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Abstract
There are two different perspectives to study single axioms for (S, T )-fuzzy rough approximation operators, that is, ordinary
fuzzy operations and fuzzy product operations. However, it is too complex and tedious to characterize (S, T )-fuzzy rough
approximation operators with ordinary fuzzy operations, such as intersection, union and so on. To remedy these defects, this
paper further investigates single axioms for (S, T )-fuzzy rough approximation operators with fuzzy product operations, where
fuzzy relation is not limited into either a general fuzzy relation or a symmetric one. Considering a left-continuous t-norm T ,
we describe T -upper fuzzy rough approximation operators with fuzzy product operations by only one axiom. When t-conorm
S is right-continuous and fuzzy negation N is strict, S-lower fuzzy rough approximation operators are characterized with
fuzzy product operations by a single axiom.

Keywords Fuzzy relations · Fuzzy rough sets · Triangular norms · Fuzzy product operations

1 Introduction

Pawlak established rough set theory (Pawlak 1982, 1991),
which is an excellent tool to model incompleteness in intelli-
gent systems. Meanwhile, there are two different approaches
to investigate rough sets, i.e., the constructive approach and
axiomatic approach. The constructive approach proposes
and discusses lower and upper approximation operators on
a binary relation or neighborhoods (Cekik and Telceken
2018; Chebrolu and Sanjeevi 2017; Chen et al. 2017; Dai
et al. 2018; D’eer et al. 2016; Yao and Yao 2012; Yu and
Zhan 2014; Zhao 2016). Different from the constructive
approach, abstract lower and upper approximation operators
are investigated by certain axioms in the axiomatic approach.
Axiomatic characterizations of rough sets and their exten-
sions have been investigated (Liu 2008; Song et al. 2013;
Thiele 2000; Zhang et al. 2010; Zhu and Wang 2003). In
particular, it is popular to search the minimal axiom sets to
characterize rough sets and their extensions. For example,
Liu (2013) characterized rough sets with one axiom, which
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was further discussed inMa et al. (2015). Yang and Li (2006)
discussed theminimization of axiom sets to characterize gen-
eralized approximation operators. Moreover, Zhang and Luo
(2011) studied the minimization of axiom sets to describe
covering-based approximation operators.

Dubois and Prade (1990) originally proposed fuzzy rough
sets, which were further investigated with different fuzzy
logic operations and fuzzy relations (D’eer et al. 2015; Li
and Cui 2015; Mi et al. 2008; Morsi and Yakout 1998;
Radzikowska and Kerre 2002; Wang 2017a, 2018; Wu et al.
2016). In particular, (S, T )-fuzzy rough sets were studied
with a continuous t-conorm S and a continuous t-norm T (Li
and Cui 2015; Mi et al. 2008; Wu et al. 2016). Liu (2013)
also characterized fuzzy rough approximation operators by
only one axiom. Wu et al. (2016) investigated single axioms
for S-lower and T -upper fuzzy rough approximation opera-
tors in two approaches that characterize (S, T )-fuzzy rough
approximation operators with ordinary fuzzy operations and
fuzzy product operations, respectively. In fact, Wang (2018)
had pointed out that the continuity of t-(co)norms is redun-
dant. Meanwhile, Wang discussed single axioms for lower
fuzzy rough approximation operators determined by differ-
ent fuzzy implications. Considering L-fuzzy rough sets (Han
and Šostak 2018; Huang et al. 2018; Radzikowska and Kerre
2004; Wang 2017b; Wang et al. 2014), She andWang (2009)
studied them in the axiomatic approach, where L denotes a
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residuated lattice. Moreover, Bao et al. (2018) characterized
L-fuzzy rough approximation operators by only one axiom,
where residuated lattice L is assumed to be regular. How-
ever, it is too complex and tedious to characterize fuzzy
rough approximation operators with ordinary fuzzy opera-
tions, such as intersection, union and so on. Meanwhile, all
of single axioms for fuzzy rough approximation operators
with fuzzy product operations (Bao et al. 2018; Wang 2018;
Wu et al. 2016) are limited into either a general fuzzy relation
or a symmetric one. AlthoughWang et al. (2020) further dis-
cussed the single axioms for L-fuzzy rough approximation
operators with L-fuzzy product operations on all kinds of
L-fuzzy relations, most of axioms still require the regularity
of residuated lattices. To remedy these defects, we further
study the axiomatic characterizations of (S, T )-fuzzy rough
approximation operators with fuzzy product operations in
this paper, where S is a right-continuous t-conorm and T is
a left-continuous t-norm.

In this context, we characterize T -upper fuzzy rough
approximation operators with fuzzy product operations by
only one axiom. When fuzzy negation is strict, we study
single axioms for S-lower fuzzy rough approximation oper-
ators with fuzzy product operations. In particular, we study
single axioms for (S, T )-fuzzy rough approximation opera-
tors, when fuzzy relations are special fuzzy relations, such as
serial, reflexive, T -transitive and T -Euclidean ones as well
as any of their compositions.

The content of this paper is organized as follows. InSect. 2,
we recall some fundamental concepts and related properties
of (S, T )-fuzzy rough sets. Section 3 characterizes T -upper
fuzzy rough approximation operators by only one axiomwith
fuzzy product operations. In Sect. 4, we study single axioms
for S-lower fuzzy rough approximation operators with fuzzy
product operations, when fuzzy negation is strict. In the final
section, we present some conclusions and further work.

2 Preliminaries

In this section, we present some basic concepts and termi-
nologies used throughout our paper.

Let [0, 1] be the unit interval and U be a universe. Then
a mapping A : U → [0, 1] is called a fuzzy set on U . The
family of all fuzzy sets on U is denoted as F(U ). Let α ∈
[0, 1] and a fuzzy set A ∈ F(U ) satisfy A(x) = α for all x ∈
U . Then A is a constant and denoted as α̂. For convenience,
the empty set ∅ and the universeU are also denoted aŝ0 and
̂1, respectively. Consider y ∈ U . Then a fuzzy set is denoted
as 1y , if for all x ∈ U ,

1y(x) =
{

1, x = y;
0, x �= y.

For a crisp setM ⊆ U , 1M denotes the characteristic function
of M .

A binary mapping T : [0, 1] × [0, 1] → [0, 1] (resp. S :
[0, 1] × [0, 1] → [0, 1]) is called a t-norm (resp. t-conorm)
on [0, 1], if it is commutative, associative, increasing in each
argument and has a unit element 1 (resp. 0). A t-norm T
is said to be left-continuous, if the following holds for all
{a j } j∈J ⊆ [0, 1] and b ∈ [0, 1],

T

⎛

⎝

∨

j∈J

a j , b

⎞

⎠ =
∨

j∈J

T (a j , b),

where J is a nonempty index set. Similarly, a t-conorm S
is said to be right-continuous, if the following holds for all
{a j } j∈J ⊆ [0, 1] and b ∈ [0, 1],

S

⎛

⎝

∧

j∈J

a j , b

⎞

⎠ =
∧

j∈J

S(a j , b).

In the sequel, t-norms and t-conorms are always assumed to
be left-continuous and right-continuous, respectively. More-
over, the symbol J always denotes a nonempty index set, if
not otherwise specified.

