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Abstract
The original model of rough sets was advanced by Pawlak, which was mainly involved with the approximation of things using
an equivalence relation on the universal set of his approximation space. In this paper, two kinds of approximation operators
via ideals which represent extensions of Pawlak’s approximation operator have been presented. In both kinds, the definitions
of upper and lower approximations based on ideals have been given. Moreover, a new type of approximation spaces via
two ideals which is called bi-ideal approximation spaces was introduced for the first time. This type of approximations was
analyzed by two different methods, their properties are investigated, and the relationship between these methods is proposed.
The importance of these methods was its dependent on ideals which were topological tools, and the two ideals represent two
opinions instead of one opinion. At the end of the paper, an applied example had been introduced in the chemistry field by
applying the current methods to illustrate the definitions in a friendly way.

Keywords Rough sets · Lower and upper approximations · Ideals

1 Introduction

The theory of rough sets, proposed by Pawlak (1982), is an
extension of the set theory for the investigation of intel-
ligent systems identified by insufficient information. The
upper and lower approximation operators are introduced by
using an equivalence relation on the universe. Using the con-
cepts of the lower and upper approximations from the rough
set theory, knowledge hidden in information systems may
be fixed and expressed in the form of a decision-making
problem (Kryszkiewicz 1998; Ziarko 1993). There are at
least two branches for the expansion of the rough set theory,
namely the constructive and the axiomatic branches. In the
constructive branch, binary relations on the universe, the par-
titions of the universe, neighborhood systems and Boolean
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algebras are all the primitive notions. The upper and lower
approximation operators are introduced by means of these
notions (Chakrabarty et al. 2000; Hosny 2011; Kryszkiewicz
1998; Yao 1998a; Yao and Lin 1996; Yao 2003, 1998b,
1996; Ziarko 1993). The constructive approach is suitable
for practical applications of the rough sets. On the other
hand, the axiomatic branch, which is appropriate for explor-
ing the structures of rough set algebras, takes the upper and
lower approximation operators as primitive notions. In this
approach, a set of axioms is used to describe approxima-
tion operators that are the same as the ones produced using
the constructive approach (Lin and Liu 1994; Yao 1998a).
The foundations, as well as a plurality of the modern studies
on the rough set theory, are dependent on the constructive
branch. The classical rough approximations depended on
equivalence relations, but this requirement is not satisfied
in some situations. Thus, the classical rough approximations
have been extended to the similarity relation-based rough sets
(Slowinski and Vanderpooten 2000), the tolerance relation-
based rough sets (Skowron and Stepaniuk 1996;Walczak and
Massart 1999), the arbitrary binary relation-based rough sets
(Yao 1998a, b) and the covering-based rough sets (Hosny
and Raafat 2017b; Zhu and Wang 2003). From that time,
many researchers were interested in studying the extensions
of results and properties of rough set to rough multiset (El-
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Sheikh et al. 2017; Girish and John 2011, 2014; Hosny and
Raafat 2017a).

In this paper, two new types of rough set based on ide-
als are defined to reduce the boundary region and increase
the accuracy degree which is the main intention of rough
set theory. The concepts of lower and upper approximations
based on ideals are presented for both types. Additionally,
some vital properties and results of those approximations
are instituted. The relationships between the present approx-
imations and the preceding approximations are established.
Moreover, comparisons between the present methods and
the preceding ones (Allam et al. 2006; Kandil et al. 2013;
Kozae et al. 2010; Pawlak 1982; Yao 1996) are presented
and shown to be more general. Furthermore, the topology
precipitated through the current techniques is finer than the
topology brought about through the preceding techniques
(Allam et al. 2006; Kandil et al. 2013; Kozae et al. 2010;
Pawlak 1982; Yao 1996). Hence, a new technique of approx-
imation spaces via two ideals, called bi-ideal approximation
spaces, by two different methods is proposed. The proper-
ties of these bi-ideal approximation spaces are presented.
The relationships between the two current approximations
and the previous ones are analyzed. Moreover, comparisons
between the two present methods are introduced and shown
to which of them is the best. The importance of this paper is
not only that it is introducing a new kind of rough set based
on n-ideals, increasing the accuracy measure and reducing
the boundary region of the sets which is the main intention
of rough set, but also it is introducing an applied example
about amino acids in the chemistry field through making use
of the current methods to demonstrate the definitions in a
pleasant way.

2 Preliminaries

The aim of this section is to illustrate the basic concepts and
properties of rough set theory which are needed in the sequel.

2.1 Pawlak’s approximation space

Definition 2.1 (Pawlak 1982) Let R be an equivalence rela-
tion on a universe X , [x]R be the equivalence class containing
x . For any subset A of X , the lower approximation R(A) and
the upper approximation R(A) are defined by:

R(A) = {x ∈ X : [x]R ⊆ A}, (2.1)

R(A) = {x ∈ X : [x]R ∩ A �= φ}. (2.2)

Theorem 2.1 (Yao 2003) The upper approximation, defined
by 2.2, has the following properties:

1. R(φ) = φ,

2. A ⊆ R(A), ∀A ⊆ X,
3. R(A ∪ B) = R(A) ∪ R(B), ∀A, B ⊆ X,
4. R(R(A)) = R(A), ∀A ⊆ X,
5. R(A) = (R(Ac))c, ∀A ⊆ X, where Ac denotes the com-

plement of A.

Corollary 2.1 (Kandil et al. 2013) Let R be an equivalence
relation on X. Then, the operator R on P(X) defined by 2.2
satisfied the Kuratowski’s axioms and induced a topology on
X denoted by τR and defined as

τR = {A ⊆ X : R(Ac) = Ac}. (2.3)

2.2 Yao’s approximation space

Definition 2.2 (Yao 1996) Let R be a binary relation on X
and A be a subset of X . Then, the pair of lower and upper
approximations, R(A) and R(A), are defined by:

R(A) = {x ∈ X : x R ⊆ A}, (2.4)

R(A) = {x ∈ X : x R ∩ A �= φ}, (2.5)

where x R is called the after set of x and it is defined as
x R = {y ∈ X : x Ry}.
Theorem 2.2 (Allam et al. 2008) If R is a preorder relation
on X (i.e., R is a reflexive and a transitive relation on X),
then the upper approximation, defined by 2.5, satisfies the
properties in Theorem 2.1.

2.3 Allam et al.’s approximation space

Definition 2.3 (Allam et al. 2006) Let R be any binary rela-
tion on X , a set < p > R is the intersection of all after sets
containing p, i.e.,

< p > R =
{∩p∈x Rx R, if ∃x : p ∈ x R;

φ, otherwise.

