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Abstract
In multi-objective and many-objective optimization, weight vectors are particularly crucial to the performance of
decomposition-based optimization algorithms. The uniform weight vectors are not suitable for complex Pareto fronts (PFs),
so it is necessary to improve the distribution of weight vectors. Besides, the balance between convergence and diversity is a
difficult issue aswell inmulti-objective optimization, and it becomes increasingly important with the augment of the number of
objectives. To address these issues, a self-adaptive weight vector adjustment strategy for decomposition-based multi-objective
differential evolution algorithm (AWDMODE) is proposed. In order to ensure that the guidance of weight vectors becomes
accurate and effective, the adaptive adjustment strategy is introduced. This strategy distinguishes the shapes and adjusts weight
vectors dynamically, which can ensure that the guidance of weight vectors becomes accurate and effective. In addition, a
self-learning strategy is adopted to produce more non-dominated solutions and balance the convergence and diversity. The
experimental results indicate that AWDMODE outperforms the compared algorithms onWFG suites test instances, and shows
a great potential when handling the problems whose PFs are scaled with different ranges in each objective.

Keywords Evolutionary computations · Multi-objective optimization · Decomposition · Many-objective optimization ·
Weight vector

1 Introduction

Various real-world optimization problems can be described
as multi-objective optimization problems (MOPs), e.g., opti-
mal power flow problem (Medina et al. 2014), economic
emission unit commitment problem (Trivedi et al. 2015),
vehicle routing problem with stochastic demands (Gee et al.
2016), metal rolling control (Hu et al. 2019a). A MOP con-
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tains more than one objective and they often conflict with
each other. There is usually no solution can achieve the opti-
mum for all objectives at the same time. That means, the
optimal solution of a MOP is a set of trade-off solutions
rather than a single one.

Without loss of generality, a MOP can be described as
follows:

min F(x) = ( f1(x), f2(x), . . . , fM (x))T ,

s.t. x ∈ ΩD,
(1)

where x = (x1, x2, . . . xN )T , N is the scale of the solu-
tion set, xi = (x1i , . . . , x

D
i ) for all i = 1, . . . , N is one

of the solutions with D-dimensional decision variables in
the decision space ΩD , and ΩD = ∏D

i=1[ai , bi ] ⊂ RD, M
is the number of objective functions and the mapping func-
tion F : ΩD → RM defines M- objective functions in the
objective space RM . When M > 3, the MOP is called many-
objective optimization problems (MaOPs). Multi-objective
evolutionary algorithms (MOEAs) are demonstrated to be
suitable for handling kinds of MOPs.
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Over the past two decades, most MOEAs have been pro-
posed, such as SPEA (Zitzler and Thiele 1999), NSGAII
(Deb et al. 2002), SPEA2 (Zitzler et al. 2001),ASMiGA (Nag
et al. 2015). These algorithms evaluate individuals by using
Pareto dominance, which evaluate the fitness together with a
diversity maintenance as a secondary criterion and perform
well in two or three objectives optimization. However, the
performance of the algorithm drops sharply when the num-
ber of objectives increases. Because almost all individuals in
the population are non-dominated solutions. The degenerated
selection pressure makes the Pareto-dominance-based algo-
rithms fail to solve MaOPs (Purshouse and Fleming 2007).

Apart from those Pareto-dominance-based MOEAs, it
has been an increasing interest in decomposition-based
approach to solving MOPs and MaOPs. Decomposition-
based approaches decomposeMOPsorMaOPs into a number
of scalar subproblems and optimize them simultaneously,
such as MOEA/D (Zhang and Li 2007), MOEA-TPN (Jiang
andYang2016),NSGAIII (Deb and Jain 2014). In this type of
algorithm, the setting of weight vectors of aggregation func-
tions plays a key role in the performance (Fan et al. 2019).
In other words, weight vectors with different shapes produce
different optimization results (Ishibuchi et al. 2017). Some
efforts have been made to adjust weight vectors dynamically,
the detailed introduction will be given in Sect. 2.2.

Besides, the used aggregation method and the setting of
reference points have also some effects on the performance
of algorithms (Wang et al. 2017b). In study Wang et al.
(2017a), the dynamic reference point was adopted through
the adjustment of ε, which can strike a good balance between
exploitation and exploration. In a recent study RPEA (Liu
et al. 2017), according to the information of the current pop-
ulation, a series of reference points including several local
ideal points and a global ideal point with good performances
in convergence and distribution were continuously generated
to guide the evolution. Literature (Liu et al. 2010) utilized a
monotonic increasing function, in order to transform each
objective function into a hyperplane in the original objective
function space and ensure the non-dominance solutions are
close to it. However, it cannot workwell when solve complex
problems with disconnected subregions, a sharp peak and a
long tail.

In addition to the above two methods, indicator-based
methods for multi-objective optimization have also been
studied, such as hypervolume estimation algorithm formulti-
objective optimization (HypE) (Bader and Zitzler 2011) and
R2MOPSO (Li et al. 2015a). The optimization process is
guided according to the indicators values in this category of
algorithms. Although such methods have sound theoretical
support, the heavy computational complexity is a fatal flaw.

Some other algorithms can be viewed as the hybrid of
different mechanisms, e.g., MOEA/DD (Li et al. 2015b)
used the Pareto-dominance-based fitness evaluation and the

MOEA/D framework. R2HMOPSO (Wei et al. 2018) mixed
three methods above. Stable matching model (STM) was
introduced to coordinate the selection process (Li et al. 2014).
Some studies (Ying et al. 2017; Yuan et al. 2016; Hu et al.
2017, 2019b)made efforts on the balance of convergence and
diversity, which is a difficulty in multi-objective and many-
objective optimization.

Given the above considerations, the evenly distributed
weight vectors are not suitable for complex Pareto fronts
(PFs), so a new optimizer including the adaptive adjustment
of weight vectors and the balance of convergence and diver-
sity is considered in this paper. Based on this, a self-adaptive
weight vector adjustment strategy for decomposition-based
multi-objective differential evolution algorithm
(AWDMODE) is proposed in this work. The main proper-
ties of AWDMODE can be summarized as follows.

