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Abstract
Image segmentation is the initial step for every image analysis task. A large variety of segmentation algorithm has been
proposed in the literature during several decades with some mixed success. Among them, the fuzzy energy-based active
contour models get attention to the researchers during last decade which results in development of various methods. A good
segmentation algorithm should perform well in a large number of images containing noise, blur, low contrast, region in-
homogeneity, etc. However, the performances of the most of the existing fuzzy energy-based active contour models have been
evaluated typically on the limited number of images. In this article, our aim is to review the existing fuzzy active contour
models from the theoretical point of view and also evaluate them experimentally on a large set of images under the various
conditions. The analysis under a large variety of images provides objective insight into the strengths andweaknesses of various
fuzzy active contour models. Finally, we discuss several issues and future research direction on this particular topic.

Keywords Segmentation · Active contour · Fuzzy energy · Blur · Intensity in-homogeneity · Noise and low contrast

1 Introduction

Image segmentation is a fundamental task in image analysis,
computer vision, medical image processing, etc (Gonzalez
and Woods 2008; Garcia-Lamont et al. 2018). Segmentation
is a process of partitioning an image into various regions
which are homogeneous with respect to their features (e.g.,
intensity, color, texture, etc) (Gonzalez and Woods 2008;
Zaitoun and Aqel 2015). Various image segmentation algo-
rithms have been developed during several decades (Fu and
Mui 1981; Sahoo et al. 1988; Pal and Pal 1993; Khan 2014;
Zaitoun and Aqel 2015). Among them, clustering and active
contour models (acms) are most commonly used for image
segmentation. Fuzzy logic has been used to solve various
problems: decision making (Amin et al. 2019; Fahmi et al.
2019), pattern recognition (Melin 2018; Mitchell 2005),
image segmentation (Naz et al. 2010; Zhang et al. 2017),
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etc. Fuzzy clustering has been successfully considered from
the early stage of the image segmentation task up to now
(Dunn 1973; Bezdek 1981). It can retain more information
from the original image than crisp clustering by introduc-
ing the degree of belongingness of each image pixel to the
clusters (Bezdek 1981). Fuzzy clustering using global image
information is not robust for images which are corrupted by
various types of noise (Dunn 1973; Bezdek 1981). A large
number of modified fuzzy clustering techniques have been
proposed by incorporating local informationwhich is derived
from the image to improve segmentation accuracy (Cai et al.
2007; Krinidis and Chatzis 2010; Gong et al. 2013; Liu et al.
2015; Zhang et al. 2017). Due to incorporation of local infor-
mation, these methods are robust to the noisy environment
to some extend.

Active contour model (acm) developed by Kass et al.
(1988) is successfully applied for image segmentation task
(Nguyen et al. 2012). The main idea of this technique is
deformation of initial curve. Finally, it evolves toward the
object boundary under some constraints. It produces closed
parametric curvewhich represents object boundary (Cremers
et al. 2007). Results are highly depend on the initial contour
position and model is not robust for noisy and/or blurred
images. To overcome these problems, variousmodifiedacms
are invented in the literature (Caselles et al. 1993; Malladi
et al. 1995; Caselles et al. 1997; Yezzi et al. 1997; Cohen
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and Kimmel 1997; Li et al. 2010; Gunn and Nixon 1997;
Zhang et al. 2013). acms consider image gradient to attract
the contour toward object boundary. They fail to extract the
contour of noisy, blurred and discontinuous edged images.

Different from image gradient-based acm models, Chan
and Vese (2001) proposed an active contour (referred as,
Chen-Vese) model which depends on the region informa-
tion of the image. In this model, two regions inside and
outside of the contour are assumed to be homogeneous.
They formulated it as an energy minimization problem and
included global image statistics in this energy function. The
energy function is then transferred into level set formulation.
Chen-Vese model is robust to the initial contour position and
noisy, blurred and discontinuous edged images. However,
Chen-Vese model fails to segment images having intensity
in-homogeneity. To solve this problem, various modification
on Chen-Vese model have been done by incorporating local
image statistics (Li et al. 2008; Lankton and Tannenbaum
2008; Zhang et al. 2010a, b; Wang et al. 2017).

Krinidis and Chatzis (2009) formulated region-based
active contour model as a minimization of fuzzy energy
function different from Chen-Vese formulation. This model
is referred to as fuzzy energy-based active contour model
which can handle objects whose boundaries are not necessar-
ily defined by gradient, objectswith very smooth or evenwith
discontinuous boundaries. The fuzzy logic has been inten-
sively used in clustering (e.g., image segmentation) but not
in active contour models. Generally, fuzzy methods provide
more accurate and robust clustering, and thus the authors
combine fuzzy logic with active contour method to intro-
duce fuzzy energy-based active contour model to segment
images. The fuzziness of this energy function has the ability
to reject local minima, and it is able to produce better seg-
mentation results. Recent days, the researchers developed
various new fuzzy energy-based models (Shyu et al. 2012a;
Tran et al. 2014a, b; Mondal et al. 2016a) by modifying the
base model proposed by Krinidis and Chatzis (2009) which
are able to segment images in various complex environments.
Recently, the fuzzy energy-based active contour models get
attention from the researchers for image segmentation tasks.
Image segmentation using fuzzy energy-based active contour
models has indeed progressed to impressive, even amazing
individual results. But as long asmost of image segmentation
papers (using fuzzy energy-based active contourmodels) still
use a limited number of images to test the performance of
their approach, it is very difficult to conclude anything on
the robustness of the methods in a variety of circumstances.
We feel that the time is ripe for an experimental survey for
various conditions.

The aim of this survey is to access the state-of-the-art
fuzzy energy-based active models for image segmentation
with an emphasis on the accuracy and the robustness of the
models on varying environments. We aim to group the mod-

els on the basis of global or local or both image information
considered to formulate energy function.We also experimen-
tally evaluate the performance of the existing models on the
large number of images having various complexities with
respect to various measures: Jacard error and F-measure.We
have gathered 100 images of various categories under varying
environments. Finally, we provide several issues associated
these methods and future research direction. We hope that
this survey will help the reader to understand insight into
the strengths and weaknesses of various fuzzy energy-based
active contour models from both the theoretical and practical
point of views.

