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Abstract
Construction of an effective model for regression to fit data samples with noise or outlier is a challenging work. In this

paper, in order to reduce the influence of noise or outlier on regression and further improve the prediction performance of

standard twin support vector regression (TSVR), we proposed a fast clustering-based weighted TSVR, termed as FC-

WTSVR. First, we use a fast clustering algorithm to quickly classify samples into different categories based on their

similarities. Secondly, to reflect the prior structural information and distinguish contributions of samples located at

different positions to regression, we introduce the covariance matrix and weighted diagonal matrix into the primal

problems of FC-WTSVR, respectively. Finally, to shorten the training time, we adopt the successive over-relaxation

algorithm to solve the quadratic programming problems. The results show that the proposed FC-WTSVR can obtain better

prediction performance and anti-interference capability than some state-of-the-art algorithms.

Keywords Machine learning � Twin support vector regression � Fast clustering � Prior structural information �
Weighted strategy

1 Introduction

Support vector machine (SVM) is a powerful machine

learning method based on the theory of Vapnik–Chervo-

nenkis (VC) dimension and statistical learning (Vapnik

1999; Cristianini and Shawe-Talyor 2000; Mangasarian

and Musicant 2001; Deng and Tian 2009). SVM has been

successfully applied in areas such as feature selection, data

mining, image processing, and intrusion detection. In nat-

ure, SVM is ascribed to solve quadratic programming

problems (QPPs) for obtaining the optimal solution of its

dual problem. However, when training the large-scale

datasets, the time cost by solving QPPs will increase

rapidly. Therefore, many fast training algorithms, such as

sequential minimal optimization (SMO) (Platt 2000),

geometric approach (Mavroforakis and Theodoridis 2006),

coordinate descent method (Chang et al. 2008), and clip-

ping algorithm (López et al. 2011), have been specifically

designed for shortening the training time of large-scale

datasets.

Recently, Jayadeva et al. (2007) proposed a twin support

vector machine (TSVM). Unlike standard SVM, TSVM

attempts to find two non-parallel hyperplanes so that each

hyperplane is closest to one class and far away from the

other classes. The main difference between SVM and

TSVM is that SVM needs to solve one larger-size QPPs,

whereas TSVM only needs to solve two smaller-size QPPs.

Therefore, TSVM performs approximately four times fas-

ter than SVM. Then, Peng (2010) extended the idea of

TSVM to regression, and he proposed a twin support vector

regression (TSVR). TSVR generates a pair of QPPs such

that each QPP determines one of the up-bound and down-

bound functions by using only one group of constraints. In

comparison to standard support vector regression (SVR),

TSVR has better fitting regression performance and costs

lower training time. Therefore, TSVR has become a new

hot topic in machine learning field. To date, many variants

of TSVR have been developed, such as smooth TSVR

(Chen et al. 2012), weighted TSVR (Xu and Wang 2012),

e-TSVR (Shao et al. 2013), Lagrangian TSVR (Balasun-

daram and Gupta 2014), K-nearest neighbor-based weigh-

ted TSVR (KNN-WTSVR) (Xu and Wang 2014), weighted
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Lagrange e-TSVR (WL-e-TSVR) (Ye et al. 2016), robust

TSVR (López and Maldonado 2018), projection TSVR (Gu

et al. 2019), and projection weighted TSVR (Wang et al.

2019).

It has been proved that the prior structural information

of samples may contain some useful knowledge for train-

ing a classification or regression model. Therefore, how to

skillfully apply the prior structural information of samples

to construct an effective model has become a hot research

topic. Yeung et al. (2007) first proposed a structured large

margin machine (SLMM), and they integrate the prior

structural information of each cluster into the primal

problem of SVM in the form of covariance matrix. The

experimental results show that the prior structural infor-

mation of samples is one of the key factors which deter-

mines the classification accuracy. Then, under the concept

of structural granularity, Peng et al. (2013) developed a

structural twin parametric-margin support vector machine

(STPMSVM). The STPMSWM classifier is proved to be

superior to some other learning algorithms in terms of

learning speed and generalization capacity. Qi et al. (2013)

point out the drawbacks of the existing SLMM algorithms,

and they designed a new structural twin support vector

machine, termed as STSVM. Theoretical analysis and

experimental results show that STSVM is rigidly better

than other prior structural information-based algorithms in

both classification accuracy and computation time. Pan

et al. (2015) proposed a novel K-nearest neighbor-based

structural TSVM, called KNN-STSVM. In KNN-STSVM,

different weights are assigned to the samples in one class to

strengthen the structural information by applying the intra-

class KNN approach, while for the other classes, in order to

shorten the training time, the inter-class KNN approach is

adopted to delete the redundant constraints. Extensive

experimental results show the efficiency of the proposed

KNN-STSVM. Parastalooi et al. (2016) presented a mod-

ified TSVR (MTSVR) for regression. They add a new term

in the primal problems of TSVR to reflect the prior struc-

tural information of the input data samples. Moreover, they

utilize successive over-relaxation (SOR) algorithm and

particle swam optimization (PSO) algorithm to accelerate

the training process and determine the parameters of the

proposed MTSVR model, respectively. The results on

several artificial and real datasets show that the prediction

performance and generalization capability of the proposed

MTSVR model are greatly improved. In summary, in order

to improve the performance of the classification or

regression model, it is necessary to incorporate the prior

structural information of samples into the model.

During the fitting process, standard TSVR adjusts the

trends of the fitting regression curve according to the pre-

diction error. This means that standard TSVR assumes that

samples located at different positions have the same impact

on the fitting regression curve. In most real scenarios, due

to factors such as environmental change and erroneous

measurement, the samples collected may contain noise.

Therefore, the fitting regression curve obtained by standard

TSVR may seriously deviate from the actual one, which

will cause large prediction errors. Nowadays, researchers

have developed two categories of methods, i.e., weighted

method and loss function method, to reduce the influence

of noise on regression. The main idea of the weighted

method is to assign different weights to samples located at

different positions based on their contributions to the fitting

regression curve. The most commonly used weighted

methods are distance-based method (Bruno et al. 2000),

clustering-based method (Jiang et al. 2006), depth-based

method (Kalidas and Chandra 2008), and K-nearest

neighbor-based method (Pang et al. 2018; Pang and Xu

2019). But these weighted methods are sensitive to the

dimension of samples. Density-based method (Cheng and

Wang 2016) and rough set theory-based method (Xue et al.

2018) provide feasible solutions to address this difficulty.