A decreasing function N : [0, 1] → [0, 1] is called a
fuzzy negation, if it satisfies N (0) = 1 and N (1) = 0. A
fuzzy negation N is said to be strong, if N

(

N (a)
) = a holds

for all a ∈ [0, 1]. Meanwhile, the strong fuzzy negation
Ns(a) = 1 − a for all a ∈ [0, 1] is referred as the stan-
dard negation. Moreover, a fuzzy negation N is said to be
strict, if N is strictly decreasing and continuous. A t-norm T
and a t-conorm S are said to be dual with respect to (w.r.t.,
for short) a strong fuzzy negation N , if the following hold
for all a, b ∈ [0, 1],

T (a, b) = N
(

S(N (a), N (b))
)

,

S(a, b) = N
(

T (N (a), N (b))
)

.

In particular, new fuzzy negations are proposed on the basis
of t-(co)norms as follows:

Definition 1 (Baczyński and Jayaram 2008) Let T and S be
a t-norm and a t-conorm, respectively. Then the mappings
NT , NS : [0, 1] → [0, 1] are defined for all a ∈ [0, 1] as

NT (a) = sup{b ∈ [0, 1]|T (a, b) = 0} and
NS(a) = inf{b ∈ [0, 1]|S(a, b) = 1}, respectively.

NT and NS are called the natural negations of t-norm T and
t-conorm S, respectively.

The properties of the natural negations of t-(co)norms are
listed as follows:
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Lemma 2 (Baczyński and Jayaram 2008) Let t-norm T be
left-continuous and t-conorm S be right-continuous. Then
the following hold for all a, b ∈ [0, 1],

(1) T (a, b) = 0 iff NT (a) � b.
(2) S(a, b) = 1 iff NS(a) � b.
(3) T

(

NT (a), a
) = 0 and S

(

NS(a), a
) = 1.

The following conclusions are obvious.

Proposition 3 Let t-norm T be left-continuous and t-conorm
S be right-continuous. Then the following hold.

(1) If NT is strong, then the following holds for all a, b ∈
[0, 1],

a � b iff T
(

a, NT (b)
) = 0.

(2) If NS is strong, then the following holds for all a, b ∈
[0, 1],

a � b iff S
(

b, NS(a)
) = 1.

A binary mapping I : [0, 1] × [0, 1] → [0, 1] is called a
fuzzy implication on [0, 1], if it satisfies the boundary condi-
tions according to the Boolean implication, and is decreasing
in the first argument and increasing in the second argument.

Several classes of fuzzy implications have been studied in
the literature (Baczyński and Jayaram 2008; Klir and Yuan
1995).We recall the definitions of three main classes of these
operations as follows.

Let T , S and N be a t-norm, a t-conorm and a fuzzy nega-
tion, respectively. Then a fuzzy implication I is called

– an S-implication based on S and N if I (a, b) =
S
(

N (a), b
)

for all a, b ∈ [0, 1];
– an R-implication based on T if I (a, b) = ∨{c ∈

[0, 1]|T (a, c) � b} for all a, b ∈ [0, 1];
– a QL-implication based on T , S and N if I (a, b) =

S
(

N (a), T (a, b)
)

for all a, b ∈ [0, 1].

The operations on fuzzy sets are defined as follows: for
all A, B ∈ F(U ) and x ∈ U ,

N (A)(x) = N
(

A(x)
);

(A ∩ B)(x) = A(x) ∧ B(x);
(A ∪ B)(x) = A(x) ∨ B(x);
T (A, B)(x) = T

(

A(x), B(x)
);

S(A, B)(x) = S
(

A(x), B(x)
)

.

These operations on fuzzy sets mentioned above are also
called ordinary fuzzy operations in the sequel. The order rela-

tion on fuzzy sets is defined as A ⊆ B ⇔ A(x) � B(x) for
all x ∈ U .

Liu proposed inner product and outer product operations
to discuss the axiomatic characterizations of fuzzy rough
approximation operators (Liu 2008, 2013). Based on it, Wu
et al. (2016) further proposed fuzzy product operations as
follows:

Definition 4 (Wu et al. 2016) Let T and S be a left-
continuous t-norm and a right-continuous t-conorm, respec-
tively. Then the sup T -product operation

(

A, B
)

T and the
inf S-product operation

[

A, B
]

S are defined for all A, B ∈
F(U ) as

(

A, B
)

T =
∨

x∈U
T

(

A(x), B(x)
)

, and

[

A, B
]

S =
∧

x∈U
S
(

A(x), B(x)
)

, respectively.

For simplicity, the sup T -product operation and inf S-
product operation are called fuzzy product operations in this
paper. In particular, the sup T -product operation and the inf
S-product operation also can be viewed as the compositions
of fuzzy sets. Although Wu et al. (2016) proposed fuzzy
product operations with continuous t-(co)norms, the follow-
ing properties still hold, when we consider a left-continuous
t-norm and a right-continuous t-conorm.

Proposition 5 (Wu et al. 2016) Let t-norm T be left-
continuous and t-conorm S be right-continuous. Then the
following hold for all A, B,C ∈ F(U ).

(1)
(

A, B
)

T = (

B, A
)

T and
[

A, B
]

S = [

B, A
]

S;
(2)

(

̂0, B
)

T = 0 and
[

̂1, B
]

S = 1;
(3) A ⊆ B implies

(

A,C
)

T �
(

B,C
)

T and
[

A,C
]

S �
[

B,C
]

S for all C ∈ F(U );
(4)

(

A, D
)

T �
(

B, D
)

T for all D ∈ F(U ) implies A ⊆ B;
(5)

[

A, D
]

S �
[

B, D
]

S for all D ∈ F(U ) implies A ⊆ B;
(6)

(

A∪ B,C
)

T = (

A,C
)

T ∨ (

B,C
)

T and
[

A∩ B,C
]

S =
[

A,C
]

S ∧ [

B,C
]

S.

Moreover, we obtain the following conclusion.

Proposition 6 Let t-norm T be left-continuous and t-conorm
S be right-continuous. Then the following hold.

(1) If NT is strong, then the following holds for all A, B ∈
F(U ),

A ⊆ B iff
(

A, NT (B)
)

T = 0.

(2) If NS is strong, then the following holds for all A, B ∈
F(U ),

A ⊆ B iff
[

B, NS(A)
]

S = 1.
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Proof (1) If NT is strong, then it follows from Proposi-
tion 3(1) and Definition 4 that the following holds for all
A, B ∈ F(U ),

A ⊆ B ⇔ T
(

A(x), NT (B(x))
) = 0 for all x ∈ U

⇔ (

A, NT (B)
)

T = 0.

(2) If NS is strong, then it follows from Proposition 3(2) and
Definition 4 that the following holds for all A, B ∈ F(U ),

A ⊆ B ⇔ S
(

B(x), NS(A(x))
) = 1 for all x ∈ U

⇔ [

B, NS(A)
]

S = 1.

�

A fuzzy set R ∈ F(U ×W ) is called a fuzzy relation from
U toW . If

∨

y∈W R(x, y) = 1 holds for all x ∈ U , then fuzzy
relation R is said to be serial. If U = W , then R is said to
be a fuzzy relation on U . For every fuzzy relation R on U ,
a fuzzy relation R−1 is defined as R−1(x, y) = R(y, x) for
all x, y ∈ U .

Definition 7 Let R be a fuzzy relation on U . Then R is said
to be

(1) reflexive if R(x, x) = 1 for all x ∈ U ;
(2) symmetric if R(x, y) = R(y, x) for all x, y ∈ U ;
(3) T -transitive if T

(

R(x, y), R(y, z)
)

� R(x, z) for all
x, y, z ∈ U ;

(4) T -Euclidean if T
(

R(y, x), R(y, z)
)

� R(x, z) for all
x, y, z ∈ U .