Rest of the paper is organized as follows. We discuss
global fuzzy energy-based active models where energy term
is defined with the global image feature in Sect. 2. Sec-
tion 3 reviews on various local fuzzy energy-based active
contour models while Sect. 4 analyzes global and local fuzzy
energy-based active models from theoretical point of view.
Experimental results and performance analysis of the exist-
ing fuzzy activemodels onvarious categories of images under
several complex conditions are presented in Sect. 5. We dis-
cuss various issues and future research direction in Sect. 7
and finally conclusive remark is given in Sect. 8.

2 Global fuzzy energy-based active contour
models

Krinidis and Chatzis (2009) proposed a fuzzy energy-based
active contour model for image segmentation. In this section,
we discuss their model and its variations.

Let I (X) : Ω → �d be a given vector valued image,
where Ω ⊂ �2 and d ≥ 1 are the image domain and the
dimension of the vector I (X), respectively. In case of the gray
level images, d = 1 while d = 3 for the color images. Let C
be a closed contour in the image domain Ω which separates
Ω into two regions: Ω1 = inside (C) and Ω2 = outside (C).
When a given image I (X) is approximated by two regions
over the image domain Ω , the energy function is defined as

F (C, c1, c2, u)

= μ.L (C) + λ1

∫

Ω

[u (X)]m ‖I (X) − c1‖2 dX

+ λ2

∫

Ω

[1 − u (X)]m ‖I (X) − c2‖2 dX , (1)

where c1 ∈ �d and c2 ∈ �d (depending onC) are the average
prototypes of the regions inside and outside of the contour
C , respectively. The membership function u (X) ∈ [0, 1] is
the degree of membership of a pixel X for belonging to the
inside of C . m > 1 is a weight exponent which controls the
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degree of ‘fuzziness’ of each membership value. L(C) is the
length of the curve (C). The authors considered global image
statistics for energy formulation, and it is referred to as global
fuzzy energy-based active contour model.

The energy function defined in Eq. (1) will be minimized
when the contour C is exactly lie on the object boundary
and average prototypes c1 and c2 optimally approximate the
given image I (X) into two regions, i.e., inside and outside
of C , respectively. The objective is to find such a contour C
which will minimize the energy function defined in Eq. (1)
over all pixels X ∈ Ω . Let us assume, CO be the optimal
extracted boundary of the object, then the energy function
given in Eq. (1) will be minimized if C = CO , i.e.,

CO = argmin
C

F (C, c1, c2, u) . (2)

Therefore, the curve CO is the solution to the segmentation
problem.

Pseudo-level set formulation Krinidis and Chatzis (2009)
defined a pseudo-level set formulation, similar to the level set
method (Osher and Sethian 1988), based on the membership
values u, where the curve C ⊂ Ω is implicitly represented
by the pseudo-zero level set of Lipschitz similar function
u : Ω → �, such that

u(X) =
⎧⎨
⎩
C = {X ∈ Ω : u (X) = 0.5} ,

inside (C) = {X ∈ Ω : u (X) > 0.5} ,

outside (C) = {X ∈ Ω : u (X) < 0.5} .

(3)

Here, it is noted that the regularization or penalty term of
the proposed energy function F(C, c1, c2, u) given in Eq. (1)
is L(C) = ∫

Ω

|∇H (u (X) − 0.5)|dX , where H (s) is a Heav-

iside function (Osher and Sethian 1988).
Therefore, the energy function in Eq. (1) can be rewritten

as

F (C, c1, c2, u) = μ

∫

Ω

|∇H (u (X) − 0.5)|dX

+ λ1

∫

Ω

[u (X)]m ‖I (X) − c1‖2 dX

+ λ2

∫

Ω

[1 − u (X)]m ‖I (X) − c2‖2 dX , (4)

When the energy function defined in Eq. (4) is minimized,
the values of u for the pixels located inside the contour C
are different from its values for the pixels located outside
the contour. However, the values of u for the pixels located
inside the contour C are similar. This is same for the pixels
located outside the contour C .

Keeping u fixed, the authors minimized Eq. (4) with
respect to c1 and c2, and these can be expressed as function
of u as

c1 =
∫
Ω

[u(X)]m I (X)dX
∫
Ω

[u(X)]mdX
(5)

and

c1 =
∫
Ω

[1−u(X)]m I (X)dX
∫
Ω

[1−u(X)]mdX
. (6)

Keeping the values of c1 and c2 fixed, the membership of
each pixel, u(X), is then computed using:

c1 = 1

1+
(

λ1‖I (X)−c1‖2
λ2‖I (X)−c2‖2

) 1
m−1

.
(7)

For simplicity, without loss of generality, the above min-
imization [Eq. (7)] has been done without considering the
length term (i.e., μ = 0).

Due to success of this model on segmentation of blurred,
noisy and discontinuous edged images, the researchers
considered this model or developed various models by
modifying fuzzy energy-based active contour model (Krini-
dis and Chatzis 2009) in the literature to segment variety
of images (Tran et al. 2014a; Wu et al. 2015; Pereira
et al. 2011; Gong et al. 2015; Badshah and Ahmad 2018).
Model proposed by Krinidis and Chatzis (2009) is con-
sidered to analyze liver CT images in Sajith and Har-
iharan (2016) and segment brain tissue in Chen et al.
(2008).