Also, R < p > is the intersection of all fore sets containing
p, i.e.,

R < p >=
{∩p∈Rx Rx, if ∃x : p ∈ Rx;

φ, otherwise.

Definition 2.4 (Allam et al. 2005) Let R be a binary relation
on X . For any subset A of X , a pair of lower and upper
approximations, R(A) and R(A), are defined by:

R(A) = {x ∈ X :< x > R ⊆ A}, (2.6)

R(A) = {x ∈ X :< x > R ∩ A �= φ}. (2.7)

Lemma 2.1 (Allam et al. 2006) For any binary relation R on
X if y ∈< x > R, then < y > R ⊆< x > R.
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Theorem 2.3 (Allam et al. 2005) Let R a reflexive relation on
X. Then, the upper approximation, defined by 2.7, satisfies
the properties in Theorem 2.1.

2.4 Kandil et al.’s approximation space

Definition 2.5 (Kandil et al. 2013) Let R be a binary relation
on X and I be an ideal on X . For any subset A of X , a pair
of R∗-lower and R∗-upper approximations of A are defined
by:

R∗(A) = {x ∈ X :< x > R ∩ Ac ∈ I }, (2.8)

R∗(A) = {x ∈ X :< x > R ∩ A /∈ I }. (2.9)

Definition 2.6 (Kandil et al. 2013) Let R be a binary relation
on X , I be an ideal on X and A be a subset of X . Then, the
pair of lower and upper approximations, R(A) and R(A), the
boundary and accuracy measure of A are defined by:

R(A) = {x ∈ A :< x > R ∩ Ac ∈ I }, (2.10)

R(A) = A ∪ R∗(A), (2.11)

BNDI (A) = R(A) − R(A), (2.12)

μI (A) = |R(A)|
|R(A)| , |R(A)| �= 0, (2.13)

where 0 ≤ μI (A) ≤ 1.

Theorem 2.4 (Kandil et al. 2013) Let R be a binary rela-
tion on X. Then, the upper approximation, defined by 2.11,
satisfied Kuratowski’s axioms and induced a topology on X
denoted by τ ∗

R and defined as:

τ ∗
R = {A ⊂ X : R(Ac) = Ac}. (2.14)

In such case, interior of A, int∗R(A), is identical with R(A)

defined in 2.10 and closure of A, cl∗R(A), is identical with
R(A) defined in 2.11.

2.5 Kozae et al.’s approximation space

Definition 2.7 (Kozae et al. 2010) Let R be a binary relation
on X . For any subset A of X , a pair of lower and upper
approximations of A are defined by:

R(A) = {x ∈ X : R < x > R ⊆ A}, (2.15)

R(A) = {x ∈ X : R < x > R ∩ A �= φ}, (2.16)

where R < x > R =< x > R ∩ R < x >.

Lemma 2.2 (Kozae et al. 2010) Let R be a binary relation
on a non-empty set X. If y ∈ R < x > R, then R < y >

R ⊆ R < x > R.

Proposition 2.1 (Hosny 2011) Let R be any binary relation
on a non-empty set X and A ⊆ X. Then,

1. R(A)|Allam ⊆ R(A)|Kozae,
2. R(A)|Kozae ⊆ R(A)|Allam.

3 Generalization of rough sets based on
ideals

The purpose of this section is to present a new kind of rough
sets based on ideals by using the notation R < x > R.
The main properties of the current method are studied and
compared to the previousmethodsAllamet al. (2005),Kandil
et al. (2013), Kozae et al. (2010).

Definition 3.1 Let R be a binary relation on a non-empty set
X , I be an ideal on X and A ⊆ X . A pair of R∗∗-upper and
R∗∗-lower approximations, R∗∗(A) and R∗∗(A), are defined,
respectively, as

R∗∗(A) = {x ∈ X : R < x > R ∩ A /∈ I }, (3.1)

R∗∗(A) = {x ∈ X : R < x > R ∩ Ac ∈ I }. (3.2)

Example 3.1 Let X = R, I = P(N) and R = {(a, b) :
a, b ∈ R, a ≤ b}. Then, < a > R = [a,∞[ and R < a >=
] − ∞, a] for all a ∈ R. Thus, R < a > R = {a} for all
a ∈ R. Hence, R∗∗(Q) = Q − N and R∗∗(Q) = Q.

The following theorem studies the main properties of the
current upper approximations.

Theorem 3.1 Let R be a binary relation on a non-empty set
X, I , J be two ideals on X and A, and B be two subsets of
X. Then, the following properties hold:

1. R∗∗(A) = [R∗∗(Ac)]c.
2. R∗∗(φ) = φ.
3. A ⊆ B ⇒ R∗∗(A) ⊆ R∗∗(B).
4. R∗∗(A ∩ B) ⊆ R∗∗(A) ∩ R∗∗(B).
5. R∗∗(A ∪ B) = R∗∗(A) ∪ R∗∗(B).
6. R∗∗(R∗∗(A)) ⊆ R∗∗(A).
7. A ∈ I ⇒ R∗∗(A) = φ.
8. I ⊆ J ⇒ R∗∗

J (A) ⊆ R∗∗
I (A).

Proof 1.

[R∗∗(Ac)]c = ({x ∈ X : R < x > R ∩ A ∈ I })c
= {x ∈ X : R < x > R ∩ A /∈ I }
= R∗∗(A).

2.

R∗∗(φ) = {x ∈ X : R < x > R ∩ φ /∈ I }
= φ.
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3. Let x ∈ R∗∗(A). Then, R < x > R ∩ A /∈ I . Since
A ⊆ B and I is an ideal, R < x > R∩B /∈ I . Therefore,
x ∈ R∗∗(B). Hence, R∗∗(A) ⊆ R∗∗(B).

4. Immediately by part (3).
5. R∗∗(A) ∪ R∗∗(B) ⊆ R∗∗(A ∪ B) by part (3). Let x ∈

R∗∗(A∪ B). Then, R < x > R∩ (A∪ B) /∈ I . It follows
that (R < x > R∩A)∪(R < x > R∩B) /∈ I . Therefore,
R < x > R ∩ A /∈ I or R < x > R ∩ B /∈ I ; this means
x ∈ R∗∗(A)or x ∈ R∗∗(B). Then, x ∈ R∗∗(A)∪R∗∗(B).
Thus, R∗∗(A∪ B) ⊆ R∗∗(A)∪ R∗∗(B). Hence, R∗∗(A∪
B) = R∗∗(A) ∪ R∗∗(B).