A fuzzy relation R is called a fuzzy tolerance if it is reflexive
and symmetric, and a fuzzy T -preorder if it is reflexive and
T -transitive.Moreover, if a fuzzy relation R is reflexive, sym-
metric and T -transitive, then R is called a fuzzy T -similarity
relation.

Let R be a fuzzy relation from U to W . Then the triple
(U ,W , R) is called a fuzzy approximation space. WhenU =
W and R is a fuzzy relation onU , the pair (U , R) is also called
a fuzzy approximation space.

Definition 8 Let (U ,W , R) be a fuzzy approximation space
and fuzzy negation N be strict. Then the following mappings
R, R : F(W ) → F(U ) are defined as for all A ∈ F(W ) and
x ∈ U ,

R(A)(x) =
∧

y∈W
S
(

N (R(x, y)), A(y)
)

,

R(A)(x) =
∨

y∈W
T

(

R(x, y), A(y)
)

.

The mappings R and R are called S-lower and T -upper
fuzzy rough approximation operators of (U ,W , R), respec-
tively. The pair

(

R(A), R(A)
)

is called an (S, T )-fuzzy rough
set of Aw.r.t. (U ,W , R). For simplicity, the mappings R and
R are called the (S, T )-fuzzy rough approximation operators.

The properties of lower fuzzy rough approximation oper-
ators determined by continuous t-conorms were studied with
the dual properties of t-norm and t-conorm w.r.t. the stan-
dard negation (Li and Cui 2015; Mi et al. 2008; Wu et al.
2016). However, fuzzy negation N in Definition 8 is not
necessarily strong. In fact, we cannot define how a left-
continuous t-norm T and a right-continuous S are dual
w.r.t. a strict fuzzy negation N . It is obvious that an S-
lower fuzzy rough approximation operator is a special lower
fuzzy rough approximation operator determined by an S-
implication (Radzikowska and Kerre 2002; Wang 2018).
Meanwhile, Radzikowska and Kerre (2002) applied the law
of importation ((LI), for short) between a fuzzy implication
I and a t-norm T (Türkşen et al. 1998) as

(LI) I
(

a, I (b, c)
) = I

(

T (a, b), c
)

for all a, b, c ∈ [0, 1].

While interpreting a fuzzy implication I as an S-implication,
that is, I (a, b) = S

(

N (a), b
)

for all a, b ∈ [0, 1] in (LI),
we have the following law of importation for S-implication
((LIS), for short) among a t-conorm S, a t-norm T and a fuzzy
negation N as

(LIS)S
(

N (a), N (b)
) = N

(

T (a, b)
)

for all a, b ∈ [0, 1].

If (LIS) holds for S,T and N , thenwe say that S satisfies (LIS)
for T w.r.t. N . Obviously, (LIS) condition is a direct gener-
alization of dual properties of t-norm and t-conorm w.r.t. a
strong fuzzy negation. Therefore, an (I , T )-fuzzy rough set
in Radzikowska and Kerre (2002) is equal to an (S, T )-fuzzy
rough set, when fuzzy implication I is an S-implication based
on a right-continuous t-conorm S and a strict fuzzy negation
N . Meanwhile, (S, T )-fuzzy rough sets have fuzzy rough
sets determined by t-(co)norms (Li and Cui 2015; Mi et al.
2008; Wu et al. 2016) as special cases, where t-(co)norms
are assumed to be continuous and fuzzy negation is assumed
to be strong or the standard negation.

We present some basic properties of (S, T )-fuzzy rough
approximation operators (Du et al. 2013; Mi et al. 2008;
Radzikowska and Kerre 2002; Wang 2018) as follows.

Proposition 9 Let (U ,W , R) be a fuzzy approximation
space. Then the following hold.

(1) R
(⋂

j∈J A j
) = ⋂

j∈J R(A j ) and R
( ⋃

j∈J A j
) =

⋃

j∈J R(A j ) for all {A j } j∈J ⊆ F(W ).

(2) R
(

1W−{y}
)

(x) = N
(

R(x, y)
)

and R
(

1y
)

(x) = R(x, y)
for all x ∈ U and y ∈ W.
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(3) R is serial iff R
(

̂0
) =̂0 iff R

(

̂1
) =̂1.

(4) If R is a fuzzy relation onU, then R is reflexive iff R(A) ⊆
A for all A ∈ F(U ) iff A ⊆ R(A) for all A ∈ F(U ).

(5) If R is a T -transitive fuzzy relation on U and S satisfies
(LIS) for T w.r.t. N , then R(A) ⊆ R

(

R(A)
)

for all A ∈
F(U ).

(6) If R is a fuzzy relation on U, then R is T -transitive iff
R
(

R(A)
) ⊆ R(A) for all A ∈ F(U ).

(7) If R is a T -Euclidean fuzzy relation on U and S satisfies
(LIS) for T w.r.t. N , then R(A) ⊆ R−1

(

R(A)
)

for all
A ∈ F(U ).

(8) If R is a fuzzy relation on U, then R is T -Euclidean iff
R−1

(

R(A)
) ⊆ R(A) for all A ∈ F(U ).

3 Axiomatic characterizations of T-upper
fuzzy rough approximation operators

Wu et al. (2016) studied single axioms for T -upper fuzzy
rough approximation operators in two approaches, which
characterize T -upper fuzzy rough approximation operators
with ordinary fuzzy operations and fuzzy product operations,
respectively. In fact, it is complex and tedious to charac-
terize T -upper fuzzy rough approximation operators with
ordinary fuzzy operations.Meanwhile, the axiomatic charac-
terizations of T -upper fuzzy rough approximation operators
with fuzzy product operations are limited into general fuzzy
relations or symmetric ones in Wu et al. (2016). Although
Bao et al. (2018) discussed single axioms for T -upper fuzzy
rough approximation operators with fuzzy product opera-
tions from the perspective of regular residuated lattices, the
fuzzy relations in the axiomatic characterizations of T -upper
fuzzy rough approximation operators are still assumed to
be either general or symmetric. Wang et al. (2020) further
discussed the single axioms for upper L-fuzzy rough approx-
imation operators with L-fuzzy product operation on other
types of L-fuzzy relations. However, most of those axioms
in Wang et al. (2020) still require the regularity of residu-
ated lattices. In this section, we further characterize T -upper
fuzzy rough approximation operators by only one axiomwith
fuzzy product operations, when fuzzy relations are special
types of fuzzy relations, such as serial, reflexive, T -transitive
and T -Euclidean ones as well as any of their compositions.
First of all, we recall the auxiliary mapping to study the
axiomatic characterizations of T -upper fuzzy rough approx-
imation operators as follows:

Definition 10 (Wu et al. 2016) Let H : F(W ) → F(U ) be
a fuzzy operator. Then the mapping H−1 : F(U ) → F(W )

is defined as for all B ∈ F(U ) and y ∈ W ,

H−1(B)(y) =
∨

x∈U
T

(

H(1y)(x), B(x)
)

.

The property of the auxiliary mapping H−1 is recalled as
follows:

Lemma 11 (Wu et al. 2016) Let H : F(W ) → F(U ) be a
fuzzy operator, R ∈ F(U × W ) and H = R. Then H−1 =
R−1 holds.

Proposition 12 Let H : F(W ) → F(U ) be a fuzzy operator.
Then there exists a unique fuzzy relation R ∈ F(U×W ) such
that H = R iff H satisfies for all A ∈ F(U ) and B ∈ F(W ),

(

A, H(B)
)

T = (

H−1(A), B
)

T . (1)

Proof It follows fromTheorem8 inWuet al. (2016) that there
exists a fuzzy relation R ∈ F(U × W ) such that H = R iff
H satisfies Eq. (1). The uniqueness of fuzzy relation R is
verified as follows.

