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Abstract
In transportation problems, the cost depends on various irresistible factors like climatic conditions, fuel expenses, etc. Con-
sequently, the transportation problems with crisp parameters fail to handle such situations. However, the construction of
the problems under an imprecise environment can significantly tackle these circumstances. The intuitionistic fuzzy number
associated with a point is framed by two parameters, namely membership and non-membership degrees. The membership
degree determines its acceptance level, while the non-membership measures its non-belongingness (rejection level). How-
ever, a person, because of some hesitation, instead of giving a fixed real number to the acceptance and rejection levels, may
assign them intervals. This new construction not only generalizes the concept of intuitionistic fuzzy theory but also gives
wider scope with more flexibility. In the present article, a balanced transportation problem having all the parameters and
variables as interval-valued intuitionistic fuzzy numbers is formulated. Then, a solution methodology based on goal program-
ming approach is proposed. This algorithm not only cares to maximize the acceptance level of the objective functions but
simultaneously minimizes the deviational variables attached with each goal. To tackle the interval-valued intuitionistic fuzzy
constraints corresponding to each objective function, three membership and non-membership functions, linear, exponential
and hyperbolic, are used. Further, a numerical example is solved to demonstrate the computational steps of the algorithm,
and a comparison is drawn amidst linear, exponential and hyperbolic membership functions.

Keywords Multi-objective programming · Interval-valued triangular intuitionistic fuzzy numbers · Fuzzy goal programming ·
Expected value · Membership functions

Abbreviations
TP Transportation problem
LPP Linear programming problem
DM Decision maker
MOTP Multi-objective transportation problem
GP Goal programming
MOLPP Multi-objective linear programming problem
IF Intuitionistic fuzzy
IFTP Intuitionistic fuzzy transportation problem
IVIF Interval-valued intuitionistic fuzzy
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IVIFTP Interval-valued intuitionistic fuzzy transporta-
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1 Introduction

A TP is one of the most significant applications of LPPs.
Hitchcock (1941) had first developed the basic TP as a
standard LPP. The objective of TPs is to transport units of
commodities from various origins to different destinations
so as to minimize the total transportation cost. Simplex algo-
rithm is not much suitable to solve a TP due to the structure
of its model; so, Charnes and Cooper (1954) had developed
the stepping stone method to solve a TP. Later, Diaz (1979)
proposed an algorithm to tackle MOTP.
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GP technique is a very powerful and effective tool for the
modelling and solution ofmulti-objective optimization prob-
lems. It was developed by Charnes and Cooper in 1961. It
requires to set the aspiration goals for the various objectives
involved in the problem.Ringuest andRinks (1987) proposed
an interactive algorithm for solving the linear MOTP. Lee
and Li (1993) considered a MOLPP and used the ideal and
anti-ideal solutions to define themembership functions. Zan-
giabadi andMaleki (2013) applied the fuzzy GP approach by
adoptingnonlinearmembership functions to solve theMOTP.
Later, Singh and Yadav (2018) developed a method to handle
the IF MOLPP using various membership functions.

The customary TPs use the values of all the parameters
as crisp values. But in real-life situations, the various param-
eters of a TP are not exactly known as crisp values due to
various uncontrollable factors such as climatic conditions,
uncertainty in judgement, road conditions and economic con-
ditions. So,Zadeh (1965) introduced the concept of fuzzy sets
by associating the membership degree with each element of
the set.Many researchers had proposed various approaches to
deal with the TPs in fuzzy environment. Chanas and Kuchta
(1996) introduced a method for finding the optimal solu-
tion of the TP with coefficients as the fuzzy numbers. It was
observed that the limitation of the fuzzy sets is that they use
a unique or exact real number to represent the membership
grade. However in practical situations, themembership value
may not be known to us as a crisp number. Then, Atanassov
(1986) originated the notion of IF sets using the member-
ship as well as the non-membership functions. The IF sets
include the hesitation or uncertainty involvedwith an element
of the set. Angelov (1997) had broadened the fuzzy opti-
mization into IF optimization. Later on, Hussain and Kumar
(2012) solved a TP where supply and demand values were
given by IF numbers. Gani and Abbas (2013), Singh and
Yadav (2015) developed various approaches for finding the
optimal solution of the IFTP. Later, Ebrahimnejad andVerde-
gay (2018) proposed an efficient computation approach for
solving the balanced IFTP where cost, supply and demand
were expressed by trapezoidal IF numbers. Recently, Maha-
jan and Gupta (2019) introduced an efficient algorithm to
tackle the fully IFMOTPusing variousmembership and non-
membership functions.

It was observed in several cases that membership and non-
membership degrees associated with an element may not be
available as exact values. Therefore, Atanassov and Gargov
(1989) established the idea of IVIF sets, so that membership
and non-membership degrees are represented by intervals
instead of crisp numbers. Many researchers had applied the
concept of IVIF sets in decision-making problems. Nayagam
et al. (2008) proposed the ranking of IVIF sets by making
use of an accuracy function. Later, Sahin (2016) proposed a
new accuracy function for IVIF sets and applied it on multi-
criteria decision-making problems in fuzzy environment.

Bharati and Singh (2018) proposed the solution algorithm
for the TP where transportation costs, supply and demands
are represented by IVTIFNs. Recently, Bharati et al. (2017)
proposed an algorithm for solving fully fuzzyMOLPP based
on deviation degree between two trapezoidal fuzzy numbers.
Ishibuchi and Tanaka (1990) had first examined the multi-
objective programming problem where objective function
coefficients are given by intervals rather than crisp num-
bers. Later on, Jiuping (2011) considered a MOLPP based
on interval-valued fuzzy sets. Li (2010) applied the IVIF
sets theory in multi-attribute decision-making problems.
Narayanamoorthy and Anukokila (2014) used the fuzzy GP
technique for finding the solution of the MOTP with inter-
val cost. Recently, Bharati and Singh (2019) introduced an
approach for solving a MOLPP using IVIF environment.
In the literature, there exist several approaches to solve
MOTP which are described in Table 1.
In the present article, we have developed a powerful method
to solve MOTP by combining three approaches, viz inter-
active, GP and IVIF so as to treat the interval fuzziness in
the input data, achieving the aspiration levels given by the
DM and to quickly reach a preferred solution. This study is
organized as follows: Sect. 2 introduces some basic termi-
nologies related to fuzzy, IF and IVIF set theory. In Sect. 3,
the fully fuzzy-balanced MOTP under IVIF situations has
been formulated and some related theorems are established
in support of our proposed methodology. Sect. 4 includes
the major shortcomings of the existing studies. Sect. 5 deals
with theGPapproach for obtaining the optimal solution of the
multi-objective fully IVIFTP (described in Sect. 3). Sect. 6
characterizes linear, exponential and hyperbolic membership
functions to tackle the IVIF constraints connected with each
objective. In Sect. 7, main advantages of our proposed algo-
rithm are discussed. Section 8 illustrates the applicability of
the proposed solution methodology by a practical example.
Finally, Sect. 9 includes the main conclusions of the study
along with the future research scope.

2 Preliminaries

In this section, we present basic definitions and notations
used in the paper.

Definition 1 (Zadeh 1965) A fuzzy set Ã in a non-empty
universe X is a set of the form Ã = {(x, μ Ã(x)) : x ∈ X}
where μ Ã(x) ∈ [0, 1] represents the degree of membership
of the element x ∈ X being in Ã, and μ Ã : X → [0, 1] is
called the membership function.

Definition 2 (Mahajan and Gupta 2019) An IF set ÃI in X is
a set of ordered triples ÃI = {(x, μ ÃI (x), ν ÃI (x)) : x ∈ X},
where μ ÃI (x) : X → [0, 1] and ν ÃI (x) : X → [0, 1]
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Table 1 Different approaches to solve MOTP

Approach References Features Limitations

Interactive Ringuest and Rinks (1987) Control of search direction is in the
hands of DM

Convergence of solution depends on DM

It is difficult to evaluate the set of efficient
solutions in large-scale problems

Non-interactive Diaz (1979), Isermann (1979) and
Kasana and Kumar (2000)

Find the set of efficient solutions It may take long time to find the efficient
solutions

DM’s difficulty in selecting the preferred
solution due to inexperience or
incomplete information

GP Lee and Moore (1973), Hemaida and
Kwak (1994)

Gives satisfactory solution and
simultaneously inspects the multiple
goals

Unsophisticated assigning of weights lead
to erroneous results

Problem may arise in determining the
aspiration levels also

Fuzzy GP Zangiabadi and Maleki (2013),
Narayanamoorthy and Anukokila
(2014), Singh and Yadav (2018)

Effective tool to handle the incomplete
information given by the DM

It changes the well-known structure of a
TP model

It does not guarantee an efficient solution

IF GP Mahajan and Gupta (2019) Takes care of both acceptance and
rejection levels

Membership and non-membership
degrees are taken to be crisp real
numbers

represent the degree of membership and degree of non-
membership of the element x ∈ X being in ÃI , respectively,
such that ∀ x ∈ X , 0 ≤ μ ÃI (x) + ν ÃI (x) ≤ 1.

An IF set ÃI = {(x, μ ÃI (x), ν ÃI (x)) : x ∈ X} in X

• the value of h ÃI (x) = 1 − μ ÃI (x) − ν ÃI (x) is called
the degree of non-determinacy (hesitancy) of the element
x ∈ X to ÃI .

• is normal if there exists x0, x1 ∈ X such that μ ÃI (x0) =
1 and ν ÃI (x1) = 1.

• is convex if ∀ x1, x2 ∈ X , 0 ≤ λ ≤ 1,

μ ÃI (λx1 + (1 − λ)x2) ≥ min{μ ÃI (x1), μ ÃI (x2)} and
ν ÃI (λx1 + (1 − λ)x2) ≤ max{ν ÃI (x1), ν ÃI (x2)}.

Definition 3 (Ebrahimnejad and Verdegay 2018) An IF set
ÃI = {(x, μ ÃI (x), ν ÃI (x)) : x ∈ R} of the real number R is
called an IF number if

(i) ÃI is normal and convex IF set,
(ii) μ ÃI is upper semicontinuous and ν ÃI is lower semicon-

tinuous and
(iii) Supp ÃI = {x ∈ R : ν ÃI (x) < 1} is bounded.

Definition 4 (Atanassov and Gargov 1989) Let Int[0, 1]
denote the set of all subintervals of the interval [0, 1]. An
IVIF set is defined as a set Ã = {(x, μ Ã(x), ν Ã(x)) : x ∈ X},
where μ Ã : X → Int[0, 1] and ν Ã : X → Int[0, 1] represent
the interval-valued membership and non-membership func-

tions, respectively, provided Sup(μ Ã(x)) + Sup(ν Ã(x)) ≤ 1
∀ x ∈ X .

Definition 5 (Bharati andSingh2018)An IVTIFN is denoted
by Ã = {(aU1 , aL1 , a2, aL3 , aU3 ), (bL1 , bU1 , a2, bU3 , bL3 )}, and
its membership and non-membership degrees are defined as
follows:

• Lower and uppermembership functions, respectively, are
defined as:

μL
Ã
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x = a2,

x − aL1
a2 − aL1

, if aL1 < x < a2,

aL3 − x

aL3 − a2
, if a2 < x < aL3 ,

0, otherwise,

and

μU
Ã
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x = a2,

x − aU1
a2 − aU1

, if aU1 < x < a2,

aU3 − x

aU3 − a2
, if a2 < x < aU3 ,

0, otherwise,

• Lower and upper non-membership functions, respec-
tively, are given by:
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Fig. 1 Interval-valued triangular
intuitionistic fuzzy number

νL
Ã
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = a2,

a2 − x

a2 − bL1
, if bL1 < x < a2,

a2 − x

a2 − bL3
, if a2 < x < bL3 ,

1, otherwise,

and

νU
Ã
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = a2,

x − a2
bU1 − a2

, if bU1 < x < a2,

x − a2
bU3 − a2

, if a2 < x < bU3 ,

1, otherwise,

where bL1 ≤ bU1 ≤ aU1 ≤ aL1 ≤ a2 ≤ aL3 ≤ aU3 ≤ bU3 ≤
bL3 . The diagrammatic representation of IVTIFN is given in
Fig. 1.