Fuzzy energy-based active contour model produces good
segmentation results for blurred, noisy and discontinuous
edged images. However, it fails for images containing
gradual tonality variations, region in-homogeneity, back-
ground clutter, object occlusion, etc. To overcome draw-
backs of this model, several new methods are invented
in the literature (Tran et al. 2014a; Wu et al. 2015;
Pereira et al. 2011; Gong et al. 2015; Badshah and Ahmad
2018). Pereira et al. (2011) observed that fuzzy active
contour model (Krinidis and Chatzis 2009) fails to prop-
erly segment images containing gradual tonality variations.
To properly segment multi-tonality images, they modi-
fied fuzzy active contour model (Krinidis and Chatzis
2009) by incorporating type-2 fuzzy set which increases
the fuzziness of the energy function. Instead of using
u, which is type-1 fuzzy membership, they applied the
type-2 values ũ in Eqs. (5) and (6), represented by c̃1
and c̃2, respectively. The authors defined energy function
as
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F (C, c̃1, c̃2, ũ)

= μ.L (C) + λ1

∫

Ω

[
ũ (X)

]m ‖I (X) − c̃1‖2 dX

+ λ2

∫

Ω

[
1 − ˜u (X)

]m ‖I (X) − c̃2‖2 dX , (8)

where ũ is type-2 membership function. The authors used
four different functions (Triangular, Exponential, Logarith-
mic and Circular) for calculating type-2 membership values.
They are defined as

Triangular:

ũ(X) = u(X) − 1−u(X)
2 , (9)

Exponential:

ũ(X) = e[u(X)]2 − 1, (10)

Circular:

ũ(X) =
{√

u(X) − [u(X)]2, if u(X) < 0.5
1 − √

u(X) − [u(X)]2, else
, (11)

Logarithmic:

ũ(X) = log2 (u(X) − 1) , (12)

Minimization of energy function defined in Eq. (4) in
fuzzy active contour model (Krinidis and Chatzis 2009) is
time consuming. To minimize the computational cost of this
energy function, Gong et al. proposed a novel bi-convex
fuzzy variation image segmentation method in Gong et al.
(2015). Bi-convex fuzzy variation function finds the global
optimal solution and reduces the computational cost.

Tran et al. (2014a) developed a fuzzy energy-based active
contour model with shape prior for image segmentation. The
authors modified fuzzy energy function defined by Krinidis
and Chatzis (2009) in Eq. (1). The modified energy function
is

F
(
C, c1, c2, u, ψ̂

)

= μ.L (C) + λ1

∫

Ω

[u (X)]m ‖I (X) − c1‖2 dX

+ λ2

∫

Ω

[1 − u (X)]m ‖I (X) − c2‖2 dX

+βFshape
(
u, ψ̂

)
, (13)

where β > 0 is a weighting factor and Fshape
(
u, ψ̂

)
is the

shape prior. The authors defined shape prior as

Fshape
(
u, ψ̂

)
=

∫

Ω

[u (X)]m
(
1 − ψ̂(X)

)
dX

+
∫

Ω

[1 − u (X)]m
(
ψ̂(X)

)
dX , (14)

where ψ̂(x) ∈ [0, 1] is the reference shape. u as the shape
indicated by a curve C which is associated with the segmen-
tation. u can be interpreted as a binary image whose evolving
shape u value is 1 for the pixels located inside C and 0 for
the pixels outside C . The dissimilarity between u and ψ̂ can
be expressed as 1 − ψ̂(X) for pixel inside C and ˆψ(X) for
pixel outside C . u(x) is similarly defined as in Eq. (1). The
shape prior helps the model to properly segment images with
background clutter and object occlusion. Limitation of this
model is unavailability of shape information.

In the same direction, Pham et al. (2016) presented a fuzzy
energy-based active contour model for image segmentation
with shape prior based on collaborative representation of
training shapes. The authors defined new energy function
as

F (C, c1, c2, u, S) =
∫

Ω

[u (X)]m ‖I (X) − c1‖2 dX

+
∫

Ω

[1 − u (X)]m ‖I (X) − c2‖2 dX

+β

⎛
⎝

∫

Ω

(H(u(x) − T ) − DS)2dX + λ ‖S‖2
⎞
⎠

+μ (δ(u(x) − T )| 	 (u(x) − T )|dX) , (15)

where S ∈ R is a coefficient vector and DS is combina-
tion of shape dictionary D. H(v) is heavy side function
and 0 < T < 1. β and μ are positive weighting coef-
ficients. Here, fuzzy energy consists of a data term and a
shape prior term. The data term relies on image informa-
tion to guide the evolution of the contour. The prior shape
is represented as the combination of atoms in the shape dic-
tionary based on collaborative representation. Meanwhile,
the shape prior term constrains the contour evolution with
respect to the prior shape to handle the background clutter
and the object occlusion. This model can segment images
with background clutter and object occlusion even when the
training set includes shapes with large variation. In addition,
this shape collaborative representation model also takes less
computational time compared to shape sparse representation
approach (Tran et al. 2014a).
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Wu et al. (2015) proposed a novel fuzzy energy-based
active contour model with kernel metric for a robust and
stable image segmentation. The author defined the energy
function as

F (C, c1, c2, u) = μ

∫

Ω

δ(u(X − 0.5)) ‖	(X − 0.5)‖ dX

+ λ1

∫

Ω

(u(X))m (1 − K (I (X), c1)) dX

+ λ2

∫

Ω

(1 − u(X))m (1 − K (I (X), c2)) dX ,

(16)

where K is Gaussian kernel function defined as K (a, b) =
exp

(−(a−b)2

σ

)
where σ is the bandwidth of the kernel func-

tion. Incorporation of kernelmetric in the energy function and
the fuzziness of the energy evolve the contour very stably
without the re-initialization. This model properly segment
low contrast images. In the similar direction, Badshah and
Ahmad (2018) proposed a fuzzy energy-based active contour
model to segment images having multi-objects with varying
intensities. The authors defined energy function as

F (C, c1, c2, u) = μ

∫

Ω

(u(X))m (1 − K (I (X), c1)) dX

+
∫

Ω

(1−u(X))m (1−K (I (X), c2)) dX ,

(17)

where K is kernel function and μ is positive parameter. The
authors considered Gaussian type radial basis kernel based
on generalized average into their energy function. Instead
of length term as in Krinidis and Chatzis (2009), Gaussian
smoothing is considered as regularizer term in their energy
function. Experimentally they showed that it performs well
for the complex images.