(1) At the initialization phase, three weight vectors with dif-
ferent shapes (line, concave, convex) are generated, so
as to facilitate adaptive processing of optimization prob-
lems with different shapes of PFs.

(2) Not only the shapes of PFs, but also the scope of PFs are
considered in AWDMODE. When the algorithm runs
to a certain degree, the weight vectors are adjusted in
the searched space according to the information of the
current population. The purpose of this strategy is to
makeweight vectors more relevant to the PFs and ensure
the guidance of weight vectors becomes more accurate
and effective.

(3) A parameter ξ is introduced to balance the convergence
and diversity, different ξ guides the algorithm to choose
different environment selection strategies. In the early
stage of the optimization, the main task of AWDMODE
is to enhance convergence. In order to accelerate the
convergence rate, a self-learning strategy is adopted. In
this strategy, the solutions in lower dominance level are
close to that in higher dominance level. When the algo-
rithm reaches a certain degree of convergence, the main
task of evolution is increasing diversity. The coordinated
switching of the two environmental selection ensures
better convergence and distribution of the final solution
set.

In the remainder of this paper, Sect. 2 reviews the related
work. Then, the proposed AWDMODE is outlined in detail
in Sect. 3. Thereafter, the simulation results on a set of test
instances are presented and the analysis is given in Sect. 4.
Finally, Sect. 5 concludes this paper and provides suggestions
on possible opportunities for future research.
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2 Background and related work

2.1 Decompositionmethods

Three scalar functions were introduced in original MOEA/D
framework: (1) the weighted sum; (2) the weighted Tcheby-
cheff function; and (3) the penalty-based boundary inter-
section (PBI) function. A set of uniformly spread weight
vectors is generated, i.e., W = {w1, w2, . . . , wN }, where
wi = (w1

i , w
2
i , . . . , w

M
i ) for all i = 1, . . . , N . The MOP in

Eq. (1) is decomposed into N scalar subproblems by these
weight vectors and the subproblems are optimized simulta-
neously.

(1) Weighted Sum (WS) approach In this approach, the
aggregate function is written as

min gws(xi |wi ) =
M∑

j=1

w
j
i f j (xi ), (2)

where i = 1, . . . N . This approach works well to solve
the problems with convex PF. However, it cannot obtain
the entire PF and the effect is slightly poor for nonconvex
PFs.

(2) Tchebycheff approach The corresponding aggregate
function formula is defined as:

min gte(x | w, z∗) = max
1≤i≤M

{wi | fi (x) − z∗i |}, (3)

where z∗ = (z∗1, z∗2, . . . , z∗M )T is a reference point, and
z∗i = min{ fi (x) | x ∈ ΩD}, i = 1, 2, . . . , M, wi cor-
responding to the i-th subproblem.

(3) Penalty-based boundary intersection (PBI) approach In
this approach, the i-th subproblem is defined in the form

min gpbi (x |wi , z
∗) = d1 + θd2, (4)

where θ is penalty parameter and d1, d2 are defined as
follows:

d1 = |( f (x) − z∗)Tw|
‖w‖ ,

d2 = ‖ f (x) − z∗ − d1
w

‖w‖‖.
(5)

Different decomposition methods produce great influ-
ence on the performance of algorithm (Lee et al. 2014).
Here, Tchebycheff decomposition method is adopted in
this paper.

2.2 Related work

The weight vectors play a fundamental role in MOEA/D,
while the evenly distributed weight vectors are not suitable
for complex PFs, especially for the PFs with a long tail and a
sharp peak. In study Ishibuchi et al. (2017), the experimen-
tal results illustrated that the distribution of weight vectors
should be adjusted to the shape and the size of the PF. There
are several related works on the improvement of weight vec-
tors of MOEA/D.

In MOEA/D-AWA (Qi et al. 2014), WS-transformation
was proposed as a new weight vectors initialization method.
According to the current optimal solution set periodically,
an adaptive weight vector adjustment (AWA) strategy was
designed to adjust the distribution of the weight vectors.
Besides, MOEA/D-AWA divides the whole optimization
procedure into two phases to balance convergence and diver-
sity. When dealing with MOPs with discrete PFs, the biggest
challenge is how to identify sparse regions and true dis-
crete regions. Therefore, vicinity distance is used to evaluate
the sparsity of the solutions in the current non-dominated
set, then new subproblems are added into the real sparse
regions. This strategy demonstrates that MOEA/D-AWA is
great potential for solving complex problems with discon-
nected subregions, a sharp peak or a long tail.

Similarly, in MOEA/D-TPN (Jiang and Yang 2016), a
two-phase strategy (TP) is employed. During the first stage,
convergence is as important as diversity in optimization, and
at the end of the first stage, the algorithm identifies the geo-
metric shape of the PF. Then, according to the geometric
shape (convex or concave), the algorithm adjusts weight vec-
tors and decides whether or not to allocate computational
resources to unsolved subproblems. In MOEA/D-TPN, it is
important to identify extreme solutions and add solutions in
extreme regions.

InRVEA (Cheng et al. 2016), the angle-penalized distance
(APD) is designed dynamically to balance convergence and
diversity in MaOPs. The algorithm focus on convergence
in the early stage and puts the main position to improve
the diversity in the late stage of the optimization. During
the optimization, the distribution of the reference vectors is
adjusted according to the ranges of different objective func-
tions. RVEA normalizes the reference vectors rather than the
objective functions to ensure a uniform distribution of the
candidate solutions in the objective space. However, a possi-
ble situation is that more than one reference vector associates
with a same candidate solution, which may cause the sparse
areas in objective space.

Pareto-adaptive weight vectors (paλ) MOEA/D (Jiang
et al. 2011) was proposed to adjust uniform automatically
according to geometrical characteristics of PF. The initial
weight vectors of paλ-MOEA/D are generated by mix-
ture uniform design (MUD) to obtain an arbitrary number

123



13182 R. Fan et al.

of weight vectors. The algorithm identifies the geometrical
characteristics (concave or convex) of the Pareto front by
calculating the hypervolume value, and then, weight vectors
are adjusted automatically to scatter or assemble weight vec-
tors. paλ-MOEA/D assumes that PF is symmetric, which is
a challenging problem for handling asymmetric PF.