Remark 1 If bL1 = bU1 , aU1 = aL1 , aL3 = aU3 , bU3 =
bL3 , then the IVTIFN Ã reduces to a triangular IF number
{(aL1 , a2, aL3 ), (bL1 , a2, bL3 )}.

Definition 6 Let Ã = {(aU1 , aL1 , a2, aL3 , aU3 ), (bL1 , bU1 , a2,
bU3 , bL3 )} and B̃ = {(cU1 , cL1 , c2, cL3 , cU3 ), (dL

1 , dU1 , c2, dU3 ,

dL
3 )} be two IVTIFNs. Then

(a) Ã ⊕ B̃={(aU1 +cU1 , aL1 +cL1 , a2+c2, a
L
3 +cL3 , aU3 +cU3 ),

(bL1 + dL
1 , bU1 + dU1 , a2 + c2, b

U
3 + dU3 , bL3 + dL

3 )}.

(b) k Ã =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(kaU1 , kaL1 , ka2, kaL3 , kaU3 ),

(kbL1 , kbU1 , ka2, kbU3 , kbL3 )}, if k ≥ 0,

{(kaU3 , kaL3 , ka2, kaL1 , kaU1 ),

(kbL3 , kbU3 , ka2, kbU1 , kbL1 )}, if k < 0.

(c) Ã � B̃={(aU1 −cU3 , aL1 −cL3 , a2−c2, a
L
3 −cL1 , aU3 −cU1 ),

(bL1 − dL
3 , bU1 − dU3 , a2 − c2, b

U
3 − dU1 , bL3 − dL

1 )}.
(d) Ã⊗B̃={(eU1 , eL1 , e2, e

L
3 , eU3 ), ( f L1 , f U1 , e2, f U3 , f L3 )}

where

eU1 = min{aU1 cU1 , aU1 cU3 , aU3 c
U
1 , aU3 c

U
3 },

eU3 = max{aU1 cU1 , aU1 cU3 , aU3 cU1 , aU3 c
U
3 },

eL1 = min{aL1 cL1 , aL1 c
L
3 , aL3 c

L
1 , aL3 c

L
3 },

eL3 = max{aL1 cL1 , aL1 c
L
3 , aL3 c

L
1 , aL3 c

L
3 },

f L1 = min{bL1 dL
1 , bL1 d

L
3 , bL3 d

L
1 , bL3 d

L
3 },

f L3 = max{bL1 dL
1 , bL1 d

L
3 , bL3 d

L
1 , bL3 d

L
3 },

f U1 = min{bU1 dU1 , bU1 d
U
3 , bU3 d

U
1 , bU3 d

U
3 },

f U3 = max{bU1 dU1 , bU1 d
U
3 , bU3 d

U
1 , bU3 d

U
3 },

e2 = a2c2.

Definition 7 An IVTIFN Ã = {(aU1 , aL1 , a2, aL3 , aU3 ), (bL1 ,

bU1 , a2, bU3 , bL3 )} is said to be a nonnegative IVTIFN iff

bL1 ≥0.

Remark 2 If Ã and B̃ be two nonnegative IVTIFNs, then

Ã ⊗ B̃ = {(aU1 cU1 , aL1 c
L
1 , a2c2, a

L
3 c

L
3 , aU3 cU3 ), (bL1 d

L
1 , bU1

dU1 , a2c2, b
U
3 d

U
3 , bL3 d

L
3 )}.

Definition 8 Two IVTIFNs Ã = {(aU1 , aL1 , a2, aL3 , aU3 ),

(bL1 , bU1 , a2, bU3 , bL3 )} and B̃ = {(cU1 , cL1 , c2, cL3 , cU3 ),

(dL
1 , dU1 , c2, dU3 , dL

3 )} are said to be equal, i.e. Ã 
 B̃ iff

aU1 = cU1 , aL1 = cL1 , a2 = c2, aL3 = cL3 , aU3 = cU3 , bL1 =
dL
1 , bU1 = dU1 , bU3 = dU3 and bL3 = dL

3 .
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Definition 9 (Bharati and Singh 2018) If Ã = {(aU1 , aL1 , a2,
aL3 , aU3 ), (bL1 , bU1 , a2, bU3 , bL3 )} be a IVTIFN, then its expe-
cted value is given by:

EV ( Ã)=aU1 +aL1 +bL1 +bU1 +8a2+aL3 +aU3 +bU3 + bL3
16

.

Theorem 1 (Bharati and Singh 2018) The expected value
function EV : I V I F(R) → R is a linear function, where
IVIF(R) denotes the set of all IVIFNs over R.

Definition 10 (Ordering of IVTIFNs) Let Ã and B̃ be two
IVTIFNs. Then,

(i) Ã � B̃ ⇐⇒ EV ( Ã) ≤ EV (B̃).
(ii) Ã � B̃ ⇐⇒ EV ( Ã) ≥ EV (B̃).

3 Fully IVIF multi-objective transportation
problem

The mathematical formulation of a TP having K -objectives
(MOTP) in crisp environment does not depict the real-life
situations appropriately, when there is vagueness/ambiguity
in the objectives and/or constraints of the model. In such
situations, the formulation of MOTP where all the involved
parameters and variables are expressed by IVIFNs seems to
be viable and gives more flexibility to the DM. The MOTP
under IVIF situation can be formulated as follows:

(IVIFTP) Minimize Z̃(x) = {Z̃1(x), Z̃2(x), . . . , Z̃K (x)}
where Z̃k(x) =

m∑

i=1

n∑

j=1

c̃ki j ⊗ x̃i j ; k = 1, 2, . . . , K

subject to
n∑

j=1

x̃i j = ãi , i = 1, 2, . . . ,m,

m∑

i=1

x̃i j = b̃ j , j = 1, 2, . . . , n,

x̃i j � 0̃, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

where ãi={(aUi1, aLi1, ai2, aLi3, aUi3), (a′L
i1 , a′U

i1 , ai2, a′U
i3 , a′L

i3 )}
is the IVTIF supply of the commodity at the i th origin,
b̃ j = {(bUj1, bLj1, b j2, bLj3, b

U
j3), (b

′L
j1, b

′U
j1 , b j2, b′U

j3 , b
′L
j3)} is

the IVTIF demand of the commodity at the j th destination,

c̃ki j = {(ckUi j1, ckLi j1, cki j2, ckLi j3, ckUi j3), (c′kL
i j1 , c′kU

i j1 , cki j2, c
′kU
i j3 ,

c′kL
i j3 )} is the IVTIF penalty associated with transporting a
unit of the commodity from i th origin to the j th desti-
nation according to the kth penalty criterion, and x̃i j =
{(xUi j1, x Li j1, xi j2, x Li j3, xUi j3), (x ′L

i j1, x
′U
i j1, xi j2, x

′U
i j3, x

′L
i j3)} is

the IVTIF quantity of the commodity that should be trans-
ported from the i th origin to the j th destination.

It is assumed that all the parameters involved in the prob-

lem (IVIFTP) are nonnegative and
∑m

i=1
ãi =

∑n

j=1
b̃ j .

Let SF denote the feasible region for (IVIFTP).
Now, usingRemark 2 and putting x̃i j={(xUi j1, x Li j1, xi j2, x Li j3,
xUi j3), (x

′L
i j1, x

′U
i j1, xi j2, x

′U
i j3, x

′L
i j3)}, the problem (IVIFTP) can

be rewritten as:

Minimize Z̃(x)

=
{ m∑

i=1

n∑

j=1

((
c1Ui j1x

U
i j1, c

1L
i j1x

L
i j1, c

1
i j2xi j2, c

1L
i j3x

L
i j3, c

1U
i j3x

U
i j3

)
,

(
c′1L
i j1 x

′L
i j1, c

′1U
i j1 x

′U
i j1, c

1
i j2xi j2, c

′1U
i j3 x

′U
i j3, c

′1L
i j3 x

′L
i j3

))
,

m∑

i=1

n∑

j=1

((
c2Ui j1x

U
i j1, c

2L
i j1x

L
i j1, c

2
i j2xi j2, c

2L
i j3x

L
i j3,

c2Ui j3x
U
i j3

)
,
(
c′2L
i j1 x

′L
i j1, c

′2U
i j1 x

′U
i j1, c

2
i j2xi j2, c

′2U
i j3 x

′U
i j3, c

′2L
i j3 x

′L
i j3

))
,

.

.

.
m∑

i=1

n∑

j=1

((
cKU
i j1 xUi j1, c

K L
i j1 x

L
i j1, c

K
i j2xi j2, c

K L
i j3 x

L
i j3, c

KU
i j3 xUi j3

)
,

(
c′K L
i j1 x ′L

i j1, c
′KU
i j1 x ′U

i j1, c
K
i j2xi j2, c

′KU
i j3 x ′U

i j3, c
′K L
i j3 x ′L

i j3

))}

subject to
n∑

j=1

x̃i j = ãi , i = 1, 2, . . . ,m,

m∑

i=1

x̃i j = b̃ j , j = 1, 2, . . . , n,

x̃i j � 0̃, for all i and j .

(1)

Applying expected value function on all the components of
objective function and using definitions 7 and 8, we further
get

(IVIFTP1) Min EV (Z̃(x))

=
⎧
⎨

⎩
EV

⎛

⎝
m∑

i=1

n∑

j=1

((
c1Ui j1x

U
i j1, c

1L
i j1x

L
i j1, c

1
i j2xi j2, c

1L
i j3x

L
i j3, c

1U
i j3x

U
i j3

)
,

(
c′1L
i j1 x

′L
i j1, c

′1U
i j1 x

′U
i j1, c

1
i j2xi j2, c

′1U
i j3 x

′U
i j3, c

′1L
i j3 x

′L
i j3

))
)

,

EV

⎛

⎝
m∑

i=1

n∑

j=1

((
c2Ui j1x

U
i j1, c

2L
i j1x

L
i j1, c

2
i j2xi j2, c

2L
i j3x

L
i j3, c

2U
i j3x

U
i j3

)
,

(

c′2L
i j1 x

′L
i j1, c

′2U
i j1 x

′U
i j1, c

2
i j2xi j2, c

′2U
i j3 x

′U
i j3, c

′2L
i j3 x

′L
i j3

))
)

,

.

.

.

EV

⎛

⎝
m∑

i=1

n∑

j=1

((
cKU
i j1 xUi j1, c

K L
i j1 x

L
i j1, c

K
i j2xi j2, c

K L
i j3 x

L
i j3, c

KU
i j3 xUi j3

)
,

(
c′K L
i j1 x ′L

i j1, c
′KU
i j1 x ′U

i j1, c
K
i j2xi j2, c

′KU
i j3 x ′U

i j3, c
′K L
i j3 x ′L

i j3

))
)⎫

⎬

⎭
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subject to
n∑

j=1

xUi j1 = aUi1,
n∑

j=1

x Li j1 = aLi1,
n∑

j=1

xi j2 = ai2,
n∑

j=1

x Li j3 = aLi3,

n∑

j=1

xUi j3 = aUi3,
n∑

j=1

x ′L
i j1 = a′L

i1 ,

n∑

j=1

x ′U
i j1 = a′U

i1 ,

n∑

j=1

x ′U
i j3 = a′U

i3 ,

n∑

j=1

x ′L
i j3 = a′L

i3 ,

m∑

i=1

xUi j1 = bUj1,
m∑

i=1

x Li j1 = bLj1,
m∑

i=1

xi j2 = b j2,

m∑

i=1

x Li j3 = bLj3,
m∑

i=1

xUi j3 = bUj3,
m∑

i=1

x ′L
i j1 = b′L

j1,

m∑

i=1

x ′U
i j1 = b′U

j1 ,

m∑

i=1

x ′U
i j3 = b′U

j3 ,

m∑

i=1

x ′L
i j3 = b′L

j3,

x ′L
i j1 ≥ 0, x ′U

i j1 − x ′L
i j1 ≥ 0, xUi j1 − x ′U

i j1 ≥ 0, x Li j1 − xUi j1 ≥ 0,

xi j2 − x Li j1 ≥ 0, x Li j3 − xi j2 ≥ 0, xUi j3 − x Li j3 ≥ 0, x ′U
i j3 − xUi j3 ≥ 0,

x ′L
i j3 − x ′U

i j3 ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

In the rest of the paper,we denote EV (Z̃k(x)) = Z ′
k(x), k =

1, 2, . . . , K .