3 Local fuzzy energy-based active contour
models

Although the global fuzzy energy-based active models pro-
vide good segmentation results, they fail to extract proper
boundary of the object when images contain noise and
intensity in-homogeneity. In such cases, the local energy
term derived from the local image statistics is better to
extract proper object boundary. Various methods (Shyu
et al. 2012b; Tran et al. 2014b; Fang et al. 2016) are
invented to properly segment images under complex envi-
ronment.

Shyu et al. (2012b) proposed a fuzzy energy-based active
contour model involving intensity distribution information
of the image to segment them. The authors defined energy
function as

Flocal (u, h1(X), h2(X))

= λ1

∫

Ω

(∫
Gσ (X − Y ) ‖I (Y ) − h1(X)‖2 [u(Y )]m dY

)
dX

+ λ2

∫

Ω

(∫
Gσ (X − Y ) ‖I (Y ) − h2(X)‖2 [u(Y )]m dY

)
dX ,

(18)

where Y is pixel in the local region around pixel X , I (Y )

is the intensity of pixel Y , Gσ (X − Y ) is the Gaussian
kernel function and h1(X) and h2(X) average intensity val-
ues of local region which are obtained by Gaussian mixture
model-based intensity distribution estimator operator. The
intensity distributions are derived using a Gaussian mixture
model-based intensity distribution estimator before the curve
evolution. Thismodel provides good segmentation results for
noisy images. Tran et al. (2014b) proposed a fuzzy energy-
based active contour based on local image statistics similar
to Eq. (18) to extract object boundaries. In this paper, the
local image intensity distribution information is derived by
Hueckel operator in the neighborhood of each image pixel.
The parameters of Hueckel operator are estimated by a set of
orthogonal Zernike moments. Here, the fuzzy membership
function is considered to measure the association degree of
each image pixel to the region outside and inside the contour.
Thismodel deals with images with intensity in-homogeneity.
In similar direction, Fang et al. (2016) presented a novel fuzzy
region-based active contour model for image segmentation.
For each pixel, local patch energy is incorporated as fuzzy
energy term for the curve evolution. Due to the local infor-
mation, this method is robust to the noisy images. Most of
the cases, the local fuzzy energy-basedmethods produce bet-
ter segmentation results than the global fuzzy energy-based
techniques.

4 Global and local fuzzy energy-based active
contour models

Several algorithms (Shyu et al. 2012a; Krinidis and Krinidis
2012; Mondal et al. 2016a, b) have been developed to bet-
ter segment images with noise, region in-homogeneity, etc.,
by incorporating both the local and global image informa-
tion into the energy function. The local energy is generated
based on local images statistics which can deal with images
having high intensity in-homogeneity or non-homogeneity,
noise and blurred boundary or discontinuous edges. While
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the global term is derived from the global image statistics to
avoid unsatisfactory results due to bad initialization. Com-
bination of both local and global fuzzy energy-based active
contour models provide satisfactory segmentation results.

Shyu et al. (2012a) introduced an energy function consist-
ing of a local fuzzy energy and a global fuzzy energy terms to
attract the active contour and stop it on the object boundary.
They defined energy function as

F (C, c1, c2, f1, f2, u1, u2)

= β

2∑
i=1

λi

∫

Ω

(ui (X))m ‖I (X) − ci‖2dX

+ (1 − β)

2∑
i=1

λi

∫

Ω

(∫
[ui (Y )]m Gσ (X − Y )‖I (Y )

− fi (X)‖dY ) dX , (19)

where
∑2

i=1 λi
∫
Ω

(ui (X))m ‖I (X) − ci‖2dX is global fuzzy

energy term and
∑2

i=1 λi
∫
Ω

(
∫
[ui (Y )]m Gσ (X −Y )‖I (Y )−

fi (X)‖dY )dX is local fuzzy energy term. Similar to Eq. (4),
λ1, λ2 > 0 are two fixed parameters, c1 and c2 are two
constant that approximate the image intensities inside and
outside of the contour (C), u1(X) = u(X) ∈ [0, 1] is the
degree of membership of I (X) to the inside of the contour C
and m is a weighting exponent on each fuzzy membership.
f1(X) and f2(X) are two local functions using to approx-
imate the intensity means of two local regions around the
pixel X inside and outside the contour C . I (Y ) represents
the intensities of the pixels Y which are in a local region
centered at the pixel X (Y is a neighborhood of X ). Gσ is
a Gaussian kernel. The membership function u(Y ) ∈ [0, 1]
is the belongingness of pixel Y to the inside the local region
centered at the pixel X inside the contour C . β is a balance
constant (0 ≤ β ≤ 1). The local energy term deals with the
intensity in-homogeneity presents in the images. The global
energy term avoids unsatisfying results due to unsuitable ini-
tial contour position.

In this direction, Krinidis and Krinidis (2012) proposed a
robust fuzzy energy-based active contour model using both
global and local energy for image segmentation. The pro-
posed energy function is defined as

F (C, c1, c2, u) =
∫

Ω

[u(X)]m
⎡
⎣‖I (X) − c1‖2

+
∫

Ω

wXY [1 − u(Y )]m‖I (Y ) − c1‖2dY
⎤
⎦ dX

+
∫

Ω

[1 − u(X)]m
⎡
⎣‖I (X) − c2‖2

+
∫

Ω

wXY [u(Y )]m‖I (Y ) − c2‖2dY
⎤
⎦ dX , (20)

wXY incorporates the spatial dependency between pixel
X and its neighborhood pixels Y . wXY is defined as

wXY =
{

1
dXY+1 , if X and Y are neighbors

0, otherwise.
, (21)

where dXY is the distance between pixels X and Y . Here, the
local energy is derived based on spatial neighborhood of a
pixel. This method provides better results than global fuzzy
energy-based active contour model (Krinidis and Chatzis
2009).