The main drawback of the density-based method is that it is

sensitive to parameters that define neighbors, while the

rough set theory-based method is limited to be applied in

discrete situations. In addition, the selection of loss func-

tions also plays an important role in reducing the impact of

noise existed in data samples (Ye et al. 2013; Peng et al.

2016; Niu et al. 2017; Xu et al. 2017; Anagha et al. 2018;

Tanveer et al. 2019a, b). The most commonly used loss

functions for regression are 1-norm loss function, 2-norm

loss function, e-insensitive loss function, Huber loss func-

tion, and squared pinball loss function (Chen et al. 2019,

Gupta and Gupta 2019; Hua et al. 2019; Tanveer et al.

2019a, b). Among these loss functions, 2-norm loss func-

tion is attractive because it is smooth. Unfortunately,

because 2-norm loss function is sensitive to large error, it is

not robust. The reason is that 2-norm loss function will

sacrifice the errors of other samples and update toward the

direction of reducing the error of noise. Compared with

2-norm loss function, 1-norm and e-insensitive loss func-

tions are more robust because they can both reduce the

influence of noise. Unfortunately, they are not smooth,

which restrains the application of the numerical mini-

mization approaches. Moreover, although the Huber loss

function and squared pinball loss function are both robust,

in order to achieve the best fitting performance, they both

need to constantly tune the hyper-parameters.

To conclude, in order to construct an effective model for

regression, the prior structural information of samples

should be considered, and the samples located at different

positions should be assigned different weights. In addition,

the samples collected may contain several outliers. Fortu-

nately, we can adopt the fast clustering algorithm (Ro-

driguez and Laio 2014; Liu et al. 2018) to effectively
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separate outliers from normal samples. Hence, in this

paper, to reduce the influence of noise and potential out-

liers on regression and further improve the prediction

performance of standard TSVR, we investigated a fast

clustering-based weighted twin support vector regression,

termed as FC-WTSVR.

The main contributions of this paper are summarized as

follows:

1. We utilize the fast clustering algorithm developed by

Rodriguez and Laio to determine the cluster centers

and outliers according to suitable principles.

2. In order to reflect the prior structural information of

samples, we introduce the covariance matrix into the

primal problems of FC-WTSVR.

3. To further reduce the influence of noise on regression,

we design a new feedback weighted strategy and assign

samples located at different positions with different

penalties.

4. To accelerate the training process, the successive over-

relaxation (SOR) algorithm is employed to solve the

QPPs in the dual problems of FC-WTSVR.

In addition, we conduct extensive experiments on

benchmark datasets, artificial datasets, and actual glutamic

acid fed-batch fermentation process to demonstrate the

superiorities of the proposed FC-WTSVR over some state-

of-the-art algorithms in terms of prediction performance

and anti-interference capability.

The remainder of this paper is arranged as follows. In

Sect. 2, we briefly review the twin support vector regres-

sion in linear and nonlinear case. Section 3 introduces the

proposed fast clustering-based weighted twin support

vector regression in detail. Section 4 presents the experi-

mental results and analyses. The conclusions are summa-

rized in Sect. 5.

2 Twin support vector regression

A training sample set T ¼ x1; y1ð Þ; . . .; xn; ynð Þf g is given,

where xi 2 Rd (d is the number of attributions) and yi 2 R,

i ¼ 1; . . .; n (n is the number of samples) represent the

input and output, respectively. Figure 1 illustrates twin

support vector regression (TSVR) in linear case.

We can see from Fig. 1 that the aim of TSVR in linear

case is to generate a pair of e-insensitive up-bound function

f1 xð Þ ¼ wT
1xþ b1 and down-bound function f2 xð Þ ¼ wT

2xþ
b2. The regression function of TSVR in linear case is

determined by the mean of the e-insensitive up- and down-

bound functions as follows (Peng 2010):

f xð Þ ¼ 1

2
f1 xð Þ þ f2 xð Þð Þ ¼ 1

2
w1 þ w2ð ÞTxþ 1

2
b1 þ b2ð Þ

ð1Þ

where w1, w2 2 Rd are weight vectors, b1; b2 are biases.

Let A ¼ x1; . . .; xn½ � 2 Rn�d and Y ¼ y1; . . .; yn½ �T2 Rn,

the primal problems of TSVR in linear case, are expressed

as follows:

min
w1;b1;n

1

2
Y � ee1 � Aw1 þ eb1ð Þk k2þc1e

Tn

s:t: Y � Aw1 þ eb1ð Þ� ee1 � n; n� 0

ð2Þ

min
w2;b2;g

1

2
Y þ ee2 � Aw2 þ eb2ð Þk k2þc2e

Tg

s:t: Aw2 þ eb2ð Þ � Y� ee2 � g; g� 0

ð3Þ

where c1; c2 [ 0 are penalty parameters, e1; e2 [ 0 are

insensitive loss parameters, n and g are slack vectors, �k k
denotes the 2-norm, e and 0 represent all ones and all zeros

column vectors with proper dimensions, respectively.

By introducing nonnegative Lagrangian multiplier vec-

tors a and b, we can obtain the following dual problems of

Eqs. (2) and (3):

max
a

� 1

2
aTG GTG

� ��1
GTaþ fTG GTG

� ��1
GTa� fTa

s:t: 0� a� c1e

ð4Þ

max
b

� 1

2
bTG GTG

� ��1
GTb� hTG GTG

� ��1
GTbþ hTb

s:t: 0� b� c2e

ð5Þ

where G ¼ A e½ �, f ¼ Y � ee1, and h ¼ Y þ ee2.

o x

1( )f x

2 ( )f x

( )f x
y

1 1( )f ε−x

2 2( )f ε+x

Fig. 1 An illustration of TSVR in linear case
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Solving Eqs. (4) and (5), we can obtain the optimal

solutions a� and b�, then the augmented vectors of TSVR

in linear case can be computed as follows:

wT
1 b1

� �T¼ GTG
� ��1

GT f � a�ð Þ ð6Þ

wT
2 b2

� �T¼ GTG
� ��1

GT hþ b�ð Þ: ð7Þ

By introducing the kernel function K � ; �ð Þ, we can

easily extend TSVR in linear case to nonlinear case. The

most commonly used kernel functions are polynomial

kernel, radial basis function (RBF) kernel, and sigmoid

kernel (Peng et al. 2014; Shao et al. 2014; Chen et al.

2014).