Theorem 2 If ˜̄xi j = {(x̄Ui j1, x̄ Li j1, x̄i j2, x̄ Li j3, x̄Ui j3), (x̄ ′L
i j1, x̄

′U
i j1,

x̄i j2, x̄ ′U
i j3, x̄

′L
i j3)} is the optimal solution of the problem (2),

then it is a nonnegative IVIFN.

Proof Let ˜̄xi j ={(x̄Ui j1, x̄ Li j1, x̄i j2, x̄ Li j3, x̄Ui j3), (x̄ ′L
i j1, x̄

′U
i j1, x̄i j2,

x̄ ′U
i j3, x̄

′L
i j3)} be the optimal solution of (IVIFTP1). So, ˜̄xi j

satisfy the nonnegativity constraints of model (IVIFTP1).
Hence,

x̄ ′L
i j1 ≥ 0, x̄ ′U

i j1 − x̄ ′L
i j1 ≥ 0, x̄Ui j1 − x̄ ′U

i j1 ≥ 0,

x̄ Li j1 − x̄Ui j1 ≥ 0, x̄i j2 − x̄ Li j1 ≥ 0, x̄ Li j3 − x̄i j2 ≥ 0,

x̄Ui j3 − x̄ Li j3 ≥ 0, x̄ ′U
i j3 − x̄Ui j3 ≥ 0, x̄ ′L

i j3 − x̄ ′U
i j3 ≥ 0,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n

which implies that

x̄ ′L
i j1 ≥ 0, x̄ ′L

i j1 ≤ x̄ ′U
i j1 ≤ x̄Ui j1 ≤ x̄ Li j1 ≤ x̄i j2 ≤ x̄ Li j3

≤ x̄Ui j3 ≤ x̄ ′U
i j3 ≤ x̄ ′L

i j3,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Hence, the result. ��
Theorem 3 Theoptimal valueof objectives ˜̄Zk={(Z̄ kU

1 , Z̄ kL
1 ,

Z̄ k
2, Z̄

kL
3 , Z̄ kU

3 ), (Z̄ ′kL
1 , Z̄ ′kU

1 , Z̄ k
2, Z̄

′kU
3 , Z̄ ′kL

3 )}, k = 1, 2, . . .
K, is a nonnegative IVIFN.

Proof Let ˜̄xi j ={(x̄Ui j1, x̄ Li j1, x̄i j2, x̄ Li j3, x̄Ui j3), (x̄ ′L
i j1, x̄

′U
i j1, x̄i j2,

x̄ ′U
i j3, x̄

′L
i j3)} be the optimal solution of (IVIFTP1). By Theo-

rem 2, we have

x̄ ′L
i j1 ≥ 0, x̄ ′L

i j1 ≤ x̄ ′U
i j1 ≤ x̄Ui j1 ≤ x̄ Li j1 ≤ x̄i j2 ≤ x̄ Li j3 ≤ x̄Ui j3

≤ x̄ ′U
i j3 ≤ x̄ ′L

i j3,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Further, as c̃ki j are also nonnegative IVTIFNs, therefore

c′kL
i j1 ≥ 0, c′kL

i j1 ≤ c′kU
i j1 ≤ ckUi j1 ≤ ckLi j1 ≤ cki j2 ≤ ckLi j3

≤ ckUi j3 ≤ c′kU
i j3 ≤ c′kL

i j3 ;
i =1, 2, . . . ,m; j =1, 2, . . . , n and ∀ k=1, 2, . . . , K .

Hence,

c′kL
i j1 x̄

′L
i j1 ≥ 0, c′kL

i j1 x̄
′L
i j1 ≤ c′kU

i j1 x̄
′U
i j1 ≤ ckUi j1 x̄

U
i j1 ≤ ckLi j1 x̄

L
i j1

≤ cki j2 x̄i j2 ≤ ckLi j3 x̄
L
i j3 ≤ ckUi j3 x̄

U
i j3 ≤ c′kU

i j3 x̄
′U
i j3 ≤ c′kL

i j3 x̄
′L
i j3,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

The components of ˜̄Zk are given by

Z̄ ′kL
1 =

m∑

i=1

n∑

j=1

c′kL
i j1 x̄

′L
i j1, Z̄ ′kU

1 =
m∑

i=1

n∑

j=1

c′kU
i j1 x̄

′U
i j1,

Z̄ kU
1 =

m∑

i=1

n∑

j=1

ckUi j1 x̄
U
i j1,

Z̄ kL
1 =

m∑

i=1

n∑

j=1

ckLi j1 x̄
L
i j1, Z̄ k

2 =
m∑

i=1

n∑

j=1

cki j2 x̄i j2,

Z̄ kL
3 =

m∑

i=1

n∑

j=1

ckLi j3 x̄
L
i j3,

Z̄ kU
3 =

m∑

i=1

n∑

j=1

ckUi j3 x̄
U
i j3, Z̄ ′kU

3 =
m∑

i=1

n∑

j=1

c′kU
i j3 x̄

′U
i j3,

Z̄ ′kL
3 =

m∑

i=1

n∑

j=1

c′kL
i j3 x̄

′L
i j3; k = 1, 2, . . . , K .

It follows that

˜̄Zk � 0 ∀ k = 1, 2, . . . , K .

This proves the theorem. ��
Definition 11 A point ˜̄x is said to be an efficient or Pareto
optimal solution of IVIFTP if there does not exist any x̃ ∈ SF
such that Z̃k( ˜̄x) � Z̃k(x̃) ∀ k and Z̃k( ˜̄x) � Z̃k(x̃) for at least
one k.

Theorem 4 The efficient solution of problem (2) is an efficient
solution of model (1).

Proof Let ˜̂x =
{
{(x̂Ui j1, x̂ Li j1, x̂i j2, x̂ Li j3, x̂Ui j3), (x̂ ′L

i j1, x̂
′U
i j1,

x̂i j2, x̂ ′U
i j3, x̂

′L
i j3)}, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

}
be an

efficient solution of (2). Hence, by feasibility conditions, we
have

n∑

j=1

x̂Ui j1 = aUi1,
n∑

j=1

x̂ Li j1 = aLi1,
n∑

j=1

x̂i j2 = ai2,
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n∑

j=1

x̂ Li j3 = aLi3,
n∑

j=1

x̂Ui j3 = aUi3,

n∑

j=1

x̂ ′L
i j1 = a′L

i1 ,

n∑

j=1

x̂ ′U
i j1 = a′U

i1 ,

n∑

j=1

x̂ ′U
i j3 = a′U

i3 ,

n∑

j=1

x̂ ′L
i j3 = a′L

i3 , i = 1, 2, . . . ,m,

m∑

i=1

x̂Ui j1 = bUj1,
m∑

i=1

x̂ Li j1 = bLj1,
m∑

i=1

x̂i j2 = b j2,

m∑

i=1

x̂ Li j3 = bLj3,
m∑

i=1

x̂Ui j3 = bUj3,

m∑

i=1

x̂ ′L
i j1 = b′L

j1,

m∑

i=1

x̂ ′U
i j1 = b′U

j1 ,

m∑

i=1

x̂ ′U
i j3 = b′U

j3 ,

m∑

i=1

x̂ ′L
i j3 = b′L

j3, j = 1, 2, . . . , n,

x̂ ′L
i j1 ≥ 0, x̂ ′U

i j1 − x̂ ′L
i j1≥0, x̂Ui j1 − x̂ ′U

i j1≥0, x̂ Li j1 − x̂Ui j1≥0,

x̂i j2 − x̂ Li j1 ≥ 0, x̂ Li j3 − x̂i j2 ≥ 0,

x̂Ui j3 − x̂ Li j3 ≥ 0, x̂ ′U
i j3 − x̂Ui j3 ≥ 0,

x̂ ′L
i j3 − x̂ ′U

i j3 ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

The above constraints give

(i)
∑n

j=1
˜̂xi j = ãi , i = 1, 2, . . . ,m,

(ii)
∑m

i=1
˜̂xi j = b̃ j , j = 1, 2, . . . , n,

(iii) ˜̂xi j � 0̃, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Thus, (i), (i i) and (i i i) give ˜̂x is a feasible solution of (1).
Now, as ˜̂x is an efficient solution of (2), there does not exist
any IVTIFN ˜̄x such that EV (Z̃k( ˜̄x)) ≤ EV (Z̃k( ˜̂x)), for all
k = 1, 2, . . . , K and EV (Z̃k( ˜̄x)) < EV (Z̃k( ˜̂x)), for at least
one k, which using definition (10) yields ˜̂x is an efficient
solution of (1) also.
Hence proved. ��

4 Shortcomings of the existing studies

Various researchers have studied the transportation problems
under fuzzy, IF and IVIF situations. Some of the major short-
comings of their studies are listed below:

1. Hussain and Kumar (2012) and Singh and Yadav (2016)
proposed the methodologies for finding the solution of
fully IFTPs. In their studies, all the parameters, i.e. trans-
portation costs, supply and demand, were taken to be

positive IF numbers. But their approaches yields nega-
tive quantities for some of the IF variables. Moreover,
negative terms are also appeared in the objective func-
tion values which have no physical meaning. But, our
study overcomes this limitation.

2. The existing studies of dealing with multi-objective pro-
gramming models with IF (Singh and Yadav 2018) and
IVIF (Bharati and Singh 2019) environments encounters
non-membership degree in parameters of TP only; how-
ever, in real-life situations, the vagueness may also creep
in the variables. In the present formulation, the variables
are also considered as IVIFNs.

3. The method in Bharati and Singh (2018) was developed
to deal with the single-objective balanced TP of the type:

min Z̃(x) =
m∑

i=1

n∑

j=1

c̃i j ⊗ xi j

s.t.
n∑

j=1

xi j = ãi , i = 1, 2, . . . ,m,

m∑

i=1

xi j = b̃ j , j = 1, 2, . . . , n,

xi j ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

where all the parameters of a TP were represented by
IVTIFNs and the variables were assumed to be crisp.
However in the present study, we introduce a method-
ology to deal with multi-objective fully IVIFTPs which
are more general and have wide number of applications
in comparison with single-objective problems.

4. Gupta andKumar (2012) developed a solutionmethodol-
ogy for solving linearMOTPwith parameters represented
by (λ, ρ) interval-valued fuzzy numbers. A balanced TP
is always feasible, but the solution obtained by their
approach is not even feasible.

5. The approach proposed by Mahajan and Gupta (2019)
deals withMOTPs in IF environment. But in practical sit-
uations, membership and non-membership degrees may
not be crisp. Our study takes care of this limitation by
considering the MOTP in IVIF scenario which is more
realistic and general.

6. Themethod dealingwithMOTPs given inAbdEl-Wahed
and Lee (2006), all the constraints connected with the
objective goals become redundant, whereas the current
study takes care of it by minimizing the sum of all devi-
ational variables.

