Algorithm 1.
The max-heap Eh is used to sort prefix events in descending
order of ubpr . For each record r , the prefix event (r , 1, 1) is
added into Eh at the initialization stage (Line 1). Then, the
prefix event with the highest ubpr is iteratively popped out
(Line 3). Using the token in a prefix event, say (r , pr , ubpr ),
the index is probed and all candidate pairs that share the
common token r [pr ] are assembled (Line 7).

Since thenumber of candidates is oftenprohibitively large,
positional and suffix filtering are used to prune most of the
unqualified candidates (Line 9). For candidates that cannot be
pruned (verification pairs), their exact similarities are com-
puted (Line 10). The min-heap Toph is used to store the k
most similar pairs that have been seen so far. The inverted
index is updated to accommodate r in the inverted list of
token r [pr ] (Line 12). At the end of each iteration, the next
prefix event of r is pushed onto Eh for further processing
(Line 13–14). The whole iteration terminates if ubpr is no

greater than the similarity of the kth element in Toph (Line
5–6), which means that no more eligible candidates exist.

As an illustration, Fig. 3 depicts the main steps in eval-
uating the top-1 similarity join query over dataset shown in
Fig. 1. Each step here consists of four operations, i.e., popup
of a prefix event from Eh, maintaining the inverted index,
updating the result set and pushing a new prefix event onto
the max-heap. In Step 1 and Step 2, the result set is empty
because nomatching record canbe foundvia index searching.
Starting with step 3, new candidate pairs are gradually gen-
erated and the similarity value of the most similar pair keeps
increasing. Thewhole procedure stops in step 11, where ubpr
of the prefix event (r2, 2, 0.67) is equal to the similarity of
〈r5, r6〉.

In topk-join, the similarity of a verification pair might be
computedmultiple times if these two records sharemore than
one common token. To address this problem, Algorithm 1
uses a hash table H to avoid the repeated evaluation of the
same verification pair. Particularly, for each candidate pair
〈r , s〉, H is consulted first to see whether 〈r , s〉 has been
processed (Line 8). The further processing is carried out only
if 〈r , s〉 appears for the first time (Line 10).

Although topk-join has employed a few optimization
techniques to reduce the number of candidates and avoid
repeated verifications, we observed that there were three seri-
ous performance problems in Algorithm 1.

1. While being introduced to improve the performance, the
hash table itself actually becomes a serious performance
bottleneck.

2. The pruning capability of suffix filtering has not been
fully exploited.

3. The stop condition is not tight enough, and toomuch time
is wasted in evaluating totally unqualified candidates.

In the next section,wewill discuss themain causes of these
problems and provide three simple yet efficient solutions to
improve the performance.

4 Optimizing top-k similarity join

In this section, we present a novel top-k similarity join algo-
rithm, SETJoin, by combining the event-driven framework
with three optimization techniques, which will be discussed
in Sects. 4.1, 4.2 and 4.3, respectively.

4.1 Switch the positions of hash table lookup and
filtering operations

Recall that topk-join utilizes a hash table to guarantee that
each verification pair is evaluated only once. Although it
seems that the performance could be improvedby eliminating
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r

s

? ? ? ?e5

? ? ? e5 ?

     estimated as (3-2)+(2-1)=2
     in the first round

? e3 e5 e7 ?

e3 e5 ???

     as (1-1)+(1-0)+(1-0)+(2-0)=4 in the
     second round

e1 e7 e8

???

(a) The Hamming distance is (b) The Hamming distance is estimated (c) The Hamming distance is estimated
      as 1+1+1+(1-0)+(2-0)=6 in the third
      round

e3

e3

e5

e5

Fig. 2 An illustrative example of suffix filtering

(r1, 1, 1) (r2, 1, 1)

e2

e1 e1

(r3, 1, 1)

e1

<r1,r3,0.4>

(r4, 1, 1)

e2

e1

<r1,r3,0.4>

(r5, 1, 1)

e2

e1

<r3,r5,0.5>

(r6, 1, 1)

<r3,r5,0.5>

(r5, 2, 0.8)

e5

<r3,r5,0.5>

{r1} {r1}

{r2}

{r1r3}

e2 {r2}

{r5}

(r6, 2, 0.8)

<r5,r6,0.67>

(r3, 2, 0.75)

<r5,r6,0.67>

(r4, 2, 0.75)

<r5,r6,0.67>

(r1, 2, 0.67)

{r1r3}

{r2r4} {r2r4}

{r1r3r5}

e2

e1

{r2r4r6}

{r1r3r5}

e2

e1

{r2r4r6}

{r1r3r5}

e5 {r5r6}

e2

e1

{r2r4r6}

{r1r3r5}

e4 {r3}

e2

e1

{r2r4r6}

{r1r3r5}

e5 {r5r6}
e4 {r3r4}

e2

e1

{r2r4r6}

{r1r3r5}

e5 {r5r6}

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10 Step11

Eh.pop( )

Inverted
Index

Result

(r1, 2, 0.67) (r2, 2, 0.67) (r3, 2, 0.75) (r4, 2, 0.75) (r5, 2,0.8) (r6, 2, 0.8) (r5, 3, 0.6) (r6, 3, 0.6) (r3, 3, 0.5) (r4, 3, 0.5)Eh.push( )

Events

Fig. 3 An illustrative example of how topk-join works

Algorithm 1: Topk-Join(R,k)
Input: R is a collection of records; k is a user-specified

parameter
Output: Top-k similar pairs

1 Initialize prefix event and result heaps Eh and Toph ;
2 while Eh �= ∅ do
3 (r , pr , ubpr ) ← Eh.pop();
4 simk = Toph[k].sim;
5 if ubpr ≤ simk then
6 break;

7 Generate candidate pairs 〈r , s〉 via index searching;
8 if 〈r , s〉 /∈ H then
9 Perform positional and suffix filtering;

10 Compute the similarity of 〈r , s〉;
11 H ← H ∪ 〈r , s〉;
12 Update the inverted index and Toph ;
13 Calculate new similarity upper bound ubpr for r ;
14 Eh.push(r , pr + 1, ubpr )

the repeated computation, the fact is that the hash table itself
becomes a new performance bottleneck.