Let Q ∈ F(U × W ) and Q = H . Then it follows from
Proposition 9(2) that the following holds for all x ∈ U and
y ∈ W ,

R(x, y) = R
(

1y
)

(x) = H
(

1y
)

(x)

= Q
(

1y
)

(x) = Q(x, y).

Hence we have R(x, y) = Q(x, y) for all x ∈ U and y ∈
W . �

Proposition 13 Let H : F(U ) → F(U ) be a fuzzy operator.
Then there exists a unique fuzzy relation R on U such that R
is symmetric and H = R iff H satisfies for all A, B ∈ F(U ),

(

A, H(B)
)

T = (

H(A), B
)

T . (2)

Proof It follows immediately from Theorem 19 in Wu et al.
(2016) and Proposition 12. �

Remark 14 By Proposition 12, we immediately obtain the
uniqueness of fuzzy relations in the single axioms for
T -upper fuzzy rough approximation operators with fuzzy
product operations in Wu et al. (2016) (see Theorems 30,
40 and 36 in Wu et al. (2016)), when fuzzy relations are a
fuzzy tolerance, a fuzzy T -similarity relation and a compo-
sition of a symmetric fuzzy relation and a T -transitive one,
respectively. Here, we do not list them again.

As there are many types of t-norms on the unit inter-
val, we apply a left-continuous t-norm T with a strong
natural negation NT to study single axioms for T -upper
fuzzy rough approximation operators with fuzzy product
operations, when fuzzy relations are serial, T -transitive and
T -Euclidean ones as well as their compositions. Notice that
t-normT may have nothing to do with T -upper fuzzy rough
approximation operator.
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Proposition 15 Let H : F(W ) → F(U ) be a fuzzy operator
and T be a left-continuous t-norm with a strong natural
negation NT . Then there exists a unique fuzzy relation R ∈
F(U × W ) such that R is serial and H = R iff H satisfies
for all A ∈ F(U ) and B ∈ F(W ),

(

̂1, NT
(

H
(

̂1
)))

T ∨ (

A, H(B)
)

T = (

H−1(A), B
)

T . (3)

Proof Necessity.Assume that there exists a serial fuzzy rela-
tion R ∈ F(U × W ) such that H = R, then we have
(

̂1, NT
(

H
(

̂1
)))

T = 0 by Propositions 6(1) and 9(3). It fol-
lows from Proposition 12 that H satisfies Eq. (3).

Sufficiency. Consider H satisfy Eq. (3) and A = B = ̂0
in Eq. (3). Then by Proposition 5(2), we have

(

̂1, NT
(

H
(

̂1
)))

T ∨ 0 = 0.

Hence H satisfies Eq. (1). It follows from Proposition 12
that there exists a unique fuzzy relation R ∈ F(U × W )

such that H = R. Meanwhile, by Proposition 6(1), we have
H

(

̂1
) =̂1. By Proposition 9(3), R is serial. �

In the following proposition, we characterize T -upper
fuzzy rough approximation operators with fuzzy product
operations on a reflexive fuzzy relation without applying a
left-continuous t-norm T .

Proposition 16 Let H : F(U ) → F(U ) be a fuzzy operator.
Then there exists a unique fuzzy relation R on U such that R
is reflexive and H = R iff H satisfies for all A, B ∈ F(U ),

(

A, H(B)
)

T = (

A ∪ H−1(A), B
)

T . (4)

Proof Necessity. Assume that there exists a reflexive fuzzy
relation R on U such that H = R, then by Proposition 9(4)
and Lemma 11, we have for all A ∈ F(U ),

A ∪ H−1(A) = A ∪ R−1(A) = R−1(A) = H−1(A).

It follows from Proposition 12 that H satisfies Eq. (4).
Sufficiency. Consider H satisfy Eq. (4). Then it follows

from Proposition 5(6) that the following holds for all A, B ∈
F(U ),

(

A, H(B)
)

T = (

A ∪ H−1(A), B
)

T

= (

A, B
)

T ∨ (

H−1(A), B
)

T .

Hence we obtain
(

A, B
)

T �
(

A, H(B)
)

T for all A, B ∈
F(U ). Thus it follows Proposition 5(4) that B ⊆ H(B) for
all B ∈ F(U ). For arbitrary y ∈ U , let B = 1y . Then it
follows from Definition 10 that the following holds for all

y ∈ U and A ∈ F(U ),

H−1(A)(y) =
∨

x∈U
T

(

H
(

1y
)

(x), A(x)
)

�
∨

x∈U
T

(

(

1y
)

(x), A(x)
)

= A(y).

We obtain A ⊆ H−1(A) for all A ∈ F(U ). Moreover, H
satisfies Eq. (1). By Proposition 12, there exists a unique
fuzzy relation R on U such that H = R. As B ⊆ H(B)

holds for all B ∈ F(U ), R is reflexive by Proposition 9(4).�
Proposition 17 Let H : F(U ) → F(U ) be a fuzzy operator
and T be a left-continuous t-norm with a strong natural
negation NT . Then there exists a unique fuzzy relation R on
U such that R is T -transitive and H = R iff H satisfies for
all A, B,C ∈ F(U ),

(

H
(

H(C)
)

,NT
(

H(C)
))

T ∨ (

A, H(B)
)

T

= (

H−1(A), B
)

T .
(5)

Proof Necessity. Assume that there exists a T -transitive
fuzzy relation R on U such that H = R, then it follows
from Propositions 6(1) and 9(6) that the following holds for
all C ∈ F(U ),

(

H
(

H(C)
)

, NT
(

H(C)
))

T = (

R
(

R(C)
)

, NT
(

R(C)
))

T

= 0.

By Proposition 12, H satisfies Eq. (5).
Sufficiency. Consider H satisfy Eq. (5) and A = B = ̂0

in Eq. (5). Then it follows from Proposition 5(2) that the
following holds for all C ∈ F(U ),

(

H
(

H(C)
)

, NT
(

H(C)
))

T ∨ 0 = 0.

It follows from Proposition 6(1) that H
(

H(C)
) ⊆ H(C)

holds for all C ∈ F(U ). Hence Eq. (5) turns out to be Eq.
(1). By Proposition 12, there exists a unique fuzzy relation R
on U such that H = R. Meanwhile, it follows from Propo-
sition 9(6) that R is T -transitive. �
Proposition 18 Let H : F(U ) → F(U ) be a fuzzy operator
and T be a left-continuous t-norm with a strong natural
negation NT . Then there exists a unique fuzzy relation R on
U such that R is T -Euclidean and H = R iff H satisfies for
all A, B,C ∈ F(U ),

(

H−1(H(C)
)

,NT
(

H(C)
))

T ∨ (

A, H(B)
)

T

= (

H−1(A), B
)

T .
(6)

Proof Necessity. Assume that there exists a T -Euclidean
fuzzy relation R on U such that H = R, then it follows
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from Propositions 6(1), 9(8) and Lemma 11 that we obtain
for all C ∈ F(U ),

(

H−1(H(C)
)

, NT
(

H(C)
))

T = 0.

We have that H satisfies Eq. (6) by Proposition 12.
Sufficiency. Consider H satisfy Eq. (6) and A = B = ̂0

in Eq. (6). Then by Proposition 5(2), we obtain for all C ∈
F(U ),

(

H−1(H(C)
)

, NT
(

H(C)
))

T = 0.