Different from the above improvement methods, weight
vectors in PICEA-w (Wang et al. 2015) are adaptively modi-
fied in a coevolutionary manner with the candidate solutions
during the search. In PICEA-w, candidate solutions are
ranked by each of the weighted aggregate function, and a
ranking matrix is created, then the fitness of candidate solu-
tions is calculated based on this matrix. The weights are
coevolved with the candidate solutions toward an optimal
distribution. This strategy makes the algorithm less sensitive
to the geometry of the problem. Nevertheless, the key factor
affecting the performance of the algorithm is the generation
mechanism of offspring.

From another perspective, a monotonic increasing func-
tion is utilized in T-MOEA/D to transform the objective
functions into a new function, which makes the curve shape
of the candidate solutions close to the unit hyperplane in the
original objective function space (Liu et al. 2010). The algo-
rithm can achieve good distribution with fixed weight mode.
However, the algorithm may be less effective in dealing with
MaOPs and the MOPs with discrete Pareto front.

Toovercome thedrawbackoffixedweight,many improve-
ments have been attempted on adjusting weights adaptively
in decomposition- based algorithms. However, there is less
research on PFwith different axis ranges, such asWFG series
test functions. Therefore, to address such PFs, a self-adaptive
weight vector adjustment strategy for decomposition-based
multi-objective differential evolution algorithm is proposed.

3 The proposed algorithm: AWDMODE

This section proposes a novel algorithm called multi-
objective differential evolution algorithm by decomposition
with adaptiveweight vectors (AWDMODE). In the following
paragraphs, the implementation details of each component in
AWDMODE will be explained step-by-step.

3.1 General framework

The pseudocode of the proposed method is shown in Algo-
rithm 1. The AWDMODE shares a common framework that
is employed by many evolutionary algorithms. In the first
part, an initial population P is formed by generating N indi-
viduals randomly, then their fitness values are calculated and
the reference point z∗ is acquired. Next, weight vectors with
three different shapes (line, concave, convex) are generated
and one of them is chosen as the original weight vectors. Dur-

ing the process of iteration and update, an adaptive weight
vector is introduced to ensure a uniform distribution on PF.
Then, differential evolution operators are performed to obtain
an offspring population Q and neighborhood is updated
similar to that of MOEA/D-DE. Finally, elitism strategy is
adopted to select N best solutions based on theweight vectors
for survival. It can be seen that there are three key operators
in AWDMODE: generation of weight vectors (line 4), adap-
tive adjustment of weight vectors (line 8) and selection of
elite individuals (line 12). In the following subsections, the
above key operators will be described in detail.

Algorithm 1 Framework of the proposed AWDMODE
Input: N , FEmax, M
Output: Archive
1: Part1: Initialization
2: Initialize population (P)
3: Initialize the reference point z∗ = (z∗1, z∗2, . . . , z∗M ), z∗j =

min Fit j (x) and j = 1, . . . , M ;
4: (W , E) = Generatew(N , M);
5: w = W .line, neighbor = E .line, Archive = ∅;
6: Part2: Iteration and Update
7: while evaluation < FEmax do
8: w = Adaptivew(W , P, t, evaluation);
9: Q = DEoperation(P);
10: Q = Updateneighbor(w, neighbor , P, Q);
11: S = Q ∪ Archive;
12: Archive = UpdateArchive(S);
13: P = Archive;
14: end while
15: Return Archive

3.2 Generate weight vector

The weight vector plays a crucial role in decomposition-
based optimization algorithms, and affects the performance
of the algorithm. It is worth mentioning that the evenly dis-
tributed weight vectors are not suitable for complex PFs,
especially for the PFs that have a long tail and a sharp peak.
Hence, three different shapes (line, concave, convex) are gen-
erated in advance at the initialization phase of the proposed
algorithm, in order to solve different PFs.

Algorithm 2 (W , E) = Generatew(N , M)
Input: N , M
Output: W , E
1: Generate uniform weight vectors weight ;
2: W .line = weight ;
3: W .convex = (W .line)α ;
4: Generate W .concave based on W .convex ;
5: Find T nearest vectors among weights as neighborhood to each

weight;
6: Generate three neighborhood as E .line, E .concave, E .convex ;
7: Return W , E
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α(a) Convex weight vectors with different (b) The mappings of convex weight vectors

Fig. 1 The weight vectors with different α

As described in Algorithm 2, weight vectors are generated
according to the method in MOEA/D, and these vectors are
treated as a basic weight and called line − weight in this
paper (lines 1–2), i.e., W .line = (w1, w2, . . . , wN ). It is
well-known that the weight vectors of line − weight are a
series of discrete points evenly distributed in f1 + f2 +· · ·+
fM = 1. Based on this, convex − weight can be generated
through the following equation:

W .convex = (W .line)α, (6)

where α is a parameter to determine the curvature of the
weight vectors. Then, concave − weight is the symmet-
rical mapping of convex − weight on f1 + f2 + · · · +
fM = 1.
In Fig. 1a, there are several convex weight vectors gener-

ated by Eq. (6) with different α, where N = 20, M = 2. It
can be observed from Fig. 1a, the curvature of the curve is
changed with different α. The larger α, the greater the cur-
vature. The curvature of α = 2 is large, and the curvature
of α = 1.5 is small, which does not improve the guidance
of the population significantly. Intuitively, α = 1.75 is set in
this paper, which is more suitable for distinguishing different
PFs. The detailed analysis is described in Sect. 4.5.2.

3.3 Adaptive weight vector

In this study, not only the shape of the PFs, but also the
scope of the PFs is considered. Weight vectors are adjusted
adaptively by making full use of information provided by
the current population. The detailed procedure is given in
Algorithm 3.