Figure 4 compares the total running time and the cost of
hash table operations by running a top-500 similarity join
query over TREC dataset.1 The hashing cost is obtained by
performing insertion and lookup operations alone using the
real trace collected during the query execution. As depicted
in Fig. 4, the overhead in hashing accounts for more than
20% of the total query time.

We found that this problem is mainly due to the huge
number of lookup operations. Particularly, topk-join often

1 Will be discussed in Sect. 5 in more detail.

generated a great many candidates2 and, for every assembled
candidate, the hash table has to be consulted once in Algo-
rithm 1. Despite the overhead for performing a single lookup
is cheap, the total hashing cost could become unbearable if
the number of lookup operations is prohibitively large.

Thanks to positional and suffix filtering, only a small
fraction of candidates (2.4 million in the aforementioned
example) could enter the final verification phase . In other
words, most of candidates have no chance to become the
verification pairs. This observation suggests that if the filter-
ing operation is performed before the lookup operation, i.e.,
swapping Line 8 and Line 9 in Algorithm 1, a vast majority
of lookup operations could be avoided and the hashing cost
would be reduced dramatically.

Although the idea is simple,moving the filtering operation
forward is not as trivial as it appears. To be specific, recall
that a candidate pair can be pruned by positional filtering
if Eq. (1) is satisfied (Lemma 2). In topk-join, Eq. (1) is
replacedwith Eq. (5) inwhich simO(rl(e), sl(e)), the overlap
of the left parts of r and s, is set to 1. This simplified pruning
condition is correct here because (1) only the first instance
of 〈r , s〉 can enter the filtering stage in Algorithm 1, and (2)
simO(rl(e), sl(e)) is equal to 1 when 〈r , s〉 is generated for
the first time.3

1 + min(|rr (e)|, |sr (e)|) < t (5)

2 For instance, during the execution of the top-500 query, over two
hundred million candidate pairs are generated.
3 We do not present the details of prefix and positional filtering in
Algorithm 1 for the sake of conciseness.
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Fig. 4 The running time versus the cost of hashing

Provided positional filtering was switched ahead of the
lookup operation, we would have to resort to Eq. (1) again
because it is general enough to handle the mth duplicate
of 〈r , s〉 (m > 1). Assume Eq. (1) is employed, then
simO(rl(e), sl(e)) of ALL candidates must be either com-
puted and stored or calculated multiple times in order to
evaluate this inequality,whichwill definitely degrade the per-
formance considering the huge number of candidate pairs.

Fortunately, we have the following observation that can
help us out of the dilemma.

Lemma 3 In positional filtering, using Eq. (5) as the filtering
condition provides correct answers on all occasions no mat-
ter howmany times a candidate pair is assembled, andEq. (5)
is actually more efficient than Eq. (1) in pruning capability.

Proof 1 We first prove the case in which a candidate pair
appears for the first time. Suppose e is the first common
token shared by r and s, then simO(rl(e), sl(e)) = 1
and the maximum possible overlap of 〈r , s〉 is equal to
1+min(|rr (e)|, |sr (e)|). It is direct from Lemma 2 that 〈r , s〉
can be pruned if Eq. (5) holds. Please note that in topk-join
t = �(|r | + |s|) · simk

1+simk
� as the exact threshold is unknown

before the algorithm terminates.
The mth duplicate of 〈r , s〉 (m > 1) could be pruned

only if m + min(|rr (e)|, |sr (e)|) is less than t accord-
ing to Lemma 2, where e is the mth common token.
As m + min(|rr (e)|, |sr (e)|) is always greater than 1 +
min(|rr (e)|, |sr (e)|), candidates satisfying Eq. (1) will defi-
nitely be pruned when Eq. (5) is used. In other words, Eq. (5)
is more strict than Eq. (1).

Equation (5) may prune eligible candidates. This, how-
ever, has no impact on the correctness of final results because
it doesn’t matter whether the mth duplicate of 〈r , s〉 is
wrongly handled as long as its first instance is processed
correctly. The by-product of using Eq. (5) as the pruning
condition is that more candidate pairs could be pruned com-
pared with Eq. (1). We prove the Lemma. ��

Similarly, Lemma 4 shows that, for suffix filtering, Eq. 6
(as a replacement of Eq. 3) is also applicable in all cases.

disH (rs, ss) > Hmax = |r |+ |s|−2t − (|rp|+ |sp|−2) (6)

Lemma 4 In suffix filtering, using Eq. (6) as the filtering con-
dition provides correct answers on all occasions no matter
how many times a candidate pair is assembled, and Eq. (6)
is actually more efficient than Eq. (3) in pruning capability.

Proof 2 The proof strategy is similar to that used in Lemma 3.
Suppose e is the first common token in the prefixes of r and s,
then simO(rp, sp) = 1 and themaximum possible Hamming
distance between r and s is |r | + |s| − 2t − (|rp| + |sp| − 2),
where t = �(|r | + |s|) · simk

1+simk
�. As discussed in Sect. 2.2.3,

if the estimated Hamming distance is greater than this upper
bound (Eq. (6) holds), it can be pruned safely.