Thieu et al. (2015) developed a fuzzy energy-based active
contour model using Gaussian distribution function. They
defined energy function as

F
(
C, c1, c2, ξ

2
1 , ξ22 , f1, f2, σ

2
1 , σ 2

2 , u
)

= μ|C | + λ

⎡
⎣−

∫

Ω

logG(I (X) − c1, ξ1)[u(X)]mdX
⎤
⎦

+ λ

⎡
⎣−

∫

Ω

logG(I (X) − c2, ξ2)[1 − u(X)]mdX
⎤
⎦

+ (1 − λ)

⎡
⎣−

∫

Ω

⎡
⎣

∫

Ω

G(X − Y , σ )logG(I (X)

− f1(Y ), σ1)[u(X)]mdY ]
dX

]

+ (1 − λ)

⎡
⎣−

∫

Ω

⎡
⎣

∫

Ω

G(X − Y , σ )logG(I (X)

− f2(Y ), σ2)[1 − u(X)]mdY ]
dX

]
. (22)

μ ≥ 0 controls the length |C | of the contourC . 0 < λ < 1
controls the influence of global and local terms in the energy
function. c1 (c2) and ξ1 (ξ2) are, respectively, globalmean and
standard deviation of the Gaussian distribution inside (out-
side, respectively) the contour C . f1 ( f2) and σ1 (σ2) are,
respectively, the local mean and standard deviation of the
Gaussian distribution inside (outside, respectively) the con-
tourC . Y is the neighborhood pixels of X . The advantages of
this model are as the local intensity allows to handle intensity
in-homogeneity, while the global intensity information helps
to segment images with noisy or smooth boundary.

Mondal et al. (2016a) and Mondal et al. (2016b) pro-
posed a robust fuzzy energy-based active contour model
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Fig. 1 Visual comparison of segmentation results of a Fish, b Cell,
c Butterfly, d 323016, (e) Yellow Pansy flower images using various
techniques. First row: images with initial contours, second row: seg-
mentation result obtained by FEAC, third row: segmentation results
obtained byNFACMKM, fourth row: segmentation results obtained by

FACGK, fifth row: segmentation results obtained byLPFAC, sixth row:
segmentation results obtained by FDFEAC, seventh row: segmenta-
tion results obtained byGLFEAC and eighth row: segmentation results
obtained by RGLFEAC (color figure online)
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Table 1 Quantitative
comparison among various
techniques with respect to
average Jacard error and average
F-measure over 100 original
images

Measures Techniques

m1 m2 m3 m4 m5 m6 m7

Ave. Jacard error 0.217 0.148 0.201 0.251 0.288 0.222 0.068

Ave. F-measure 0.876 0.902 0.886 0.849 0.796 0.867 0.963

m1: feac, m2: nfacmkm, m3: facgk, m4: lpfac, m5: fdfeac, m6: glfeac and m7: rglfeac. Bold
numeric value indicates least average Jacard error corresponds to the best segmentation result. Whereas, italic
numeric value indicates highest F-measure corresponds to the best segmentation result

using both global and local information. Both local spatial
and gray level/color information are considered to calculate
local energy. The energy function is defined as

F (C, c1, c2, u)

= μ.L(C) + λ1β

∫

Ω

[u(X)]m‖I (X) − c1‖2dX

+ λ2β

∫

Ω

[1 − u(X)]m‖I (X) − c2‖2dX

+ λ1(1 − β)

∫

Ω

[u(X)]m

⎡
⎣

∫

Ω

wXY [1 − u(Y )]m‖I (Y ) − c1‖2dY
⎤
⎦ dX

+ λ2(1 − β)

∫

Ω

[1 − u(X)]m

⎡
⎣

∫

Ω

wXY [u(Y )]m‖I (Y ) − c2‖2dY
⎤
⎦ dX . (23)

The term I (Y ) represents the intensity of a pixel Y in a
neighborhood of a pixel X . wXY is the weight of Y th pixel
in a local neighborhood of pixel X . λ1 > 0 and λ2 > 0 are
two fixed parameters. 0 ≤ β ≤ 1 is a constant to control
the influence of both the global energy and local energy. The
weight wXY depends on both the local spatial constraint and
the local gray/color constraint. For each pixel X ∈ Ω , the
local spatial constraint reflects the damping extent of neigh-
bors with the spatial distances from the central pixel and is
defined as

wSC
XY = 1

1+dXY
(24)

with dXY = ‖X−Y‖, where Y ∈ ηX is spatial neighborhood
(local window) of X . The spatial constraint makes the influ-
ence of pixels within the local window. It can be changed
according to their distances from the central pixel. With the
help of spatial constraint, more local information is incor-
porated in the proposed energy model. Whereas, the local
gray/color constraint is defined as

wFC
XY = exp

[
−‖X−Y‖∑

Y∈ηX
‖Y−X‖2

]
, (25)

where I (X) is gray/color value of the central pixel X within a
spatial local window and I (Y ) is the gray/color value of Y th
pixels in the same window. ηX is the neighborhood of pixel
X . The denominator is a function of local density surround-
ing the central pixel and its value reflects the gray/color value
homogeneity degree of that local window. When its value is
small, the localwindow ismore homogeneous and vice versa.
This equation indicates that when the intensity value I (Y ) of
the Y th neighbors of central pixel X is close to I (X), wFC

XY
should be large and vice versa. The value of wXY can be
changed with different gray/color values of the pixels over
an image and thus it reflects the damping extent in the inten-
sity/color values. Now, the weight wXY based on both the
local spatial constraint and the local gray/color constraint is
defined as

wFC
XY = wSC

XY .wFC
XY . (26)

This model better deals with images having high inten-
sity in-homogeneity or non-homogeneity, noise and blurred
boundary or discontinuous edges due to incorporation of the
local energy term in the energy function. The global energy
term is used to avoid unsatisfactory results due to bad ini-
tialization. They applied their proposed model for tracking
camouflaged object in Mondal et al. (2017). Due to incorpo-
ration of local and global image information into the energy
function, the global and local fuzzy energy-based active con-
tour models produce better segmentation results than the
individual local and global fuzzy energy-based models.