The primal problems of TSVR in nonlinear case are

expressed as follows:

min
w1;b1;n

1

2
Y � ee1 � K A;AT

� �
w1 þ eb1

� ��� ��2þc1e
Tn

s:t: Y � K A;AT
� �

w1 þ eb1
� �

� ee1 � n; n� 0

ð8Þ

min
w2;b2;g

1

2
Y þ ee2 � K A;AT

� �
w2 þ eb2

� ��� ��2þc2e
Tg

s:t: K A;AT
� �

w2 þ eb2
� �

� Y� ee2 � g; g� 0:

ð9Þ

Similarly, by introducing nonnegative Lagrangian mul-

tiplier vectors l and m, we can obtain the following dual

problems of Eqs. (8) and (9):

max
l

� 1

2
lTQ QTQ

� ��1
QTlþ fTQ QTQ

� ��1
QTl� fTl

s:t 0� l� c1e

ð10Þ

max
m

� 1

2
mTQ QTQ

� ��1
QTm � hTQ QTQ

� ��1
QTm þ hTm

s:t: 0� m� c2e

ð11Þ

where Q ¼ K A;AT
� �

e
� �

, f ¼ Y � ee1, and h ¼ Y þ ee2.
Once the optimal solutions l� and m� are obtained, we

can compute the augmented vectors of TSVR in nonlinear

case as follows:

wT
1 b1

� �T¼ QTQ
� ��1

QT f � l�ð Þ ð12Þ

wT
2 b2

� �T¼ QTQ
� ��1

QT hþ m�ð Þ: ð13Þ

Finally, we can obtain the following regression function

of TSVR in nonlinear case:

f xð Þ ¼ 1

2
K xT;AT
� �

w1 þ w2ð Þ þ 1

2
b1 þ b2ð Þ: ð14Þ

3 Proposed fast clustering-based weighted
twin support vector regression

In this section, we first discuss the fast clustering algo-

rithm; then, we present the fast clustering-based weighted

twin support vector regression (FC-WTSVR) in detail.

Next, we utilize the successive over-relaxation (SOR)

algorithm to solve the four QPPs in the dual problems of

FC-WTSVR and summarize the training procedure of FC-

WTSVR. Finally, we provide analysis of FC-WTSVR.

3.1 Fast clustering

The aim of clustering is to classify objects into different

categories according to their similarities. Recently, Rodri-

guez and Laio proposed a novel fast clustering algorithm

based on the idea that cluster centers are characterized by a

higher density than their neighbors and by a relatively large

distance from points with higher densities (Rodriguez and

Laio 2014). The proposed algorithm is simple and efficient

because it can quickly find the higher-density peak points,

i.e., cluster centers, without iteratively calculating the

objective function.

The data points set S ¼ xif gni¼1; IS ¼ 1; . . .; nf g is given,

where IS is the index set and n is the number of data points.

For each data point xi, we can compute its local density qi
and its distance di from the nearest points of higher density.

The local density qi is defined as follows:

qi ¼
X

j2ISn if g
exp � dij

dc

� �2
 !

ð15Þ

where dij is the Euclidean distance between xi and xj, and

dc is a cutoff distance which is equivalent to the neigh-

borhood radius of data points.

We can see from Eq. (15) that the local density qi is
equivalent to the number of data points in dc-neighbor-

hood, which depends on the setting of the cutoff distance

dc. In general, dc is typically set as at most 1–2% of all dij.

In our work, we utilize the K-nearest neighbor method to

determine dc (Pang et al. 2018).

Define Q ¼ xui
	 
k

u¼1
as the set of the kth neighbor of

data point xi, let k ¼ n� 1%, the cutoff distance dc is

computed as follows:

dc ¼
1

2
min dist xi; x

u
i

� �� �
þmax dist xi; x

u
i

� �� �� �
ð16Þ

where dist xi; x
u
i

� �
is the Euclidean distance between xi and

xui .

The distance di is computed as follows:
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di ¼
max dijf g
j� 2 ; i ¼ 1

min djf g
j\i ; i ¼ 2; . . .; n

8
<

:
ð17Þ

where dj represents the jth column of dij.

Then, we normalize qi and di as follows:

�qi ¼
qi �min qið Þ

max qið Þ �min qið Þ ð18Þ

�di ¼
di �min dið Þ

max dið Þ �min dið Þ : ð19Þ

Subsequently, �qi and �di are sorted in ascending order for

all data points.

Finally, the decision value �ci is computed as follows:

�ci ¼ �qi � �di: ð20Þ

Equation (20) implies that the cluster centers are

determined by the product of �qi and �di.
Figure 2 depicts the fast clustering algorithm in two

dimensions (Rodriguez and Laio 2014). The data points in

Fig. 2a are ranked in deceasing density order, and the

decision graph for the data points in Fig. 2a is plotted in

Fig. 2b. Figure 2a indicates that the data points 3, 20, and

21 are the cluster centers, whereas the data points 30, 31,

and 32 are outliers. In addition, we can see from Fig. 2b

that the cluster centers have large �qi and �di, whereas the

outliers have small �qi and large �di.
Next, we will explain the principle of determining the

cluster centers and outliers (see Fig. 3).

Because the cluster centers have large �qi and �di, a rel-

atively great change of decision value �ci from cluster

centers to non-cluster centers must be occurred. Figure 3a

shows the determination of cluster centers. To facilitate

counting the number of cluster centers, Fig. 3a also pro-

vides the zoom in area illustration. We can see from Fig. 3a

that the decision values above the red line are significantly

greater than the decision values under the red line.

Therefore, by detecting this change, we can easily

determine the cluster centers. It is clear that there are four

cluster centers in Fig. 3a.

Figure 3b shows an example of determining the outliers

on decision graph. Considering that the outliers have small

�qi and large �di, we adopt the following principle to deter-

mine the outliers: For each data point, if its �qi is less than
�qoutlier and its �di is greater than �doutlier, where �qoutlier and
�doutlier are defined in Eqs. (21) and (22), respectively, then

the data point is classified as an outlier.

�qoutlier ¼ �qround n�sð Þ ð21Þ
�doutlier ¼ �dround n� 1�sð Þð Þ ð22Þ

where s is a small constant.

To conclude, the fast clustering algorithm is summa-

rized in Algorithm 1.