The mth duplicate of 〈r , s〉 (m > 1) could be pruned
only if the estimated Hamming distance is greater than |r | +
|s| − 2t − (|rp| + |sp| − 2m) according to Eq. (3). Since
|r | + |s| − 2t − (|rp| + |sp| − 2) is less than |r | + |s| − 2t −
(|rp| + |sp| − 2m), it will be much easier for a candidate to
be pruned using Eq. (6) instead of Eq. (3). The correctness of
suffix filtering, however, is still guaranteed because the top-k
similar pairs will definitely be included in the final result set
as long as the first instance of 〈r , s〉 is correctly processed.
We prove this lemma. ��

Lemmas 3 and 4 suggest that, while the simplified pruning
conditions (Eqs. (5) and (6)) are only correct for the first
instance of a candidate pair theoretically, they actually work
very well on all occasions and are even more efficient than
Eqs. (1) and (3) in pruning power. With the help of these
two lemmas, we can simply switch the positions of filtering
and hash table lookup operations in Algorithm 1 without any
concern of the correctness issues.

4.2 Enhance the pruning capability of suffix filtering

Suffix filtering is an efficient pruning method introduced
in Xiao et al. (2008). As discussed in Sect. 2.2.3, by com-
paring the estimated Hamming distance of the suffixes of
〈r , s〉 and Hmax calculated using Eq. (6), one may determine
whether 〈r , s〉 should be discarded.

The pseudo-code of suffix filtering is sketched in Algo-
rithm 2.4 The function Partition splits a record into two
partitions (Lines 4–5), and the estimated Hamming distance
H in current recursion level is calculated in Line 6. If the
Hamming distance is large enough to prune 〈r , s〉, H is
returned (Line 7–8). Otherwise, SuffixFilter is invoked recur-
sively with smaller Hmax and greater d (Line 10–13). There

4 Please note that the suffixes of two records are passed to r and s when
SuffixFilter is invoked

123



14584 H. Wang et al.

Algorithm 2: SuffixFilter(r , s,Hmax,d)
Input: r and s are two records; Hmax is the upper bound of

Hamming distance; d is the current recursive depth
Output: The estimated Hamming distance between r and s

1 if d > maxdepth then
2 return abs(|r | − |s|);
3 mid ← �|s|

2 �; e ← s[mid] ;
4 (sl , sr , diff ) ← Partition(s, e) ;
5 (rl , rr , diff ) ← Partition(r , e) ;
6 H ← abs(|rl | − |sl |) + abs(|rr | − |sr |) + diff ;
7 if H > Hmax then
8 return H
9 else

10 temp1 = Hmax − abs(|rl | − |sl |) − diff ;
11 temp2 = Hmax − abs(|rr | − |sr |) − diff ;
12 Hl ← SuffixFilter(rl , sl , temp2, d + 1);
13 Hr ← SuffixFilter(rr , sr , temp1, d + 1);
14 return Hl + Hr + diff

are two stop conditions for the recursion: (1) the estimated
Hammingdistance is greater than Hmax (Line 7); (2) the depth
of recursion is greater than the given threshold maxdepth
(Line 1–2).

Since Hmax is fixed for a given candidate pair, the prun-
ing capability of suffixfiltering relies heavily on the recursion
depthmaxdepth. The conventional wisdom is that the recur-
sion depth should not be too large because, intuitively, the
larger maxdepth is, the more running time filtering opera-
tions will cost. For instance, in Jiang et al. (2014),Wang et al.
(2012), Xiao et al. (2009) and Xiao et al. (2008), it is stated
that “for efficiency reasonmaxdepth is set to 2” without any
justification or explanation.

Although this simple rule works in some cases, we believe
that an in-depth analysis will be more helpful in under-
standing how and why the performance of topk-join varies
with maxdepth. To this end, we introduced a cost model to
quantitatively analyze which factors in suffix filtering really
matters. Based on thismodel,we presented a counter intuitive
guiding principle, with the aid of which the (near) optimal
maxdepth could be obtained.

Given a set of candidate pairs, let Ci
f , Ce, Ni

f and Ni
r

denote the average filtering cost, the average cost for calcu-
lating the exact similarity, the number of pruned candidates
and the number of remaining candidates at the i th level of
recursion, respectively. The total cost of suffix filtering and
exact similarity computation in the case of maxdepth = x
can be formulated as follows.

Cx
T =

x−1∑

i=1

Ni
f C

i
f + Nx

r (Cx
f + Ce) (7)

The difference between Cx−1
T and Cx

T indicates whether
the overall running time can be reduced if the recursion depth

Table 4 Sample statistics collected while running ppjoin+ over TREC
dataset with θ = 0.8

x N x
f N x

r Cx
T (s)

2 1,844,993 354,211 9.106

3 344,203 10,008 8.552

4 9358 623 8.545

5 99 524 8.640

increases by 1. To computeCx−1
T −Cx

T , we first need to prove
the following lemma.

Lemma 5 Given a fixed set of candidate pairs, Ci
f and Ni

f
(if defined) are invariable for invocations of SuffixFilter with
different maxdepth.

Proof 3 The argument is true because SuffixFilter is deter-
ministic and the stop condition (Line 7–8) guarantees that,
for any prunable candidate pair, SuffixFilter will terminate at
the same recursion level no matter how much maxdepth is.
As a result, Ci

f and Ni
f do not vary with maxdepth. ��

With Lemma 5 and the fact Ni−1
r = Ni

f + Ni
r as per

definition, Eq. (7) can be calculated as follows.