5 Experiments

5.1 Evaluationmeasures

Qualities of segmentation results obtained by any algorithm
depend on nature of the considered images. Here, it may be
noted that one segmentation algorithm may not be always
good choice for all types of images. On the contrary, differ-
ent segmentation algorithms may produce different results
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Fig. 2 Visual comparison of segmentation results of blurred a Lily
flower image with Gaussian function (rs = 21, σ = 50), b 98 image
with Gaussian function (rs = 11, σ = 50), c Sharp image with
Gaussian function (rs = 17, σ = 50), d Cell4 image with Gaussian
function (rs = 20, σ = 50), e Starfish image with Gaussian func-
tion (rs = 20, σ = 50) using various techniques. First row: images

with initial contours, second row: segmentation results obtained by
FEAC, third row: segmentation results obtained byNFACMKM, fourth
row: segmentation results obtained by FACGK, fifth row: segmentation
results obtained by LPFAC, sixth row: segmentation results obtained
by FDFEAC, seventh row: segmentation results obtained by GLFEAC
and Eighth row: segmentation results obtained by RGLFEAC
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Table 2 Quantitative
comparison among various
techniques with respect to
average Jacard error and average
F-measure over 100 blurred
images with different Gaussian
function

Measures Techniques

m1 m2 m3 m4 m5 m6 m7

Ave. Jacard error 0.185 0.167 0.172 0.203 0.274 0.195 0.066

Ave. F-measure 0.897 0.906 0.905 0.884 0.812 0.888 0.965

m1: feac, m2: nfacmkm, m3: facgk, m4: lpfac, m5: fdfeac, m6: glfeac and m7: rglfeac. Bold
numeric value indicates least average Jacard error corresponds to the best segmentation result. Whereas, italic
numeric value indicates highest F-measure corresponds to the best segmentation result

for a particular image (Zhang et al. 2008). Therefore, per-
formance evaluation of a segmentation algorithm is the
necessary task. Qualitative comparison is the most com-
mon one. In this article, two measures namely Tanimoto
coefficient/Jacard error (Krinidis and Chatzis 2009) and F-
measure (Lazarevic-McManus et al. 2008) are considered to
analysis the performance of these existing algorithms.

Jacard error It is defined as

J (SE , SO) = 1 −
∫

SE
⋂

SO

dX

∫
SE

⋃
SO

dX
, (27)

where SE and SO are obtained and desired (ground truth) seg-
mentation, respectively. Lower value of J (SE , SO) indicates
better segmentation result.

F-measure It is defined as

F = 2Pr Re
Pr+Re

, (28)

where Pr and Re are precision and recall, respectively, and
defined as

Pr = T P
T P+FP ; Re = T P

T P+FN .

Here, T P is true positive, FP is false positive and FN is
false negative. Higher value of F highlights the better seg-
mentation algorithm.

5.2 Considered images

We consider several categories of 100 images1,2,3 for our
experiments. Images contain intensity in-homogeneity, low
contrast, background clutter, etc. To analysis the robustness
of the considered algorithms under various conditions, the
original images are corrupted by adding Gaussian noise, salt
and pepper noise, mixture of Gaussian and salt and pepper

1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
2 http://imageprocessingplace.com/DIP-3E/dip3e_book_images_do
wnloads.htm.
3 http://www.robots.ox.ac.uk/~vgg/data/flowers/102/.

noise and Gaussian blur. Therefore, these corrupted images
are also taken into consideration for the experiment to anal-
ysis the robustness of these algorithms on difficult noisy
environment.

5.3 Considered algorithms

We consider seven state-of-the-art algorithms to analysis
their performance on various images under the different con-
ditions. The selected algorithms are (i) fuzzy energy-based
active contours (FEAC) (Krinidis and Chatzis 2009), (ii)
novel fuzzy active contour model with kernel metric for
image segmentation (NFACMKM) (Wu et al. 2015), (iii) on
segmentation of images havingmulti-regions usingGaussian
type radial basis kernel in fuzzy sets framework (FACGK)
(Badshah andAhmad 2018), (iv) localized patch-based fuzzy
active contours for image segmentation (LPFAC) (Fang et al.
2016), (v) fuzzy distribution fitting energy-based active con-
tours for image segmentation (FDFEAC) (Shyu et al. 2012b),
(vi) global and local fuzzy energy-based active contours for
image segmentation (GLFEAC) (Shyu et al. 2012a) and (vii)
robust global and local fuzzy energy-based active contour for
image segmentation (RGLFEAC) (Mondal et al. 2016a).

6 Results analysis

6.1 Segmentation of original images

Figure 1 shows few sample segmentation results using var-
ious techniques. From this figure, it is observed that due to
consideration of global information, FEAC fails to prop-
erly segment images having local variations: background
clutter, intensity in-homogeneity, etc (see second row of
this figure). Due to incorporation of kernel metric into the
energy function, both NFACMKM and FACGK produce
better segmentation than FEAC. Kernel function tries to
smooth the local image variation and produces better seg-
mentation results. However, they are also fail to properly
segment the images with background clutter and high region
in-homogeneity, etc. Local image information-based tech-
niques:LPFAC andFDFEAC also produce better results than
FEAC. Local image information in the energy term makes
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Fig. 3 Visual comparison of segmentation results of corrupted a
Starfish image with salt and pepper noise (with probability 0.2), b
Cell5 image with salt and pepper noise (with probability 0.01), c Bird
image with salt and pepper noise (with probability 0.1), d 86,016
image with salt and pepper noise (with probability 0.2), eYellow Pansy
image with salt and pepper noise (with probability 0.1) using various
techniques. First row: images with initial contours, second row: seg-

mentation results obtained by FEAC, third row: segmentation results
obtained byNFACMKM, fourth row: segmentation results obtained by
FACGK, fifth row: segmentation results obtained byLPFAC, sixth row:
segmentation results obtained by FDFEAC, seventh row: segmenta-
tion results obtained byGLFEAC and eighth row: segmentation results
obtained by RGLFEAC (color figure online)
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Table 3 Quantitative
comparison among various
techniques with respect to
average Jacard error and average
F-measure over 100 corrupted
images with salt and pepper
noise