3.2 Fast clustering-based weighted twin support
vector regression

In this part, we first clarify the function of the prior

structural information of samples. Then, in order to give

different penalties to samples located at different positions,

we introduce a new feedback weighted strategy. Finally,

9

21

15

31 30

14

19 18

16

17

20

32

10

1112

18

7

6 5

43

2

13
22

2324
25

26
27 28

29

0 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

1
10

94
8

3

2

11
5 19

12

13
28

24
22

7

21

18

614

30

15

31

29
2716

20
32

2325

26
17

iδ

iρ

cluster centers

outliers

(a) (b)

Fig. 2 The fast clustering

algorithm in two dimensions.
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we present our fast clustering-based weighted twin support

vector regression (FC-WTSVR) in linear and nonlinear

case.

3.2.1 The prior structural information of samples

In order to further improve the prediction performance of

standard TSVR, motivated by Parastalooi et al. (2016), we

take the prior structural information of samples into

account.

In linear case, the covariance matrix
P

, which reflects

the prior structural information of samples, can be

sequentially extracted according to the following Eqs. (23)

to (25):

vui ¼
1

uij j
X

xj2ui
xj; i ¼ 1; . . .; r ð23Þ

Rui ¼
1

uij j
X

xj2ui
xj � vui
�� ��2; i ¼ 1; . . .; r

j ¼ 1; . . .; uij j ð24Þ

R ¼ Ru1 þ Ru2 þ � � � þ Rur ð25Þ

where r stands for the number of clusters, ui represents the

ith cluster, uij j is the number of samples in cluster ui, and

vui is the mean of cluster ui.

In nonlinear case, by introducing the kernel function

K � ; �ð Þ, the covariance matrix RU can be extracted as

follows:

RU ¼ RU
u1
þ RU

u2
þ � � � þ RU

ur
ð26Þ

where RU
ui
¼ 1

uij j
P

xj2ui K xj;A
� �

� K vui ;Að Þ
�� ��2; vui ¼

1
uij j
P

xj2ui xj; i ¼ 1; . . .; r; j ¼ 1; . . .; uij j, A ¼ x1; � � � ; xn½ �.

3.2.2 Weighted strategy

In practice, samples located at different positions have

different influences on regression (Xu and Wang 2012).

Therefore, it is more reasonable to assign different samples

with different penalties. Motivated by WL-e-TSVR (Ye

et al. 2016), we adopt the following feedback strategy to

weigh samples located at different positions:

di ¼
exp � ei

ŝdev

����

����

� �2
 !

;
ei

ŝdev

����

����\Th

10�3;
ei

ŝdev

����

����� Th

8
>>><

>>>:

ð27Þ

where di is the weight; ei ¼ yi � ŷi is the prediction error,

ŷi is the prediction value of yi; ŝdev ¼ 1:483MAD eið Þ rep-
resents the extent of the estimated error deviated from the

normal distribution; MAD stands for the median absolute

deviation; Th is a constant threshold, which is typically set

as Th ¼ 3.

Equation (27) indicates that the closer ei=ŝdevj j to 0, the

larger weight di, and if ei=ŝdevj j is greater than or equal to

Th, di is set as 10
�3.

3.2.3 Linear case

The primal problems of FC-WTSVR in linear case are

expressed as follows:

min
w1;b1;n

1

2
Y � ee1 � Aw1 þ eb1ð Þk k2þ 1

2
wT
1Rw1 þ

1

2
c1n

TDn

s:t: Y � Aw1 þ eb1ð Þ� ee1 � n; n� 0

ð28Þ

min
w2;b2;g

1

2
Y þ ee2 � Aw2 þ eb2ð Þk k2þ 1

2
wT
2Rw2 þ

1

2
c2g

TDg

s:t: Aw2 þ eb2ð Þ � Y� ee2 � g; g� 0

ð29Þ

where c1; c2 [ 0 are penalty parameters, e1; e2 [ 0 are

insensitive loss parameters, n and g are slack vectors, �k k
denotes the 2-norm, w1, w2 are weight vectors, b1; b2 are

biases, R is the covariance matrix defined in Eq. (25), D ¼
diag d1; . . .; dnð Þ is a weighted diagonal matrix, di; i ¼

(a) (b)

n
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Fig. 3 The principle of

determining different categories

of data points. a The cluster

centers; b the outliers (s ¼ 0:1)
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1; 2; . . .; n are defined in Eq. (27), and e and 0 represent all

ones and all zeros column vectors with proper dimensions,

respectively.

By introducing nonnegative Lagrangian multiplier vec-

tor a, we can construct the following Lagrangian function

of Eq. (28):

L w1; b1; n; að Þ ¼ 1

2
Y � ee1 � Aw1 þ eb1ð Þk k2

þ 1

2
wT
1Rw1 þ

1

2
c1n

TDn�

aT Y � ee1 � Aw1 þ eb1ð Þ þ nð Þ:

ð30Þ

Then, differentiating Eq. (30) with respect to w1,b1, and

n, we can obtain the following Karush–Kuhn–Tucker

(KKT) conditions:

oL w1; b1; n; að Þ
ow1

¼ �AT Y � ee1 � Aw1 þ eb1ð Þð Þ þ w1R

þ ATa

¼ 0

ð31Þ
oL w1; b1; n; að Þ

ob1
¼ �eT Y � ee1 � Aw1 þ eb1ð Þð Þ þ eTa ¼ 0

ð32Þ
oL w1; b1; n; að Þ

on
¼ c1Dn� a ¼ 0 ð33Þ

Y � Aw1 þ eb1ð Þ� ee1 � n; n� 0 ð34Þ

aT Y � ee1 � Aw1 þ eb1ð Þ þ nð Þ ¼ 0; a� 0: ð35Þ

Further, Eqs. (31) and (32) can be written into the fol-

lowing matrix form:

AT

eT

� 

ee1 � Yð Þ þ AT

eT

� 

A e½ � w1

b1

� 

þ R 0

0T 0

� 

w1

b1

� 


þ AT

eT

� 

a

¼ 0:

ð36Þ

Define G ¼ A e½ �, f ¼ Y � ee1, J ¼ R 0
0T 0

� 

, and

u1 ¼
w1

b1

� 

; we can obtain the following augmented

vector:

u1 ¼ GTGþ J
� ��1

GT f � að Þ: ð37Þ

Then, substituting Eqs. (33) and (37) into Eq. (30), we

can obtain the dual problem of Eq. (28) as follows:

max
a

� 1

2
aT

D�1

c1
þ G GTGþ J

� ��1
GT

� �
a

þ fTG GTGþ J
� ��1

GTa� fTa

s:t: 0� a:

ð38Þ

Subsequently, we can obtain the augmented vector u2 as

follows:

u2 ¼ GTGþ J
� ��1

GT hþ bð Þ ð39Þ

where u2 ¼
w2

b2

� 

, h ¼ Y þ ee2, and b is nonnegative

Lagrangian multiplier vector.