6. Let x ∈ R∗∗(R∗∗(A)). Then, R < x > R ∩ R∗∗(A) /∈ I .
Therefore, R < x > R ∩ R∗∗(A) �= φ. Thus, there
exists y ∈ R < x > R ∩ R∗∗(A). This means that
R < y > R ⊆ R < x > R (by Lemma 2.2) and
R < y > R∩ A /∈ I . Then, R < x > R∩ A /∈ I . Hence,
x ∈ R∗∗(A). This completes the proof.

7. Straightforward by Definition 3.1.
8. Let x ∈ R∗∗

J (A). Then, R < x > R ∩ A /∈ J . Since
I ⊆ J , R < x > R ∩ A /∈ I . Therefore, x ∈ R∗∗

I (A).
Hence, R∗∗

J (A) ⊆ R∗∗
I (A).

��
Remark 3.1 Let R be a binary relation on a non-empty set X ,
I , J be two ideals on X , and A, B be two subsets of X , the
following examples show that in general:

1. R∗∗(A) ⊆ R∗∗(B) � A ⊆ B.
2. R∗∗(A ∩ B) �= R∗∗(A) ∩ R∗∗(B).
3. R∗∗(A) = φ � A ∈ I .
4. R∗∗

J (A) ⊆ R∗∗
I (A) � I ⊆ J .

Example 3.1 1. Let X = {a, b, c, d}, I = {φ, {a}} and R =
{(a, a), (a, b), (a, c), (b, a), (b, b), (b, d), (c, a), (c, b),
(c, d), (d, d)}. Then, R < a > R = {a}, R < b > R =
{b}, R < c > R = {b, c} and R < d > R = {d}. If A =
{a, b} and B = {b, c}, then R∗∗(A) = {b, c} = R∗∗(B),
but A � B.

2. Let X = {x, y, z, r}, I = {φ, {r}} and R = � ∪
{(x, y), (y, x), (x, z), (z, x), (x, r), (r , x), (y, z), (r , z)}.
Then, R < x > R = {x}, R < y > R = {x, y},
R < z > R = {x, z} and R < r > R = {x, r}. If
A = {x, r} and B = {y, z}, then R∗∗(A) = X , R∗∗(B) =
{y, z} and R∗∗(A ∩ B) = φ. Hence, R∗∗(A ∩ B) �=
R∗∗(A) ∩ R∗∗(B).

3. Let X = {a, b, c, d}, I = {φ, {a}} and R =
{(a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (c, d)}. Then,
R < a > R = {a}, R < b > R = {b}, R < c >

R = {c} and R < d > R = φ. If A = {a, d}, then
R∗∗(A) = φ, but A /∈ I .

4. Let X = {a, b, c, d}, I = {φ, {a}}, J = {φ, {d}} and
R = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, d), (c, a),

(c, b), (c, d), (d, d)}. Then, R < a > R = {a},

R < b > R = {b}, R < c > R = {b, c} and
R < d > R = {d}. If A = {d}, then R∗∗

J (A) = φ and
R∗∗
I (A) = {d}. Hence, R∗∗

J (A) ⊆ R∗∗
I (A), but I � J .

The following remark represents a deviation between the
current approach and the previous one (Allam et al. 2005).

Remark 3.2 Let R be a reflexive relation on a non-empty set
X , I be an ideal on X , and A, B ⊆ X , the following examples
show that in general:

1. A � R∗∗(A).
2. R∗∗(X) �= X .
3. A � R∗∗(R∗∗(A)) and R∗∗(A) � R∗∗(R∗∗(A)).

Example 3.2 1. Let X = {x, y, z, r}, I = {φ, {x}, {z},
{x, z}} and R = �∪{(x, y), (x, z), (z, r), (y, z), (y, r)},
where � is an identity relation on X . Then, R < x >

R = {x}, R < y > R = {y}, R < z > R = {z} and
R < r > R = {r}. If A = {x, y}, then R∗∗(A) = {y}.
Hence, A � R∗∗(A). Also, R∗∗(X) = {y, r} �= X .

2. In Example 3.1 part (2), if A = {y}, then R∗∗(A) = {y}
and R∗∗(R∗∗(A)) = φ. Hence, A � R∗∗(R∗∗(A)) and
R∗∗(A) � R∗∗(R∗∗(A)).

The main properties of the lower approximations are pre-
sented in the following theorem.

Theorem 3.2 Let R be a binary relation on a non-empty set
X, I , J be two ideals on X and A, B ⊆ X. Then, the follow-
ing properties hold:

1. R∗∗(A) = [R∗∗(Ac)]c.
2. R∗∗(X) = X.
3. A ⊆ B ⇒ R∗∗(A) ⊆ R∗∗(B).
4. R∗∗(A ∩ B) = R∗∗(A) ∩ R∗∗(B).
5. R∗∗(A ∪ B) ⊇ R∗∗(A) ∪ R∗∗(B).
6. R∗∗(A) ⊆ R∗∗(R∗∗(A)).
7. Ac ∈ I ⇒ R∗∗(A) = X.
8. I ⊆ J ⇒ R∗∗I (A) ⊆ R∗∗J (A).

Proof The proof is similar to that of Theorem 3.1. ��
Remark 3.3 By the same way, we can add examples to show
that in general:

1. R∗∗(A) � A.
2. R∗∗(φ) �= φ.
3. R∗∗(A) ⊆ R∗∗(B) � A ⊆ B.
4. R∗∗(A ∪ B) �= R∗∗(A) ∪ R∗∗(B).
5. R∗∗(A) = X � Ac ∈ I .
6. R∗∗I (A) ⊆ R∗∗J (A) � I ⊆ J .

Remark 3.4 If R is a binary relation on a non-empty set X ,
A ⊆ X and I is an ideal on X such that I = P(X). Then,
R∗∗(A) = φ.
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Theorem 3.3 Let R be a binary relation on a non-empty set
X, I and J be two ideals on X and A ⊆ X. Then, the fol-
lowing assertions hold:

1. R∗∗
(I∩J )(A) = R∗∗

I (A) ∪ R∗∗
J (A).

2. R∗∗
(I∪J )(A) = R∗∗

I (A) ∩ R∗∗
J (A).

Proof 1.