7. The existing approaches (Narayanamoorthy andAnukok-
ila 2014; Singh and Yadav 2018; Mahajan and Gupta
2019) to solve multiple objective optimization problems,
either maximize the difference of acceptance and rejec-
tive level or minimize the sum of deviations but our
approach considers both the situations simultaneously.
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Table 2 Payoff table

X Z ′
1 Z ′

2 Z ′
3 … Z ′

K

X1 Z ′
1(X1) Z ′

2(X1) Z ′
3(X1) … Z ′

K (X1)

X2 Z ′
1(X2) Z ′

2(X2) Z ′
3(X2) … Z ′

K (X2)

X3 Z ′
1(X3) Z ′

2(X3) Z ′
3(X3) … Z ′

K (X3)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

XK Z ′
1(XK ) Z ′

2(XK ) Z ′
3(XK ) … Z ′

K (XK )

5 Proposed approach

In this section, we present the weighted GP approach in IVIF
environment for finding the optimal solution of the problem
(IVIFTP).All the optimizationmodels in the paper are solved
directly by using a software “LINGO−17.0” on a MacBook
Air system with 1.8 GHz Dual-Core Intel Core i5 processor
and 8 GB RAM.
The steps involved in the algorithm to solve (IVIFTP) are as
follows:

Step 1 Develop the model as described in (IVIFTP).

Step 2 Split the problem (IVIFTP1) in K -subproblems. The
kth subproblem is given by:

(IVIFTP-k) Minimize Z ′
k(x) = EV (Z̃k(x))

= EV

⎛

⎝
m∑

i=1

n∑

j=1

((
ckUi j1x

U
i j1, c

kL
i j1x

L
i j1, c

k
i j2xi j2, c

kL
i j3x

L
i j3, c

kU
i j3x

U
i j3

)
,

(
c′kL
i j1 x

′L
i j1, c

′kU
i j1 x

′U
i j1, c

k
i j2xi j2, c

′kU
i j3 x

′U
i j3, c

′kL
i j3 x

′L
i j3

))
⎞

⎠

subject to all the constraints of (2).

Let the optimal solution of (IVIFTP-k) be Xk . Find Z
′
1(Xk),

Z
′
2(Xk), . . . , Z

′
K (Xk).

Step 3Continue Step 2 for k = 1, 2, . . . , K , and assume that
the corresponding optimal solutions be X1, X2, . . . , XK .
If all the solutions Xk, k = 1, 2, . . . , K are same, then it is
the optimal compromise solution, otherwise go to Step 4.

Step 4 Construct a payoff matrix using all the solutions
obtained in Steps 2 and 3 as shown in Table 2.

Remark 3 For k = 1, X1 will be the optimal solution and
Z1 will be the required optimal transportation cost of the
corresponding single-objective TP. For k > 1, go to step 5.

Step 5 From the above payoff matrix of order K ×K , whose
(i, j)th element is equal to Z ′

j (Xi ) = EV (Z̃ j (Xi )), evaluate

Uk = max
1≤p≤K

Z ′
k(X p) and Lk = Z ′

k(Xk), k = 1, 2, . . . , K .

Here, we call Lk to be the most acceptable level and Uk

to be the worst acceptable level of achievement for the kth
objective function.

Step 6 Formulate a model to find xUi j1, x
L
i j1, xi j2, x

L
i j3, x

U
i j3,

x ′L
i j1, x

′U
i j1, x

′U
i j3, x

′L
i j3, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

such that

(COP) Z
′
k(x) ∼ Lk, k = 1, 2, . . . , K

along with the constraints of (2)

where Z
′
k(x) ∼ Lk, k = 1, 2, . . . , K is an IVIF equality

which can be handled using a membership function. Choice
of this function depends on the DM. It can be taken as linear,
exponential or hyperbolic.

Step 7 Using a membership function and the concept of
IVIF decision, to achieve the aspiration level Gk for the kth
objective, we minimize the difference between Z ′

k and Gk

(k = 1, 2, . . . , K ) by including the deviational variables d+
k

and d−
k , which are defined as follows:

d+
k = max{0, Z ′

k − Gk} = 1

2

[
Z ′
k − Gk + |Z ′

k − Gk |
]
, and

d−
k = max{0,Gk − Z ′

k} = 1

2

[
Gk − Z ′

k + |Gk − Z ′
k |

]
.

Following Abd El-Wahed and Lee (2006), Bharati and Singh
(2019), the model (COP) reduces to:

(COM) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − (w1(d

+
1 + d−

1 )

+w2(d
+
2 + d−

2 ) + · · · + wK (d+
K + d−

K ))
)

s.t. μU
k

(
Z ′
k(x)

)
≥ θα + (1 − θ)β,

μL
k

(
Z ′
k(x)

)
≥ α,

νUk

(
Z ′
k(x)

)
≤ θγ + (1 − θ)δ,

νL
k

(
Z ′
k(x)

)
≤ γ,

Z ′
k(x) − d+

k + d−
k = Gk ,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ ≤ 1,
d−
k , d+

k ≥ 0, k = 1, 2, . . . , K
and all the constraints of (2)

where α is the minimum degree of acceptance, γ is the maxi-
mumdegreeof rejection andw1, w2, . . . , wK are theweights
based on the priority levels of objectives.

Step 8 Finally, x̃ = {{(xUi j1, x Li j1, xi j2, x Li j3, xUi j3), (x ′L
i j1, x

′U
i j1,

xi j2, x ′U
i j3, x

′L
i j3)} i = 1, 2, . . . ,m; j = 1, 2, . . . , n

}
gives

IVIF optimal solution. Further, on substituting x̃ in Z̃k(x) =
∑m

i=1

∑n

j=1
c̃ki j⊗x̃i j ; k = 1, 2, . . . , K , we get the optimal

objective function value of the multi-objective IVIFTP.
The flowchart in Fig. 2 depicts the proposedmethodology.

6 Membership functions

(Bharati and Singh 2019; Mahajan and Gupta 2019)
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Fig. 2 Flow chart depicting the
steps of proposed algorithm
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Fig. 3 Lower and upper linear
membership and
non-membership functions

To handle the IVIF constraints,

Z
′
k(x) ∼ Lk, k = 1, 2, . . . , K ,

one can take linear, exponential or hyperbolic member-
ship and non-membership functions. A linear membership
function is most commonly used because of its simplicity.
However, to deal with the real-life situations, the linear mem-
bership function may not be applicable. As a result, one can
opt for nonlinear membership functions which can depict the
practical situation in a better way.

6.1 Linear membership function

Upper and lower linear membership functions μU
k (Z ′

k(x))
and μL

k (Z ′
k(x)) (Fig. 3) for the kth objective are defined as:

μU
k

(
Z ′
k(x)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x) ≤ Lμ

k ,

Uμ
k − Z ′

k(x)

Uμ
k − Lμ

k

if Lμ
k < Z ′

k(x) < Uμ
k ,

0 if Z ′
k(x) ≥ Uμ

k ,

μL
k

(
Z ′
k(x)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x) ≤ Lμ

k ,

η

(
Uμ
k −Z ′

k(x)

Uμ
k −Lμ

k

)

if Lμ
k < Z ′

k(x)<Uμ
k ,

0 if Z ′
k(x)≥Uμ

k .

The upper and lower linear non-membership functions
νUk (Z ′

k(x)) and νL
k (Z ′

k(x)) (Fig. 3) for the kth objective are
given by:

νUk

(
Z ′
k(x)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k(x) ≤ Lν

k ,

Z ′
k(x) − Lν

k

U ν
k − Lν

k
if Lν

k < Z ′
k(x) < U ν

k ,

1 if Z ′
k(x) ≥ U ν

k ,

νL
k

(
Z ′
k(x)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k(x) ≤ Lν

k ,

η

(
Z ′
k(x) − Lν

k

U ν
k − Lν

k

)

if Lν
k < Z ′

k(x) < U ν
k ,

1 if Z ′
k(x) ≥ U ν

k ,

where 0 ≤ η ≤ 1, k = 1, 2, . . . , K and Lμ
k = Lk, Lν

k =
Lμ
k + t(Uμ

k − Lμ
k ); 0 < t < 1.

Here, t is called the tolerance. The approach used is pes-
simistic in which the decision maker is likely to be ready for
extra acceptance. In other words, if the degree of rejection is
zero, the DM is not accessible to accept it fully.

In the remaining part of the paper, we defineUμ
k = U ν

k =
Uk .

The intervals [μL(x), μU (x)] and [νL(x), νU (x)] denote
the acceptance and rejection degrees, respectively.

Now, on applying the above upper and lower membership
and non-membership functions in all the objectives and using
the concept of weighted GP, the problem (COM) is converted
to the following model:
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(LMF) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − (w1(d

+
1 + d−

1 )

+w2(d
+
2 + d−

2 ) + · · · + wK (d+
K + d−

K ))
)

s.t. Uμ
k − Z ′

k(x) ≥ (Uμ
k − Lμ

k )(θα + (1 − θ)β),

η(Uμ
k − Z ′

k(x)) ≥ (Uμ
k − Lμ

k )α,

Z ′
k(x) − Lν

k ≤ (U ν
k − Lν

k )(θγ + (1 − θ)δ),

η(Z ′
k(x) − Lν

k ) ≤ (U ν
k − Lν

k )γ,

Z ′
k(x) − d+

k + d−
k = Gk ,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ ≤ 1,
d−
k , d+

k ≥ 0, k = 1, 2, . . . , K
and all the constraints of (2).

6.2 Exponential membership function

The functions representing the two ends of exponentialmem-
bership function μU

k (Z ′
k(x)) and μL

k (Z ′
k(x)) (Fig. 4) for the

kth objective are given by:

μU
k

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x) ≤ Lμ

k ,

e−Sk
(
(Z ′

k (x)−Lμ
k )/(Uμ

k −Lμ
k )

)

− e−Sk

1 − e−Sk
if Lμ

k < Z ′
k(x) < Uμ

k ,

0 if Z ′
k(x) ≥ Uμ

k ,

μL
k

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x) ≤ Lμ

k ,

η

(
e−Sk

(
(Z ′

k (x)−Lμ
k )/(Uμ

k −Lμ
k )

)

− e−Sk

1 − e−Sk

)

if Lμ
k < Z ′

k(x) < Uμ
k ,

0 if Z ′
k(x) ≥ Uμ

k .

Fig. 4 Lower and upper exponential membership and non-membership
functions

The functions representing upper and lower exponential non-
membership functions νUk (Z ′

k(x)) and νL
k (Z ′

k(x)) (Fig. 4) for
the kth objective are defined by:

νUk

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k(x) ≤ Lν

k ,

e−Sk
(
(U ν

k −Z ′
k (x))/(U

ν
k −Lν

k )
)

− e−Sk

1 − e−Sk
if Lν

k < Z ′
k(x) < U ν

k ,

1 if Z ′
k(x) ≥ U ν

k ,

νL
k

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k(x) ≤ Lν

k ,

η

(
e−Sk

(
(U ν

k −Z ′
k (x))/(U

ν
k −Lν

k )
)

− e−Sk

1 − e−Sk

)

if Lν
k < Z ′

k(x) < U ν
k ,

1 if Z ′
k(x) ≥ U ν

k ,

where 0 ≤ η ≤ 1 and Sk, k = 1, 2, . . . , K are the shape
parameters decided by the DM.

Finally, applying the exponential membership function,
the model (COM) becomes:

(EMF) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − (w1(d

+
1 + d−

1 )

+w2(d
+
2 + d−

2 ) + · · · + wK (d+
K + d−

K ))
)

s.t. e−Sk
(
(Z ′

k (x)−Lμ
k )/(Uμ

k −Lμ
k )

)

− (1 − e−Sk )(θα + (1 − θ)β)

≥ e−Sk ,

η
(
e−Sk

(
(Z ′

k (x)−Lμ
k )/(Uμ

k −Lμ
k )

))
− (1 − e−Sk )α ≥ ηe−Sk ,

e−Sk
(
(U ν

k −Z ′
k (x))/(U

ν
k −Lν

k )
)

− (1 − e−Sk )(θγ + (1 − θ)δ)

≤ e−Sk ,

η
(
e−Sk

(
(U ν

k −Z ′
k (x))/(U

ν
k −Lν

k )
))

− (1 − e−Sk )γ ≤ ηe−Sk ,

Z ′
k(x) − d+

k + d−
k = Gk ,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ ≤ 1,
d−
k , d+

k ≥ 0, k = 1, 2, . . . , K
and all the constraints of (2).