Similarly, the dual problem of Eq. (29) can be repre-

sented as follows:

max
b

� 1

2
bT

D�1

c2
þ G GTGþ J

� ��1
GT

� �
b

� hTG GTGþ J
� ��1

GTbþ hTb

s:t: 0� b:

ð40Þ

Once Eqs. (38) and (40) are solved, we can obtain the

optimal Lagrangian multiplier vectors a� and b�. Then, we
can compute the augmented vectors u1 and u2 according to

Eqs. (37) and (39), respectively. Finally, the regression

function of FC-WTSVR in linear case can be constructed

by Eq. (1).

3.2.4 Nonlinear case

By introducing the kernel function K � ; �ð Þ, the FC-

WTSVR in linear case can be easily extended to nonlinear

case. The primal problems of FC-WTSVR in nonlinear

case are expressed as follows:

min
w1;b1;n

1

2
Y � ee1 � K A;AT

� �
w1 þ eb1

� ��� ��2

þ 1

2
wT
1R

Uw1 þ
1

2
c1n

TDn

s:t: Y � K A;AT
� �

w1 þ eb1
� �

� ee1 � n; n� 0

ð41Þ

min
w2;b2;g

1

2
Y þ ee2 � K A;AT

� �
w2 þ eb2

� ��� ��2

þ 1

2
wT
2R

Uw2 þ
1

2
c2g

TDg

s:t: K A;AT
� �

w2 þ eb2
� �

� Y� ee2 � g; g� 0

ð42Þ

where RU is the covariance matrices defined in Eq. (26);

other symbols have the same meaning as in Eqs. (28) and

(29).

Similar with the derivation of FC-WTSVR in linear

case, by introducing nonnegative Lagrangian multiplier

vectors l and m, we can obtain the following dual problems

of Eqs. (41) and (42), respectively:
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max
l

� 1

2
lT

D�1

c1
þ Q QTQþ JU

� ��1
QT

� �
l

þ fTQ QTQþ J
� ��1

QTl� fTl

s:t: 0� l

ð43Þ

max
m

� 1

2
mT

D�1

c2
þ Q QTQþ JU

� ��1
QT

� �
m

� hTQ QTQþ J
� ��1

QTm þ hTm

s:t: 0� m

ð44Þ

where Q ¼ K A;AT
� �

e
� �

, f ¼ Y � ee1, h ¼ Y þ ee2,

and JU ¼ RU 0
0T 0

� 

.

Once Eqs. (43) and (44) are solved, we can obtain the

optimal Lagrangian multiplier vectors l� and m�. Then, we
can compute the augmented vectors #1 and #2 as follows:

#1 ¼ QTQþ JU
� ��1

QT f � l�ð Þ ð45Þ

#2 ¼ QTQþ JU
� ��1

QT hþ m�ð Þ ð46Þ

where #1 ¼
w1

b1

� 

and #2 ¼

w2

b2

� 

.

The final regression function of FC-WTSVR in nonlin-

ear case can be constructed by Eq. (14).

3.3 Solving QPPs by successive over-relaxation
algorithm

In this section, we adopt the successive over-relaxation

(SOR) algorithm developed by Quan et al. to solve QPPs.

The SOR algorithm has been proved to be of much faster

convergence speed than other iterative algorithms such as

gradient descending algorithm in solving QPPs (Quan et al.

2004).

In FC-WTSVR, four QPPs, i.e., Equations (38), (40),

(43), and (44), should be solved. They can be rewritten into

the following unified form:

min
z

f zð Þ ¼ 1

2
zTPz� �Tz

s:t: z� 0

ð47Þ

where z 2 R nþ1ð Þ is a Lagrangian coefficient vector, P 2
R nþ1ð Þ� nþ1ð Þ is a positive definite matrix, and � 2 R nþ1ð Þ is
a vector.

For instance, if we let z ¼ a, P ¼ D�1

c1
þ

G GTGþ J
� ��1

GT, � ¼ fTG GTGþ J
� ��1

GT � fT, then

Eq. (47) equals to Eq. (38).

In Eq. (47), the iterative equation for updating ziþ1

based on zi is expressed as follows:

ziþ1 ¼ zi � tE�1 Pzi � �þ L ziþ1 � zi
� �� �

; i ¼ 0; 1; . . . ð48Þ

where interval t 2 0; 2ð Þ, zi stands for the ith iteration of z,

and L 2 R nþ1ð Þ� nþ1ð Þ and E 2 R nþ1ð Þ� nþ1ð Þ stand for the

strictly lower triangular part and diagonal part of matrix P,

respectively.

The SOR algorithm is iteratively computed according to

Eq. (48) until ziþ1 � zi
�� �� is less than a predefined tolerance.

In our work, we set the tolerance as 10-3. Similarly, the SOR

algorithm can be used to solve Eqs. (40), (43), and (44).

3.4 Training procedure of FC-WTSVR

The whole training procedure of FC-TWSVR in linear case

is summarized in Algorithm 2.

Algorithm 2 The training procedure of FC-WTSVR in 
linear case (High-level summary).

Algorithm 2 can be easily extended to nonlinear case; it

is omitted here.

3.5 Analysis of FC-WTSVR

3.5.1 Time complexity of FC-WTSVR

According to Algorithm 2, the whole time complexity of

the proposed FC-WTSVR is O n3 þ 2n2 þ 4n logn2 þ5n
� �

.

Obviously, the time complexity of FC-WTSVR is greater
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than that of standard TSVR (O n3ð Þ). However, with the

increasing of the number of training samples, the time

complexity of FC-WTSVR will approximate to O n3ð Þ. This
implies that the time complexity of fast clustering (Algo-

rithm 1) is negligible when training large-scale datasets.

3.5.2 Anti-interference capability of FC-WTSVR

In the clustering step, we determine the cluster centers and

outliers based on appropriate principles. Then, to further

improve the prediction performance, we utilize the

covariance matrix to reflect the prior structural information

of samples. In addition, to reduce the impact of noise on

regression, a new weighed strategy is employed to assign

weight based on proper principle. As a result, the final

regression function constructed by FC-WTSVR is expected

to be more robust, i.e., less sensitive to noise and outlier.

This means that the proposed FC-WTSVR has powerful

anti-interference capability.

4 Experimental results and analyses

In this section, we first present the experimental design.