R∗∗
(I∩J )(A) = {x ∈ X : R < x > R ∩ A /∈ I ∩ J }
= {x ∈ X : R < x > R ∩ A /∈ I }
or {x ∈ X : R < x > R ∩ A /∈ J }

= {x ∈ X : R < x > R ∩ A /∈ I }
∪ {x ∈ X : R < x > R ∩ A /∈ J }

= R∗∗
I (A) ∪ R∗∗

J (A).

2. Similarly.
��

The following theorem presents the relationships between
the current approximations in Definition 3.1 and the previous
one in Definition 2.5 (Kandil et al. 2013).

Theorem 3.4 Let R be a binary relation on a non-empty set
X, I be an ideal on X and A ⊆ X. Then,

1. R∗∗(A) ⊆ R∗(A).
2. R∗(A) ⊆ R∗∗(A).

Proof Straightforward from the fact that R < x > R ⊆<

x > R. ��
Remark 3.5 Example 3.2 (part 2) shows that the inclusion in
Theorem 3.4 parts 1 and 2 cannot be replaced by equality
relation in general (for part 1, if A = {z}, then R∗∗(A) �

R∗(A)). In a similar way, anyone can add example to part 2.

The following theorem presents the relationships between
the current approximations in Definition 3.1 and Defini-
tion 2.7 in Kozae et al. (2010).

Theorem 3.5 Let R be a binary relation on a non-empty set
X, I be an ideal on X and A ⊆ X. Then,

1. R∗∗(A) ⊆ R(A).
2. R(A) ⊆ R∗∗(A).

Proof Straightforward. ��
Remark 3.6 Example 3.2 (part 1) shows that the inclusion in
Theorem 3.5 parts 1 and 2 can not be replaced by equality
relation in general (for part 1, if A = X , then R∗∗(A) �

R(A)). In a similar way, anyone can add example to part 2.

Remark 3.7 It should be noted from Proposition 2.1 and The-
orems 3.4, 3.5 that the newDefinition 3.1 decreases the upper
approximation and increases the lower approximation. This
new approach is different from the previous approach (Allam
et al. 2005; Kandil et al. 2013; Kozae et al. 2010; Pawlak
1982) and more general. As a special case:

1. if I = {φ}, then the present approximations coincidewith
the previous approximations (Kozae et al. 2010).

2. if R is a symmetric relation, then the present approxima-
tions coincide with the previous approximations (Kandil
et al. 2013).

3. if I = {φ} and R is a symmetric relation, then the present
approximations coincide with the previous approxima-
tions (Allam et al. 2005).

4. if I = {φ} and R is a equivalence relation, then
the present approximations coincide with the previous
approximations (Pawlak 1982).

So, the previous approximations are special cases of the cur-
rent approximations.

4 New kind of generalized approximations
based on ideals

In this section, a new type of generalized approximations
based on ideals is presented. Some of their properties are
studied. In addition, the relationship between these approx-
imations and our approximations in the previous section is
investigated. Comparisons between the present approxima-
tions and the previous approximations (Allam et al. 2005;
Kandil et al. 2013; Kozae et al. 2010) are presented and
shown to be more general. Moreover, it is proved that the
topology induced by the current approximations is finer than
the topology induced by the previous approximations (Allam
et al. 2005; Kandil et al. 2013; Kozae et al. 2010). Finally,
some examples are used to explain the current definitions in
a friendly way.

Definition 4.1 Let R be a binary relation on a non-empty set
X and I be an ideal on X . For A ⊆ X , a pair of lower and

upper approximations, R(A) and R(A), are defined, respec-
tively, as

R(A) = {x ∈ A : R < x > R ∩ Ac ∈ I }, (4.1)

R(A) = A ∪ R∗∗(A). (4.2)

Definition 4.2 Let R be a binary relation on a non-empty set
X and I be an ideal on X . For A ⊆ X , the boundary and
accuracy measure of A are defined, respectively, as
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BNDI (A) = R(A) − R(A), (4.3)

μI (A) = |R(A)|
|R(A)|

, |R(A)| �= 0, (4.4)

where 0 ≤ μI (A) ≤ 1.

Example 4.1 Let X = {x, y, z, r}, I = {φ, {x}, {z}, {x, z}},
R = � ∪ {(x, y), (x, z), (z, r), (y, z), (y, r)}. Then, < x >

R = {x, y, z},< y > R = {y, z},< z > R = {z},< r >

R = {r}. Also, R < x >= {x}, R < y >= {y}, R <

z >= {y, z}, R < r >= {y, z, r}. Therefore, R < x >

R = {x}, R < y > R = {y}, R < z > R = {z}, R <

r > R = {r}. If A = {x, y}, then R(A) = R(A) = {x, y},
BNDI (A) = φ and μI (A) = 1.

The following theorem presents the properties of upper
approximation in Definition 4.1.

Theorem 4.1 Let R be a binary relation on a non-empty set
X, I , J be two ideals on X and A, B ⊆ X. Then, the follow-
ing properties hold:

1. R(A) = [R(Ac)]c.
2. R(φ) = φ.

3. A ⊆ B ⇒ R(A) ⊆ R(B).

4. A ⊆ R(A).

5. R(A ∩ B) ⊆ R(A) ∩ R(B).

6. R(A ∪ B) = R(A) ∪ R(B).

7. R(R(A)) = R(A).

8. A ∈ I ⇒ R(A) = A.

9. I ⊆ J ⇒ RJ (A) ⊆ RI (A).

Proof The proof is similar to that of Theorem 3.1. ��
The following theorem presents the properties of lower

approximation in Definition 4.1.

Theorem 4.2 Let R be a binary relation on a non-empty set
X, I , J be two ideals on X and A, B ⊆ X. Then, the follow-
ing properties hold:

1. R(A) = [R(Ac)]c.
2. R(X) = X.
3. A ⊆ B ⇒ R(A) ⊆ R(B).
4. R(A) ⊆ A.
5. R(A ∩ B) = R(A) ∩ R(B).
6. R(A ∪ B) ⊇ R(A) ∪ R(B).
7. R(R(A)) = R(A).
8. Ac ∈ I ⇒ R(A) = A.
9. I ⊆ J ⇒ R

I
(A) ⊆ R

J
(A).