Cx−1
T − Cx

T

= Nx−1
r (Cx−1

f + Ce) − Nx
f C

x
f − Nx

r (Cx
f + Ce)

= Nx
f (C

x−1
f + Ce) + Nx

r (Cx−1
f + Ce)

−Nx
f C

x
f − Nx

r (Cx
f + Ce)

= Nx
f (Ce + Cx−1

f − Cx
f ) − Nx

r (Cx
f − Cx−1

f ) (8)

Equation (8) suggests that, as maxdepth increases, the
overall running time would drop if Nx

f (Ce +Cx−1
f −Cx

f ) is

greater than Nx
r (Cx

f − Cx−1
f ). Otherwise, the performance

would become even worse.
Since (Ce + Cx−1

f − Cx
f ) and (Ck+1

f − Ck
f ) are constant

for a given set of candidate pairs, how to choose an optimal
maxdepth solely depends on Nx

f and Nx
r . As an illustra-

tion, Table 4 depicts the overall running time, Nx
f and Nx

r

while running ppjoin+5 over TREC dataset with a similarity
threshold of 0.8.

As we can see, Cx
T keeps decreasing with x until x = 4.

This is because Nx
f is far greater than Nx

r when x falls in
between 1 and 4. In the case of x of 5, Nx

f is much less than
Nx
r . Therefore, increasing the recursion depthwould not help

improving the performance according to Eq. (8). In addition,
it easy to see that | Cx−1

T − Cx
T | becomes very small as x

grows. The reason is that Nx
f and Nx

r both decline rapidly

5 ppjoin+ is the state-of-the-art SimJoin algorithm proposed in Xiao
et al. (2008).

123



SETJoin: a novel top-k similarity join algorithm 14585

Table 5 Sample statistics collectedwhile running topk-join over TREC
dataset with k = 500

x N x
f N x

r Cx
T (s)

2 8,572,295 4,173,994 82.382

3 3,178,453 995,541 62.542

4 897,702 97,839 55.904

5 86,837 11,002 55.374

6 4266 6736 55.513

7 322 6414 55.564

with x , which renders that | Cx−1
T − Cx

T | decreases in a
similar way. For example, in the case of k ≥ 4, | Cx−1

T −
Cx
T | is less than 0.1 second. All these observations prove the

validity of our cost model.
When we turn to topk-join, the picture is somewhat dif-

ferent. As show in Table 5, where statistics are collected by
running topk-join with k = 500 over TREC dataset, Nx

f and
Nx
r aremuch greater than their counterparts in Table 4. Please

note that this comparison is reasonable because the similarity
of the 500th most similar record pair is approximately equal
to 0.8.

The reasons for such a remarkable difference are two
folds: (1) In topk-join, the same candidate might be assem-
bledmultiple times, and (2)At the early stage of the execution
of topk-join, simk is far less than the similarity of the kth
most similar pair, which makes that the overlap threshold
t = �(|r | + |s|) · simk

1+simk
� is smaller than how much it should

be. As a result, the pruning capabilities of positional and
suffix filtering are crippled in this case.

Table 5 indicates that the pruning power of suffix filtering
has not been fully exploited considering maxdepth is only
set to 2 in topk-join. Theoretically, the optimal maxdepth
can be obtained by comparing Cx−1

T and Cx
T for all possi-

ble recursion depths. This method, however, is impractical
because we cannot collect all necessary statistics needed in
Equation (8) without running SuffixFilter first. Moreover, the
performance of suffix filtering depends on k, which makes it
hard to find a global optimal maxdepth.

In our preliminary experiments, which is exemplified in
Table 5, we observed that

• C
xopt
T is almost equal to the optimal total running time,

where xopt is the recursion depth in which Nx
f is less than

Nx
r for the first time (xopt is equal to 6 in Table 5).

• Cx
T grows very slowly with the increase in the recursion

depth after the total running time reaches the minimum.
• The differences between the optimal maxdepth for dif-
ferent k that we experimented with are very small (no
greater than 2).

Please note that these experimental results agree with the
proposed costmodel since Nx

f and N
x
r are very small for large

x ,whichmeans neither pruning candidates nor computing the
exact similarities would not cost much time. Based on these
observations, we could use the thumb rule below to find the
(near) optimal maxdepth in practice.

Rule of Thumb When a TopkJoin query is issued over a
dataset for the first time, one could set a largemaxdepth, say
10, and then record the corresponding xopt. For successive
queries, maxdepth can be simply set to xopt + 1.

4.3 Terminate the iteration earlier

Recall that topk-join utilizes an event-driven framework to
perform the join operation incrementally and terminates if
the similarity upper bound of the latest pending prefix event
is no greater than the similarity of the kth most similarity pair
seen so far. While the stop condition is correct, we observed
that the time instant simk reaches its maximum is much ear-
lier than the time in which the stop condition is satisfied. In
other words, a large amount of time is wasted in checking
totally unqualified candidates. This observation leads us to
ask whether the stop condition could be somehow tightened.

Next, we will introduce a new stop condition that is able
to terminate the algorithm earlier. Our findings are motivated
by an observation due to Xiao et al. (2009).

Observation 1 (Xiao et al. 2009)Given twoarbitrary records
r and s, suppose the similarity upper bound associated with
r [pr ] (s[ps]) is ubpr (ubps ), then the following inequality
holds

simJ (r , s) = |r ∩ s|
|r ∪ s|

≤ ubpr ubps
ubpr + ubps − ubpr ubps

(9)

The right hand of Eq. (9) is called the accessing similar-
ity upper bound, which has two important properties: (1) it
decreases monotonically with ubpr (ubps ) when ubps (ubpr )
is fixed; (2) its value is no less than ubpr (ubps ).

With these properties,we consider to replaceubpr inAlgo-

rithm 1 (Line 4) with ubpr ubmax
ubpr +ubmax−ubpr ubmax

, where ubmax is
the maximum ubps seen so far. Theorem 1 shows that this
replacement has no effect on the correctness of the event-
driven framework.

