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Abstract
To realize a fast and efficient path planning for mobile robot in complex environment, an enhanced heuristic ant colony
optimization (EH-ACO) algorithm is proposed. Four strategies are introduced to accelerate the ACO algorithm and optimize
the final path. Firstly, the heuristic distance in the local visibility formula is improved by considering the heuristic distance
from ant’s neighbor points to target. Secondly, a new pheromone diffusion gradient formula is designed, which emphasizes
that pheromones left the path would spread into a region and the pheromone density would present a gradient distribution in
the region. Thirdly, backtracking strategy is introduced to enable ants to find new path when their search is blocked. Finally,
path merging strategy is designed to further obtain an optimal path. Simulations are carried out to verify each individual
strategy, and comparisons are made with the state-of-the-art algorithms. The results show our proposed EH-ACO algorithm
outperforms other algorithms in both optimality and efficiency, especially when the map is large and complex.

Keywords Ant colony optimization · Enhanced heuristic · Pheromone diffusion · Path planning

1 Introduction

Nowadays, mobile robots which could adapt to the harsh
environment and reduce the labor intensity of people are
widely used in manufacturing and service industries. Many
topics about mobile robots have been studied, such as path
planning, simultaneous localization and mapping (SLAM),
navigation, trajectory tracking and control (Friudenberg and
Koziol 2018; Li and Savkin 2018; Luo andHsiao 2019;Miah
et al. 2018; Patle et al. 2019). Among them, the automatic
collision-free path planning algorithms have attracted much
attention in recent years (Mac et al. 2016). As a swarm intel-
ligence heuristic algorithm (Mavrovouniotis et al. 2017), ant
colony optimization (ACO) has been successfully applied to
solve the path planning problems in complex environment
(Deneubourg et al. 1994; Dorigo et al. 1996; Dorigo and
Di Caro 1999). The ACO algorithm is easy to design (Deng
et al. 2015) and has good global optimization ability (Liu
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et al. 2017) and robustness. Moreover, it could even be well
integrated into other algorithms (Lee et al. 2008).

However, current ACO algorithms still have some draw-
backs. Firstly, it is difficult to balance the efficiency and
optimality. For example, some algorithm only focused on
promoting the efficiency of the algorithm, but failed in guar-
anteeing the optimality of theACOalgorithm, and vice versa.
Secondly, the efficiency of some existing ACO algorithm
is still low when deployed in the complex environment.
Unfortunately, environments in real applications are usually
cluttered with dense obstacles, narrow passages, concavities,
mazes and other features. The planning efficiency problem
in these environments should not be neglected.

In this paper, an enhanced heuristic ACO algorithm (EH-
ACO) is proposed. The improvement and innovation of the
algorithm include the following four aspects, among which
(1) promotes the efficiency of the EH-ACO algorithm, (2)
and (4) are used to enhance the global optimization ability of
the algorithm, and (3) is used to raise the planning success
rate of the algorithm in complex environment.

(1) Heuristic distance in local visibility formula is redefined.
Not only the distance from current position of the ant
to target point, but also the heuristic distance from ant’s
neighbor points to target pointwould be considered. This
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strategy could raise the probability of ants’ searching for
target and improve the efficiency of path planning.

(2) Anewpheromonediffusiongradient formula is designed,
which emphasizes that pheromones left the path would
spread into a region and the pheromone density would
present a gradient distribution in the region. This strat-
egy could improve global planning ability of the ACO
algorithm by enhancing the role of pheromones in the
environment.

(3) Backtracking strategy is introduced to reuse the previ-
ous feasible path and avoid information losses. The ants
are encourages to trace back to some previous location
of the feasible path and start a new search, when they
were blocked in some local environment. This strategy
could improve the success rate of ant planning in com-
plex environments, thus enhancing the adaptability of
ants to the environment.

(4) Path merging strategy is designed to concatenate differ-
ent optimal path segments from different ants to obtain a
global optimal path, since it is difficult to find the global
optimal path using one single ant. This strategy greatly
demonstrates the cooperative characteristics among ants.