Then, we discuss the parameter selection of different

algorithms. Finally, we conduct extensive experiments on

benchmark datasets, artificial datasets, and actual glutamic

acid fed-batch fermentation process.

4.1 Experimental design

In order to validate the superiorities of the proposed FC-

WTSVR, we compared it with TSVR (Peng 2010), e-TSVR
(Shao et al. 2013), KNN-WTSVR (Xu and Wang 2014),

and WL-e-TSVR (Ye et al. 2016) on benchmark datasets,

artificial datasets, and actual glutamic acid fed-batch fer-

mentation process, respectively.

The following three criteria, i.e., the root mean squared

error (RMSE), the mean absolute error (MAE), and the

coefficient of determination (R2), are used to evaluate the

prediction performance of all algorithms:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷij j2
s

ð49Þ

MAE ¼ 1

n

Xn

i¼1

yi � ŷij j ð50Þ

R2 ¼
Pn

i¼1 yi � ŷij j2
Pn

i¼1 yi � �yj j2
ð51Þ

where n is the number of samples, yi is the actual output, ŷi
is the predicted value of yi, and �y ¼ 1

n

Pn
i¼1 yi is the mean of

the output.

Note that the smaller is the RMSE, the better is the

prediction performance; the smaller is the MAE, the

smaller is the prediction error; the closer is the R2 to 1, the

better is the fitting performance of the algorithm.

In addition, we also record the elapsed CPU time of

TSVR, e-TSVR, KNN-TSVR, WL-e-TSVR, and FC-

WTSVR, respectively. All experiments are implemented in

MATLAB 2014a platform on a PC with 2.2 GHz Intel�

CoreTM i5-5200U Processor and 4 GB RAM, and all

results are averaged in 20 independent trials. To make the

results more convincing, we employ standard fivefold

cross-validation (CV) method.

4.2 Parameter selection

In order to obtain good prediction performance, selecting

suitable parameters for each regression algorithm is very

important. In all experiments, we utilize the grid search

algorithm to select the optimal parameters for different

regression algorithms.

In all regression algorithms, because the setting of e1
and e2 cannot greatly influence the prediction performance

(Chen et al. 2012; Shao et al. 2013; Xu and Wang 2014; Ye

et al. 2016; López and Maldonado 2018; Fang et al. 2019),

we set e1 ¼ 0:1 and e2 ¼ 0:1, and c1 and c2 are selected

from the same set 2iji ¼ �8; � � � ; 0; � � � ; 8f g. In KNN-

TSVR, we set k ¼ 10. In e-TSVR and WL-e-TSVR, to

make the comparison fair with other three regression

algorithms, we set c1 ¼ c3 and c2 ¼ c4. In FC-WTSVR, we

set k ¼ 10, s ¼ 0:1, Th ¼ 3, and t ¼ 0:9.

In nonlinear case, we use the RBF kernel, i.e.,

K xi; xj
� �

¼ exp � xi; xj
� �2

=2r2
� �

and the kernel width

parameter r is selected from the set

2iji ¼ �4; . . .; 0; . . .; 4f g.

4.3 Experiments on benchmark datasets

The UCI benchmark datasets used in our experiments are

listed in Table 1, whose sizes vary from 102 to 1260. They

can be downloaded from UCI machine learning repository.

Table 2 summarizes the average RMSE, MAE, R2, and

elapsed CPU time in 20 independent trials using different

regression algorithms. The best values are marked with

bold font.

From Table 2, we can find that, except for the elapsed

CPU time, the proposed FC-WTSVR has similar or better

prediction performance in comparison to other regression

algorithms. The underlying cause is that the introduction of
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prior structural information of samples and feedback

weighted strategy is helpful in improving the prediction

performance. Specially, the RMSE and MAE of FC-

WTSVR are significantly better than other algorithms on

Computer hardware and Yacht hydrodynamics datasets.

This is due to the fact that there are several outliers in these

two datasets, and our FC-WTSVR can remove outliers

effectively so as to improve the prediction performance.

Table 2 also indicates that the elapsed CPU time of e-
TSVR is the shortest except for the Airfoil self-noise

dataset. This is because the dual problems of e-TSVR are

strictly positive definite QPPs, which cost much less time

in training compared with other algorithms. In addition, the

elapsed CPU time of KNN-WTSVR and WL-e-TSVR are

less than that of standard TSVR on five benchmark data-

sets. This is due to the fact that the introduction of

weighted matrix eliminates the redundant constraints and

reduces the time complexity. At last, the elapsed CPU time

of FC-WTSVR is the longest expect for the Yacht hydro-

dynamics dataset. This is caused by the extra time of

implementing fast clustering algorithm.

Next, we will discuss the relationships between constant

s and RMSE in the proposed FC-WTSVR, and the results

are presented in Fig. 4. Note that the bigger is the constant

s, the more samples are determined as outliers and

removed from the training data samples.

Figure 4a, e indicates that the RMSE gradually becomes

larger with the increase in constant s. This means that the

samples of significant contributions to regression may have

been removed, and there may be no outliers in Concrete

slump test and Auto MPG datasets.

Then, we can see from Fig. 4b that the RMSE first

becomes smaller and then becomes larger with the increase

in constant s. This implies that there are potential outliers

in Servo dataset, and they have great influences on

regression. Similar situations can be found in Fig. 4f–h.

Moreover, Fig. 4c, d shows that the RMSE monotonically

decreases with the increase in constant s. This indicates

that there may be several outliers in Computer hardware

and Yacht hydrodynamics datasets. Therefore, after

removing the outliers, the prediction performance of our

FC-WTSVR is much better than the other four regression

algorithms. Finally, Fig. 4i demonstrates that the RMSE

almost remains unchanged with the increase in constant s.
The reason for interpreting this phenomenon is that all

potential outliers fall into the top left corner of decision

graph, and they are independent of the selection of constant

s.
To conclude, the RMSE fluctuates with the selection of

constant s. Hence, we should select the constant s care-

fully. In our experiments, we set the constant s as a rela-

tively reasonable value, i.e., s ¼ 0:1.

4.4 Experiments on artificial datasets

We conduct simulation experiments on the following two

artificial nonlinear functions:

A : yi ¼ sin c xið Þ þ ni ¼
sin xið Þ
xi

þ ni; xi 2 �5;þ5½ � ð52Þ

B : yi ¼ x
2=3
i þ ni; xi 2 �3;þ3½ � ð53Þ

where xi is the input, yi is the output, and ni is the normally

distributed noise with zero mean and variance 0.12, i.e.,

ni 	N 0; 0:12ð Þ.
Figures 5 and 6 present the fitting regression curves of

the two nonlinear functions using different regression

algorithms.