Theorem 1 Assume 〈r , pr , ubpr 〉 is the latest pending prefix
event and ubmax is the greatest similarity upper bound seen so
far. Substituting

ubpr ubmax
ubpr +ubmax−ubpr ubmax

for ubpr in Algorithm 1
(Line 4) does not affect the correctness of this algorithm.

Proof 4 As discussed in Sect. 3, all prefix events are popped
out from the max-heap in descending order of their sim-
ilarity upper bounds. If the new condition holds, i.e.,
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Fig. 5 An illustration of how to choose smaller ubmax

ubpr ubmax
ubpr +ubmax−ubpr ubmax

≤ simk , then for every upcoming

candidate pair 〈rr , ss〉 we have ubprr ubpss
ubprr +ubpss−ubprr ubpss

≤
ubpr ubmax

ubpr +ubmax−ubpr ubmax
according to the aforementioned two

properties and the fact that ubprr and ubpss are both no greater
than ubpr and ubmax. As a result, we have

ubprr ubpss
ubprr +ubpss−ubprr ubpss

≤ simk ,which implies simJ (rr , ss) ≤
simk by Observation 1. We proved the theorem. ��

The efficiency of the new stop condition is determined
by how small ubmax could be. For example, if we take all
processed prefix events into account, ubmax will be equal to
1, which renders ubpr ubmax

ubpr +ubmax−ubpr ubmax
= ubpr and thus no

performance gain could be achieved.
We observed that, however, using a smaller ubmax is fea-

sible. Take Fig. 5 as an example, there are three records r1,
r2 and r3 of lengths 4, 6 and 8, respectively. Each rectangle
represents a prefix event and the number in it gives the asso-
ciated similarity upper bound. The lines with arrows show in
which order these prefix events are processed. In view of the
length of r1 being 4, we divide the similarity range of [0,1]
into four equally spaced intervals, i.e., [1,0.75),[0.75,0.5),
[0.5,0.25), [0.25,0]. In each interval, one can see that, for
every ri , i = 1, 2, 3, at least one prefix event is processed
and r1 always owns the maximum similarity upper bound.

This observation suggests that we don’t have to use the
globally maximal similarity upper bound, i.e, 1, in Eq. (9).
Instead, a local maximumwill suffice for all upcoming prefix
events. Tobe specific, the latestubpr1 could serve asubmax for
the corresponding interval. For example, suppose the prefix
event (r2, 4, 0.5) is under processing. Since it lies in the third
interval, we could let ubmax = 0.5. By Eq. (9), the new stop
condition would be 0.33 ≤ simk , which is much tighter than
the original one, i.e., 0.5 ≤ simk . The following theorem
generalizes the preceding discussion.

Theorem 2 Given a set of records, suppose r is of the short-
est length and ubpr comes from the most recently processed
prefix event of r , using ubpr as ubmax in the stop condition
guarantees the correctness of the algorithm.

Proof 5 Obviously, the argument is true for the first inter-
val. Suppose 〈r , pr , ubpr 〉 and 〈s, ps, ubps 〉 lie in the mth

r1

r2

rm-1

.........

rm.........
rw-1

rw

Partition1

Partition2

.........
rn

Partition3

Fig. 6 A sample dataset with three partitions

interval (m > 1), and 〈s, ps, ubps 〉 is under processing. For
any prefix events 〈rr , prr , ubprr 〉 and 〈rr , prr , ubprr 〉 com-

ing after 〈s, ps, ubps 〉, ubprr ubpss
ubprr +ubpss−ubprr ubpss

is no greater

than ubpr ubps
ubpr +ubps−ubpr ubps

because all prefix events are pro-
cessed in decreasing order of their associated similarity upper
bounds. As ubpr is the local maximum in each interval, we

have simJ (rr , ss) ≤ simk if
ubpr ubps

ubpr +ubps−ubpr ubps
≤ simk (the

stop condition holds). Please note that the prefix event of any
record in the dataset appears at least once in each interval.
Therefore, the above analysis is general enough to cover all
possible candidates that will be paired during the mth inter-
val. We proved this theorem. ��

There is still one problem to solve before we could enjoy
the benefit brought by the new stop condition: how do we
deal with datasets in which the minimal record lengths are
very short? For example, if the size of the shortest record,
say r , is 1, ubmax will be always equal to 1.

Our solution requires that all records are ordered in the
ascending order of their lengths, which can be easily done
during the preprocessing phase (Bayardo et al. 2007). Then,
the records are divided (conceptually) into multiple over-
lapped partitions as shown in Fig. 6. Starting with the record
with the largest size (rn in this example), each small parti-
tion is a subset of a large partition, which then is contained
by a larger partition, and so on and so forth. In each parti-
tion, ubpri of the most recently processed prefix event out
of the shortest record, e.g., r1, rm and rw in Fig. 6, is used
as ubmax for all records in this partition. For every candidate
pair 〈r , s〉, we first need to find the minimal partition r and
s belong to by comparing their ids with those of r1, rm and
rw, and then evaluate the stop conditions of the correspond-
ing partitions. Put it another way, we use multiple ubmax and
stop conditions for candidates in different partitions. Once
the stop condition of some partition is satisfied, all upcom-
ing candidates belonging to this partition could be pruned.

In our preliminary experiments, we noticed that the num-
ber of partitions should not be too large since the cost of
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checking which partition a candidate belongs to rises with
the increase in the number of partitions. Experiment results
show that splitting the dataset into 4 partitions achieves the
best performance in most cases.

By combining these three optimizations with the existing
event-driven framework, we propose a novel top-k similarity
join algorithm SETJoin. As shown in Algorithm 3, the hash
table lookup and filtering operations are switched (Line 10–
11), the depth of recursion in suffix filtering is set to the (near)
optimal value using the thumb rule (Line 10), and a new stop
condition is employed (Line 7). For clarity of presentation,
we do not show the pseudo-code for the dataset partitioning
approach.