The remainder of this paper is organized as follows:
Sect. 2 reviews the state-of-the-art ACO algorithms on point-
to-point (PTP) collision-free path planning. The EH-ACO
algorithm is proposed in Sect. 3, including the above four
improved strategies. Simulation is carried out to verify the
proposed algorithm in Sect. 4. Finally, conclusions and fur-
ther work are given in Sect. 5.

2 Related work on ACO solving PTP problem

Generally, the path planning problems are divided into two
categories: point-to-point (PTP) path planning problems and
multi-point tour problems (TSP). In this paper, we mainly
focus on PTP collision-free path planning.

2.1 Traditional ACO algorithm

The ACO algorithm is used to solve the min-cost path plan-
ning problem by imitating the foraging behavior of real ant
colony.When searching for food source, ants determine their
movement direction by local visibility information and envi-
ronmental pheromone intensity information. After finding
food, antswould leave somepheromoneon the route to attract
and guide other ants. The pheromone strategy is a critical
factor of the ACO, which is the medium of communication
between different ants.

In each moving step, ant would find a feasible neighbor
grid to which it could move. As shown in Fig. 1, the ant is
located in grid g, and it has eight neighbor nodes, in which

Fig. 1 The environment is divided into M × N connected grids. The
yellow region is obstacle space, and the nodes in this place are denoted
by “1.” The other nodes are located in collision-free space and are
denoted by “0.” The ant is located in grid g, and it has eight neighbor
nodes, in which the five blue nodes are feasible options, and the other
three grids are occupied by obstacles

the five blue nodes are feasible options. Then all the feasible
grids would be evaluated by using local visibility and the
pheromone intensity. Finally, the ant moves to one of these
grids according to the probability related to the evaluations.

Assuming that ant k has moved from grid gi to g j at time
t , then the unvisited feasible neighbor grids are defined as:

Nk
(
g j

) =
{
g j

∣∣∣
∣
g j ∈ Wfree, g j /∈ tabuk,
1 ≤ d

(
gi , g j

) ≤ √
2

}
, (1)

where Wfree is the collision-free space of the environment,
tabuk includes the visited grids of ant k, d

(
gi , g j

)
is the

distance from grid gi to g j , and the distance could be defined
as:

d (g, gi ) =
{
1, in horizontal or vertical√
2, otherwise.

(2)

The state transition probability function p of the ant k
moving from grid gi to neighbor grid g j is defined as:

pki j (t) =
⎧
⎨

⎩

τα
j (t)ηβ

i j
∑

s∈Nk(gi ) τα
s (t)ηβ

is

, if g j ∈ Nk (gi )

0, otherwise,
(3)

where τ j (t) is the pheromone intensity of grid g j in time t
and ηi j is the local visibility from grid gi to grid g j . α is the
coefficient of pheromone intensity, and β is the coefficient
of the route cost.

At the end of each iteration, the pheromone intensity of
each grid needs to be updated according to the ant’s move-
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ment. The updating formula is defined as follows:

τi (t + 1) = (1 − ρ) τi (t) +
m∑

k=1

Δτ ki , (4)

where ρ is the pheromone evaporation rate andm is the num-
ber of ants.Δτ ki is the pheromone intensity of the ant k leaves
on grid gi , which is typically given by:

Δτ ki =
{

Q
Lk

, if ant k found food and passed grid gi
0, otherwise,

(5)

where Q is a constant and Lk is the length of the route of ant
k.

Finally, when a collision-free path is found, then the path
could be represented by a series of adjacent collision-free
grids:

Path = {
gstart, g2, . . . , gi , . . . , gtarget

}
, gtarget ∈ Wfree. (6)

The length of the path Len (L) could be calculated using:

Len (L) =
n−1∑

i=1

d (gi , gi+1). (7)

2.2 Review of existing improved ACO algorithm

Many improvedACOalgorithmshavebeenproposed to solve
PTP path planning problems.