Measures Techniques

m1 m2 m3 m4 m5 m6 m7

Ave. Jacard error 0.278 0.175 0.194 0.276 0.278 0.357 0.071

Ave. F-measure 0.839 0.902 0.890 0.839 0.816 0.781 0.961

m1: feac, m2: nfacmkm, m3: facgk, m4: lpfac, m5: fdfeac, m6: glfeac and m7: rglfeac. Bold
numeric value indicates least average Jacard error corresponds to the best segmentation result. Whereas, italic
numeric value indicates highest F-measure corresponds to the best segmentation result

both LPFAC and FDFEAC techniques robust against back-
ground clutter and region in-homogeneity. However, they are
worst than bothNFACMKM and FACGK. Consideration of
the global and local image information in both techniques:
GLFEAC and RGLFEAC help to segment images properly.
Moreover, RGLFEAC segments images better than all other
techniques. Table 1 displays the quantitative comparison of
them. This table also highlights the similar finding.

6.2 Segmentation of blurred images

To analyze the performance of the existing algorithms under
complex environment, blurredversions of the original images
are also considered in this experiment. Different Gaussian
functions with varying radius (rs) and sigma (σ ) are used
to blur the original images. Figure 2 displays the segmenta-
tion results of blurred images. Since, Gaussian blur functions
smooth the images, all thesemethods obtain better segmenta-
tion results than their segmentation results of corresponding
original images. From this figure, it is observed that except-
ing RGLFEAC, all other methods produce small background
patches as objects for those images having high intensity in-
homogeneity. However, local and global information help
RGLFEAC to properly segment images having high region
in-homogeneity (Table 2).

6.3 Segmentation of corrupted images by slat and
pepper noise

To analyze the robustness of these considered algorithms,
we conducted an experiment to segment images which are
corrupted by various amount of salt and pepper noise. Fig-
ure 3 shows the segmentation results of distorted images
using different algorithms. From this figure, it is observed
that methods: FEAC, LPFAC, FDFEAC and GLFEAC fail
to properly segment images due to noise. However, the
kernel-based methods:NFACMKM and FACGK are able to
segment images along with small background patches. The
local energy term defined based on region homogeneity in
RGLFEAC helps to properly segment noisy images. Table 3
displays statistics of all these methods on segmentation of
noisy images. This table also highlights the similar observa-
tion like visual results.

6.4 Segmentation of corrupted images by Gaussian
noise

We conducted another experiment to analyze performance
of these considered methods on segmentation of corrupted
images by different level of Gaussian noise. Different levels
of Gaussian noise are generated to corrupt the considered
images. Region in-homogeneity is increased due to addi-
tion of Gaussian noise to the original images. Figure 4
presents segmentation of the images corrupted by Gaus-
sian noise. From the figure, it is observed that FEAC is
totally failed to produce proper segmentation of images under
noisy environment. Due to incorporation of Gaussian ker-
nel in the methods: NFACMKM & FACGK, they are able
to obtain good segmentation results for most of corrupted
images. Local fuzzy energy-based approaches: LPFAC &
FDFEAC obtained good segmentation for those images hav-
ing lesser density noise.RGLFEAC using local energy based
on both spatial distance and gray level/color information pro-
vides the good segmentation results for most of the images.
Table 4 displays statistics on performance of all the meth-
ods.

6.5 Segmentation of corrupted images by hybrid
noise

To analyze the performance of the methods for segmentation
of images under more complex environment, we considered
the corrupted images with hybrid noise. In this experiment,
mixture of different amount of Gaussian noise and salt and
pepper noise are considered to corrupt the original images.
We considered all these methods to segment these corrupted
images. Addition of different density level of noise creates
different amount of region in-homogeneity in the images
and it makes segmentation task is more difficult. Figure 5
displays segmentation results of those corrupted images
using various techniques. From this figure, it is observed
that the global fuzzy energy-based approach: FEAC fails to
segment images due to region in-homogeneity introduced
by incorporation of hybrid noise. Kernel-based approaches:
NFACMKM and FACGK are robust under noisy envi-
ronment due to incorporation of Gaussian kernel into the
energy function. Local energy-based techniques:LPFAC and
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Fig. 4 Visual comparison of segmentation results of corrupted a
323,016 image by Gaussian noise (μ = 0.0, σ = 0.05), b Blood
Cell1 image with Gaussian noise (μ = 0.0, σ = 0.01), c 98 image
with Gaussian noise (μ = 0.0, σ = 0.05), d Lily flower image with
Gaussian noise (μ = 0.0, σ = 0.05), e Blood Cell4 image by Gaus-
sian noise (μ = 0.0, σ = 0.01) using various techniques. First row:
images with initial contours, second row: segmentation results obtained

by FEAC, third row: segmentation results obtained by NFACMKM,
fourth row: segmentation results obtained by FACGK, fifth row: seg-
mentation results obtained by LPFAC, sixth row: segmentation results
obtained by FDFEAC, seventh row: segmentation results obtained by
GLFEAC and eighth row: segmentation results obtained byRGLFEAC
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Table 4 Quantitative
comparison among various
techniques with respect to
average Jacard error and average
F-measure over 100 corrupted
images with Gaussian noise

Measures Techniques

m1 m2 m3 m4 m5 m6 m7

Ave. Jacard error 0.284 0.161 0.174 0.329 0.298 0.242 0.068

Ave. F-measure 0.834 0.910 0.902 0.745 0.799 0.853 0.964

m1: feac, m2: nfacmkm, m3: facgk, m4: lpfac, m5: fdfeac, m6: glfeac and m7: rglfeac. Bold
numeric value indicates least average Jacard error corresponds to the best segmentation result. Whereas, italic
numeric value indicates highest F-measure corresponds to the best segmentation result

FDFEAC are not robust under hybrid noisy environment.
For the corrupted images where density of noise level is
less, only those images they produce good results. Combi-
nation of global and local fuzzy energy-based techniques:
GLFEAC andRGLFEAC are robust under hybrid noisy envi-
ronment. However, GLFEAC fails to segment images with
increasing density level of noise. Table 5 displays the similar
finding.