Proof Immediately. ��

Remark 4.1 For a binary relation R on a non-empty set X ,
I , J are two ideals on X and A, B ⊆ X , the following exam-
ples show that in general:

1. A ⊆ B ⇒ R(A) � R(B).

2. A �= R(A).

3. R(A ∩ B) �= R(A) ∩ R(B).

4. I ⊆ J ⇒ RJ (A) �= RI (A).

5. R(A) ⊆ R(B) � A ⊆ B.

6. R(A) = A � A ∈ I .

7. RJ (A) ⊆ RI (A) � I ⊆ J .

Example 4.1 1. Let X={x, y, z, r}, I={φ, {x}, {r}, {x, r}}
and R = �∪{(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}. If
A = {r} and B = {x, r}, then R(A) = A and R(B) = B.

Hence, R(A) � R(B).
2. Let X = {x, y, z, r}, I = {φ, {x}, {r}, {x, r}} and

R = � ∪ {(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}. If
A = {y}, then R(A) = {x, y, r}. Hence, A � R(A).

3. Let X = {x, y, z, r}, I = {φ, {x}, {r}, {x, r}} and
R = � ∪ {(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}.
If A = {y}, B = {x, z, r}, then R(A) = {x, y, r} and
R(B) = {x, z, r}. Therefore, R(A∩ B) � R(A)∩ R(B).

4. Let X={x, y, z, r}, I={φ, {x}}, J = {φ, {x}, {r}, {x, r}}
and R = �∪{(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}. If
A = {r}, then RJ (A) � RI (A).

5. Let X = {x, y, z, r}, I = {φ, {x}, {r}, {x, r}} and
R = � ∪ {(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}.
If A = {x, y, z}, B = {y, z}, then R(A) ⊆ R(B) but
A � B.

6. Let X = {x, y, z, r}, I = {φ, {x}, {y}, {x, y}} and R =
� ∪ {(x, y), (x, r), (y, z), (z, y)}. Then, R < x > R =
{x}, R < y > R = {y}, R < z > R = {y, z}, R < r >

R = {r}. If A = {x, y, r}, then R(A) = A but A /∈ I .
7. Let X = {x, y, z, r}, J={φ, {x}}, I={φ, {x}, {r}, {x, r}}

and R = �∪{(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}.
Then, R < x > R = {x, y, r}, R < y > R =
{x, y, r}, R < z > R = {z}, R < r > R = {x, y, r}. If
A = {y}, then RJ (A) ⊆ RI (A) but I � J .
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Remark 4.2 In a similar way, we can add examples to show
that the inclusion in Theorem 4.2 parts 3, 4, 6 and 9 cannot be
replaced by equality relation in general. Also, the converse
of Theorem 4.2 parts 3, 8 and 9 is not true in general.

Remark 4.3 If R is a binary relation on a non-empty set X ,
A ⊆ X and I is an ideal on X such that I = P(X). Then,

R(A) = A.

Proposition 4.1 Let R beabinary relationonanon-empty set
X, I , J be two ideals on X and A ⊆ X. Then, the following
assertions hold:

1. R(I∩J )(A) = RI (A) ∪ RJ (A).

2. R(I∪J )(A) = RI (A) ∩ RJ (A).

Proof The proof is similar to that of Theorem 3.3. ��
The following theorem presents the relationship between

the current approximations in Definitions 3.1 and 4.1. The
important of the current approximations that it is achieving
the Kuratowski’s axioms.

Theorem 4.3 Let R be a binary relation on a non-empty set
X, I be an ideal on X and A ⊆ X. Then,

1. R∗∗(A) ⊆ R(A).
2. R(A) ⊆ R∗∗(A).

Proof Immediately by using Definitions 3.1 and 4.1. ��
The following theorem presents the relationship between

the current approximations in Definition 4.1 and Defini-
tion 2.6 in Kandil et al. (2013).

Theorem 4.4 Let R be a binary relation on a non-empty set
X, I be an ideal on X and A ⊆ X. Then,

1. R(A) ⊆ R(A).
2. R(A) ⊆ R(A).

3. BNDI (A) ⊆ BNDI (A).
4. μI (A) ≤ μI (A).

Proof 1. Let x ∈ R(A), then x ∈ A or x ∈ R∗∗(A). So,
x ∈ A or R < x > R ∩ A /∈ I . Thus, x ∈ A or
< x > R ∩ A /∈ I . Then, x ∈ A ∪ R∗(A). This means

that x ∈ R(A). Hence, R(A) ⊆ R(A).
2. Let x ∈ R(A), then x ∈ A and < x > R∩ Ac ∈ I . Since

R < x > R ⊆< x > R, then R < x > R ∩ Ac ∈ I .
Therefore, x ∈ R(A). Hence, R(A) ⊆ R(A).

3. Immediate.
4. Straightforward from part (1) and part (2).

��

Remark 4.4 It is noted from Theorem 4.4 that Definition 4.1
reduces the boundary region and increases the accuracymea-
sure of a set A by increasing the lower approximation and
decreasing the upper approximation with the comparison of
the method in Definition 2.6 Kandil et al. (2013).

Theorem 4.5 Let R be a binary relation on a non-empty set
X, I be an ideal on X and A ⊆ X. Then, the upper approx-
imation in Definition 4.1 satisfies Kuratowski’s axioms and
induces a topology on X called τ ∗∗

R given by τ ∗∗
R = {A ⊆

X : R(Ac) = Ac}.

Proof Immediately by Theorems 4.1 and 4.2. ��

It should be noted that the interior of a set A, int∗∗
R (A),

is identical with R(A) and the closure of a set A, cl∗∗
R (A), is

identical with R(A).
The relationship between the topology which was gener-

ated by the previous method in Theorem 2.4 Kandil et al.
(2013) and the topology which is generated by the present
method is introduced in the following proposition.

Proposition 4.2 Let R be a binary relation on a non-empty
set X and I be an ideal on X. Then, τ ∗∗

R is finer than τ ∗
R, i.e.,

τ ∗
R ⊆ τ ∗∗

R .

Proof Immediately by Theorem 4.4 part(1).
From the following example, the lower, upper approxima-

tion, boundary region and accuracy measure for subsets of X
are computed by usingKozae et al.’smethod inDefinition 2.7
(Kozae et al. 2010), Kandil et al.’s method in Definition 2.6
(Kandil et al. 2013) and the present method in Definition 4.1.

��

Example 4.2 Let X = {x, y, z, r}, I = {φ, {x}, {y}, {x, y}},
R = � ∪ {(x, y), (x, r), (y, z), (z, y)}. Then, < x > R =
{x, y, r},< y > R = {y},< z > R = {y, z},< r >

R = {r}. Also, R < x >= {x}, R < y >= {y, z}, R <

z >= {y, z}, R < r >= {x, r}. Therefore, R < x > R =
{x}, R < y > R = {y}, R < z > R = {y, z}, R < r >

R = {r}. The comparison between the previous methods and
the current method is shown in Table 1.