Pheromone is a bridge for ants to communicate and
cooperate with each other. Some literature has studied
pheromone update mechanism of ACO algorithm.Mou et al.
(2008) introduced some specially designed variables to the
pheromone update formula (formula (3)) to modify the origi-
nal transfer probability. Besides, the pheromone evaporation
rate ρ is replaced by introducing an operation function. The
modified ACO algorithm could improve the efficiency of
path selection and avoid the local optimum. Garcia et al.
(2009) proposed an ACO meta-heuristic algorithm called
SACOdm by introducing the information of Euclidian dis-
tance between the source and target nodes into the pheromone
updating formula. Besides, the memory information was
saved to avoid the algorithm degradation. Seçkiner et al.
(2013) proposed a novel pheromone updating scheme for
finding global minimum. The pheromone updates are per-
formed based on the percentage of all ants searching for the
optimal solution. Deng et al. (2015) proposed pheromone
mark ACO (PM-ACO) and declared that the pheromones are
left on node or path could influence its domain including
k-nearest neighbor (KNN) nodes. “The r-best-node update
rule” which introduces a variable r to control the node
selection probability and “the relevant-node depositing rule”

which is a new pheromone adjusting strategy are introduced.
Yu et al. (2017) added pheromone to optimal path when the
global pheromone is updated at the end of each cycle. The
algorithm reduces the search time by removing redundant
path and has faster convergence speed. Yuan et al. (2019)
enhanced pheromone of ants by introducing parameters into
pheromone update formula, so as to speed up convergence.
All these improved studies have achieved good results.

In addition to the research on the pheromone updatemech-
anism, some other studies also consider combining the ACO
algorithmwith other algorithms to improve the planning effi-
ciency of the ACO algorithm, such as combining ACO with
artificial potential field (APF) (Liu et al. 2017; Chen and
Liu 2019), introducing the mutation operator to ACO (Yang
and Zhuang 2010), combiningmodifiedACO (M-ACO)with
Voronoi diagram (VD) (Habib et al. 2016) and combining
ACO with particle swarm optimization (ACO–PSO) (Gigras
et al. 2015).

In other aspects, Chen et al. (2013) used the “scent per-
vasion” rule to make a preprocess on the map and then used
the “1 minus” search policy to finish the planning. This algo-
rithm improves the efficiency of path planning, which can
be adapted to most of the environments. However, the map
preprocess would be time-consuming in the case of a large
number of map grids existed, because each grid would be
visited in the preprocessing. Cekmez et al. (2016) proposed
multi-colony ACO to find a global optimal solution by con-
sidering the cooperation between ants. Zhu andWang (2008)
proposed a new ant algorithm based on scout ant coopera-
tion (SAC). The algorithmmakes each ant searches for some
steps. Then all ants use the end of the path as a new start-
ing point and search again. This process will be repeated
until the goal is reached. The algorithm can adapt to com-
plex environment, but the final path is not optimal. After that,
Zhu et al. (2011) proposed a robot navigation ant (RNA)
algorithm. The algorithm mapped the target position into the
closest robot’s visual domain node and thenmade a local sub-
goal path planning. Besides, Kumar et al. (2018) proposed
an RA-ACO-based approach for navigation of a humanoid
robot. They tested the RA-ACO approach for navigation of
humanoid robots in both simulated and experimental envi-
ronments and obtained a good agreement between them.

Although these existing studies have both improved the
efficiency of the ACO algorithm and considered the global
optimality, the efficiency and global optimality of the algo-
rithm still need to be further improved. Firstly, some planners
only improve one aspect of ACO algorithm, but pay little
attention to the other evaluation indicators. When efficiency
and optimality could not be achieved at the same time, they
should be balanced in the algorithm. Secondly, although
some modified strategies have been integrated into the algo-
rithm to optimize the solution, reducing the possibility of
falling into local optimum is still encouraged for the ACO
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algorithm. Thirdly, the ACO algorithm is of low efficiency
in complex environment, because most of the ants fail to find
the food. To solve the above problems, this paper proposed an
enhanced heuristic ACO algorithm with four strategies. The
efficiency, optimality and adaptability of the ACO algorithm
are improved.