We randomly generate 80 data samples

xi; yið Þ; i ¼ 1; . . .; 80. Furthermore, to test the anti-inter-

ference capability of different regression algorithms, we

intentionally add four different outliers in Eqs. (52) and

(53). Half of the data samples are randomly selected for

training, and the remaining half are selected for testing.

We can see clearly from Figs. 5 and 6 that the proposed

FC-WTSVR outperforms the other four algorithms in terms

of anti-interference ability. Firstly, compared with standard

TSVR, the anti-interference ability our FC-WTSVR is far

superior. The reason is that our FC-WTSVR removes

potential outliers according to appropriate principle. Sec-

ondly, the anti-interference ability of WL-e-TSVR is better

than that of KNN-WTSVR. This can be explained by the

fact that KNN-WTSVR assigns equal weight to each

sample in the k-nearest neighbor range, whereas WL-e-
TSVR weighs each sample according to the density of

samples. In comparison to WL-e-TSVR, FC-WTSVR

removes outliers instead of assigning tiny weights for

potential outliers. Therefore, the anti-interference ability

FC-WTSVR is superior to WL-e-TSVR. Finally, standard
TSVR and e-TSVR are sensitive to noise and outlier. The

Table 1 The nine different UCI benchmark datasets used in our

experiments

Datasets Number of samples Attributions

Concrete slump test 102 10

Servo 166 3

Computer hardware 208 8

Yacht hydrodynamics 308 7

Auto MPG 398 10

Boston housing 506 13

DrivFace 604 18

Concrete compressive 800 9

Airfoil self-noise 1260 6
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potential outliers will make the fitting regression curve

greatly deviate from the actual one. The reason for inter-

preting this phenomenon is that the final fitting regression

curve is determined by the minimum fitting regression

error.

Table 2 The results of average

RMSE, MAE, R2, and elapsed

CPU time on UCI benchmark

datasets using different

regression algorithms

Datasets Algorithms RMSE MAE R2 CPU time (s)

Concrete slump test TSVR 2.7694 2.1572 2.2116 1.2860

e-TSVR 2.7687 1.9710 0.3995 0.5781

KNN-WTSVR 2.6730 2.0283 0.4407 1.9547

WL-e-TSVR 2.6115 2.0484 0.4955 1.7756

FC-WTSVR 2.7159 2.2038 0.3986 3.6563

Servo TSVR 1.2308 0.8928 0.8260 3.3653

e-TSVR 1.2253 0.8186 1.1446 2.6093

KNN-WTSVR 1.2089 0.9215 0.8460 4.4452

WL-e-TSVR 1.2126 1.0240 0.8503 3.3437

FC-WTSVR 1.1287 0.9583 0.8973 6.9687

Computer hardware TSVR 38.2803 24.8779 0.1776 5.4531

e-TSVR 39.4950 27.0523 0.1596 1.2028

KNN-WTSVR 35.8257 23.6840 0.1886 3.9876

WL-e-TSVR 39.6133 26.2237 0.1987 3.4531

FC-WTSVR 28.1649 21.1926 0.2569 11.6719

Yacht hydrodynamics TSVR 10.3484 7.2022 0.7343 26.5781

e-TSVR 9.0528 6.6976 1.0308 5.3125

KNN-WTSVR 9.1757 7.3108 0.7271 7.5625

WL-e-TSVR 8.9709 6.7360 0.7345 5.8281

FC-WTSVR 5.9343 3.8772 0.8569 19.2981

Auto MPG TSVR 0.6250 0.4650 1.2390 22.8125

e-TSVR 0.6375 0.4583 0.7441 7.1994

KNN-WTSVR 0.6235 0.4679 0.8199 13.625

WL-e-TSVR 0.6192 0.4502 0.8905 7.8281

FC-WTSVR 0.6475 0.4618 0.8646 29.7188

Boston housing TSVR 5.1122 3.4555 1.4470 18.8906

e-TSVR 5.0056 3.8761 0.6752 11.2344

KNN-WTSVR 4.9499 3.4019 0.6529 17.8281

WL-e-TSVR 4.8529 3.1632 0.6805 13.5781

FC-WTSVR 5.0231 3.3355 0.6335 41.2813

DrivFace TSVR 1.6631 1.2620 0.9224 43.8594

e-TSVR 1.7430 1.3442 0.8866 18.6352

KNN-WTSVR 1.7326 1.3378 0.9078 44.3690

WL-e-TSVR 1.6300 1.2023 0.9536 35.3594

FC-WTSVR 1.6422 1.2678 0.9382 75.5781

Concrete compressive TSVR 11.041 8.7213 1.3175 51.0805

e-TSVR 11.026 8.6861 1.3016 26.0737

KNN-WTSVR 10.988 8.6265 1.3146 26.5695

WL-e-TSVR 11.069 8.5716 1.3556 32.3281

FC-WTSVR 10.675 7.9064 1.2305 54.3594

Airfoil self-noise TSVR 5.1529 4.1936 0.9785 60.6909

e-TSVR 4.9396 3.8922 0.9816 51.3082

KNN-WTSVR 5.0049 3.8652 0.9753 44.6554

WL-e-TSVR 4.8542 3.7004 0.9708 85.7344

FC-WTSVR 4.9647 3.7845 0.9598 112.8590
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Next, in order to further distinguish the anti-interference

capability of our FC-WTSVR. We conduct experiments on

yi ¼ sin c xið Þ þ ni; xi 2 �5;þ5½ � with two categories of

noise ni, i.e., uniformly distributed (UD) noise and nor-

mally distributed (ND) noise with zero mean and varying

variance, respectively.

Once again, we randomly generate data 80 samples

xi; yið Þ; i ¼ 1; . . .; 80. Half of the data samples are ran-

domly selected for training, and the remaining half are

selected for testing. The artificial test functions used in our

experiments are listed in Table 3.

Table 4 summarizes the average RMSE, MAE, and R2

in 20 independent trials on six artificial test functions using

different regression algorithms. The best values are marked

with bold font.