It follows from Proposition 6(1) that H−1
(

H(C)
) ⊆ H(C)

holds for all C ∈ F(U ). Hence L satisfies Eq. (1). It follows
from Proposition 12 that there exists a unique fuzzy rela-
tion R on U such that H = R. Meanwhile, it follows from
Proposition 9(8) that R is T -Euclidean. �

When a fuzzy relation is a composition of a serial, reflex-
ive, T -transitive and T -Euclidean fuzzy relation, we obtain
the following axiomatic characterizations of T -upper fuzzy
rough approximation operators with fuzzy product opera-
tions.

Proposition 19 Let H : F(U ) → F(U ) be a fuzzy operator
and T be a left-continuous t-norm with a strong natural
negation NT . Then there exists a unique fuzzy relation R on
U such that R is serial, symmetric and H = R iff H satisfies
for all A, B,C ∈ F(U ),

(

̂1, NT
(

H
(

̂1
)))

T ∨ (

A, H(B)
)

T = (

H(A), B
)

T . (7)

Proof Necessity. It follows immediately fromLemma11 and
Proposition 15.

Sufficiency. Consider L satisfy Eq. (7) and A = B =
̂0 in Eq. (7). Then it follows from Proposition 5(2) that
(

̂1, NT
(

H
(

̂1
)))

T = 0 holds. Hence L satisfies Eq. (2). By
Proposition 13, there exists a unique fuzzy relation R on U
such that R is symmetric and H = R. Moreover, it follows
from Propositions 6(1) and 9(3) that R is serial. �
Proposition 20 Let H : F(U ) → F(U ) be a fuzzy operator
and T be a left-continuous t-norm with a strong natural
negation NT . Then

(1) There exists a unique fuzzy relation R on U such that R
is serial, T -transitive and H = R iff H satisfies for all
A, B,C ∈ F(U ),

(

̂1,NT
(

H
(

̂1
)))

T ∨ (

H
(

H(C)
)

, NT
(

H(C)
))

T

∨ (

A, H(B)
)

T = (

H−1(A), B
)

T .
(8)

(2) There exists a unique fuzzy relation R on U such that R
is serial, T -Euclidean and H = R iff H satisfies for all

A, B,C ∈ F(U ),

(

̂1,NT
(

H
(

̂1
)))

T ∨ (

H−1(H(C)
)

, NT
(

H(C)
))

T

∨ (

A, H(B)
)

T = (

H−1(A), B
)

T .
(9)

(3) There exists a unique fuzzy relation R on U such that R
is a fuzzy T -preorder and H = R iff H satisfies for all
A, B,C ∈ F(U ),

(

H
(

H(C)
)

,NT
(

H(C)
))

T ∨ (

A, H(B)
)

T

= (

A ∪ H−1(A), B
)

T .
(10)

(4) There exists a unique fuzzy relation R on U such that R
is reflexive, T -Euclidean and H = R iff H satisfies for
all A, B,C ∈ F(U ),

(

H−1(H(C)
)

,NT
(

H(C)
))

T ∨ (

A, H(B)
)

T

= (

A ∪ H−1(A), B
)

T .
(11)

Proof (1) Necessity. It follows immediately from Proposi-
tions 6(1), 9(3) and 17.

Sufficiency. Consider H satisfy Eq. (8) and A = B = ̂0
in Eq. (8). Then it follows from Proposition 5(2) that the
following holds for all C ∈ F(U ),

(

̂1, NT
(

H
(

̂1
)))

T ∨ (

H
(

H(C)
)

, NT
(

H(C)
))

T ∨ 0 = 0.

Hence, the following hold

(

̂1, NT
(

H
(

̂1
)))

T = 0 and
(

H
(

H(C)
)

, NT
(

H(C)
))

T = 0 for all C ∈ F(U ).

Thus H satisfies Eqs. (3) and (5). It follows from Proposi-
tions 15 and 17 that there exists a unique fuzzy relation R on
U such that R is serial, T -transitive and H = R.

(2) Necessity. It follows immediately from Proposi-
tions 6(1), 9(3) and 18.

Sufficiency. Let H satisfy Eq. (9) and A = B =̂0 in Eq.
(9). Then by Proposition 5(2), we obtain

(

̂1, NT
(

H
(

̂1
)))

T = 0 and
(

H−1(H(C)
)

, NT
(

H(C)
))

T = 0 for all C ∈ F(U ).

Thus H satisfies Eq. (6) by
(

̂1, NT
(

H
(

̂1
)))

T = 0. It follows
from Proposition 18 that there exists a unique fuzzy relation
R on U such that R is T -Euclidean and H = R. Moreover,
the seriality of fuzzy relation R can be proven in a similar
way as for Proposition 15.

(3) Necessity. It follows immediately from Proposi-
tions 6(1), 9(6) and 16.
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Sufficiency. Consider H satisfy Eq. (10) and A = B =̂0
in Eq. (10). Then it follows from Proposition 5(2) that the
following holds for all C ∈ F(U ),

(

H
(

H(C)
)

, NT
(

H(C)
))

T ∨ 0 = 0.

Hence
(

H
(

H(C)
)

, NT
(

H(C)
))

T = 0 holds for all C ∈
F(U ). Thus H satisfies Eq. (4). By Proposition 16, there
exists a unique fuzzy relation R onU such that R is reflexive
and H = R. Moreover, it can be proven in a similar way as
for Proposition 17 that R is T -transitive.

(4) Necessity. It follows immediately from Proposi-
tions 9(4), 18 and Lemma 11.

Sufficiency. Let H satisfy Eq. (11) and A = B =̂0 in Eq.
(11). Then it follows from5(2) that we have for allC ∈ F(U )

(

H−1(H(C)
)

, NT
(

H(C)
))

T = 0.

Thus Eq. (11) turns out to be Eq. (4). It follows from Proposi-
tion 16 that there exists a unique fuzzy relation R onU such
that R is reflexive and H = R. Moreover, it follows from
Propositions 6(1) and 9(8) that R is T -Euclidean by

(

H−1(H(C)
)

, NT
(

H(C)
))

T = 0

for all C ∈ F(U ). �

Remark 21 In this section, we further study single axioms
for T -upper fuzzy rough approximation operators with fuzzy
product operations, when fuzzy relations are serial, reflexive,
T -transitive and T -Euclidean as well as their composi-
tions. We apply a left-continuous t-norm T with a strong
natural negation NT in the axiomatic characterizations of
T -upper fuzzy rough approximation operators. As there are
so many t-norms on the unit interval, it is not necessary
that t-norms in sup T -product operation and T -upper fuzzy
rough approximation operator must be the same. This sec-
tion can be viewed as the completion of single axioms for
T -upper fuzzy rough approximation operators in Bao et al.
(2018), Wang et al. (2020) and Wu et al. (2016), which
provides much briefer axiomatic characterizations than the
single axioms for T -upper fuzzy rough approximation oper-
ators with ordinary fuzzy operations in Wu et al. (2016).
For readers’ convenience, we summarize and compare the
axiomatic characterizations of T -upper fuzzy rough approxi-
mationoperatorswith fuzzyproduct operations in this section
andWuet al. (2016) inTable 1 (see “Appendix”).Aswe apply
a left-continuous t-norm T with a strong natural negation
NT in some of our conclusions, we abbreviate that condi-
tion as “t-norm T .”