3 Enhanced heuristic ACO algorithm

The enhanced heuristic ACO algorithm proposed in this
paper has been improved in four aspects: pheromone update
mechanism, pheromonediffusionmodel, backtrackingmech-
anism and path merge mechanism. In the following sections,
each improved strategies will be described, respectively.

3.1 Local visibility enhancement

Local visibility has a great influence on the search capability
of theACO algorithm, especially at the beginning of iteration
where the pheromone intensity of the environment is almost
the same. The existing local visibility formula could be given
as follows:

ηi j = 1

d
(
gi , g j

) + d
(
g j , gtarget

) , (8)

where d
(
gi , g j

)
is the actual distance between current grid

gi and its neighbor grid g j , and d
(
g j , gtarget

)
is the heuristic

distance fromneighbor grid g j to target grid gtarget. As shown
in Fig. 2, the local visibility model is provided. It could be
found that the existing local visibility can be denoted by using
the cost of d

(
gi , g j

)
and d

(
g j , gtarget

)
.

Fig. 2 Local visibility model. gi is the current grid where ant located
in, and g j is the neighbor grid of gi . d

(
gi , g j

)
is the actual distance

between current grid gi and its neighbor grid g j . d
(
g j , gtarget

)
is the

heuristic distance from the neighbor grid g j to the target grid gtarget .
d

(
gi , gtarget

)
is the heuristic distance from current grid gi to the target

grid gtarget

Analyzing the existing local visibility formula, the cost
of d

(
gi , g j

)
is far less than the cost of d

(
g j , gtarget

)
at the

beginning because the ant is far from target gtarget. Therefore,
according to formula (8), there is little difference between
neighbor grids, and the heuristic information of the target
position is weak, which is the main reason of low efficiency
in ant’s searching.

To enhance the heuristic information of the target, a new
enhanced heuristic local visibility formula is proposed, as
follows:

ηi j = 1

d
(
gi , g j

) + d
(
g j , gtarget

) − d
(
gi , gtarget

) + ε
, (9)

where ε is arbitrary constant, ε > 0. The parameter ε is used
to ensure that the denominator is not equal to zero, and it also
could be used to adjust the intensity of heuristic information.
In the modified formula (9), the heuristic cost d

(
gi , gtarget

)

between current grid gi and target grid gtarget is introduced
to increase the distance difference of neighbor grids of grid
gi . After improvement, the grid which is closer to the target
in orientation would have a higher probability to be selected.
Therefore, the ant would search toward the target with high
probability, and the efficiency would be improved.

3.2 Pheromone diffusion

As a bridge of communication between ants, pheromone
plays an important role in path planning. In most existing
ACO algorithms, the pheromone only remains on the path
that ants passed through. Therefore, when only the ants are
close enough to the existing path, they could perceive the
information. It limits the search ability of ants. As a result,
the ant would be easy to fall into local optimum.

In order to improve this situation, some paper (Deng et al.
2015) has pointed out that pheromone left by ants on the path
would spread into its neighbor grids. This new pheromone
diffusion model is similar to the diffusion of pigment liquid
drops on white paper. The pheromone diffusion model could
be an arbitrary gradient function. In this paper, we present
a new pheromone diffusion model. Figure 3a illustrates the
model of unit pheromone diffusion. Assume that pheromone
intensity is equal to one at the ant’s current location. Then a
half intensity of pheromone would spread into ant’s neigh-
bor grids. Therefore, the new pheromone diffusion gradient
formula is designed as follows:

∇ f (g, g0) =
⎧
⎨

⎩

1, d (g, g0) = 0
0.5, 1 ≤ d (g, g0) ≤ √

2,
0, d (g, g0) >

√
2,

(g ∈ Wfree)

(10)

123



An enhanced heuristic ant colony optimization for mobile robot path planning 6143

where g0 is the grid where ant is located. Then, the
pheromone of ant k remain in the environment along a path
Pk (g1, g2, . . . , gn) is a convolution of pheromone diffu-
sion model and the pheromone intensity. Therefore, the new
pheromone intensity formula is designed by:

Δτ k (g) =
n∑

i=1

Q

Lk
∇ f (g, gi ), (g ∈ Wfree) . (11)

In Fig. 3b, an example of pheromone diffusion is given
when ant k passed through the path. The pheromone inten-
sity of the grid is higher when many ants passed through.
The improved pheromone diffusion mechanism not only
enhances the role of pheromones, but also smooths the
pheromone distribution. It is helpful to improve the global
planning ability of the algorithm.