Algorithm 3: SETJoin(R,k)
Input: R is a collection of records sorted by the ascending order

of their lengths; k is a user-specified parameter
Output: Top-k similar pairs

1 Initialize prefix event and result heaps Eh and Toph ;
2 while Eh �= ∅ do
3 (r , pr , ubpr ) ← Eh.pop();
4 if r = r1 then
5 ubmax = ubpr ;

6 simk = Toph[k].sim;

7 if ubpr ubmax
ubpr +ubmax−ubpr ubmax

≤ simk then
8 break;

9 Generate candidate pairs 〈r , s〉 via index search;
10 Perform positional filtering and suffix filtering with the (near)

optimal maxdepth ;
11 if 〈r , s〉 /∈ H then
12 Compute the similarity of 〈r , s〉;
13 H ← H ∪ 〈r , s〉;
14 Update the inverted index and Toph ;
15 Calculate new similarity bound ubpr for r ;
16 Eh.push(r , pr + 1, ubpr )

5 Experimental study

We conduct extensive experiments to verify the efficiency of
SETJoin in comparison with the state-of-the-art algorithm.

5.1 Experiment setup

The following algorithms are implemented and compared.
topk-join is the state-of-the-art TopkJoin algorithm pro-

posed in Xiao et al. (2009). Similar to Xiao et al. (2009),
maxdepth is set to 2 for DBLP, TREC and ENRON-3GRAM
datasets, and 4 for TREC-3GRAM dataset.

SETJoin(v1∼v3) are three algorithms implemented to
clearly demonstrate the efficiency of the three optimiza-
tion techniques. Particularly, hash optimization is enabled

Table 6 Dataset statistics

Datasets Size avg_len max_len min_len

DBLP 861,567 14.3 284 3

TREC 345,969 114.4 609 24

TREC-3GRAM 345,969 387.8 1202 50

ENRON-3GRAM 245,557 524.1 24,592 3

in SETJoin-v1 and maxdepth is set to the (near) optimal
value in SETJoin-v2. In SETJoin-v3, all three optimizations
are incorporated in.

Weperformed the experimentswith the following publicly
available datasets. DBLP is a snapshot of the bibliography
records from the DBLP Web site.6 It contains about 0.9M
records, each of which is a concatenation of author name(s)
and the title of a publication. TREC is fromTREC-9 Filtering
Track Collections.7 It contains 0.35M references from the
MEDILINE database. We extract and concatenate author,
title and abstract fields to form the records. ENRON-3GRAM
is from the Enron email collection.8 It contains about 0.25M
emails from about 150 users, mostly senior management of
Enron. We tokenized it into 3-g to form ENRON-3GRAM.
TREC-3GRAM is the same as TREC dataset except that each
record is transformed into a set of 3-grams.

In the preprocessing of datasets, letters are converted into
the lowercases, and white spaces and punctuation are sub-
stituted with underscores before extracting 3-grams. Exact
duplicates are removed, and all records are sorted in ascend-
ing order of size. The dataset statistics are listed in Table 6.

Similar to Xiao et al. (2009), our experiments covered
Jaccard and Cosine similarities. The preprocessing and load-
ing time are not included in the total running time . The
experiments were run on a machine with a 1.9GHz Xeon(R)
E5-2420 CPU and 16G RAM. The operating system is
Ubuntu 12.04, and all algorithm were implemented in C++
and compiled using gcc-4.5.

5.2 Experiment results and analysis

5.2.1 Experiment 1

In this experiment, we compared SETJoin(v1∼v3) with
topk-join over DBLP and ENRON-3GRAM datasets. The sim-
ilarities of the top-k pairs are very high in these two datasets,
and the average record length of DBLP is short, whereas
ENRON-3GRAM ismainly composedof long records.maxdepth
is set to 6 in SETJoin(v2∼v3) according to the thumb rule.
Each dataset is divided into 4 partitions for early termination,

6 http://www.informatik.uni-trier.de/ ley/db.
7 http://trec.nist.gov/data/t9-filtering.html.
8 http://www.cs.cmu.edu/ enron.
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Fig. 7 The runtime for ENRON-3GRAM dataset

and the sizes of large partitions are multiples of that of the
smallest one. Figures 7 and 8 report the runtime on DBLP
and ENRON-3GRAM datasets. As one can see, the runtimes
of all algorithms grow with the increase in k and SETJoin
outperforms topk-join consistently. For Jaccard similarity,
SETJoin-v3 achieves 1.2x to 2.7x speedup on DBLP and 1.3x
to 1.47x speedup on ENRON-3GRAM. For Cosise similarity,
SETJoin-v3 is up to 1.8 and 1.9 times faster than topk-join on
DBLP and ENRON-3GRAM, respectively. In addition to the
obvious superiority of SETJoin, several interesting observa-
tions are worth mentioning.

1. InFig. 8a, hashoptimizationdominates the performance
improvement on DBLP under Jaccard similarity. As shown
in Fig. 9a, the number of hash table lookups is reduced by
two orders of magnitude in SETJoin-v1, which leads to a
significant decrease in the total running time. In contrast,
suffix filtering optimization didn’t contribute much while
the number of verification pairs has dropped by one order
of magnitude as shown in Fig. 10a. This is mainly because
(1) it takes very short time to compute the exact similar-
ity of a single pair for short records and (2) the number of
pruned candidates due to this optimization is still not large
enough. Figure 8a shows that the early termination optimiza-
tion didn’t workwell either. The reason is that the short prefix
lengths make ubmax of the four partitions equal to 1 in most
cases. In Fig. 8c, suffix filtering optimization and the early
termination strategy begin to perform better as k grows, but
their contributions are still incomparable with that of hash
optimization.