For example, take {x, z}, then the boundary and accu-
racy by Definition 4.1 are φ and 1, respectively, whereas the
boundary and accuracy by using Kozae et al.’s method in
Definition 2.7 (Kozae et al. 2010) are {z} and 0.5, respec-
tively. Also, the boundary and accuracy by using Kandil et
al.’s method in Definition 2.6 (Kandil et al. 2013) are {x} and
0.5, respectively. Additionally, it is clear that Kozae et al.’s
method in Definition 2.7 (Kozae et al. 2010) and Kandil et
al.’s method in Definition 2.6 (Kandil et al. 2013) are inde-
pendent methods.
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5 Approximations of a set based on ideals by
using two approaches

In this section, a new type of approximation spaces via two
ideals, called bi-ideal approximation spaces, is presented.
This type of approximations is analyzed by two different
methods, their properties are investigated, and the relation-
ships between these methods are studied.

Definition 5.1 Let I1, I2 be two ideals on a non-empty set X .
The collection generated by I1, I2 is denoted by < I1, I2 >

and defined as:

< I1, I2 >= {G ∪ F : G ∈ I1, F ∈ I2}. (5.1)

Proposition 5.1 If I1, I2 are two ideals on a non-empty set
X and A, B are two subsets of X. Then, the collection <

I1, I2 > is satisfied the following conditions:

1. < I1, I2 >�= φ,
2. A ∈< I1, I2 >, B ⊆ A ⇒ B ∈< I1, I2 >,
3. A, B ∈< I1, I2 >⇒ A ∪ B ∈< I1, I2 >.

It means that the collection < I1, I2 > is an ideal on X.

Proof Straightforward. ��
Definition 5.2 The quadrable (X , R, I1, I2) is said to be a
bi-ideal approximation space where R is a binary relation
on X , I1, I2 are two ideals on X and (X , R,< I1, I2 >)

is said to be an ideal approximations space associated to
(X , R, I1, I2). A pair of R∗∗

<I1,I2>
-upper and R∗∗<I1,I2>-

lower approximations, R∗∗
<I1,I2>

(A) and R∗∗<I1,I2>(A), are
defined, respectively, as

R∗∗
<I1,I2>(A) = {x ∈ X : R < x > R ∩ A /∈< I1, I2 >},

(5.2)

R∗∗<I1,I2>(A) = {x ∈ X : R < x > R ∩ Ac ∈< I1, I2 >}.
(5.3)

The lower and upper approximations in Definition 5.2
coincide with the previous approximations in Definition 3.1
if I1 = I2. It should be noted that the properties of the current
approximations in Definition 5.2 are the same as the previous
one in Theorems 3.1 and 3.2.

Definition 5.3 Let (X , R, I1, I2) be a bi-ideal approximation
space and A ⊆ X . A pair of lower and upper approximations,

R
<I1,I2>

(A) and R<I1,I2>(A), are defined, respectively, as

R
<I1,I2>

(A) = {x ∈ A : R < x > R ∩ Ac ∈< I1, I2 >},
(5.4)

R<I1,I2>(A) = A ∪ R∗∗
<I1,I2>(A). (5.5)

Remark 5.1 It should be noted that the operators R<I1,I2>(A)

and R
<I1,I2>

(A) satisfy the properties as in Theorems 4.1
and 4.2, respectively, so we omitted it here.

Definition 5.4 Let (X , R, I1, I2) be a bi-ideal approximation
space and A ⊆ X . Then, the pair of lower and upper approx-

imations, R
I1,I2

(A) and RI1,I2(A), are defined, respectively,
as

R
I1,I2

(A) = R
I1
(A) ∪ R

I2
(A), (5.6)

RI1,I2(A) = RI1(A) ∩ RI2(A), (5.7)

where R
Ii
(A) and RIi (A) are the lower andupper approxima-

tions of A with respect to Ii , i ∈ {1, 2} as in Definition 4.1.

The following proposition studies the main properties of
the current upper and lower approximation in Definition 5.4.

Proposition 5.2 Let (X , R, I1, I2) be a bi-ideal approxima-
tion space and A, B ⊆ X. Then, the following properties
hold:

1. RI1,I2(A) = [R
I1,I2

(Ac)]c, R
I1,I2

(A) = [RI1,I2(A
c)]c.

2. RI1,I2(φ) = φ, R
I1,I2

(X) = X.

3. A ⊆ B ⇒ RI1,I2(A) ⊆ RI1,I2(B) and R
I1,I2

(A) ⊆
R
I1,I2

(B).

4. R
I1,I2

(A) ⊆ A ⊆ RI1,I2(A).

5. RI1,I2(A ∩ B) ⊆ RI1,I2(A) ∩ RI1,I2(B).

6. RI1,I2(A ∪ B) ⊇ RI1,I2(A) ∪ RI1,I2(B).
7. R

I1,I2
(A ∩ B) ⊆ R

I1,I2
(A) ∩ R

I1,I2
(B).

8. R
I1,I2

(A ∪ B) ⊇ R
I1,I2

(A) ∪ R
I1,I2

(B).

Proof The proof is straightforward by using Definition 5.4,
Theorems 4.1 and 4.2. ��
Remark 5.2 Let (X , R, I1, I2) be a bi-ideal approximation
space and A, B be two subsets of X , the following examples
show that in general:

1. RI1,I2(A ∪ B) �= RI1,I2(A) ∪ RI1,I2(B).
2. R

I1,I2
(A ∩ B) �= R

I1,I2
(A) ∩ R

I1,I2
(B).

3. A ∈ I1 ∪ I2 � RI1,I2(A) = A.
4. Ac ∈ I1 ∪ I2 � R

I1,I2
(A) = A.

Example 5.1 Let X = {x, y, z, r}, I1 = {φ, {x}}, I2 =
{φ, {r}}, < I1, I2 >= {φ, {x}, {r}, {x, r}} and R = � ∪
{(x, y), (y, x), (x, r), (r , x), (y, r), (r , y)}. Then, R < x >

R = {x, y, r}, R < y > R = {x, y, r}, R < z > R =
{z}, R < r > R = {x, y, r}.
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1. If A = {x} and B = {r}, then RI1,I2(A) ∪ RI1,I2(B) =
{x, r} but RI1,I2(A ∪ B) = {x, y, r}.