4 Axiomatic characterizations of S-lower
fuzzy rough approximation operators

Wu et al. (2016) characterized S-lower fuzzy rough approxi-
mation operators by only one axiomwith fuzzy product oper-
ations, when t-conorm S is continuous and fuzzy negation
N is strong. Moreover, an S-lower fuzzy rough approxima-
tion operator is a special lower fuzzy rough approximation
operator in an (I , T )-fuzzy rough set (Radzikowska and
Kerre 2002; Wang 2018), when I is an S-implication based
on a right-continuous t-conorm and a strict fuzzy negation.
Wang (2018) further studied axiomatic characterizations of
S-lower fuzzy rough approximation operators, while S is a
right-continuous t-conorm and fuzzy negation N is either
continuous or strict. Meanwhile, Bao et al. (2018) discussed
single axioms for S-lower fuzzy rough approximation oper-
ators from the perspective of regular residuated lattices and
dual property. However, all the axioms with fuzzy product
operations (Bao et al. 2018; Wang 2018; Wu et al. 2016)
only hold on either a general fuzzy relation or a symmetric
fuzzy relation. Although Wang et al. (2020) further stud-
ied the axiomatic characterizations of S-lower fuzzy rough
approximation operators on all kinds of L-fuzzy relations
from the perspective of residuated lattices, the regularity of
residuated lattice is still indispensable. Therefore, we inves-
tigate single axioms for S-lower fuzzy rough approximation
operators on other types of fuzzy relations, when t-conorm S
is right-continuous and fuzzy negation N is strict. Wu et al.
(2016) also proposed the following mapping to characterize
S-lower fuzzy rough approximation operators.

Definition 22 (Wu et al. 2016) Let L : F(W ) → F(U ) be a
fuzzy operator. Then the mapping L−1 : F(U ) → F(W ) is
defined as for all B ∈ F(U ) and y ∈ W ,

L−1(B)(y) =
∧

x∈U
S
(

L
(

1W−{y}
)

(x), B(x)
)

.

The property of the mapping L−1 is presented as follows.

Lemma 23 (Wu et al. 2016) Let L : F(W ) → F(U ) be a
fuzzy operator, R ∈ F(U×W )and L = R.Then L−1 = R−1

holds.

Wu et al. (2016) studied single axioms for S-lower fuzzy
rough approximation operators, where S is a continuous t-
conorm and N is a strong fuzzy negation. However, Wu
et al. (2016) did not verify the uniqueness of fuzzy relation
in the axiomatic characterizations of S-lower fuzzy rough
approximation operators. From the perspective of lower
fuzzy rough approximation operators determined by fuzzy
implications, Wang (2018) further obtained the following
axiomatic characterizations of S-lower fuzzy rough approx-
imation operators with fuzzy product operations.
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Proposition 24 (Wang 2018; Wu et al. 2016) Let L :
F(W ) → F(U ) be a fuzzy operator. Then there exists a
unique fuzzy relation R ∈ F(U × W ) such that L = R iff L
satisfies for all A ∈ F(U ) and B ∈ F(W ),

[

A, L(B)
]

S = [

L−1(A), B
]

S . (12)

Proposition 25 (Wang 2018; Wu et al. 2016) Let L :
F(U ) → F(U ) be a fuzzy operator. Then there exists a
unique fuzzy relation R on U such that R is symmetric and
L = R iff L satisfies for all A, B ∈ F(U ),

[

A, L(B)
]

S = [

L(A), B
]

S . (13)

Remark 26 As the S-lower fuzzy rough approximation oper-
ator in Definition 8 is defined with a right-continuous
t-conorm S and a strict fuzzy negation N , we cannot directly
obtain the single axioms for S-lower fuzzy rough approxi-
mation operators by the dual property between t-norm T and
t-conorm S w.r.t. a strict fuzzy negation N . Therefore, we
give the detailed proofs for these single axioms in the sequel.

Similarly to the axiomatic characterizations of T -upper
fuzzy rough approximation operators, we apply a right-
continuous t-conormS with a natural negation NS to study
the single axioms for S-lower fuzzy rough approximation
operators with fuzzy product operations.

Proposition 27 Let L : F(W ) → F(U ) be a fuzzy operator
andS be a right-continuous t-conorm with a strong natural
negation NS . Then there exists a unique fuzzy relation R ∈
F(U × W ) such that R is serial and L = R iff L satisfies
for all A ∈ F(U ) and B ∈ F(W ),

[

̂0, NS
(

L
(

̂0
))]

S ∧ [

A, L(B)
]

S = [

L−1(A), B
]

S . (14)

Proof Necessity. If there exists a serial fuzzy relation
R ∈ F(U × W ) such that L = R, then we have
[

̂0, NS
(

L
(

̂0
))]

S = 1 by Propositions 6(2) and 9(3). More-
over, it follows from Proposition 24 that L satisfies Eq. (14).

Sufficiency. Let L satisfy Eq. (14) and A = B =̂1 in Eq.
(14). Then it follows from Proposition 5(2) that the following
holds

[

̂0, NS
(

L
(

̂0
))]

S ∧ 1 = 1.

Hence Eq. (14) turns out to be Eq. (12). By Proposition 24,
there exists a unique fuzzy relation R ∈ F(U × W ) such
that L = R. Moreover, it follows from Proposition 6(2) that
L
(

̂0
) ⊆ ̂0 holds. Thus we have L

(

̂0
) = ̂0. It follows from

Proposition 9(3) that R is serial. �
Considering a reflexive fuzzy relation, the single axioms

for S-lower fuzzy roughapproximationoperators are obtained
without applying a right-continuous t-conorm S .

Proposition 28 Let L : F(U ) → F(U ) be a fuzzy operator.
Then there exists a unique fuzzy relation R on U such that R
is reflexive and L = R iff L satisfies for all A, B ∈ F(U ),

[

A, L(B)
]

S = [

A ∩ L−1(A), B
]

S . (15)

Proof Necessity. If there exists a reflexive fuzzy relation R
onU such that L = R, then it follows from Proposition 9(4)
and Lemma 23 that the following holds for all A ∈ F(U ),

A ∩ L−1(A) = A ∩ R−1(A) = R−1(A) = L−1(A).

By Proposition 24, L satisfies Eq. (15).
Sufficiency. Let L satisfy Eq. (15). Then it follows from

Proposition 5(6) that for all A, B ∈ F(U ),

[

A, L(B)
]

S = [

A ∩ L−1(A), B
]

S

= [

A, B
]

S ∧ [

L−1(A), B
]

S .

Hence we obtain for all A, B ∈ F(U ),

[

A, L(B)
]

S �
[

A, B
]

S and
[

A, L(B)
]

S �
[

L−1(A), B
]

S .

By Proposition 5(5), we have L(B) ⊆ B for all B ∈ F(U ).
For arbitrary y ∈ U , let B = 1U−{y}. Then it follows from
Definition 22 that the following holds for all y ∈ U and
A ∈ F(U ),

L−1(A)(y) =
∧

x∈U
S
(

L
(

1U−{y}
)

(x), A(x)
)

�
∧

x∈U
S
(

(

1U−{y}
)

(x), A(x)
)

= A(y).

Thus L−1(A) ⊆ A holds for all A ∈ F(U ), which implies
Eq. (15) turns out to be Eq. (12). It follows from Proposi-
tion 24 that there exists a unique fuzzy relation R onU such
that L = R. As L(B) ⊆ B holds for all B ∈ F(U ), it follows
from Proposition 9(4) that R is reflexive. �

Proposition 29 Let L : F(U ) → F(U ) be a fuzzy opera-
tor,S be a right-continuous t-conorm with a strong natural
negation NS and assume that S satisfies (LIS) for T w.r.t.
N . Then there exists a unique fuzzy relation R on U such
that R is T -transitive and L = R iff L satisfies for all
A, B,C ∈ F(U ),

[

L
(

L(C)
)

, NS
(

L(C)
)]

S ∧ [

A, L(B)
]

S = [

L−1(A), B
]

S .