Path1 = {SubP1 (s1, s2) ,SubP1 (s2, s3) , . . . ,SubP1 (sn−1, sn)}
Path2 = {SubP2 (s1, s2) ,SubP2 (s2, s3) , . . . ,SubP2 (sn−1, sn)} (12)

SubPnew (si , si+1) =
{
SubP1 (si , si+1) , if Len (SubP1 (si , si+1)) ≤ Len (SubP2 (si , si+1))

SubP2 (si , si+1) , otherwise
, i = 1, 2, . . . , n − 1. (13)

3.3 Backtrackingmechanism

TheTABU tablewhich is used to prevent the repeated search-
ing is important in ACO algorithm. Some researchers make
all ants share the same TABU table. However, this strategy
brings a disadvantage of prematurely searching stop; we call
it the “Lost Ant.” Many experiments have shown that ants
may fall into the situation where there is no path to walk
because its neighbor grids are occupied by obstacles or have
been visited before. This is the reason that some ants fail to
find food source. To overcome this shortcoming, backtrack-
ing strategy is introduced to avoid ant stagnation, so that the
“Lost Ant” could move back to the previous grid that it has
visited before when there is no path to go.

Figure 4 gives an ant’s search process from start grid 0©
to stop grid 9©, and the path sequence: 0© → 1© → · · · →
9©. The ant would stop walking due to constraints of obsta-
cles andTABUtable.However,whenbacktracking strategy is
introduced, the ant would take a step backward along the path
until new grids are found, such as grid a© and grid b©. Thus,
a new path may be found 0© → 1© → · · · → 7© → a©
or 0© → 1© → · · · → 7© → b©, and the ant would start
a new search by grid a© and grid b©. It is useful for ants to
search in complex environments.

Different from other studies which solve the optimiza-
tion problem to obtain a better optimization scheme (Benhala
et al. 2015; Li and Tian 2006) or revisit the path node (Hee-

gaard and Wittner 2006), backtracking strategy proposed in
this paper is specially designed for robot collision-free path
planning to optimize the selection of extension nodes. With
backtracking strategy, the antswould not easily fail searching
in complex environment such as concave obstacle because of
the influence of TABU table.

3.4 Pathmerging

Although each ant is hard to find the global optimal path, but
one or more parts of the searched path could belong to the
global optimal path. Therefore, the path merging strategy is
put forward to further optimize the final path. This strategy
could concatenate any two optimal sub-paths to form a better
path.

Let Path1 andPath2 denote twodifferent paths, and assume
that they had passed a number of common grids called set

Fig. 3 a Diffusion model of unit pheromone intensity and b example
of pheromone diffusion. The solid line is the ant path, and the values
are the pheromone intensity
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Fig. 4 Backtracking model. The black grids are collision grids, and the
light blue grids are the tube table. When the ant searched to the stop
grid “ 9©,” it will backtrack and continue the new searching. The grid
a© and grid b© are the new found

Fig. 5 Path merging strategy, where si is the common grids of Path1
and Path2. After path merging, a min distance path could be found

Scom = {s1, s2, . . . , sn}. Then these two paths could be
divided into n − 1 segments with the break point in these
common grids, as shown in Fig. 5. Let SubPk

(
gi , g j

)
denote

the segment from grid gi to grid g j on the path Pathk . Then,
the n − 1 segments of two path Path1 and Path2 could be
denoted by formula (12).

The sub-segments between different paths with the same
start and end point could be replaced with each other. There-
fore, a new sub-segment could be generated by comparing
the length of two paths, such as formula (13).