Algorithm 3 w=Adaptivew(W , P)
Input: W , P, t, evaluation
Output: w

1: if (evaluation ≥ 0.4 ∗ FEmax) ∧ (t%30 = 0)
2: max f = max(Fit);
3: Fit_normal = normali zed(Fit);
4: mean_Fit = sum(Fit_normal)/N ;
5: if mean_Fit > 1

C ∗ (1 + 0.05)
6: w = W .concave ∗ max f ;
7: else if 1

C ∗ (1 − 0.05) < mean_Fit < 1
C ∗ (1 + 0.05)

8: w = W .line ∗ max f ;
9: else
10: w = W .convex ∗ max f ;
11: end if
12: end if
13: Return w

When the algorithm goes to a certain degree (40%
maximum function evaluation times), AWDMODE adjusts
adaptively the weight vectors every 30 generations (line 1 in
Algorithm 3). First of all, the shape of PF should be identi-
fied in order to choose suitable type of weight vectors. The
fitness values are normalized by the following formula:

Fit_normal = Fit − Fitmin

Fitmax − Fitmin
, (7)

where the Fitmax and Fitmin are themaximumandminimum
of the fitness values (line 3 in Algorithm 3), respectively. The
meanof the Fit_normal is calculated to judge the bumpiness
of the PF. It isworth noting thatC is a scaling parameter and it
is set to 1 in this paper because the population is normalized in
the previous steps. During the optimization process, the fault
tolerance is set to 5%. That means, when the average fitness
value of the population (i.e., mean_Fit in Algorithm 3) is
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(a) WFG3 (b) WFG4 (c) WFG10

Fig. 2 MOEA/D with original weight vectors

(a) WFG3 (b) WFG4 (c) WFG10

Fig. 3 MOEA/D with adjusted weight vectors

between (1−0.05) and (1+0.05), the line−weight vector
is adopted. If mean_Fit is greater than (1 + 0.05), then the
shape of the current population is considered as concave. If
mean_Fit is less than (1−0.05), then the shape of the current
population is considered as convex. Then, the suitable weight
vectors are chosen and adopted in the later optimization.
Finally, the weight vectors are enlarged or reduced according
to the maximum of the Fit .

To demonstrate the effectiveness of adjusting weights
more intuitively, Figs. 2 and 3 show the results of MOEA/D
on WFG3, WFG4, WFG10 with different weight vectors. In
Fig. 2, the different range on each objective results in uneven
distribution of the solutions. After adopting the improved
weight vectors in this paper, it is obvious that the distribution
is increased on different PF shapes in Fig. 3. The purpose of
this study is to make weights more relevant to the PFs, so
that the guidance of weight vectors becomes more accurate
and effective.

3.4 Environment selection

Environmental selection mechanism is an important factor
that affects the convergence or diversity of an algorithm.

However, for a MOP with complex Pareto fronts, classic
decomposition-based scheme cannot work well in balanc-
ing the convergence and diversity. Previous research shows
that the number of non-dominated solutions in archive can
reflect the progress of the algorithm to some extent (Fan et al.
2018). The completion-checking factor ξ is adopted to make
up for the insufficiency of traditional decomposition-based
algorithms. Algorithm 4 shows the environmental selection
procedure.

In the early stages of optimization, the main task of the
algorithm is to speed up the convergence so that the solution
set can converge to the true PF as soon as possible. First of
all, non-dominated-sorting operation is executed to measure
the current process of the algorithm. When there are less
non-dominated solutions in the archive, dominance-based
approach is adopted to accelerate convergence. Not only the
solutions in the first dominance level, but also the solutions
in other dominance levels are also used to construct a new
archive. The solutions at the other dominance level move to
the first level until N solutions are obtained (lines 5–11 in
Algorithm 4). That means the individuals at low dominance
levels move one by one toward the first front (lines 2–3 in
Algorithm 5). If the new solution dominates the old one,
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Algorithm 4 Archive=UpdateArchive(S)
Input: S
Output: archivenew
1: archivenew = ∅;
2: (F1, F2, . . . , Fl ) = Non − dominated − sorting(S);
3: if | F1 |< N ∗ ξ

4: archivenew = F1;
5: for j = 2 to l
6: if | archivenew |< N
7: Execute self-learning strategy (Algorithm 5);
8: else
9: break
10: end if
11: end for
12: else
13: (rho, d)=Associatetoweight(S, w);

% rho is the the number of solutions associated with each weight
vector, d is the Euclidean distance from solutions to the weight
vectors

14: for i = 1 to | w |
15: Execute diversity selection (Algorithm 6);
16: archivenew = archivenew ∪ S(R);
17: end for
18: end if
19: Return archivenew

then the new solution survives(lines 4–6 in Algorithm 5).
Through this self-learning method between individuals, the
convergence rate of the entire population can be accelerated.
The detailed steps are reflected in Algorithm 5.

Algorithm 5 Self-learning strategy
Input: F, S, archivenew, j
Output: archivenew
1: for each xk ∈ Fj
2: model = rand(F1);
3: y = xk + rand ∗ (model − xk);
4: if y dominates xk
5: archivenew = archivenew ∪ {y};
6: end if
7: end for
8: Return archivenew

In the second phase of the algorithm, the main task is
improving distribution. Every solution is associated with
weight vectors according to the distance just like that in
NSGAIII (Deb and Jain 2014) (line 13 in Algorithm 4). For
each weight vector, there is one solution which associates
with it to ensure the distribution of the algorithm (lines 14–
17 in Algorithm 4). For an arbitrary weight vector wi , there
are three scenarios. The first scenario is that only one solution
is associated with wi . In this case, this solution is selected
as a candidate solution and added to the archive (lines 1–2
in Algorithm 6). In the second case, there are more than one
solution associatedwithwi . At this time, among the solutions
associated with wi , the solution with the smallest aggrega-
tion function value (gte) is selected as a candidate solution

and added to the archive (lines 3–4 in Algorithm 6). If there
is more than one solution with the smallest aggregation func-
tion value, one of the solutions is chosen at random. The last
case is that there is no solution associated with wi . At this
time, the solution closest to wi is selected as a candidate
solution and added to the archive (lines 5–6 in Algorithm 6).
It should be noted that at the beginning of the second phase,
some dominating solutions may be retained in the archive.