6.3 Hyperbolic Membership function

The upper and lower hyperbolicmembershipμU
k (Z ′

k(x)) and
μL
k (Z ′

k(x)) (Fig. 5) for the kth objective are defined by the
following functions:

μU
k

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x) ≤ Lμ

k ,

1

2
tanh

(

α1
k

(
Uμ
k + Lμ

k

2
− Z ′

k(x)

))

+ 1

2
if Lμ

k < Z ′
k(x) < Uμ

k ,

0 if Z ′
k(x) ≥ Uμ

k ,
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Fig. 5 Lower and upper hyperbolic membership and non-membership
functions

μL
k

(
Z ′
k(x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z ′
k(x)≤Lμ

k ,

η

(
1

2
tanh

(

α1
k

(
Uμ
k +Lμ

k

2
−Z ′

k(x)

))

+ 1

2

)

if Lμ
k < Z ′

k(x)<Uμ
k ,

0 if Z ′
k(x) ≥ Uμ

k ,

where α1
k = 6

Uμ
k − Lμ

k

, k = 1, 2, . . . , K .

The upper and lower hyperbolic ends of the non-
membership νUk (Z ′

k(x)) and νL
k (Z ′

k(x)) (Fig. 5) for the kth
objective are given by the following functions:

νUk

(
Z ′
k (x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k (x) ≤ Lν

k ,

1

2
tanh

(

α2k

(

Z ′
k (x) − Uν

k + Lν
k

2

))

+ 1

2
if Lν

k < Z ′
k (x) < Uν

k ,

1 if Z ′
k (x) ≥ Uν

k ,

νLk

(
Z ′
k (x)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Z ′
k (x) ≤ Lν

k ,

η

(
1

2
tanh

(

α2k

(

Z ′
k (x)−

Uν
k +Lν

k
2

))

+ 1

2

)

if Lν
k < Z ′

k (x)<Uν
k ,

1 if Z ′
k (x)≥Uν

k ,

where 0 ≤ η ≤ 1 and α2
k = 6

U ν
k − Lν

k
, k = 1, 2, . . . , K .

The model (COM) becomes:

(HMF) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − (w1(d

+
1 + d−

1 )

+w2(d
+
2 + d−

2 ) + · · · + wK (d+
K + d−

K ))
)

s.t. α1
k Z

′
k(x) + tanh−1

(
2(θα + (1 − θ)β) − 1

)

≤ α1
k

2
(Uμ

k + Lμ
k ),

α1
k Z

′
k(x) + tanh−1

(
2α

η
− 1

)

≤ α1
k

2
(Uμ

k + Lμ
k ),

α2
k Z

′
k(x) − tanh−1 (2(θγ + (1 − θ)δ) − 1)

≤ α2
k

2
(U ν

k + Lν
k ),

α2
k Z

′
k(x) − tanh−1

(
2γ

η
− 1

)

≤ α2
k

2
(U ν

k + Lν
k ),

Z ′
k(x) − d+

k + d−
k = Gk ,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ ≤ 1,
d−
k , d+

k ≥ 0, k = 1, 2, . . . , K
and all the constraints of (2),

where α1
k = 6

Uμ
k − Lμ

k

, α2
k = 6

U ν
k − Lν

k
, k = 1, 2, . . . , K .

Remark 4 The above models are solved in IVIF environment
but they can be reduced into IF and fuzzy environment as
discussed below:

(i) If θ = 1 and η = 1, the above models (LMF), (EMF)
and (HMF) become equivalent models in IF sense.
(ii) If α = β, γ = δ = 0 and η = 1, then the models
reduce to problems in fuzzy environment.

7 Major advantages of the proposed
algorithm

The main advantages of the proposed study over the existing
studies are as follows:

1. Because IVIF set theory is the more general concept,
consequently, the proposed method can be reduced for
solving both fuzzy transportation problems as well as
IFTPs.

2. The rankingmethod used is universal; hence, it can be uti-
lized for ordering of all IVIFNs. Therefore, the proposed
algorithm can be applied to solve a general IVIFTP.

3. In comparison with the existing studies, the proposed
approach can be successfully used for solving single-
objective as well as the multi-objective fully IVIFTP,
where all the parameters of the model are expressed by
IVTIFNs.

4. The proposed approach gives optimal solutions as non-
negative IVTIFNs, i.e. no negative part appears in the
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IVIF quantities of the commodity or in the values of
various objectives involved in the problem under con-
sideration.

5. The solution obtained are in the form of IVTIFNs and
transportation quantities are in IVTIFNs form instead of
crisp values. This provides the DMmore freedom which
is very impressive in view of practical applications.

6. In theGPapproach to solveMOTP,wenot onlymaximize
the acceptance level of the objectives but also minimize
deviational variables associated with each goal, which
provide better solution to the problem in terms of satis-
faction level of DM.

8 Numerical illustration

The applicability and flexibility of the proposed approach is
authenticated by completing the optimal shipping plan from
two origins to three destinations along with the objectives
of minimizing the total transportation cost, labour working
hours and wastage of raw material based on uncertain data
represented by IVTIFNs.

Let us consider the problem of a company manager who
would like to transport the cartons of shoes from two different
factories situated at S1 and S2 to three different major retail
stores located at D1, D2 and D3 (Fig. 6). The aim of manager
is to

(a) minimize the total transportation cost,
(b) minimize the total labour working hours,
(c) minimize the wastage of raw material used,
(d) find the number of cartons to be transported from differ-

ent origins to destinations.

The production of shoes depends on various factors such as
condition of machines, labourers skill and power cuts, and
the demand also varies due to various factors like seasons,
locality and lifestyle of locals. The cartons are to be trans-
ported by trucks. There are variations in the transportation
cost due to various irresistible factors such as climatic condi-
tions, diesel expenses and traffic jams. The data dealing with
the required labour working hours and the estimated data of
wastage of raw material are uncertain.

Table 3 summarizes all the data showing transportation
costs due to fuel expenses c̃1i j , labour working hours c̃2i j and

wastage of raw material c̃3i j .

The values of c̃1i j , c̃
2
i j and c̃

3
i j for i = 1, 2; j = 1, 2, 3 are:

c̃111 = {(15, 20, 25, 30, 35), (5, 10, 25, 40, 45)},
c̃112 = {(40, 45, 50, 55, 60), (30, 35, 50, 65, 70)},
c̃113 = {(75, 80, 85, 90, 95), (65, 70, 85, 100, 105)},

c̃121 = {(35, 40, 45, 50, 55), (25, 30, 45, 60, 65)},
c̃122 = {(50, 55, 60, 65, 70), (40, 45, 60, 75, 80)},
c̃123 = {(25, 30, 35, 40, 45), (15, 20, 35, 50, 55)},
c̃211 = {(6, 8, 10, 12, 14), (2, 4, 10, 16, 18)},
c̃212 = {(20, 25, 30, 35, 40), (10, 15, 30, 45, 50)},
c̃213 = {(22, 23, 24, 25, 26), (20, 21, 24, 27, 28)},
c̃221 = {(30, 35, 40, 45, 50), (20, 25, 40, 55, 60)},
c̃222 = {(12, 16, 20, 24, 28), (4, 8, 20, 32, 36)},
c̃223 = {(25, 35, 45, 55, 65), (5, 15, 45, 75, 85)},
c̃311 = {(3, 4, 5, 6, 7), (1, 2, 5, 8, 9)},
c̃312 = {(12, 14, 16, 18, 20), (8, 10, 16, 22, 24)},
c̃313 = {(15, 20, 25, 30, 35), (5, 10, 25, 40, 45)},
c̃321 = {(18, 19, 20, 21, 22), (16, 17, 20, 23, 24)},
c̃322 = {(9, 12, 15, 18, 21), (3, 6, 15, 24, 27)},
c̃323 = {(26, 28, 30, 32, 34), (22, 24, 30, 36, 38)}.

The availabilities ãi for i = 1, 2 and demands b̃ j for j =
1, 2, 3 are given as:

ã1 = {(110, 120, 130, 140, 150), (90, 100, 130, 160, 170)},
ã2 = {(50, 60, 70, 80, 90), (30, 40, 70, 100, 110)},
b̃1 = {(40, 50, 60, 65, 70), (30, 35, 60, 75, 80)},
b̃2 = {(40, 45, 50, 55, 60), (20, 30, 50, 65, 75)},
b̃3 = {(80, 85, 90, 100, 110), (70, 75, 90, 120, 125)}.

It is to be noted that ã1 + ã2 = b̃1 + b̃2 + b̃3.

Solution:

Step 1 Mathematically, the multi-objective IVIFTP is for-
mulated as follows:

(P1) Minimize Z̃(x) = {Z̃1(x), Z̃2(x), Z̃3(x)}
where Z̃ p(x) =

2∑

i=1

3∑

j=1

c̃ pi j ⊗ x̃i j ; p = 1, 2, 3

subject to
3∑

j=1

x̃i j = ãi , i = 1, 2,

2∑

i=1

x̃i j = b̃ j , j = 1, 2, 3,

x̃i j � 0̃, ∀ i, j .

Step 2 Divide the problem (P1) into three subproblems,
(S1), (S2), (S3), and substitute x̃i j = {(xUi j1, x Li j1, xi j2,
x Li j3, x

U
i j3), (x

′L
i j1, x

′U
i j1, xi j2, x

′U
i j3, x

′L
i j3)}, with the common set

of constraints (3) given below:
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Table 3 Data related to shoe
factory TP

Sources Destinations Availabilities

D1 D2 D3 ãi

S1 {c̃111, c̃211, c̃311} {c̃112, c̃212, c̃312} {c̃113, c̃213, c̃313} ã1

S2 {c̃121, c̃221, c̃321} {c̃122, c̃222, c̃322} {c̃123, c̃223, c̃323} ã2

Demands (b̃ j ) b̃1 b̃2 b̃3

Fig. 6 Pictorial representation of the shoe company problem
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xU111 + xU121 + xU131 = 110, x L111 + x L121 + x L131 = 120,

x112 + x122 + x132 = 130,

x L113 + x L123 + x L133 = 140, xU113 + xU123 + xU133 = 150,

x ′L
111 + x ′L

121 + x ′L
131 = 90,

x ′U
111 + x ′U

121 + x ′U
131 = 100, x ′U

113 + x ′U
123 + x ′U

133 = 160,

x ′L
113 + x ′L

123 + x ′L
133 = 170,

xU211 + xU221 + xU231 = 50, x L211 + x L221 + x L231 = 60,

x212 + x222 + x232 = 70,

x L213 + x L223 + x L233 = 80, xU213 + xU223 + xU233 = 90,

x ′L
211 + x ′L

221 + x ′L
231 = 30,

x ′U
211 + x ′U

221 + x ′U
231 = 40, x ′U

213 + x ′U
223 + x ′U

233 = 100,

x ′L
213 + x ′L

223 + x ′L
233 = 110,

xU111 + xU211 = 40, x L111 + x L211 = 50, x112 + x212 = 60,

x L113 + x L213 = 65,

xU113 + xU213 = 70, x ′L
111 + x ′L

211 = 30, x ′U
111 + x ′U

211 = 35,

x ′U
113 + x ′U

213 = 75,

x ′L
113 + x ′L

213 = 80, xU121 + xU221 = 40, x L121 + x L221 = 45,

x122 + x222 = 50,

x L123 + x L223 = 55, xU123 + xU223 = 60, x ′L
121 + x ′L

221 = 20,

x ′U
121 + x ′U

221 = 30,

x ′U
123 + x ′U

223 = 65, x ′L
123 + x ′L

223 = 75, xU131 + xU231 = 80,

x L131 + x L231 = 85,

x132 + x232 = 90, x L133 + x L233 = 100, xU133 + xU233 = 110,

x ′L
131 + x ′L

231 = 70,

x ′U
131 + x ′U

231 = 75, x ′U
133 + x ′U

233 = 120,

x ′L
133 + x ′L

233 = 125,

x ′L
1 j1 ≥ 0, x ′U

1 j1 − x ′L
1 j1 ≥ 0, xU1 j1 − x ′U

1 j1 ≥ 0,

x L1 j1 − xU1 j1 ≥ 0, x1 j2 − x L1 j1 ≥ 0,

x L1 j3 − x1 j2 ≥ 0, xU1 j3 − x L1 j3 ≥ 0, x ′U
1 j3 − xU1 j3 ≥ 0,

x ′L
1 j3 − x ′U

1 j3 ≥ 0; j = 1, 2, 3,

x ′L
2 j1 ≥ 0, x ′U

2 j1 − x ′L
2 j1 ≥ 0, xU2 j1 − x ′U

2 j1 ≥ 0,

x L2 j1 − xU2 j1 ≥ 0, x2 j2 − x L2 j1 ≥ 0,

x L2 j3 − x2 j2 ≥ 0, xU2 j3 − x L2 j3 ≥ 0, x ′U
2 j3 − xU2 j3 ≥ 0,

x ′L
2 j3 − x ′U

2 j3 ≥ 0; j = 1, 2, 3.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

The problems (S1), (S2) and (S3) are:

(S1) min Z ′
1(x) = 1

16

[
15xU111 + 20x L111 + 30x L113

+35xU113 + 200x112 + 5x ′L
111 + 10x ′U

111

+40x ′U
113 + 45x ′L

113 + 40xU121 + 45x L121 + 55x L123

+60xU123 + 400x122 + 30x ′L
121 + 35x ′U

121

+65x ′U
123 + 70x ′L

123 + 75xU131 + 80x L131 + 90x L133
+95xU133 + 680x132 + 65x ′L

131

+70x ′U
131 + 100x ′U

133 + 105x ′L
133 + 35xU211 + 40x L211

+50x L213 + 55xU213 + 360x212

+25x ′L
211 + 30x ′U

211 + 60x ′U
213 + 65x ′L

213 + 50xU221
+55x L221 + 65x L223 + 70xU223 + 480x222

+40x ′L
221 + 45x ′U

221 + 75x ′U
223 + 80x ′L

223 + 25xU231
+30x L231 + 40x L233 + 45xU233 + 280x232

+15x ′L
231 + 20x ′U

231 + 50x ′U
233 + 55x ′L

233

]

subject to constraints (3).

(S2) min Z ′
2(x) = 1

16

[
6xU111 + 8x L111 + 12x L113

+14xU113 + 80x112 + 2x ′L
111 + 4x ′U

111 + 16x ′U
113

+18x ′L
113 + 20xU121 + 25x L121 + 35x L123 + 40xU123

+240x122 + 10x ′L
121 + 15x ′U

121

+45x ′U
123 + 50x ′L

123 + 22xU131 + 23x L131 + 25x L133
+26xU133 + 192x132 + 20x ′L

131 + 21x ′U
131

+27x ′U
133 + 28x ′L

133 + 30xU211 + 35x L211 + 45x L213
+50xU213 + 320x212 + 20x ′L

211

+25x ′U
211 + 55x ′U

213 + 60x ′L
213 + 12xU221 + 16x L221

+24x L223 + 28xU223 + 160x222 + 4x ′L
221

+8x ′U
221 + 32x ′U

223 + 36x ′L
223 + 25xU231 + 35x L231

+55x L233 + 65xU233 + 360x232 + 5x ′L
231

+15x ′U
231 + 75x ′U

233 + 85x ′L
233

]

subject to constraints (3).

(S3) min Z ′
3(x) = 1

16

[
3xU111 + 4x L111 + 6x L113 + 7xU113

+40x112 + x ′L
111 + 2x ′U

111 + 8x ′U
113 + 9x ′L

113

+12xU121 + 14x L121 + 18x L123 + 20xU123 + 128x122

+8x ′L
121 + 10x ′U

121 + 22x ′U
123 + 24x ′L

123

+15xU131 + 20x L131 + 30x L133 + 35xU133 + 200x132

+5x ′L
131 + 10x ′U

131 + 40x ′U
133 + 45x ′L

133

+18xU211 + 19x L211 + 21x L213 + 22xU213 + 160x212

+16x ′L
211 + 17x ′U

211 + 23x ′U
213 + 24x ′L

213

+9xU221 + 12x L221 + 18x L223 + 21xU223 + 120x222

+3x ′L
221 + 6x ′U

221 + 24x ′U
223 + 27x ′L

223

+26xU231 + 28x L231 + 32x L233 + 34xU233 + 240x232

+22x ′L
231 + 24x ′U

231 + 36x ′U
233 + 38x ′L

233

]

subject to constraints (3).
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Step 3 The optimal solutions of the models (S1), (S2) and
(S3), respectively, are:

X1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃11 = {(40, 50, 60, 65, 70), (30, 35, 60, 75, 80)},
x̃12 = {(30, 30, 30, 35, 40), (20, 25, 30, 45, 50)},
x̃13 = {(40, 40, 40, 40, 40), (40, 40, 40, 40, 40)},
x̃21 = {(0, 0, 0, 0, 0), (0, 0, 0, 0, 0)},
x̃22 = {(10, 15, 20, 20, 20), (0, 5, 20, 20, 25)},
x̃23 = {(40, 45, 50, 60, 70), (30, 35, 50, 80, 85)}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

X2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃11 = {(40, 50, 60, 60, 60), (30, 35, 60, 60, 65)},
x̃12 = {(0, 0, 0, 0, 0), (0, 0, 0, 0, 0)},
x̃13 = {(70, 70, 70, 80, 90), (60, 65, 70, 100, 105)},
x̃21 = {(0, 0, 0, 5, 10), (0, 0, 0, 15, 15)},
x̃22 = {(40, 45, 50, 55, 60), (20, 30, 50, 65, 75)},
x̃23 = {(10, 15, 20, 20, 20), (10, 10, 20, 20, 20)}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

X3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃11 = {(40, 50, 60, 65, 70), (30, 35, 60, 75, 80)},
x̃12 = {(0, 0, 0, 5, 10), (0, 0, 0, 15, 20)},
x̃13 = {(70, 70, 70, 70, 70), (60, 65, 70, 70, 70)},
x̃21 = {(0, 0, 0, 0, 0), (0, 0, 0, 0, 0)},
x̃22 = {(40, 45, 50, 50, 50), (20, 30, 50, 50, 55)},
x̃23 = {(10, 15, 20, 30, 40), (10, 10, 20, 50, 55)}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Step 4 The payoff matrix

Z =
⎛

⎝
9709.375 5648.75 3782.1875
11837.5 4499.375 3692.8125
11453.12 4713.4375 3621.56

⎞

⎠

where Z ′
j (Xi ) = EV (Z̃ j (Xi )) ∀ i and j .

Step 5 From the payoff matrix Z, we get U1 = 11837.5, L1

= 9709.375,U2 = 5648.75, L2 = 4499.375,U3 =
3782.1875, L3 = 3621.56. Set G1 = 11453.12,G2 =
4713.4375,G3 = 3692.8125.

Step 6 We find xUi j1, x
L
i j1, xi j2, x

L
i j3, x

U
i j3, x

′L
i j1, x

′U
i j1, x

′U
i j3,

x ′L
i j3, i = 1, 2, j = 1, 2, 3 such that

Z ′
1(x) ∼ 9709.375, (A)

Z ′
2(x) ∼ 4499.375, (B)

Z ′
3(x) ∼ 3621.56, (C)

subject to constraints (3)

where ∼ is an IVIF equality, which can be handled using
different membership functions.

Step 7 The model (COM) can be formulated as crisp model
given by:

(i) Using linear membership function:

(LMF) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − 0.6d+

1 − 0.6d−
1−0.3d+

2 − 0.3d−
2 − 0.1d+

3 − 0.1d−
3

)

s.t. 11837.5 − Z ′
1(x) ≥ 2128.125(θα + (1 − θ)β),

5648.75 − Z ′
2(x) ≥ 1149.375(θα + (1 − θ)β),

3782.1875 − Z ′
3(x) ≥ 160.6275(θα + (1 − θ)β),

η(11837.5 − Z ′
1(x)) ≥ 2128.125α,

η(5648.75 − Z ′
2(x)) ≥ 1149.375α,

η(3782.1875 − Z ′
3(x)) ≥ 160.6275α,

Z ′
1(x) − 9975.39 ≤ 1862.11(θγ + (1 − θ)δ),

Z ′
2(x) − 4643.05 ≤ 1005.7(θγ + (1 − θ)δ),

Z ′
3(x) − 3641.64 ≤ 140.5475(θγ + (1 − θ)δ),

η(Z ′
1(x) − 9975.39) ≥ 1862.11γ,

η(Z ′
2(x) − 4643.05) ≥ 1005.7γ,

η(Z ′
3(x) − 3641.64) ≥ 140.5475γ,

Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ, η ≤ 1,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), taking t=0.125.

(ii) Using exponential membership function:

(EMF) Max
(
θα + (1 − θ)β

−θγ − (1 − θ)δ − 0.6d+
1 − 0.6d−

1
−0.3d+

2 − 0.3d−
2 − 0.1d+

3 − 0.1d−
3

)

s.t. e−
(
(Z ′

1(x)−9709.375)/2128.125
)

−(1 − e−1)(θα + (1 − θ)β) ≥ e−1,

e−
(
(Z ′

2(x)−4499.375)/1149.375
)

−(1 − e−1)(θα + (1 − θ)β) ≥ e−1,

e−
(
(Z ′

3(x)−3621.56)/160.6275
)

−(1 − e−1)(θα + (1 − θ)β) ≥ e−1,

η
(
e−

(
(Z ′

1(x)−9709.375)/2128.125
))

−(1 − e−1)α ≥ ηe−1,

η
(
e−

(
(Z ′

2(x)−4499.375)/1149.375
))

−(1 − e−1)α ≥ ηe−1,

η
(
e−

(
(Z ′

3(x)−3621.56)/160.6275
))

−(1 − e−1)α ≥ ηe−1,

e−
(
(11837.5−Z ′

1(x))/1862.11
)

−(1 − e−1)(θγ + (1 − θ)δ) ≤ e−1,

e−
(
(5648.75−Z ′

2(x))/1005.7
)

−(1 − e−1)(θγ + (1 − θ)δ) ≤ e−1,

e−
(
(3782.1875−Z ′

3(x))/140.5475
)

−(1 − e−1)(θγ + (1 − θ)δ) ≤ e−1,

η
(
e−

(
(11837.5−Z ′

1(x))/1862.11
))

−(1 − e−1)γ ≤ ηe−1,

η
(
e−

(
(5648.75−Z ′

2(x))/1005.7
))

−(1 − e−1)γ ≤ ηe−1,
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Table 4 Value of objective function for (LMF) model

θ η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129

0.2 −0.6248 −0.6212 −0.6176 −0.6140 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129 −0.6129

0.3 −0.6437 −0.6382 −0.6328 −0.6274 −0.6220 −0.6166 −0.6129 −0.6129 −0.6129 −0.6129

0.4 −0.6625 −0.6553 −0.6480 −0.6408 −0.6336 −0.6264 −0.6191 −0.6129 −0.6129 −0.6129

0.5 −0.6813 −0.6723 −0.6633 −0.6542 −0.6452 −0.6362 −0.6272 −0.6181 −0.6129 −0.6129

0.6 −0.7002 −0.6893 −0.6785 −0.6677 −0.6568 −0.6460 −0.6351 −0.6243 −0.6135 −0.6129

0.7 −0.7190 −0.7064 −0.6937 −0.6811 −0.6684 −0.6558 −0.6431 −0.6305 −0.6179 −0.6129

0.8 −0.7378 −0.7234 −0.7089 −0.6945 −0.6801 −0.6656 −0.6511 −0.6367 −0.6150 −0.6222

0.9 −0.7567 −0.7404 −0.7242 −0.7079 −0.6916 −0.6754 −0.6591 −0.6429 −0.6266 −0.6185

0.95 −0.7661 −0.7489 −0.7318 −0.7146 −0.6975 −0.6803 −0.6631 −0.6460 −0.6288 −0.6202

η
(
e−

(
(3782.1875−Z ′

3(x))/140.5475
))

−(1 − e−1)γ ≤ ηe−1,

Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ, η ≤ 1,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), taking
t = 0.125, Sk = 1 ∀ k.