3.5 The overall EH-ACO algorithm

After introducing four improving strategies specifically, a
complete EH-ACO algorithm is formed within the following
steps:

Step 1 Import world environment WORLD, start point
gstart and goal point ggoal. Initialize pheromones of
the environment, pheromone intensity coefficient α,
route cost coefficient β, number of ants m, maxi-
mum iteration times IterMAX. Set start time t = 0,
tabuk = ∅, pathk = ∅.

Step 2 Let ant k = 1 at start point gstart, pk = gstart, and add
it into TABU table tabuk and path pathk .

Step 3 Find the neighbor grids Nk (pk) of ant pk according
to formula (1). If no neighbor grids Nk (pk) is found,
then go to Step 5.

Step 4 Ant k moves to one of its neighbor grids gnext ∈
Nk (pk) according to transition probability formula
(3). Then modify the local visibility according to
formula (9). Set pk = gnext, and add it into TABU
table tabtabuk = tabtabuk ∪ pk and path pathk =
pathk ∪ pk . If pk 
= ggoal, then return to Step 3; else,
then go to Step 6.

Step 5 Ant k moves back to previous grids gpre. Set pk =
gpre, return to Step 3.

Step 6 Optimize path pathk using geometric method and
path merging strategy according to formula (13).
Update optimal path pathopt. If k < m, then set
k = k + 1 and return to Step 2; else, set k = 1.

Step 7 Update pheromone intensity by using formulas (4),
(10) and (11).

Step 8 Let t = t + 1, if t < IterMAX, return to Step 2; else,
output solution and stop.

4 Experimental results

Toverify the proposedEH-ACOalgorithm, simulation exper-
iments with four different strategies and comparisons with
other ACO algorithms are carried out. All experiments are
performed on a computer with an Intel Core i5, 2.3 GHz
CPU and 8 GB RAM, and using a single-threadedMATLAB
implementation.

4.1 Verification of four improved strategies

4.1.1 Visibility enhancement experiment

In the first experiment, we would like to verify the effect of
visibility enhancement strategy. The experiments are carried
out on “50 × 50” obstacle map, and the main parameters
of the experiments such as the pheromone intensity and the
ant number are shown in Table 1. The visibility weight β

which heavily influences the ant’s visibility is tested with
different values. Parameter ε in formula (9) is set to 0.5 to
adjust the intensity of heuristic information. The experiment
would terminate as soon as the ant finds the food.

123



An enhanced heuristic ant colony optimization for mobile robot path planning 6145

Table 1 Experimental parameter setting

World size 50 × 50

Pheromone intensity α 1

Testing times 100

Ant number 1

Start point (1, 50)

Goal point (50, 1)

Table 2 Average test results of 100 experiments between the original
visibility formula and the improved visibility formula

Original Improved Reduced (%)

(a)

Visited grids 266 147 44.74

Time 2.918 0.014 99.52

Distance cost 319.292 173.279 45.73

(b)

Visited grids 226 82 63.72

Time 0.178 0.003 98.31

Distance cost 271.175 96.497 64.42

The related results “visited grids,” “time cost” and “dis-
tance cost” are recorded as shown in Table 2 after 100
experiments. It could be found that the “visited grids” is
reduced by 44.74% in (a) and 63.72% in (b), “time cost” is
reduced by 99.52% in (a) and 98.31% in (b), and the “distance
cost” is reduced by45.73% in (a) and 64.42% in (b) compared
with no improvement strategy that is implemented. From
the result, we could conclude that the visibility enhancement
strategy provides heuristic to the ants and promotes their abil-
ities of finding food. Figure 6 gives two examples of the path
planning results from the experiment with β = 1 and β = 5,
respectively. It could be obviously noticed that ant search

tends to move toward the target consistently after the visibil-
ity enhancement strategy is applied under different visibility
weights.