Algorithm 6 Diversity selection
Input: rho, d, i
Output: R
1: if rho(i) = 1
2: R = rho(i);

% R is the index of the solution who is associated with wi
3: else if rho(i) > 1
4: R = argminR∈rho(i)gte(xR | wi , z∗);

% R is the index of the solution that associate with wi and with
min gte

5: else if rho(i) = 0
6: R = argmin d(i);

% R is the index of the solution with min(d(i))
7: end if
8: Return R

Actually, dominance-based approach can work well when
the number of objectives is small. As the number of objec-
tives increases, the performance of the algorithm plummets.
Therefore, ξ is set by Eq. (8):

ξ = 1

(M − 1)2
, (8)

where M is the number of objectives. More details of the
sensitivity of parameter of ξ can be found in Sect. 4.5.1.

4 Experimental studies

To benchmark the performance of AWDMODE, four com-
petitor MOEAs are considered: NSGAII (Deb et al. 2002),
R2MOPSO (Li et al. 2015a), RVEA (Cheng et al. 2016) and
MOEA/D-STM (Li et al. 2014). Besides, in order to reflect
the effectiveness of adaptive weighting strategies, AWD-
MODE with the original weight (the weight vectors adopted
in MOEA/D (Zhang and Li 2007) is also compared in the
following experiment, which is denoted as AWDMODE0.

4.1 Test instance

WFG1-WFG10 (Huband et al. 2006) are used in this study.
The PFs of WFG test problems are irregular, being discon-
tinued or mixed, and are scaled with different ranges in each
objective. The WFG parameter k (position parameter) is set
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to 18 and the number of decision variables D is set to 32,
i.e., the WFG parameter l (distance parameter) is 14, where
l = D − k for each test instance. In this work, 2-, 3- and
4-objective of these problems are focused.

4.2 Performancemetric

In this paper, the widely used performance metric hypervol-
ume (HV) (Zitzler andThiele 1999) is adopted to evaluate the
performance of all compared algorithms, which can assess
convergence and diversity of obtained solutions. Pareto solu-
tion set with higher HV value has better convergence and
diversity. Hypervolume metric is computed as follows:

HV (S) = Leb(∪x∈S[ f1(x), R1] × · · · × [ fM (x), RM ]),
(9)

where set S is the obtained non-dominated solutions, Leb(S)
is the Lebesgue measure of S. R = (R1, . . . , RM )T is a
reference point which is dominated by any point in the set
S. In this experiment, R is set to (3, . . . , 2M + 1)T for M-
objective test instances.

4.3 Parameter settings

Each algorithm is performed for 20 runs independently on
each test instance, the detailed parameter settings are sum-
marized as follows.

Reproduction operators: The mutation probability pm =
1/D, distribution index ηm = 20. For the DE operator, prob-
ability is used to select in the neighborhood: δ = 0.9,CR =
1.0, and F = 0.5 as recommended in MOEA/D-DE (Li and
Zhang 2009).

Population size and stopping condition: N = 100 for
bi-objective test instances, 210 for the three-objective ones
and 286 for the four-objective ones. Function evaluations,
i.e., FEs = 100000, 210000, 286000 for 2-, 3-,4-objective
instances respectively.

Neighborhood size: T = 20.

4.4 Experimental results

Tables 1, 2 and 3 show the mean and standard deviation
(SD) of HV performance metric for six algorithms, where
AW refers to AWDMODE, AW0 represents the algorithm
with the original weight vectors AWDMODE0 and STM
represents MOEA/D-STM. In these tables, the best results
of the mean or standard deviation for each test function are
marked as bold face. In addition, the Wilcoxon rank sum test
is adopted to compare the results obtained by AWDMODE
and those by five compared algorithms at a significance level
of 0.05, which examined that whether the HV mean values

obtained by AWDMODE are different from that obtained
by the other algorithms statistically. Namely, when p value
(p) is bigger than 0.05, it means that the compared HV
values are similar in statistics. The bold italics in tables
show that there is no significant difference between AWD-
MODE and the contrastive algorithms. In these tables, the
better/similar/worse (+/ = /−) denote that the perfor-
mance of AWDMODE is significantly better than, equivalent
to, or worse than that of the compared algorithms on all test
functions.

AWDMODE0employs a set of evenly distributedweights,
which faces difficulties on the problems with complex PF
whose geometry is not similar to a hyperplane. The distri-
bution of solutions for those problems is poor because the
performance of AWDMODE0 is guided by the evenly dis-
tributed weights.

For bi-objective optimization problems, as shown in
Table 1, AWDMODE is the most effective algorithm which
obtains the most of the best results. RVEA performs very
competitively toAWDMODEand it performs best onWFG1,
WFG4 and WFG10. NSGAII performs well when the num-
ber of objectives is small. The performance of R2MOPSO
is poor than that of its competitors. It may result from
the update mechanism of the particle swarm algorithm is
not suitable for dealing with complex PF like WFG test
instances. The proposed AWDMODE obtains significantly
better performance than the other algorithms on WFG2,
WFG3 and WFG7-9, and shows clear improvements over
AWDMODE0, R2MOPSO and MOEA/D-STM on almost
all of 10 test instances.

Table 2 gives results of all the WFG test instances with
three-objective optimization problems. It is clear that AWD-
MODE performs best, presenting a clear advantage over the
other five algorithms on the majority of the test instances.
AWDMODE performs best on WFG3, WFG5-9 comparing
with other algorithms, while RVEA outperforms other algo-
rithms on WFG1, WFG2 and WFG10. It is demonstrated
that AW0, R2MOPSO and MOEA/D-STM obtain relatively
poor performance compared with their counterparts. This
phenomenon may be due to the particularity of the WFG
series test problems. Uniform distribution of weight vec-
tors cannot guarantee a good distribution of the obtained
solutions on true PF. Obviously, performance of NSGAII in
three-objective optimization problems is worse than that in
the bi-objective. The reason for this can be the reduction in
selection pressure mentioned in the introduction. OnWFG5,
WFG6 and WFG10, the final solutions by four algorithms
are plotted in Fig. 4. It is evident that AWDMODE obtains
the best distribution and is able to approximate the boundary
parts well.