7 Discussion and future work

Fuzzy energy-based active contourmodel proposed byKrini-
dis and Chatzis (2009) where energy terms are defined with
global image information. This model produces good seg-
mentation results for blurred, noisy and discontinuous edged
images due to the incorporation of fuzzy logic into the
function. However, it fails for images with gradual tonal-
ity variations, region in-homogeneity, background clutter,
etc. Kernelized fuzzy energy active contour models (Wu
et al. 2015; Badshah and Ahmad 2018) obtained stable seg-
mentation for images with region in-homogeneity and noise
due to kernel function. On the other hand, fuzzy energy-
based active contour models (Fang et al. 2016; Shyu et al.
2012b) where energy terms are defined on local image
information is also robust to the images having intensity
in-homogeneity and noise. However, kernelized version of
the global fuzzy energy-based active contour models are
more robust than the local fuzzy energy-based active contour
models on the level of noise and intensity in-homogeneity
present in the images. Performance of the kernelized fuzzy
active contour models degraded when the images contain
more noise and in-homogeneous regions. In such cases,
both local and global energy based active contour models
(Shyu et al. 2012a; Mondal et al. 2016a) provide bet-
ter segmentation results than other models. However, with
increasing density level of noise, they also fail to prop-
erly segment images. From the experimental results and
their analysis, we observed that the global and local fuzzy
energy-based active contour models are better than all other
models.

All these discussed models require the intial contour to
evolve the final contour. The main drawback of these mod-

els is the requirement of manually annotated images with
initial contours. One of the future direction will on auto-
matic initialization of initial contour. Here, each pixel of
the image is presented by hand-crafted features like color,
texture, shape, etc. Since, features are not learned from the
images, they may not robust for all types of images under
the various conditions. In future, instead of considering
hand-crafted features, learned feature using deep convolu-
tional network from images will be considered. Since, all
these models are working on pixel level, they need more
computational time for doing segmentation of higher resolu-
tion images. Instead of pixel level, it is better to perform
coarse level segmentation on super-pixel level then per-
form fine level segmentation on pixel level. These two
step process will reduce the computational time for seg-
mentation of high resolution images. All these models are
designed for two regions segmentation (e.g., object and
background). They can be extended to multi-regions seg-
mentation.

8 Conclusions

In this article, we review existing fuzzy energy-based active
contour models for image segmentation task from theoretical
point of view.We also analyze robustness of all these models
to segment various categories of images under various com-
plex conditions. Findings from experiments conclude that the
global image information based fuzzy active contour mod-
els fail to properly segment the images having background
clutter, noise, intensity in-homogeneity. However, kernelized
versions of these global models are able to produce bet-
ter segmentation results than the global methods due to the
effectiveness of the kernel functions. On the contrary, local
fuzzy energy-based models obtain good results when den-
sity of noise level is limited. When level of noise density
is increased, kernelized fuzzy energy-based active contour
models as well as local fuzzy energy-based models fail to
properly segment images. In such cases, the local and global
fuzzy energy-based models perform well. However, with
increasing density level of noise, they also fail to properly
segment images. We hope that this article helps to the reader
to understand fuzzy energy-based active models and several
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Fig. 5 Visual comparison of segmentation results of corrupted a Yel-
low Pansy flower image with hybrid Gaussian (μ = 0.0, σ = 0.1) and
salt and pepper noise (with probability 0.1), b 86,016 imagewith hybrid
Gaussian (μ = 0.0, σ = 0.05) and salt and pepper noise (with prob-
ability 0.2), c Cell4 image by hybrid Gaussian (μ = 0.0, σ = 0.01)
and salt and pepper noise (with probability 0.01), d Starfish image
by hybrid Gaussian (μ = 0.0, σ = 0.05) and salt and pepper noise
(with probability 0.1), e Bird image with hybrid Gaussian (μ = 0.0,

σ = 0.05) and salt and pepper noise (with probability 0.1) using various
techniques. First row: images with initial contours, second row: seg-
mentation results obtained by FEAC, third row: segmentation results
obtained byNFACMKM, fourth row: segmentation results by FACGK,
fifth row: segmentation results obtained by LPFAC, sixth row: segmen-
tation results obtained by FDFEAC, seventh row: segmentation results
obtained by GLFEAC and eighth row: segmentation results obtained
by RGLFEAC (color figure online)
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Table 5 Quantitative
comparison among various
techniques with respect to
average Jacard error and average
F-measure over 100 corrupted
images with salt and pepper and
Gaussian noise

Measures Techniques

m1 m2 m3 m4 m5 m6 m7

Ave. Jacard error 0.311 0.165 0.200 0.376 0.304 0.312 0.079

Ave. F-measure 0.814 0.904 0.878 0.767 0.796 0.815 0.952

m1: feac, m2: nfacmkm, m3: facgk, m4: lpfac, m5: fdfeac, m6: glfeac and m7: rglfeac. Bold
numeric value indicates least average Jacard error corresponds to the best segmentation result. Whereas, italic
numeric value indicates highest F-measure corresponds to the best segmentation result

issues for image segmentation. We hope this article will help
researchers toward designing newmodels for image segmen-
tation.
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