We can see from Table 4 that WL-e-TSVR and FC-

WTSVR alternatively outperform TSVR, e-TSVR, and

KNN-WTSVR in terms of RMSE, MAE, and R2 on test
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Fig. 4 The relationships between constant s and RMSE in the proposed FC-WTSVR. a Concrete slump test; b Servo; c Computer hardware;

d Yacht hydrodynamics; e Auto MPG; f Boston housing; g DrivFace; h Concrete compressive; i Airfoil self-noise
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Fig. 5 The fitting regression curves of nonlinear function A using different regression algorithms. a TSVR; b e-TSVR; c KNN-WTSVR; dWL-e-
TSVR; e FC-WTSVR
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Fig. 6 The fitting regression curves of nonlinear function B using different regression algorithms. a TSVR; b e-TSVR; c KNN-WTSVR; dWL-e-
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functions A1 to A4 without outliers. This indicates that

both WL-e-TSVR and FC-WTSVR have good prediction

performance and powerful anti-noise capability. In addi-

tion, compared with the other four regression algorithms,

the prediction performance and anti-interference capability

of the proposed FC-WTSVR are the best on test functions

A5 and A6 with outliers. This can be explained by the fact

that FC-WTSVR not only removes potential outliers

according to appropriate principle, but also introduces the

covariance matrix and weighted diagonal matrix into the

primal problems.

In a word, the proposed FC-WTSVR is less sensitive to

noise and outlier compared with some state-of-the-art

algorithms.

4.5 Experiments on actual glutamic acid fed-
batch fermentation process

To further validate the advantages of the proposed FC-

WTSVR, we conduct experiments on actual glutamic acid

fed-batch fermentation process. The experimental data are

supported by the key laboratory of industrial biotechnol-

ogy, ministry of education, Jiangnan University. In nature,

the glutamic fed-batch fermentation process is a quite

complicated nonlinear regression process (Gu and Pan

2015). In general, the whole glutamic acid fed-batch fer-

mentation process includes three different types of vari-

able, i.e., physical variable, chemical variable, and

biological variable. Among these variables, biological

variable, such as biomass concentration (g/L), glutamic

acid concentration (g/L), and substrate concentration (g/L),

is the key factor of measuring whether the fermentation

process is successful or not. However, in practice, these

biological variables can only be offline measured by spe-

cial instruments. Recently, with the help of soft sensor

modeling, they can be online measured and adjusted. First,

we use the proposed FC-WTSVR to construct the soft

sensor model of the glutamic fed-batch fermentation pro-

cess. Then, we focus on the glutamic acid concentration.

Six batch experiments are carried out under the condi-

tion of keeping 10%, 20%, 30%, and 50% dissolved oxy-

gen (DO) concentration, respectively. Each batch of data

can represent the whole glutamic fed-batch fermentation

process. The data include offline analyzed data and online

measured data, and they are normalized to cancel the

influence of dimension. Five batches are used for training,

and the remaining one batch is used for testing. We use the

same parameter setting as in nonlinear case. Table 5 lists

the results of average RMSE, MAE, R2, the elapsed CPU

time, and the optimal parameters using different regression

algorithms. The best values are marked with bold font. We

can see clearly from Table 5 that the RMSE, MAE, and R2

of FC-WTSVR are better than those of the other four

regression algorithms. This means that the prediction per-

formance of FC-WTSVR is the best. However, the elapsed

CPU time of FC-WTSVR is the longest. Fortunately, the

Table 3 The artificial test functions with different categories of noise

and different numbers of outliers

No. Category of noise Variance Number of outliers

A1 UD 0.1 0

A2 UD 0.2 0

A3 ND 0.12 0

A4 ND 0.22 0

A5 UD 0.1 4

A6 ND 0.12 4

Table 4 The results of average RMSE, MAE, and R2 on artificial test

functions using different regression algorithms

No. Algorithms RMSE MAE R2

A1 TSVR 0.2074 0.0494 0.6112

e-TSVR 0.1903 0.0487 0.6052

KNN-WTSVR 0.1872 0.0520 0.5496

WL-e-TSVR 0.1846 0.0483 0.6426

FC-WTSVR 0.1834 0.0478 0.6505

A2 TSVR 0.2213 0.0988 0.4412

e-TSVR 0.2264 0.1045 0.4228

KNN-WTSVR 0.2163 0.0936 0.4407

WL-e-TSVR 0.2074 0.0836 0.4955

FC-WTSVR 0.2093 0.0867 0.4686

A3 TSVR 0.2612 0.2048 0.3702

e-TSVR 0.2624 0.2077 0.3756

KNN-WTSVR 0.2592 0.2037 0.3608

WL-e-TSVR 0.2491 0.1881 0.4036

FC-WTSVR 0.2561 0.1834 0.3877

A4 TSVR 0.4357 0.3138 0.4509

e-TSVR 0.4332 0.3129 0.4468

KNN-WTSVR 0.4345 0.3175 0.4543

WL-e-TSVR 0.4218 0.3194 0.4826

FC-WTSVR 0.4256 0.3112 0.4667

A5 TSVR 0.3389 0.2712 0.6725

e-TSVR 0.3428 0.2736 0.6658

KNN-WTSVR 0.3390 0.2689 0.6686

WL-e-TSVR 0.3301 0.2579 0.6805

FC-WTSVR 0.2694 0.2208 0.7515

A6 TSVR 0.4161 0.3188 0.5231

e-TSVR 0.4123 0.3180 0.5218

KNN-W TSVR 0.4098 0.3061 0.5536

WL-e-TSVR 0.4034 0.2997 0.5807

FC-WTSVR 0.3092 0.2486 0.6875
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elapsed CPU time of FC-WTSVR is still within

acceptable range.

5 Conclusions

In this paper, we present an effective regression model, i.e.,

fast clustering-based weighted twin support vector regres-

sion (FC-WTSVR), to fit data samples with noise or out-

lier. First, a fast clustering algorithm is utilized to classify

different categories of samples. Then, by introducing the

covariance matrix and weighed diagonal matrix, the primal

problems of the proposed FC-WTSVR not only reflect the

prior structural information of samples, but also assign

samples located at different positions with different

penalties. Finally, the SOR algorithm is adopted to speed

up the training process. Experimental results indicate that

the proposed FC-WTSVR is better than some state-of-the-

art algorithms in both prediction performance and anti-in-

terference capability.

In fact, the idea of the proposed FC-WTSVR is expected

to be applied in m-twin support vector regression (m-TSVR)
and least squares twin support vector regression (LS-

TSVR).

However, the main drawback of the proposed FC-

WTSVR is that it costs more training time than other

algorithms. In addition, the principle of determining the

potential outliers and the weighted strategy used in our

paper may be not the best one. We hope these questions

will be addressed in our future work.
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