2. Figure 8b, d shows that suffix filtering optimization
works much better under Cosine similarity on DLBP dataset.
The truth, however, is that the performance gain brought
by hash optimization becomes less significant. Table 7 lists
the similarities of the kth most similar pair on DLBP and
ENRON-3GRAM datasets under Cosine and Jaccard simi-
larity functions for different k values. Apparently, Cosine
similarity thresholds are higher than those under Jaccard sim-
ilarity for the same k. Consequently, as we can see in Fig. 9,
the number of candidates under Cosine similarity is much

smaller than its counterpart for Jaccard similarity,9 which
makes the hash optimization strategy less effective. At the
same time, the performance improvement due to suffix filter-
ing optimization remains almost the same because, as shown
in Fig. 10, the numbers of verification pairs under Jaccard
and Cosine similarities are both reduced by around the same
order of magnitude in SETJoin-v2. The net result is that suffix
filtering optimization looks comparable with the first opti-
mization strategy.

Early termination performs better as well under Cosine
similarity. Besides the reason discussed above, the other
subtle cause is that the accessing similarity bound is

ub2pr ub
2
max

ub2pr +ub2max−ub2pr ub
2
max

for Cosine similarity (Xiao et al. 2009),

which decreases faster than ubpr ubmax
ubpr +ubmax−ubpr ubmax

w.r.t. ubpr
and ubmax. Therefore, the corresponding stop condition is
much tighter than the one under Jaccard similarity.

3. Suffix filtering optimization performs pretty well on
ENRON-3GAM dataset as shown in Fig. 7. This is because
the long average record length leads to a dramatic increase
in the cost of exact similarity computation. Early termination
also benefit from the long average record (prefix) length since
there are more chances for ubmax to be less than 1.

5.2.2 Experiment 2

In this section, we compared SETJoin with topk-join over
TREC and TREC-3GRAM datasets. The similarities of the
top-k pairs are relatively low in these two datasets, and
TREC-3GRAM has much longer average record length than
TREC. maxdepth is set to 7 in SETJoin. Each dataset is
divided into 4 partitions. Figure 11 reports the runtime on
TREC and TREC-3GRAM datasets. As we can see, the run-
times of all algorithms grow with k and SETJoin beats
topk-join in all cases. For TRECdataset, SETJoin-v3 achieves
2.54x to 3.46x speedup under Jaccard similarity and 2.92x
to 3.06x speedup w.r.t. Cosine similarity. For TREC-3GRAM
dataset, SETJoin-v3 is up to 1.73 times faster than topk-
join under Jaccard similarity and 1.63 times faster w.r.t.
Cosine similarity. Also, we have the following observations.

1. For TREC dataset, suffix filtering optimization domi-
nates the performance gain under both Jaccard and Cosine
similarities, whereas for TREC-3GRAM dataset, increasing
maxdepth seems to be less effective. The reason is that, as
shown in Fig. 12, the number of verification pairs decreases
by three orders of magnitude for TREC dataset but only
one order of magnitude for TREC-3GRAM dataset. Such a
significant difference results from the different settings of
maxdepth—in topk-join, maxdepth is set to 2 for TREC
dataset while is already set to 4 for TREC-3GRAM dataset.

9 Please note that the number of hash lookup operations is equal to the
number of generated candidates in topk-join.
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Table 7 Similarities of the kth
most similar pairs for different k
values

Datasets/Similarity function Top-1000 Top-5000 Top-10,000

DBLP/Jaccard 0.909 0.833 0.769

DBLP/Cosine 0.952 0.905 0.859

ENRON-3GRAM/Jaccard 0.991 0.974 –

ENRON-3GRAM/Cosine 0.995 0.987 –
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Table 8 The number of pruned candidates before and after enabling
hash optimization

Algorithm/Method Top-500 Top-1000 Top-1500

topk-join/Suffix 25M 52M 72M

SETJoin-v1/Suffix 27M 56M 79M

topk-join/Positional 52M 121M 185M

SETJoin-v1/Positional 54M 127M 197M

2. As a typical example, Fig. 13 depicts how simk

(sim_k), ubpr (upper_bound) and
ubpr ubmax

ubpr +ubmax−ubpr ubmax
(new

upper_bound) vary over time in SETJoin-v3. The statistics
is collected by running a top-500 query over TREC dataset
under Jaccard similarity.As one can see, simk (ubpr ) declines
(rises) smoothly as the number of processed prefix events
increases. On the contrary, ubpr ubmax

ubpr +ubmax−ubpr ubmax
experienced

frequent sharp declines because the ubmax factor is included
in the new stop condition, which is fulfilled (the intersection
of black and blue lines) before the original one. Obviously,
this optimization is able to help SETJoin terminate much ear-
lier than topk-join.

3. Table 8 lists the number of pruned candidate pairs for
topk-join and SETJoin-v1.As expected, the pruning capabili-
ties of suffix and positional filtering are both improved when
hash optimization is enabled, which bears out the analysis
made in Lemma 3 and Lemma 4.

6 Related work

Similarity joins have receivedmuch attention in recent years.
Generally speaking, similarity joins can be categorized into
two classes—the similarity-threshold-based one and top-k
similarity join.