2. If A = {y, r} and B = {x, y, z}, then R
I1,I2

(A) ∩
R
I1,I2

(B) = {y} but R
I1,I2

(A ∩ B) = φ.

3. If A = {x, r}, then A ∈ I1 ∪ I2 but RI1,I2(A) =
{x, y, r} �= A.

4. If A = {y, z}, then Ac ∈ I1∪I2 but RI1,I2
(A) = {z} �= A.

The following theorem presents the relationships between
the twomethods of the current approximations via two ideals
in Definitions 5.3 and 5.4.

Theorem 5.1 Let (X , R, I1, I2) be a bi-ideal approximation
space and A ⊆ X. Then,

1. R<I1,I2>(A) ⊆ RI1,I2(A).
2. R

I1,I2
(A) ⊆ R

<I1,I2>
(A).

3. BND<I1,I2>(A) ⊆ BNDI1,I2(A).
4. μI1,I2(A) ≤ μ<I1,I2>(A).

Proof 1. Let x ∈ R<I1,I2>(A), then x ∈ A or x ∈
R∗∗

<I1,I2>
(A). So, x ∈ A or R < x > R ∩ A /∈<

I1, I2 >. The first case, if x ∈ A, then x ∈ RI1(A)

and x ∈ RI2(A). Thus, x ∈ RI1,I2(A). The other case, if
R < x > R∩ A /∈< I1, I2 >, then R < x > R∩ A /∈ I1
and R < x > R ∩ A /∈ I2. Therefore, x ∈ R∗∗

I1
(A)

and x ∈ R∗∗
I2

(A). Thus, x ∈ RI1(A) and x ∈ RI2(A).

This means that x ∈ RI1,I2(A). Hence, R<I1,I2>(A) ⊆
RI1,I2(A).

2. Let x ∈ R
I1,I2

(A). Then, x ∈ R
I1
(A) or x ∈ R

I2
(A).

Therefore, R < x > R ∩ Ac ∈ I1 or R < x > R ∩
Ac ∈ I2, since I1, I2 ⊆< I1, I2 >, then R < x >

R ∩ Ac ∈< I1, I2 >. Thus, x ∈ R
<I1,I2>

(A). Hence,

R
I1,I2

(A) ⊆ R
<I1,I2>

(A).
3. Immediate.
4. Straightforward from part (1) and part (2).

��
Remark 5.3 It is noted from Theorem 5.1 that Definition 5.3
reduces the boundary region and increases the accuracymea-
sure of a set A by increasing the lower approximations and
decreasing the upper approximations via two ideals with the
comparison of the method in Definition 5.4.

Proposition 5.3 Let (X , R, I1, I2) be a bi-ideal approxima-
tion space and A ⊆ X. Then,

1. R<I1,I2>(A) ⊆ RI1,I2(A) ⊆ RIi (A), ∀i ∈ {1, 2}.
2. R

Ii
(A) ⊆ R

I1,I2
(A) ⊆ R

<I1,I2>
(A), ∀i ∈ {1, 2}.

3. BND<I1,I2>(A) ⊆ BNDI1,I2(A) ⊆ BNDIi (A), ∀i ∈
{1, 2}.

4. μIi (A) ≤ μI1,I2(A) ≤ μ<I1,I2>(A), ∀i ∈ {1, 2}.

Proof Immediately by usingDefinition 5.4 and Theorem 5.1.
��

Theorem 5.2 Let (X , R, I1, I2) be a bi-ideal approximation
space and A ⊆ X. Then, upper approximation in Defi-
nition 5.3 is satisfied Kuratowski’s axioms and induces a
topology on X called τ

<I1,I2>
R and given by

τ
<I1,I2>
R = {A ⊆ X : R<I1,I2>(Ac) = Ac}. (5.8)

It should be noted that the interior of a set A, int<I1,I2>
R (A),

is identical with R
<I1,I2>

(A) and the closure of a set A,

cl<I1,I2>
R (A), is identical with R<I1,I2>(A).

Proof Immediate. ��
Theorem 5.3 Let (X , R, I1, I2) be a bi-ideal approximation
space and A ⊆ X. Then, the intersection of two topologies on
X generated by the upper approximations in Definition 4.1
with respect to I1, I2 is satisfied Kuratowski’s axioms and
induces a topology on X called τ

I1,I2
R and given by

τ
I1,I2
R = τ

∗∗I1
R ∩ τ

∗∗I2
R ,

where τ
∗∗Ii
R is a topology which defined as Theorem 4.5 with

respect to Ii , i ∈ {1, 2}.
Proof Immediate. ��

The relationship between the topology which was gener-
ated by the two different method in Theorems 5.2 and 5.3 is
introduced by the following proposition.

Proposition 5.4 Let (X , R, I1, I2) be a bi-ideal approxima-
tion space. Then, τ

<I1,I2>
R is finer than τ

I1,I2
R , i.e., τ

I1,I2
R ⊆

τ
<I1,I2>
R .

Proof Straightforward. ��
From Example 5.1, the lower, upper approximations,

boundary region and accuracy measure for subsets of X are
computed by using the current methods in Definition 5.3
and 5.4 as shown in Table 2.

FromTable 2, the approximation byDefinition 5.3 reduces
the boundary region and increases the accuracy measure of a
set A by increasing the lower approximation and decreasing
the upper approximation via two ideals with the comparison
of the approximation by Definition 5.4.

6 Application

Finally in this section, an applied example in chemistry field
is introducing by applying the present two approximations in
Definitions 5.3 and 5.4 to illustrate the concepts in a friendly
way.