(i i i) Using hyperbolic membership function:

(HMF) Max
(
θα + (1 − θ)β − θγ − (1 − θ)δ − 0.6d+

1−0.6d−
1 − 0.3d+

2 − 0.3d−
2 − 0.1d+

3 − 0.1d−
3

)

s.t. 0.0028Z ′
1(x) + tanh−1

(
2(θα + (1 − θ)β) − 1

)

≤ 30.1656,
0.0052Z ′

2(x) + tanh−1 (2(θα + (1 − θ)β) − 1)
≤ 26.3851,

0.0373Z ′
3(x) + tanh−1 (2(θα + (1 − θ)β) − 1)

≤ 138.08,

0.0028Z ′
1(x) + tanh−1

(
2α

η
− 1

)

≤ 30.1656,

0.0052Z ′
2(x) + tanh−1

(
2α

η
− 1

)

≤ 26.3851,

0.0373Z ′
3(x) + tanh−1

(
2α

η
− 1

)

≤ 138.08,

0.0032Z ′
1(x) − tanh−1 (2(θγ + (1 − θ)δ) − 1)

≤ 34.9006,
0.006Z ′

2(x) − tanh−1 (2(θγ + (1 − θ)δ) − 1)
≤ 30.8754,

0.0427Z ′
3(x) − tanh−1 (2(θγ + (1 − θ)δ) − 1)

≤ 158.4987,

0.0032Z ′
1(x) − tanh−1

(
2γ

η
− 1

)

≤ 34.9006,

0.006Z ′
2(x) − tanh−1

(
2γ

η
− 1

)

≤ 30.8754,

0.0427Z ′
3(x) − tanh−1

(
2γ

η
− 1

)

≤ 158.4987,

Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

θα + (1 − θ)β + θγ + (1 − θ)δ ≤ 1,
β + δ ≤ 1, β ≥ α, δ ≥ γ,

γ ≥ 0, α ≥ 0, 0 ≤ θ ≤ 1, 0 < η ≤ 1,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), takingt=0.125.

Step 8 Solving the problems (LMF), (EMF) and (HMF) for
various values of parameters θ and η, the values of objective
function are tabulated in Tables 4, 5 and 6, respectively.
Performing the experimental simulation on the models
(LMF), (EMF) and (HMF), we have concluded that the max-
imum value of the objective function is obtained at

(i) θ = 0.3 and η = 0.7 using linear membership function.
(ii) θ = 0.6 and η = 0.3 with exponential membership

function.
(iii) θ = 0 and η = 0.6076 using hyperbolic membership

function.

The corresponding surface plots of objective function values
for (LMF), (EMF) and (HMF) models showing the variation
of objective function valueswith respect to θ and η are shown
in Figs. 7, 8 and 9, respectively.
The IVTIF optimal point and the corresponding objective
function values for problem (P1) at θ = 0.4 and η = 0.8,
using different membership functions for (LMF), (EMF) and
(HMF) models are given in Table 7.

Under IF environment:

In view of Remark 4 (i), the models (LMF), (EMF) and
(HMF) can be modelled in IF environment as follows:

(i) Using linear membership approach:
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Table 5 Value of objective function for (EMF) model

θ η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.2 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.3 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.4 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.5 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.6 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.7 −0.6084 −0.6003 −0.5922 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897 −0.5897

0.8 −0.6367 −0.6275 −0.6183 −0.6091 −0.5998 −0.5906 −0.5897 −0.5897 −0.5897 −0.5897

0.9 −0.6651 −0.6547 −0.6443 −0.6340 −0.6236 −0.6132 −0.6028 −0.5925 −0.5897 −0.5897

0.95 −0.6792 −0.6683 −0.6573 −0.6464 −0.6355 −0.6245 −0.6136 −0.6026 −0.5938 −0.5897

Table 6 Value of objective function for (HMF) model

θ η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 Infeasible infeasible Infeasible Infeasible −2180.7 −581.5 −506.3 −462.5 −431.7 −419.1

0.2 Infeasible Infeasible Infeasible Infeasible −2180.7 −581.5 −506.3 −462.5 −431.7 −419.1

0.3 Infeasible Infeasible Infeasible Infeasible −2180.7 −581.5 −506.3 −462.5 −431.7 −419.1

0.4 Infeasible Infeasible Infeasible Infeasible −2260.6 −581.5 −506.3 −462.5 −431.7 −419.1

0.5 Infeasible infeasible Infeasible Infeasible −2180.7 −581.5 −506.3 −462.5 −431.7 −419.1

0.6 Infeasible Infeasible Infeasible Infeasible −2221.9 −581.5 −506.3 −462.5 −431.7 −419.1

0.7 Infeasible Infeasible Infeasible Infeasible −2340.3 −581.5 −506.3 −462.5 −431.7 −419.1

0.8 Infeasible Infeasible Infeasible Infeasible −2448.4 −581.5 −506.3 −462.5 −431.7 −419.1

0.9 Infeasible infeasible Infeasible Infeasible −2524.6 −581.5 −506.3 −462.5 −431.7 −419.1

0.95 Infeasible Infeasible Infeasible Infeasible −2693.5 −581.5 −506.3 −462.5 −431.7 −419.1

Fig. 7 Surface plot of objective
function for (LMF) model
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Fig. 8 Surface plot of objective
function for (EMF) model

Fig. 9 Surface plot of objective
function for (HMF) model
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Table 7 Optimal solution of (LMF), (EMF) and (HMF) models for θ = 0.4 and η = 0.8

(LMF) (EMF) (HMF)

x̃11 {(35,40,50,50,50),
(30,35,50,55,55)}

{(35,42,52,57,62),
(30,30,52,67,70)}

{(30,35,40,40,41),
(30,30,40,42,42)}

x̃12 {(15,15,15,20,20), (0,5,15,25,30)} {(35,38,38,43,47),
(20,30,38,52,58)}

{(35,40,45,50,55),
(20,30,45,60,70)}

x̃13 {(60,65,65,70,80),
(60,60,65,80,85)}

{(40,40,40,40,41),
(40,40,40,41,42)}

{(45,45,45,50,54),
(40,40,45,58,58)}

x̃21 {(5,10,10,15,20), (0,0,10,20,25)} {(5,8,8,8,8), (0,5,8,8,10)} {(10,15,20,25,29), (0,5,20,33,38)}

x̃22 {(25,30,35,35,40),
(20,25,35,40,45)}

{(5,7,12,12,13), (0,0,12,13,17)} {(5,5,5,5,5), (0,0,5,5,5)}

x̃23 {(20,20,25,30,30),
(10,15,25,40,40)}

{(40,45,50,60,69),
(30,35,50,79,83)}

{(35,40,45,50,56),
(30,35,45,62,67)}

Z̃1(x) {(7550,9325,10950,13125,15800),
(5000,6150,10950,18025,20925)}

{(6350,7805,9430,11255,13340),
(3800,5000,9430,15565,18195)}

{(6700,8175,9850,12025,14330),
(3800,5000,9850,16835,19435)}

Z̃2(x) {(2780,3720,4735,6215,7650),
(1390,1900,4735,9545,11390)}

{(3000,4173,5430,7137,9063),
(1210,2060,5430,11300,13603)}

{(3105,4320,5755,7475,9408),
(1210,2060,5755,11563,14035)}

Z̃3(x) {(2020,2780,3590,4665,5850),
(610,1230,3590,7050,8375)} {(2300,2996,3708,4620,5604),

(1050,1685,3708,6660,7765)}
{(2320,3065,3870,4855,5924),
(1050,1685,3870,7087,8261)}

(LMF1) Max F = α − γ − 0.6d+
1 − 0.6d−

1−0.3d+
2 − 0.3d−

2 − 0.1d+
3 − 0.1d−

3
s.t. 2128.125α + Z ′

1(x) ≤ 11837.5,
1149.375α + Z ′

2(x) ≤ 5648.75,
160.6275α + Z ′

3(x) ≤ 3782.1875,
Z ′
1(x) − 1862.11γ ≤ 9975.39,

Z ′
2(x) − 1005.7γ ≤ 4643.05,

Z ′
3(x) − 140.5475γ ≤ 3641.64,

Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

α + γ ≤ 1, α ≥ γ, γ ≥ 0,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), taking
t = 0.125.

(ii) Using exponential membership function:

(EMF1) Max F = α − γ − 0.6d+
1 − 0.6d−

1−0.3d+
2 − 0.3d−

2 − 0.1d+
3 − 0.1d−

3

s.t. e−
(
(Z ′

1(x)−9709.375)/2128.125
)

− (1 − e−1)α ≥ e−1,

e−
(
(Z ′

2(x)−4499.375)/1149.375
)

− (1 − e−1)α ≥ e−1,

e−
(
(Z ′

3(x)−3621.56)/160.6275
)

− (1 − e−1)α ≥ e−1,

e−
(
(11837.5−Z ′

1(x))/1862.11
)

− (1 − e−1)γ ≤ e−1,

e−
(
(5648.75−Z ′

2(x))/1005.7
)

− (1 − e−1)γ ≤ e−1,

e−
(
(3782.1875−Z ′

3(x))/140.5475
)

− (1 − e−1)γ ≤ e−1,

Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

α + γ ≤ 1, α ≥ γ, γ ≥ 0,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), taking
t = 0.125, Sk = 1, ∀ k

(i i i) Using hyperbolic membership function:

(HMF1) Max F = α − γ − 0.6d+
1 − 0.6d−

1−0.3d+
2 − 0.3d−

2 − 0.1d+
3 − 0.1d−

3
s.t. 0.0028Z ′

1(x) + tanh−1(2α − 1) ≤ 30.1656,
0.0052Z ′

2(x) + tanh−1(2α − 1) ≤ 26.3851,
0.0373Z ′

3(x) + tanh−1(2α − 1) ≤ 138.08,
0.0032Z ′

1(x) − tanh−1(2γ − 1) ≤ 34.9006,
0.006Z ′

2(x) − tanh−1(2γ − 1) ≤ 30.8754,
0.0427Z ′

3(x) − tanh−1(2γ − 1) ≤ 158.4987,
Z ′
1(x) − d+

1 + d−
1 = 11453.12,

Z ′
2(x) − d+

2 + d−
2 = 4713.4375,

Z ′
3(x) − d+

3 + d−
3 = 3692.8125,

α + γ ≤ 1, α ≥ γ, γ ≥ 0,
d−
1 , d+

1 , d−
2 , d+

2 , d−
3 , d+

3 ≥ 0,
along with set of constraints (3), taking
t = 0.125.

Solving (LMF1), (EMF1) and (HMF1) models, we get the
solutions shown in Table 8.

From Tables 7 and 8, the expected value of the objective
functions Z̃1(x), Z̃2(x) and Z̃3(x)under IVIF and IF environ-
ments using linear, exponential and hyperbolic membership
functions is given in Table 9.

It is clear from the Table 9 that in most of the cases, the
expected value of the objective functions Z̃1(x), Z̃2(x) and
Z̃3(x) under IVIF is either lesser or equal to the correspond-
ing values with IF environment. Hence, solving the problem
under IVIF situations provides better solution and more flex-
ibility.