4.1.2 Pheromone diffusion strategy

This experiment verifies the effectiveness of the pheromone
diffusion strategy. The test is executed on “25 × 25” obsta-
cle map. Parameters are set as follows: pheromone intensity
α = 10, visibility weight β = 5, ant number equals 10, iter-
ation number is 100, start point is (1, 25) and goal point is
(25, 1). The algorithm terminates after the predefined iter-
ations. After planning, it could be found that the final path
cost is 41.2132 without pheromone diffusion strategy and
pheromones are concentrated on the final path, as shown in
Fig. 7a. However, after applying the pheromone diffusion
strategy, the final path cost is 37.4588, which is reduced by
9.12%. The pheromones show gradient distribution, and the
final path follows the highest pheromone concentration path
as shown in Fig. 7b. Therefore, we could conclude that the
improved pheromone gradient diffusion model is effective in
reducing the path cost.

4.1.3 Backtracking strategy

To verify the effectiveness of the backtracking strategy, the
success rate which is calculated as Eq. (14) is adopted. The
distribution of obstacles in this experiment is consistent with
Fig. 7, and map has three types of size: “25× 25,” “50× 50”
and “100 × 100.” Parameters are set as follows: pheromone
intensity α = 50, visibility weight β = 1, the ant number is
50 and the iteration number equals 1. The algorithm termi-
nates after the predefined iterations. In the end, we counted
the probability of 50 ants successfully search for the path, as

Fig. 6 Result of an ant finding
food for the first time. The solid
line is the path that is not
modified by the visibility
formula, and the dotted line is
the path that is after modified by
the visibility formula: a β = 1
and b β = 5
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Fig. 7 Comparison of the final path. The intensity of the color in the region denotes the pheromone intensity, and the line is the final path: a not
improved pheromone strategy, and the path distance cost is equal to 41.2132, and b improved pheromone diffusion strategy, and the path distance
cost is equal to 37.4558

Table 3 Success rate of ant finding food

Map size No backtracking (%) With backtracking (%)

25 × 25 98 100

50 × 50 62 100

100 × 100 18 100

shown in Table 3.

Success rate = Number of finding path

Ant number
× 100%. (14)

Table 3 shows that ant has a lowprobability of finding food
when backtracking strategy is not considered, especially in
the largest size map (100× 100). However, all the ants could
find the food when using the backtracking strategy, which

verifies that the backtracking strategy would help finding the
final result.

4.1.4 Path merging strategy

To verify the path merging strategy, experiments are car-
ried out with the following parameters: pheromone intensity
α = 10, visibility weight β = 2, ant number is 10, iteration
number equals 50, start point is (1,25), goal point is (25,1) and
map size equals “25 × 25.” The algorithm terminates after
the predefined iterations. Figure 8 gives results of final path
and convergence property. Comparing the final path shown
in Fig. 8a, we could found that the path merging strategy is
able to merge several optimal sections together rather than
just be addictive to some good results. Thus, it could achieve
a much shorter final result, which is shown intuitively in

Fig. 8 Comparison of
considering path merging
strategy and not considering the
path merging strategy: a the
final path and b the convergence
curve
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Table 4 Parameter setting of
each algorithm

Traditional ACO ACO-PDG Two-stage ACO EH-ACO

α 2.1 2.1 4 1

β 12 12 1.5 1

Ant number 10 10 10 10

Iteration times 50 50 50 50

Testing times 100 100 100 100

ε – – – 0.5

Fig. 9 Planning results of the
proposed EH-ACO algorithm in
different environments: a “Map
(a)” general map, b “Map (b)”
room map, c “Map (c)” complex
environment map and d “Map
(d)” large size “1000 × 1000”
map
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Fig. 8a. Figure 8b shows that the final distance cost eventu-
ally converges to 43.46 when path merging strategy is not
considered. However, the path distance cost converges to a
smaller value 37.46 by applying the path merging strategy.
Compared with the former, the final path cost is reduced by
13.8%.