As can be seen from Table 3, NSGAII obtains weaker
performance than AWDMODE and RVEA. This verifies the
fact to some extent that the performance of the dominance-
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Table 1 HV values on
WFG1-10 (M = 2)

AW AW0 NSGAII R2MOPSO RVEA STM

WFG1

Mean 3.381E−01 3.267E−01 4.530E−01 3.483E−01 6.317E−01 1.901E−01

SD 1.459E−02 1.681E−02 1.352E−02 1.616E−03 4.479E−02 1.927E−02

p 6.992E−02 6.796E−08 1.348E−03 6.796E−08 6.796E−08

WFG2

Mean 6.235E−01 5.905E−01 6.155E−01 5.367E−01 6.006E−01 7.132E−02

SD 3.510E−02 9.394E−03 2.838E−03 1.015E−02 3.240E−02 6.674E−04

p 1.065E−07 1.625E−03 6.796E−08 6.796E−08 6.786E−08

WFG3

Mean 7.098E−01 6.028E−01 6.962E−01 5.096E−01 6.969E−01 9.792E−02

SD 7.968E−03 1.248E−02 3.320E−03 7.171E−03 3.548E−02 2.055E−03

p 6.786E−08 3.983E−06 6.786E−08 6.786E−08 6.786E−08

WFG4

Mean 5.030E−01 4.605E−01 5.233E−01 4.142E−01 5.568E−01 7.967E−02

SD 6.021E−03 9.961E−03 1.760E−02 7.901E−03 5.229E−02 2.197E−03

p 6.786E−08 7.825E−05 6.786E−08 2.353E−06 6.776E−08

WFG5

Mean 4.879E−01 4.692E−01 5.283E−01 4.126E−01 5.196E−01 2.015E−01

SD 1.244E−02 1.426E−02 5.806E−03 1.092E−02 4.193E−02 3.965E−03

p 3.382E−04 6.796E−08 6.796E−08 1.576E−06 6.796E−08

WFG6

Mean 4.967E−01 4.595E−01 5.292E−01 5.034E−01 5.242E−01 1.797E−01

SD 7.293E−03 9.295E−03 7.706E−03 5.298E−03 3.427E−02 2.434E−03

p 6.796E−08 6.796E−08 3.336E−03 6.796E−08 6.796E−08

WFG7

Mean 5.176E−01 4.282E−01 4.763E−01 4.069E−01 4.333E−01 4.306E−02

SD 5.883E−03 8.700E−03 1.980E−02 6.456E−03 2.276E−02 8.340E−03

p 6.796E−08 1.657E−07 6.796E−08 6.796E−08 6.796E−08

WFG8

Mean 4.684E−01 3.505E−01 4.147E−01 2.752E−01 4.175E−01 1.289E−01

SD 1.396E−02 2.448E−02 2.424E−02 6.903E−03 3.305E−02 4.164E−03

p 6.796E−08 3.939E−07 6.796E−08 6.796E−08 6.796E−08

WFG9

Mean 5.026E−01 4.650E−01 4.960E−01 4.678E−01 4.858E−01 1.686E−01

SD 1.292E−02 1.583E−02 2.099E−02 3.371E−03 2.920E−02 8.805E−03

p 1.376E−06 2.853E−02 9.173E−08 2.563E−07 6.796E−08

WFG10

Mean 8.288E−01 8.062E−01 8.700E−01 7.548E−01 8.744E−01 3.023E−01

SD 4.885E−03 4.957E−03 3.835E−03 6.413E−03 1.604E−02 9.950E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.786E−08

+/ = /− 9/1/0 5/0/5 8/0/2 5/0/5 10/0/0

based algorithmsdeclines in solvingMaOPs. Figure 5depicts
the parallel coordinate plots, where the horizontal axis rep-
resents the number of objective functions and the vertical
axis denotes the value of the objective functions. The dif-
ferent colors in these figures represent different solutions. It
can be observed from Fig. 5 that AWDMODE gains good

distribution along the Pareto front on WFG1, WFG6 and
WFG8.

To compare the convergence speed of the algorithms,
the evolution of the mean HV-metric values obtained by
five algorithms is plotted in Figs. 6, 7 and 8. Obviously,
all the algorithms obtain a fast convergence performance
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Table 2 HV values on
WFG1-10 (M = 3)

AW AW0 NSGAII R2MOPSO RVEA STM

WFG1

Mean 5.258E−01 4.980E−01 4.682E−01 4.710E−01 5.835E−01 3.121E−01

SD 1.262E−02 4.127E−03 7.865E−03 3.511E−03 1.055E−02 3.084E−02

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

WFG2

Mean 7.709E−01 7.156E−01 6.397E−01 7.363E−01 8.081E−01 5.268E−02

SD 6.185E−02 7.205E−02 1.157E−01 1.140E−02 2.811E−03 4.242E−03

p 2.594E−05 2.594E−05 1.227E−03 1.915E−07 6.786E−08

WFG3

Mean 8.058E−01 7.630E−01 7.560E−01 6.052E−01 7.972E−01 1.064E−01

SD 6.366E−03 6.013E−03 4.303E−03 9.396E−03 4.880E−03 2.574E−03

p 6.796E−08 6.796E−08 6.796E−08 5.896E−05 6.796E−08

WFG4

Mean 7.116E−01 6.660E−01 6.468E−01 5.485E−01 7.725E−01 1.010E−01

SD 2.817E−03 5.960E−03 9.732E−03 8.026E−03 8.902E−03 3.536E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

WFG5

Mean 7.416E−01 6.720E−01 6.442E−01 5.423E−01 7.088E−01 2.066E−01

SD 3.369E−03 4.034E−03 8.307E−03 8.497E−03 4.963E−03 4.115E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