(16)
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Proof Necessity. If there exists a T -transitive fuzzy relation
R on U such that L = R, then it follows from Proposi-
tions 6(2) and 9(5) that we have for all C ∈ F(U ),

[

L
(

L(C)
)

, NS
(

L(C)
)]

S = [

R
(

R(C)
)

, NS
(

R(C)
)]

S

= 1.

By Proposition 24, L satisfies Eq. (16).
Sufficiency. Let L satisfy Eq. (16) and A = B = ̂1 in

Eq. (16). Then it follows Proposition 5(2) that the following
holds for all C ∈ F(U ),

[

L
(

L(C)
)

, NS
(

L(C)
)]

S ∧ 1 = 1.

Hence, we have
[

L
(

L(C)
)

, NS
(

L(C)
)]

S = 1. By Propo-
sition 6(2), L(C) ⊆ L

(

L(C)
)

holds for all C ∈ F(U ). Thus
L satisfies Eq. (12). It follows from Proposition 24 that there
exists a unique fuzzy relation R on U such that L = R. We
check the T -transitivity of fuzzy relation R as follows.

Assume that R is not T -transitive, then there exist
x0, y0, z0 ∈ U such that

T
(

R(x0, y0), R(y0, z0)
)

> R(x0, z0).

Consider B = U − {z0}. Then it follows from Proposi-
tion 9(2) that R(B)(y) = N

(

R(y, z0)
)

holds for all y ∈ U .
Because fuzzy negation N is strict and S satisfies (LIS) for
T w.r.t. N , we obtain

R
(

R(B)
)

(x0) =
∧

y∈U
S
(

N
(

R(x0, y)
)

, N
(

R(y, z0)
)

)

=
∧

y∈U
N

(

T
(

R(x0, y), R(y, z0)
)

)

� N
(

T
(

R(x0, y0), R(y0, z0)
)

)

< N
(

R(x0, z0)
) = R(B)(x0).

Hence we have a contradiction with the conclusion R(A) ⊆
R
(

R(A)
)

for all A ∈ F(U ). Therefore, R is T -transitive. �
Proposition 30 Let L : F(U ) → F(U ) be a fuzzy opera-
tor,S be a right-continuous t-conorm with a strong natural
negation NS and assume that S satisfies (LIS) for T w.r.t.
N . Then there exists a unique fuzzy relation R on U such
that R is T -Euclidean and L = R iff L satisfies for all
A, B,C ∈ F(U ),

[

L−1(L(C)
)

,NS
(

L(C)
)]

S ∧ [

A, L(B)
]

S

= [

L−1(A), B
]

S .
(17)

Proof Necessity. If there exists a T -Euclidean fuzzy rela-
tion R on U such that L = R, then we have

[

L−1
(

L(C)
)

,

NS
(

L(C)
)]

S = 1byPropositions 6(2), 9(7) andLemma23.
It follows from Proposition 24 that L satisfies Eq. (17).

Sufficiency. Let L satisfy Eq. (17) and A = B = ̂1 in
Eq. (17). Then by Proposition 5(2), we have

[

L−1
(

L(C)
)

,

NS
(

L(C)
)]

S = 1 for allC ∈ F(U ). It follows fromPropo-
sition 6(2) that L(C) ⊆ L−1

(

L(C)
)

holds for allC ∈ F(U ).
Thus L satisfies Eq. (12). By Proposition 24, there exists a
unique fuzzy relation R on U such that L = R. We verify
that R is T -Euclidean as follows.

Assume that R is not T -Euclidean, then there are x0, z0 ∈
U such that

∨

y∈U
T

(

R(y, x0), R(y, z0)
)

> R(x0, z0).

Let B = U − {z0}. Then we have R(B)(y) = N
(

R(y, z0)
)

for all y ∈ U by Proposition 9(2). Hence we obtain

R−1(R(B)
)

(x0) =
∧

y∈U
S
(

N
(

R(y, x0)
)

, N
(

R(y, z0)
)

)

=
∧

y∈U
N

(

T
(

R(y, x0), R(y, z0)
)

)

= N
(

∨

y∈U
T

(

R(y, x0), R(y, z0)
)

)

< N
(

R(x0, z0)
) = R(B)(x0),

which implies a contradiction with L(C) ⊆ L−1
(

L(C)
)

for
all C ∈ F(U ). Thus fuzzy relation R is T -Euclidean. �

Considering the compositions of serial, reflexive, T -
transitive and T -Euclidean, we obtain the following conclu-
sions.

Proposition 31 Let L : F(U ) → F(U ) be a fuzzy operator
andS be a right-continuous t-conorm with a strong natural
negation NS . Then there exists a unique fuzzy relation R on
U such that R is serial, symmetric and L = R iff L satisfies
for all A, B,C ∈ F(U ),

[

̂0, NS
(

L
(

̂0
))]

S ∧ [

A, L(B)
]

S = [

L(A), B
]

S . (18)

Proof Necessity. It follows immediately fromLemma23 and
Proposition 27.

Sufficiency. Let L satisfy Eq. (18) and A = B = ̂1
in Eq. (18). Then we obtain

[

̂0, NS
(

L
(

̂0
))]

S = 1 by
Proposition 5(2). Hence Eq. (18) turns out to be Eq. (13).
It follows from Proposition 25 that there exists a unique
fuzzy relation R on U such that R is symmetric and L = R.
As

[

̂0, NS
(

L
(

̂0
))]

S = 1 holds, it follows from Proposi-
tions 6(2) and 9(3) that R is serial. �
Proposition 32 Let L : F(U ) → F(U ) be a fuzzy opera-
tor,S be a right-continuous t-conorm with a strong natural
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negation NS and assume that S satisfies (LIS) for T w.r.t.
N . Then

(1) There exists a unique fuzzy relation R on U such that R
is serial, T -transitive and L = R iff L satisfies for all
A, B,C ∈ F(U ),

[

̂0,NS
(

L
(

̂0
))]

S ∧ [

L
(

L(C)
)

, NS
(

L(C)
)]

S

∧ [

A, L(B)
]

S = [

L−1(A), B
]

S .
(19)

(2) There exists a unique fuzzy relation R on U such that R
is serial, T -Euclidean and L = R iff L satisfies for all
A, B,C ∈ F(U ),

[

̂0,NS
(

L
(

̂0
))]

S ∧ [

L−1(L(C)
)

, NS
(

L(C)
)]

S

∧ [

A, L(B)
]

S = [

L−1(A), B
]

S .
(20)

(3) There exists a unique fuzzy relation R on U such that R
is a fuzzy T -preorder and L = R iff L satisfies for all
A, B,C ∈ F(U ),

[

L
(

L(C)
)

,NS
(

L(C)
)]

S ∧ [

A, L(B)
]

S

= [

A ∩ L−1(A), B
]

S .
(21)

(4) There exists a unique fuzzy relation R on U such that R
is reflexive, T -Euclidean and L = R iff L satisfies for
all A, B,C ∈ F(U ),

[

L−1(L(C)
)

,NS
(

L(C)
)]

S ∧ [

A, L(B)
]

S

= [

A ∩ L−1(A), B
]

S .
(22)

Proof (1) Necessity. It follows immediately from Proposi-
tions 6(2), 9(3) and 29.

Sufficiency. Let L satisfy Eq. (19) and A = B =̂1 in Eq.
(19). Then it follows from Proposition 5(2) that the following
holds for all C ∈ F(U ),

[

̂0, NS
(

L
(

̂0
))]

S ∧ [

L
(

L(C)
)

, NS
(

L(C)
)]

S ∧ 1 = 1.