Figure 8b also shows that the original ACO algorithm
might converge to a better solution as iteration increases,
which is a common characteristic of ACO algorithms.
However our proposed path merging strategy takes more
advantages since it always selects the optimal segments from

all the paths that ants have searched. Thus, the results would
not be better than the proposed strategy no matter how much
iteration is used. Our proposed merging process is similar
to the searching process of Dijkstra algorithm, which can
ensure to find the optimal solution among all ant search route
branches including the infeasible path. It is time-efficient as
well as powerful in finding the global optimal solution in
complex environment.
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Fig. 10 Statistical results of 100 tests on time cost and path cost of each algorithm in different maps: a “Map (a),” b “Map (b),” c “Map (c)” and d
“Map (d)”

4.2 The overall comparison between EH-ACO and
other ACO algorithms

In this section, we would like to compare our proposed EH-
ACO algorithmwith some other ACO algorithms in different
maps. TraditionalACO,ACO-PDG (Liu et al. 2017) and two-
stage ACO (Chen et al. 2013) are selected. The experimental
setting is shown in Table 4. The optimal parameters of each
algorithm are given, including pheromone intensity α, vis-
ibility weight β, ant number, iteration times and constant
ε. Four different maps are selected for experiments, such as
“Map (a)” a general map, “Map (b)” a roommap, “Map (c)” a
complex environment map and “Map (d)” a large size “1000
× 1000” map, as shown in Fig. 9. Black areas are occupied
by obstacles. The red point and green points denote the start
point and the goal, respectively. All these environments are
common in mobile robot path planning.

All the experiments are repeated 100 times, and the final
paths generated by our EH-ACO algorithm are drawn in blue
lines in Fig. 9. Different algorithms are compared from both

the performance (distance cost of the optimal path) and the
efficiency (time cost of finding the optimal path). Figure 10
shows the results comparing different algorithms in different
maps. In each subgraph, the abscissa represents the time cost
of the algorithm, and the ordinate represents the final distance
cost of the algorithm.

In the first subgraph Fig. 10a, all four algorithms are com-
pared. It could be easily noticed that both two-stage ACO
and the EH-ACO algorithms have a better performance over
the other two algorithms. Similar results could be obtained
from the second subgraph Fig. 10b. The reasons are that the
traditional ACO has difficulties in handling large complex
environments and ACO-PDG only improves the path in local
area for a global optimal, both of which are lack of heuristics
so that they are not able to find the feasible result in time.
Since the two-stage ACO and EH-ACO have relatively equal
performance and efficiency in the above maps, more com-
plex and large maps (Fig. 10c, d) are used to compare these
two algorithms specifically. From the results, we could notice
that in a complex environment map (Fig. 10c), the EH-ACO
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algorithm has a better optimization performance, but the effi-
ciency is a little lower compared with two-stage ACO. This
is because EH-ACO focuses more on algorithm optimiza-
tion performance than efficiency. Three out of four strategies
proposed are improving the final result. On the other hand,
the two-stage ACO preprocessed the map before planning.
So it could have a good efficiency when the map is small.
However, when the map is large the preprocess will take too
much time. The efficiency will decrease as map increases.
Figure 10d shows the result that our proposed EH-ACO has
advantages in both performance and efficiency in large com-
plex environment.

5 Conclusion

This paper introduces an enhanced heuristic ACO algorithm
to solve the path planning problems for mobile robot. Four
strategies are introduced to improve the performance and
efficiency of the ACO algorithm. By enhancing the visibil-
ity of the ants, each ant is guided with heuristic, resulting
in an algorithm acceleration. Pheromone diffusion strategy
smooths the local path to obtain an optimal path. And the
backtracking strategy raises the ant’s ability of finding a fea-
sible path, which would benefit the algorithms’ performance.
Path merging strategy which concatenates the optimal path
segment would also accelerate the algorithm. Integrated with
these four strategies, our proposed EH-ACO algorithm is
able to find the optimal path in a large complex environment
quickly, which could be implemented on the mobile robot
for path planning. Simulation results show that the EH-ACO
outperforms the otherACOalgorithms in large complex envi-
ronment in both optimality and efficiency.

For further work, we would like to modify the algorithm
to adapt to the dynamic environment where real-time per-
formance is seriously considered. The reuse and update of
pheromones in ant colony algorithm need further improve-
ment.
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