123



Bi-ideal approximation spaces and their applications 12999

Table 2 Comparison between the boundary region and accuracy measure by using two different methods in Definitions 5.3 and 5.4

A First method in Definition 5.3 Second method in Definition 5.4

R
<I1,I2>

(A) R<I1,I2>(A) BND<I1,I2>(A) μ<I1,I2>(A) R
I1,I2

(A) RI1,I2 (A) BNDI1,I2 (A) μI1,I2 (A)

X X X φ 1 X X φ 1

{x} φ {x} {x} 0 φ {x} {x} 0

{y} {y} {x, y, r} {x, r} 1/3 φ {x, y, r} {x, y, r} 0

{z} {z} {z} φ 1 {z} {z} φ 1

{r} φ {r} {r} 0 φ {r} {r} 0

{x, y} {x, y} {x, y, r} {r} 2/3 {x, y} {x, y, r} {r} 2/3

{x, z} {z} {x, z} {x} 1/2 {z} {x, z} {x} 1/2

{x, r} φ {x, r} {x, r} 0 φ {x, y, r} {x, y, r} 0

{y, z} {y, z} X {x, r} 1/2 {z} X {x, y, r} 1/4

{y, r} {y, r} {x, y, r} {x} 2/3 {y, r} {x, y, r} {x} 2/3

{z, r} {z} {z, r} {r} 1/2 {z} {z, r} {r} 1/2

{x, y, z} {x, y, z} X {r} 3/4 {x, y, z} X {r} 3/4

{x, y, r} {x, y, r} {x, y, r} φ 1 {x, y, r} {x, y, r} φ 1

{x, z, r} {z} {x, z, r} {x, r} 1/3 {z} X {x, y, r} 1/4

{y, z, r} {y, z, r} X {x} 3/4 {y, z, r} X {x} 3/4

Table 3 Quantitative attributes of five amino acids

a1 a2 a3 a4 a5 a6 a7

u1 −0.11 − 0.22 0.29 335 3.458 − 1.19 127.5

u2 − 0.51 − 0.64 0.76 311.6 3.243 − 1.43 120.5

u3 0 0 0 224.9 1.662 0.03 65

u4 0.15 0.13 − 0.25 337.2 3.856 − 1.06 140.6

u5 1.2 1.8 − 2.1 322.6 3.35 0.04 131.7

Example 6.1 Let U = {u1, u2, u3, u4, u5} be five amino
acids (for short, AAs). The (AAs) are described in terms
of seven attributes: a1 = PIE , a2 =PIF (two measures of
the side chain lipophilicity), a3 = DGR = �G of transfer
from the protein interior to water, a4 =SAC=surface area,
a5 =MR=molecular refractivity, a6 =LAM=the side chain
polarity, and a7 = Vol=molecular volume. (El-Tayar et al.
1992; Walczak and Massart 1999). Table 3 shows all quanti-
tative attributes of five AAs.

We consider seven reflexive relations on U defined as
follows: Ri = {(ui , u j ) : ui (ak) − u j (ak) <

σk
2 , i, j =

1, 2, ..., 5, k = 1, 2, ..., 7} where σk represents the standard
deviationof thequantitative attributesak , k = 1, 2, ..., 7.The
right neighborhoods for all elements of U={u1, u2, u3, u4,
u5}with respect to the relations Rk, k = 1, 2, ..., 7 are shown
in Table 4.

Therefore, we find the intersection of all right neigh-
borhoods of all element k = 1, 2, ..., 7 as the following:
u1R = ∩7

k=1(u1Rk) = {u1, u4}, u2R = ∩7
k=1(u2Rk) =

{u1, u2}, u3R = ∩7
k=1(u3Rk) = {u3}, u4R = ∩7

k=1(u4Rk)

= {u1, u4}, u5R = ∩7
k=1(u5Rk) = {u5}. Then, R =

� ∪ {(u1, u4), (u2, u1), (u4, u1)}. Hence, anyone can give
two ideals to extend an example similar to the example in
Table 2 which show that the approximations in Definition 5.3
are better than the other in Definition 5.4 by comparing the
resulting accuracy.

7 Conclusions

It is well known that rough set theory has been consid-
ered as a generalization of classical set theory in one way.
Furthermore, this is a vital mathematical tool to deal with
vagueness (uncertainty). The boundary region technique is
usually related to vagueness (i.e., existing of things which
cannot be determined by the set or its complement) which
was first introduced in 1893 by Frege (1893). With respect to
Frege “The conceptmust have an exact boundary. To the con-
cept without an exact boundary, there would correspond an
area that did not have an exact boundary line all around,” i.e.,
mathematics must use crisp, not ambiguous definitions, oth-
erwise, it would be impossible to reason punctually. Pawlak
introduced the concept of rough sets which have a large area
of applications in various fields like artificial intelligence,
cognitive sciences, machine learning expert systems, knowl-
edge discovery from databases, and other fields can be found
in Jian et al. (2011), Ma et al. (2017), Pal and Mitra (2004)
and Zhu and Wang (2003).

The main aim of rough sets is to increase the accuracy
measure and reduce the boundary region of sets by increasing
the lower approximations and decreasing the upper approx-
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Table 4 Right neighborhood of seven reflexive relations

ui R1 ui R2 ui R3 ui R4 ui R5 ui R6 ui R7

u1 {u1, u3, u4, u5} U {u1, u2, u3, u4} {u1, u4, u5} {u1, u2, u4, u5} U {u1, u2, u4, u5}
u2 U U {u1, u2} {u1, u2, u4, u5} {u1, u2, u4, u5} U {u1, u2, u4, u5}
u3 {u1, u3, u4, u5} {u1, u3, u4, u5} {u1, u2, u3, u4} U U {u3, u5} U

u4 {u1, u3, u4, u5} {u1, u3, u4, u5} {u1, u2, u3, u4} {u1, u4, u5} {u1, u4} {u1, u3, u4, u5} {u1, u4, u5}
u5 {u5} {u5} U {u1, u2, u4, u5} {u1, u2, u4, u5} {u3, u5} {u1, u2, u4, u5}

imations, so in this paper, new two kinds of lower and upper
approximations based on ideals are proposed to achieve this
aim. The results of these new approximations are studied,
compared to the previous ones (Allam et al. 2006; Kandil
et al. 2013; Kozae et al. 2010; Pawlak 1982; Yao 1996), and
shown to bemore general. In Sect. 5, twodifferentmethods of
approximation spaces based on two ideals in Definitions 5.3
and 5.4 are introduced. Also, the comparison between these
methods is presented and we obtain that the approximation
by Definition 5.3 is better than the other in Definition 5.4.
It should be noted that any one can extend this method sim-
ilarly by using n-ideals. In the real life, this comparison is
represented whether we need to make a decision about a
manuscript and send it to two reviewers I1, I2. Then, we
have two cases:

1. Take two reports separately from the referees and use one
of the mathematical methods to find the final decision,

2. Take a combined report from the referees together.

It is clear that the second case is better that the first one
like as the approximations in Definition 5.3. Finally, an
applied example about amino acids in the chemistry field is
introduced to illustrate our methods of approximations. The
importance of the current paper is not only that it is intro-
ducing a new kind of rough set based on n-ideals, increasing
the accuracy measure and reducing the boundary region of
the sets which is the main aim of rough set, but also it is
introducing a chemical application to explain the concepts.
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