It is to be noted that all the optimal solutions are presented
up to four decimal places. Using LINGO−17.0, the average
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Table 8 Optimal solution for (LMF1), (EMF1) and (HMF1) models

(LMF1) (EMF1) (HMF1)

F −365.2471 −365.2471 −407.8149

α 0.4667 0.3461 0.5

γ 0.4667 0.3461 0.5

d−
1 608.7452 608.7452 679.6914

d+
1 0 0 0

d−
2 0 0 0

d+
2 0 0 0

d−
3 0 0 0

d+
3 0 0 0

x̃11 {(35,40,45,45,45),
(30,35,45,50,50)}

{(35,42,52,57,62),
(30,30,52,67,70)}

{(20,27,37,40,40),
(20,20,37,40,40)}

x̃12 {(35,35,40,45,50),
(20,25,40,55,60)}

{(35,38,38,43,47),
(20,30,38,52,58)}

{(39,41,42,44,48),
(19,29,42,54,64)}

x̃13 {(40,45,45,50,55),
(40,40,45,55,60)}

{(40,40,40,40,41),
(40,40,40,41,42)}

{(51,51,51,56,61),
(51,51,51,66,66)}

x̃21 {(5,10,15,20,25), (0,0,15,25,30)} {(5,8,8,8,8), (0,5,8,8,10)} {(20,22,23,25,30),
(10,15,23,35,40)}

x̃22 {(5,10,10,10,10), (0,5,10,10,15)} {(5,7,12,12,13), (0,0,12,13,17)} {(1,4,8,11,11), (1,1,8,11,11)}

x̃23 {(40,40,45,50,55),
(30,35,45,65,65)}

{(40,45,50,60,69),
(30,35,50,79,83)}

{(29,34,39,44,49),
(19,24,39,54,59)}

Z̃1(x) {(6350,8125,9800,11975,14350),
(3800,4950,9800,16575,19475)}

{(6350,7805,9430,11255,13340),
(3800,5000,9430,15565,18195)}

{(7160,8585,10240,12385,14700),
(4560,5760,10240,17335,19935)}

Z̃2(x) {(3000,4140,5555,7255,9165),
(1210,1920,5555,11330,13445)}

{(3000,4173,5430,7137,9063),
(1210,2060,5430,11300,13603)}

{(3359,4438,5689,7229,9059),
(1549,2329,5689,11179,13579)}

Z̃3(x) {(2300,2980,3790,4780,5870),
(1050,1590,3790,6965,8185)} {(2300,2996,3708,4620,5604),

(1050,1685,3708,6660,7765)}
{(2416,3120,3882,4843,5932),
(1008,1677,3882,7161,8365)}

Table 9 Expected value of
Z̃1(x), Z̃2(x) and Z̃3(x) under
IVIF and IF situations

(LMF) (EMF) (HMF)

Z ′
1 11468.75 9796.875 10318.75

Z ′
2 5154.375 5936.625 6201

Z ′
3 3831.25 3896.5 4075.4375

(LMF1) (EMF1) (HMF1)

Z ′
1 10250 9796.875 10771.25

Z ′
2 5994.0625 5936.625 6139.5625

Z ′
3 4002.5 3896.5 4098.625

Table 10 Average CPU time,
memory used and number of
solver iterations for various
models

Model Average CPU time
(in s)

Memory used (in
KB)

Number of solver
iterations

(LMF) 0.2535 55 12–17

(EMF) 0.2612 57 20–28

(HMF) 0.842 56 12–44

(LMF1) 0.19 50 13

(EMF1) 0.23 55 28

(HMF1) 0.19 50 10
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Table 11 Comparative study under IVIF environment

Membership function Range of objective function value

Linear − 0.7661 to − 0.6129

Exponential − 0.6792 to − 0.5897

Hyperbolic − 2693.4920 to − 407.8149

Table 12 Comparative study under IF environment

Membership
function

α γ The value of
objective function

Linear 0.4667 0.4667 − 365.2471

Exponential 0.3461 0.3461 − 365.2471

Hyperbolic 0.5 0.5 − 407.8149

elapsed runtime (CPU time), generator memory and number
of solver iterations used for solving the various problems are
listed in Table 10.

9 Conclusions and future direction

To the best of our knowledge, construction and develop-
ment of solution methodology for a balanced MOTP, in
which all the parameters and variables are IVTIFNs, have
not been discussed so far in the literature. Formulation
of such type of problems not only gives more flexibil-
ity to the DM but also generalizes the earlier results and
models. While assigning two parameters, membership and
non-membership associatedwith cost, demand and availabil-
ity in TP, a person due to some hesitation may allot incorrect
values, which may not yield satisfactory results for a realis-
tic problem. However, this deficiency has been removed by
giving the degrees of the membership and non-membership
in terms of intervals. In the present article, a goal program-
ming approach to tackle the fully IVIF balanced TP with
multiple objectives is proposed. The methodology not only
handles the maximization of the acceptance level but simul-
taneously minimizes the deviational variables along with
priorities attached with the aspiration levels corresponding
to each objective. The method is well-explained step-wise
by illustrating an example of shoe industry. To deal with the
IVIF constraints related with the objective functions, linear,
exponential and hyperbolic membership/non-membership
functions have been considered. The Tables 11 and 12 rep-
resent the comparative study using these three membership
and non-membership functions in IVIF and IF environments
for the numerical example considered in Sect. 8:

From Table 11 in the light of Tables 4, 5 and 6, we can
predict that

Exponential approach > Linear approach > Hyperbolic approach.

However, Table 12 yields

Exponential approach = Linear approach > Hyperbolic approach.

Therefore, one can observe that the exponential member-
ship function provides the more satisfaction to the DM in
contrast to linear or hyperbolic cases. However, on compar-
ing the corresponding results for all approaches in IVIF and
IF environments, IVIF equality constraints give much bet-
ter results than IF equality constraints. Moreover, the results
using IVIF constraints provides more flexibility to the DM
by considering membership and non-membership degrees as
intervals instead of crisp real numbers. The work presented
in the paper can be further extended to deal with unbalanced
IVIF multi-objective transportation problems.

Acknowledgements Wewould like to express our sincere thanks to the
anonymous referees for their valuable comments and suggestionswhich
helped us to improve the quality and clarity of the paper. The first author
is also grateful to theMinistry of Human Resource Development, India,
for financial support, to carry out this work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Abd El-Wahed WF, Lee SM (2006) Interactive fuzzy goal program-
ming for multi-objective transportation problems. Int J Manag Sci
34:158–166

Angelov PP (1997) Optimization in an intuitionistic fuzzy environment.
Fuzzy Sets Syst 86:299–306

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–
96

Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy
sets. Fuzzy Sets Syst 31:343–349

Bharati SK, Abhishekh, Singh SR (2017) A computational algorithm
for the solution of fully fuzzy multi-objective linear programming
problem. Int J Dyn Control 6:1384–1391

Bharati SK, Singh SR (2018) Transportation problem under interval-
valued intuitionistic fuzzy environment. Int J Fuzzy Syst 20:1511–
1522

Bharati SK, Singh SR (2019) Solution ofmultiobjective linear program-
ming problems in interval-valued intuitionistic fuzzy environment.
Soft Comput 23:77–84

Chanas S, Kuchta D (1996) A concept of the optimal solution of the
transportation problem with fuzzy cost coefficients. Fuzzy Sets
Syst 82:299–305

Charnes A, CooperWW (1954) The stepping stone method for explain-
ing linear programming calculation in transportation problem.
Manag Sci 1:49–69

123



Goal programming technique for solving fully interval-valued intuitionistic fuzzy… 13977

Diaz JA (1979) Finding a complete description of all efficient solu-
tions to a multiobjective transportation problem. Ekon Mat Obzor
15:62–73

Ebrahimnejad A, Verdegay JL (2018) A new approach for solving fully
intuitionistic fuzzy transportation problems. Fuzzy Optim Decis
Mak 17:447–474

Gani AN, Abbas S (2013) A newmethod for solving intuitionistic fuzzy
transportation problem. Appl Math Sci 7:1357–1365

Gupta A, Kumar A (2012) A new method for solving linear multi-
objective transportation problems with fuzzy parameters. Appl
Math Model 36:1421–1430

Hemaida RS, Kwak NK (1994) A linear goal programming for trans-
shipment problems with flexible supply and demand constraints.
J Oper Soc 45:215–224

Hitchcock FL (1941) The distribution of a product from several sources
to numerous localities. J Math Phys 20:224–230

Hussain RJ, Kumar PS (2012) Algorithmic approach for solving
intuitionistic fuzzy transportation problem.ApplMathSci 6:3981–
3989

Isermann H (1979) The enumeration of all efficient solutions for a lin-
ear multi-objective transportation problem. Naval Res Logist Q
26:123–139

IshibuchiH, TanakaH (1990)Multiobjective programming in optimiza-
tion of the interval objective function. Eur J Oper Res 48:219–225

Jiuping X (2011) A kind of fuzzy multi-objective linear programming
problems based on interval valued fuzzy sets. J Syst Sci Complex
48:219–225

Kasana HS, Kumar KD (2000) An efficient algorithm for multi-
objective transportation problems. Asia Pac Oper Res 17:27–40

Lee ES, Li RJ (1993) Fuzzy multiple objective programming and
compromise programming with Pareto optimum. Fuzzy Sets Syst
53:275–288

Lee SM, Moore LJ (1973) Optimizing transportation problems with
multiple objectives. AIIE Trans 5:333–338

Li DF (2010) Linear programming method for MADM with interval-
valued intuitionistic fuzzy sets. Expert Syst Appl 37:5939–5945

Mahajan S, Gupta SK (2019) On fully intuitionistic fuzzy multiobjec-
tive transportation problemsusingdifferentmembership functions.
Ann Oper Res. https://doi.org/10.1007/s10479-019-03318-8

Narayanamoorthy S, Anukokila P (2014) Goal programming approach
for solving transportation problemwith interval cost. J Intell Fuzzy
Syst 26:1143–1154

Nayagam GV, Venketshwary G, Shivaraman G (2008) Ranking of intu-
itionistic fuzzy numbers. In: IEEE international conference on
fuzzy systems. https://doi.org/10.1109/FUZZY.2008.4630639

Ringuest JL, Rinks DB (1987) Interactive solutions for the linear mul-
tiobjective transportation problem. Eur J Oper Res 32:96–106

Sahin R (2016) Fuzzy multi-criteria decision making method based on
the improved accuracy function for interval-valued Intuitionistic
fuzzy sets. Soft Computg 20:2557–2563

Singh SK, Yadav SP (2015) Efficient approach for solving type-1 intu-
itionistic fuzzy transportation problem. Int J SystAssurEngManag
6:259–267

Singh SK, Yadav SP (2016) A novel approach for solving fully intu-
itionistic fuzzy transportation problem. Int J Oper Res 26:460–472

Singh SK, Yadav SP (2018) Intuitionistic fuzzy multi-objective linear
programming problem with various membership functions. Ann
Oper Res 269:693–707

Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353
Zangiabadi M, Maleki HR (2013) Fuzzy goal programming technique

to solve multiobjective transportation problems with some non-
linear membership functions. Iran J Fuzzy Syst 10:61–74

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10479-019-03318-8
https://doi.org/10.1109/FUZZY.2008.4630639

	Goal programming technique for solving fully interval-valued intuitionistic fuzzy multiple objective transportation problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Fully IVIF multi-objective transportation problem
	4 Shortcomings of the existing studies
	5 Proposed approach
	6 Membership functions
	6.1 Linear membership function
	6.2 Exponential membership function
	6.3 Hyperbolic Membership function

	7 Major advantages of the proposed algorithm
	8 Numerical illustration
	9 Conclusions and future direction
	Acknowledgements
	References