SimJoin has been widely studied in Arasu et al. (2006),
Xiao et al. (2008), Lam et al. (2010), Bayardo et al. (2007),
Jiang et al. (2014), Chaudhuri et al. (2006), Sarawagi andKir-
pal (2004). In Chaudhuri et al. (2006), a primitive operator
is proposed based on prefix filtering. Bayardo et al. utilizes
the ordering of vectors and filtering techniques tailored for
Cosine similarity function to find similar pairs (Bayardo et al.
2007). Arasu et al. employ the pigeon hole principle to divide
the records into partitions and then eliminate false positive in
a post filtering step (Arasu et al. 2006). A novel framework
is designed to identify similar records using token transfor-
mations (Arasu et al. 2008). More recently, some researchers
studied how to perform efficient similarity joins on a map-
reduce platform (Metwally and Faloutsos 2012; Vernica et al.
2010; Baraglia et al. 2010; Sarma et al. 2014; Deng et al.
2014; Huang et al. 2014; Fries et al. 2014). Instead of provid-
ing the exact answers, some other studies focus on retrieving
approximate similar pairs (Charikar 2002; Broder et al. 1998;
Gravano et al. 2001; Behm et al. 2011; Jestes et al. 2010).

TopkJoin returns the k most similar pairs. The top-k
join problem has been addressed in spatial database com-
munity (Corral et al. 2000; Zhu et al. 2005). For records in
the form of sets in high dimensional space, Xiao et al. pro-
posed the first top-k similarity join algorithm based on an
event-driven framework. Kim and Shim (2012) proposed to
use a map-reduce framework to support top-k similarity join.

Mann et al. (2016) compared 7 threshold-based set sim-
ilarity join algorithms such as ALL, PPJ, PPJ+, MPJ, PEL,
ADP, GRP. Quirino et al. (2018) uses GPU to speed up the
similarity join algorithm. Wang et al. (2017) leveraging Set
Relations to speed up similarity search algorithms. However,
all of them belong to the threshold-based join algorithms. In
the top-k similarity join topic, there are mostly application
papers, such as SriUsha et al. (2018), Hu et al. (2016), Willi
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et al. (2017) and Xiong et al. (2015). These papers show the
algorithm has broad applications in practice.

7 Conclusion

In this paper, we studied the problem of top-k similarity
join over sets. In view of the performance bottlenecks in
the state-of-the-art TopkJoin algorithm, we proposed a novel
algorithm SETJoin. To be specific, 1. we proved that the sim-
plified pruning conditions of positional and suffix filtering
are applicable on all occasions no matter how many times a
candidate pair has been assembled, based on which we elim-
inated the performance bottleneck by simply rearranging the
orders of look up and filtering operations. 2. We developed
a cost model to identify the determining factors that affect
the performance. Based on this model, a thumb rule is intro-
duced for choosing the (near) optimal recursion depth, which
suggests that, counter intuitively, the recursion depth should
not be too small. 3.We devised amuch tighter stop condition.
Theoretical analysis shows that the new stop condition does
not affect the correctness of the algorithm and is able to cease
join operations much earlier than the existing one. We have
implemented our algorithm and compared with topk-join.
For DBLP and ENRON-3GRAM data set, SETJoin-v3 is up
to 1.8x and 1.9x times faster than topk-join, respectively. For
TREC dataset, SETJoin-v3 achieves 2.54x to 3.46x speedup.
For TREC-3GRAM dataset, SETJoin-v3 is up to 1.63x to
1.73x times faster than topk-join. Experimental results show
that our algorithmoutperforms substantially over the existing
one on several real datasets.
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In: Hammoudi S, Śmiałek M, Camp O, Filipe J (eds) Enterprise
information systems. ICEIS 2017. Lecture notes in business infor-
mation processing, vol 321. Springer, Cham, pp 74–95

Sarawagi S, Kirpal A (2004) Efficient set joins on similarity predicates.
In: SIGMOD, pp 743–754

Sarma AD, He Y, Chaudhuri S (2014) Clusterjoin: a similarity joins
framework using map-reduce. PVLDB 7(12):1059–1070

SriUsha I, Choudary KR, Sasikala T et al (2018) Data mining tech-
niques used in the recommendation of e-commerce services. In:
second international conference on electronics, communication
and aerospace technology (ICECA). IEEE, pp 379–382

Vernica R, Carey MJ, Li C (2010) Efficient parallel set-similarity joins
using mapreduce. In: SIGMOD, pp 495–506

Wang J, LiG, Feng J (2012)Canwebeat the prefixfiltering?Anadaptive
framework for similarity join and search. In: SIGMOD, pp 85–96

123



14592 H. Wang et al.

Wang X, Qin L, Lin X, Zhang Y, Chang L (2017) Leveraging
set relations in exact set similarity join. Proc VLDB Endow
10(9):925–936

Willi M, Augsten N, Jensen CS (2017) Swoop: top-k similarity joins
over set streams. arXiv: Databases

Xiao C,WangW, Lin X, Yu JX (2008) Efficient similarity joins for near
duplicate detection. In: WWW, pp 131–140

Xiao C, Wang W, Lin X, Shang H (2009) Top-k set similarity joins. In:
ICDE, pp 916–927

Xiong Y, Zhu Y, Yu PS (2015) Top-k similarity join in heterogeneous
information networks. IEEE Trans Knowl Data Eng 27(6):1710–
1723

Zhu M, Papadias D, Zhang J, Lee DL (2005) Top-k spatial joins. IEEE
Trans Knowl Data Eng 17(4):567–579

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/Databases

	SETJoin: a novel top-k similarity join algorithm
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem formulation
	2.2 Overview of several filtering techniques 
	2.2.1 Prefix filtering
	2.2.2 Positional filtering
	2.2.3 Suffix filtering


	3 Topk-Join review
	4 Optimizing top-k similarity join
	4.1 Switch the positions of hash table lookup and filtering operations
	4.2 Enhance the pruning capability of suffix filtering
	4.3 Terminate the iteration earlier

	5 Experimental study
	5.1 Experiment setup
	5.2 Experiment results and analysis
	5.2.1 Experiment 1
	5.2.2 Experiment 2


	6 Related work
	7 Conclusion
	Acknowledgements
	References