WFG6

Mean 7.356E−01 6.620E−01 6.340E−01 7.216E−01 7.036E−01 1.667E−01

SD 2.166E−02 1.121E−02 1.779E−02 4.261E−03 1.754E−02 3.215E−03

p 6.796E−08 6.796E−08 9.620E−02 1.807E−05 6.796E−08

WFG7

Mean 7.465E−01 6.608E−01 6.591E−01 5.904E−01 7.406E−01 7.163E−02

SD 2.286E−02 1.100E−02 3.073E−02 1.243E−02 5.002E−03 1.041E−02

p 6.796E−08 6.796E−08 6.796E−08 4.205E−02 6.796E−08

WFG8

Mean 7.023E−01 6.124E−01 5.930E−01 4.900E−01 6.129E−01 9.886E−02

SD 9.936E−03 1.836E−02 2.310E−02 1.470E−02 1.813E−02 3.738E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

WFG9

Mean 6.795E−01 6.578E−01 5.721E−01 6.348E−01 6.724E−01 1.549E−01

SD 1.060E−02 6.404E−03 7.513E−03 5.981E−03 3.942E−03 7.890E−03

p 1.918E−07 6.796E−08 6.796E−08 1.556E−01 6.786E−08

WFG10

Mean 9.431E−01 9.229E−01 9.657E−01 8.538E−01 9.704E−01 4.041E−01

SD 1.985E−03 3.013E−03 2.812E−03 6.285E−03 3.127E−03 6.398E−03

p 6.786E−08 6.786E−08 6.786E−08 6.786E−08 6.786E−08

+/ = /− 10/0/0 9/0/1 9/1/0 5/1/4 10/0/0

on the test functions. It can be observed that AWDMODE
performs remarkably better than other algorithms on the
most of test problems. These results show clearly that AWD-
MODE is capable to solve the problems with complicated
PF.

4.5 Parameter analysis

4.5.1 Sensitivity of performance to the parameter �

As mentioned above, the performance of dominance-based
algorithmsplummetswith thenumber of objectives increases.
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Table 3 HV values on
WFG1-10 (M = 4)

AW AW0 NSGAII R2MOPSO RVEA STM

WFG1

Mean 4.994E−01 4.963E−01 5.178E−01 4.772E−01 5.462E−01 3.539E−01

SD 3.702E−03 3.469E−03 6.959E−03 2.103E−03 7.094E−03 2.286E−02

p 1.143E−02 1.429E−07 6.786E−08 6.786E−08 6.786E−08

WFG2

Mean 8.103E−01 8.009E−01 8.013E−01 7.835E−01 8.532E−01 1.122E−01

SD 1.152E−03 2.771E−03 5.014E−03 1.504E−02 6.963E−02 8.434E−03

p 6.786E−08 6.908E−07 1.200E−06 6.786E−08 6.786E−08

WFG3

Mean 8.437E−01 8.340E−01 8.706E−01 6.454E−01 8.315E−01 1.223E−01

SD 2.335E−03 2.210E−03 3.680E−03 1.378E−02 9.982E−03 3.389E−03

p 6.796E−08 6.796E−08 6.796E−08 2.443E−05 6.796E−08

WFG4

Mean 7.808E−01 7.511E−01 7.713E−01 6.363E−01 8.330E−01 1.159E−01

SD 4.397E−03 6.673E−03 1.067E−02 9.368E−03 1.070E−02 3.553E−03

p 6.796E−08 3.966E−03 6.796E−08 6.796E−08 6.796E−08

WFG5

Mean 8.020E−01 7.491E−01 7.698E−01 5.997E−01 7.808E−01 2.319E−01

SD 7.845E−03 3.949E−03 8.152E−03 1.162E−02 9.172E−03 5.687E−03

p 6.786E−08 6.796E−08 6.786E−08 6.917E−07 6.786E−08

WFG6

Mean 8.323E−01 7.786E−01 7.719E−01 8.100E−01 8.066E−01 1.645E−01

SD 8.043E−03 9.889E−03 2.041E−02 2.585E−03 9.017E−03 4.375E−03

p 6.796E−08 6.796E−08 7.898E−08 2.218E−07 6.796E−08

WFG7

Mean 8.287E−01 7.642E−01 8.000E−01 6.879E−01 8.185E−01 9.879E−02

SD 1.193E−02 6.780E−03 7.197E−03 1.055E−02 3.211E−02 1.266E−02

p 6.796E−08 6.015E−07 6.796E−08 5.075E−01 6.796E−08

WFG8

Mean 7.416E−01 6.963E−01 7.030E−01 5.810E−01 6.831E−01 8.688E−02

SD 1.206E−02 8.348E−03 1.220E−02 1.011E−02 1.734E−02 3.491E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

WFG9

Mean 7.354E−01 7.261E−01 7.187E−01 6.940E−01 7.349E−01 1.595E−01

SD 5.415E−03 4.737E−03 5.942E−03 6.372E−03 8.358E−03 1.262E−02

p 1.807E−05 7.887E−08 6.796E−08 9.892E−01 6.796E−08

WFG10

Mean 9.448E−01 9.380E−01 9.727E−01 8.759E−01 9.865E−01 4.442E−01

SD 1.747E−03 2.284E−03 4.039E−03 5.651E−03 2.708E−03 5.215E−03

p 6.796E−08 6.796E−08 6.796E−08 6.796E−08 6.796E−08

+/ = /− 10/0/0 7/0/3 10/0/0 6/0/4 10/0/0

Actually, they can work well when the number of objec-
tives is small. Therefore, the completion-checking factor
ξ is adopted in environmental selection mechanism, i.e.,
Sect. 3.4. To verify the effectiveness of this strategy, dif-
ferent ξ values are examined on all the WFG test problems
with 2-, 3-, 4-objectives. For simplicity, function evaluations

are set to N ∗700, and the same settings for other parameters
in Sect. 4.3 are used.