Hence, we have

[

̂0, NS
(

L
(

̂0
))]

S = 1 and
[

L
(

L(C)
)

, NS
(

L(C)
)]

S = 1 for all C ∈ F(U ).

Thus L satisfies Eqs. (14) and (16). By Propositions 27
and 29, there exists a unique fuzzy relation R on U such
that R is serial, T -transitive and L = R

(2) Necessity. It follows immediately from Proposi-
tions 6(2), 9(3) and 30.

Sufficiency. Consider L satisfy Eq. (20) and A = B = ̂1
in Eq. (20). Then it follows from Proposition 5(2) that the

following hold

[

̂0, NS
(

L
(

̂0
))]

S = 1 and
[

L−1(L(C)
)

, NS
(

L(C)
)]

S = 1 for all C ∈ F(U ).

Thus L satisfies Eq. (14). By Propositions 27, there exists
a unique fuzzy relation R on U such that R is serial and
L = R. Moreover, it can be proven in a similar way as for
Proposition 30 that R is T -Euclidean.

(3) Necessity. It follows immediately from Proposi-
tions 6(2), 9(5) and 28.

Sufficiency. Let L satisfy Eq. (21) and A = B =̂1 in Eq.
(21). Then it follows from Proposition 5(2) that the following
holds for all C ∈ F(U ),

[

L
(

L(C)
)

, NS
(

L(C)
)]

S ∧ 1 = 1.

Hence we have
[

L
(

L(C)
)

, NS
(

L(C)
)]

S = 1 for all C ∈
F(U ). Thus, Eq. (21) turns out to be Eq. (15). It follows
from Proposition 28 that there exists a unique fuzzy relation
R on U such that R is reflexive and L = R. Moreover, the
T -transitivity of fuzzy relation R can be proven in a similar
way as for Proposition 29.

(4) Necessity. It follows immediately from Proposi-
tions 9(4), 30 and Lemma 23.

Sufficiency. Consider L satisfy Eq. (22) and A = B =
̂1 in Eq. (22). Then it follows from Proposition 5(2) that
[

L−1
(

L(C)
)

, NS
(

L(C)
)]

S = 1 holds for all C ∈ F(U ).
Hence L satisfies Eq. (15). By Proposition 28, there exists
a unique fuzzy relation R on U such that R is reflexive and
L = R.Moreover, Eq. (22) turns out to be Eq. (17). It follows
from Proposition 30 that R is T -Euclidean. �

Remark 33 In this section, single axioms for S-lower fuzzy
rough approximation operators are further studiedwith fuzzy
product operations. We apply a right-continuous t-conorm
with a strong natural negation in the axiomatic characteriza-
tions of S-lower fuzzy rough approximation operators. This
section provides the completion of single axioms for S-lower
fuzzy rough approximation operators (Bao et al. 2018;Wang
2018; Wang et al. 2020; Wu et al. 2016). For readers’ con-
venience, Table 2 summarizes and compares single axioms
for S-lower fuzzy rough approximation operators with fuzzy
product operations in this section,Wang (2018) andWu et al.
(2016) (see “Appendix”).We abbreviate the condition thatS
is a right-continuous t-conorm with a strong natural negation
NS as “t-conorm S .” The abbreviation “(LIS)” is used to
show the condition that S satisfies (LIS) for T w.r.t. N . More-
over, because Wu et al. (2016) applied the dual properties of
continuous t-(co)norms w.r.t. the standard negation in the
axiomatic characterizations of S-lower fuzzy rough approx-
imation operator, we abbreviate that condition as “Dual.”
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5 Conclusions and further work

In this paper, we further study the single axioms for (S, T )-
fuzzy rough approximation operators with fuzzy product
operations, where fuzzy relations are serial, reflexive, T -
transitive and T -Euclidean ones as well as any of their
compositions. As there are different t-(co)norms on the inter-
val, we apply a left-continuous t-norm and a right-continuous
t-conorm with strong natural negations in the axiomatic
characterizations of (S, T )-fuzzy rough approximation oper-
ators with fuzzy product operations. This paper can be
regarded as the completion of single axioms for (S, T )-fuzzy
rough approximation operators (Bao et al. 2018;Wang 2018;
Wang et al. 2020; Wu et al. 2016), which provides much
briefer axiomatic characterizations than the single axioms
for (S, T )-fuzzy rough approximation operators with ordi-
nary fuzzy operations in Wu et al. (2016). Moreover, two
tables summarize and compare single axioms for (S, T )-
fuzzy rough approximation operators with fuzzy product
operations in our paper, Wang (2018) and Wu et al. (2016)
(see “Appendix”).

As one of the goals for the further work, we intend to
further study the single axioms for I -fuzzy rough approxi-
mation operators with fuzzy product operations, where I is
an arbitrary fuzzy implication. The reasons are explained as
follows. If I is an R-implication and the natural negation of
R-implication I is strong, then R-implication I turns out to
be an S-implication based on a right-continuous t-conorm
and a strong fuzzy negation. Otherwise, new fuzzy product
operations are required.
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Appendix

See Tables 1 and 2.

Table 1 Single axioms for T -upper fuzzy rough approximation opera-
tors

Fuzzy relation Axiom Condition

General Theorem 8 (Wu et al. 2016) –

Serial Proposition 15 t-norm T

Reflexive Proposition 16 –

Symmetric Theorem 19 (Wu et al. 2016) –

T -transitive Proposition 17 t-norm T

T -Euclidean Proposition 18 t-norm T

Serial & symmetric Proposition 19 t-norm T

Serial & T -transitive Proposition 20(1) t-norm T

Serial &
T -Euclidean

Proposition 20(2) t-norm T

Reflexive &
T -Euclidean

Proposition 20(4) t-norm T

Symmetric &
T -transitive

Theorem 36 (Wu et al. 2016) –

A fuzzy tolerance Theorem 30 (Wu et al. 2016) –

A fuzzy T -preorder Proposition 20(3) t-norm T

A fuzzy T -similarity Theorem 40 (Wu et al. 2016) –

Table 2 Single axioms for S-lower fuzzy rough approximation opera-
tors

Fuzzy relation Axiom Condition(s)

General Theorem 7 (Wu et al. 2016)
[Proposition 3.16 (Wang
2018)]

–

Serial Proposition 27 t-conorm S

Reflexive Proposition 28 –

Symmetric Theorem 18 (Wu et al. 2016)
[Proposition 3.17 (Wang
2018)]

–

T -transitive Proposition 29 (LIS), t-conorm S

T -Euclidean Proposition 30 (LIS), t-conorm S

Serial &
symmetric

Proposition 31 t-conorm S

Serial &
T -transitive

Proposition 32(1) (LIS), t-conorm S

Serial &
T -Euclidean

Proposition 32(2) (LIS), t-conorm S

Reflexive &
T -Euclidean

Proposition 32(4) (LIS), t-conorm S

Symmetric &
T -transitive

Theorem 35 (Wu et al. 2016)
[Proposition 3.19(2) (Wang
2018)]

Dual [(LIS)]

A fuzzy
tolerance

Theorem 29 (Wu et al. 2016)
[Proposition 3.19(1) (Wang
2018)]

–

A fuzzy
T -preorder

Proposition 32(3) (LIS), t-conorm S

A fuzzy
T -similarity

Theorem 39 (Wu et al. 2016)
[Proposition 3.19(3) (Wang
2018)]

Dual [(LIS)]
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