Tables 4, 5 and 6 collect all the HV comparison results for
AWDMODEwith the different ξ values. In Table 4, the algo-
rithm performance can be seen of 2-objective test functions.
At first, when the value of ξ increases, the algorithm perfor-
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Fig. 4 Pareto front on WFG5, WFG6, WFG10 with three-objective
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Fig. 8 Variation of HV -metric value on WFG1-10 with 4-objective

Table 4 HV values on WFG1-10 with different ξ (M = 2)

0.1 0.5 1 1.5

WFG1 0.3310 0.3280 0.3386 0.2729

WFG2 0.5776 0.5991 0.6240 0.5851

WFG3 0.6397 0.6450 0.6617 0.5964

WFG4 0.4975 0.5036 0.5151 0.3869

WFG5 0.4644 0.4829 0.4917 0.4835

WFG6 0.4530 0.4742 0.4814 0.4552

WFG7 0.4755 0.4989 0.5020 0.3803

WFG8 0.3811 0.4101 0.4634 0.3139

WFG9 0.4645 0.4804 0.4840 0.4555

WFG10 0.8235 0.8267 0.8296 0.7978

Best results of the mean or standard deviation for each test function are
shown in bold

mance shows a good trend, that is, the HV value increases
with the increase of ξ . However, the algorithm performance
degrades as ξ continues to increase. In other words, ξ = 1
is the best choice for 2-objective test functions. In Table 5,
the HV value for ξ = 0.25 is clearly better than that with
the other ξ values. Than means, ξ = 0.25 is the best choice
for 3-objective test functions. In Table 6, it can be found that
the performance with small value is significantly better than
that of large ξ value. Thus, ξ = 0.11 is the most promising
choice for 4-objective test functions.

Table 5 HV values on WFG1-10 with different ξ (M = 3)

0.05 0.25 0.6 1

WFG1 0.5052 0.5031 0.5182 0.5001

WFG2 0.7815 0.7881 0.7859 0.7823

WFG3 0.7783 0.7757 0.7755 0.7761

WFG4 0.6728 0.6771 0.6704 0.6765

WFG5 0.6741 0.6834 0.6791 0.6776

WFG6 0.6617 0.6776 0.6826 0.6888

WFG7 0.6789 0.6871 0.6821 0.6848

WFG8 0.6344 0.6297 0.6294 0.6508

WFG9 0.6699 0.6758 0.6666 0.6729

WFG10 0.9260 0.9267 0.9263 0.9311

Best results of the mean or standard deviation for each test function are
shown in bold

As a result, it is unreasonable to set ξ to a fixed value
for solving optimization problems with different objective
numbers. Instead, the valueof ξ shouldbe adaptively adjusted
when handling different problems. Therefore, for most of the
test problems adopted in this paper, the setting of ξ can be
summarized as Eq. (8).

4.5.2 Sensitivity of performance to the parameter˛

As mentioned in Sect. 3.2, α is a parameter that controls the
curvature. The larger α value, the greater the curvature. To
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Table 6 HV values on WFG1-10 with different ξ (M = 4)

0 0.11 0.5 1

WFG1 0.4306 0.4282 0.4275 0.4295

WFG2 0.7821 0.7913 0.7908 0.7906

WFG3 0.8014 0.8029 0.8027 0.8026

WFG4 0.6415 0.6378 0.6423 0.6418

WFG5 0.6428 0.6439 0.6441 0.6483

WFG6 0.6512 0.6609 0.6647 0.6615

WFG7 0.6532 0.6560 0.6563 0.6587

WFG8 0.5529 0.5520 0.5512 0.5500

WFG9 0.6193 0.6221 0.6171 0.6172

WFG10 0.9235 0.9244 0.9227 0.9234

Best results of the mean or standard deviation for each test function are
shown in bold

obtain a more appropriate value, different α values on WFG
test suites are executed with 2-, 3-, 4-objective. The same
settings for other parameters in Sect. 4.3 are used. Due to
the small difference in values, the further statistical analysis
is conducted to facilitate more intuitive observation of the
results.

Figure 9 plots the optimal results of different α values on
WFG functions for HV values. For example, α = 2 gains
the best result on 2-objective WFG1, α = 1 obtains the best
performance on 3- and 4-objective WFG1. It can be clearly
observed that the performance of α = 1 and α = 1.75 is
outstanding on most issues.

Table 7 records the comparison summary of AWDMODE
on the WFG test problems with different α values. The best
performance is outperformed when α = 1.75, which indi-
cates 1.75 is an appropriate value to adopt in this paper.

5 Conclusions and future work

In this paper, a self-adaptive weight vector adjustment
strategy for decomposition-based multi-objective differen-
tial evolution algorithm is proposed, termed as AWDMODE.

Table 7 The comparison summary of AWDMODE on the WFG test
problems with different α values

α 1 1.5 1.75 2

M = 2 2/10 3/10 3/10 2/10

M = 3 4/10 1/10 5/10 0/10

M = 4 4/10 1/10 5/10 0/10

Best/all 10/30 5/30 13/30 2/30

In AWDMODE, weight vectors with different shapes (line,
concave, convex) are predefined. Then, the weight vector
is adaptively adjusted according to the shape of the PFs.
Besides, a parameter ξ is introduced to balance the con-
vergence and diversity of the algorithm, and self-learning
strategy is adopted to accelerate the convergence rate. Four
state-of-the-art algorithms are compared with AWDMODE,
namely NSGAII (dominance-based), R2MOPSO (indicator-
based), RVEA and MOEA/D-STM. Experimental studies
are performed on WFG1-WFG10 with 2-, 3-, 4-objective
problems, respectively. In order to verify the effectiveness
of adaptive weight adjustment strategy, the algorithm with
the original weight vectors also participates in the experi-
ment, termed AWDMODE0. Experimental results indicate
that AWDMODE can obtain well-converged and evenly dis-
tributed approximated PFs for MOPs with complex PFs,
especially with irregular PFs or the PFs with different ranges
in each objective.

Although AWDMODE shows great potential in handling
complicated test instances, there are still some limitations. In
our future work, we may concentrate on dealing with the PFs
with discontinuous regions and reducing the computational
cost of adjusting weight vectors in MaOPs.
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