
METHODOLOGIES AND APPLICATION

A binary social spider algorithm for continuous optimization task

Emine Baş1 • Erkan Ülker2

Published online: 30 January 2020
� Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The social spider algorithm (SSA) is a new heuristic algorithm created on spider behaviors. The original study of this

algorithm was proposed to solve continuous problems. In this paper, the binary version of SSA (binary SSA) is introduced

to solve binary problems. Currently, there is insufficient focus on the binary version of SSA in the literature. The main part

of the binary version is at the transfer function. The transfer function is responsible for mapping continuous search space to

discrete search space. In this study, four of the transfer functions divided into two families, S-shaped and V-shaped, are

evaluated. Thus, four different variations of binary SSA are formed as binary SSA-Tanh, binary SSA-Sigm, binary SSA-

MSigm and binary SSA-Arctan. Two different techniques (SimSSA and LogicSSA) are developed at the candidate solution

production schema in binary SSA. SimSSA is used to measure similarities between two binary solutions. With SimSSA,

binary SSA’s ability to discover new points in search space has been increased. Thus, binary SSA is able to find global

optimum instead of local optimums. LogicSSA which is inspired by the logic gates and a popular method in recent years

has been used to avoid local minima traps. By these two techniques, the exploration and exploitation capabilities of binary

SSA in the binary search space are improved. Eighteen unimodal and multimodal standard benchmark optimization

functions are employed to evaluate variations of binary SSA. To select the best variations of binary SSA, a comparative

study is presented. The Wilcoxon signed-rank test has applied to the experimental results of variations of binary SSA.

Compared to well-known evolutionary and recently developed methods in the literature, the variations of binary SSA

performance is quite good. In particular, binary SSA-Tanh and binary SSA-Arctan variations of binary SSA showed

superior performance.

Keywords Binary optimization � Social spider algorithm � Transfer function

1 Introduction

Evolutionary computation has become an attractively

efficient device of optimization for rapidly increasing

complex modern optimization problems. Evolutionary

computation based on natural facts can be separated into

two important groups. These are evolutionary algorithms

(EAs) and swarm intelligence-based algorithms. EAs

include very successful methods that are mainly created by

inspirations from nature. There are a lot of EAs which

solve real-world problems and global optimization prob-

lems. The main ones of these are the genetic algorithm

(GA), genetic programming (GP), evolutionary strategies

(ES) and differential evolution (DE). These algorithms

have had very successful results, especially in solving

convex optimization problems (Talbi 2009; Mallipeddi

et al. 2011).

For the last 20 years, swarm intelligence-based algo-

rithms, which are based on a new evolutionary computation

method, attract attention. The term of a swarm expresses a

community that consists of individuals who are in com-

munication with each other. Swarm intelligence-based

algorithms study main social animal and insect behaviors

for solving problems. These algorithms imitate the

behaviors of ant, fish, bird, bee, bacteria, butterfly, etc.

Thus, the problems which seem hard are able to be solved

Communicated by V. Loia.

& Emine Baş

emineozcan@selcuk.edu.tr

Erkan Ülker

eulker@ktun.edu.tr

1 Kulu Vocational School, Selçuk University, 42075 Konya,

Turkey

2 Department of Computer Engineering, Faculty of

Engineering and Nature Sciences, Konya Technical

University, 42075 Konya, Turkey

123

Soft Computing (2020) 24:12953–12979
https://doi.org/10.1007/s00500-020-04718-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-4322-6010
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-04718-w&domain=pdf
https://doi.org/10.1007/s00500-020-04718-w

(Parpinelli and Lopes 2011; Yu and Li 2015). Three well-

known pioneers of this area are: particle swarm optimiza-

tion (PSO), ant colony optimization (ACO) (Kennedy and

Eberhart 1995; Dorigo 1990) and artificial bee colony

(ABC) optimization algorithm (Karaboga 2005). Particle

swarm optimization is an optimization method, which is

developed by Kennedy and Eberhart (1995) inspired by

flocking fish and insects. ACO is an algorithm inspired by

ants’ behaviors. The aim is to find the shortest path to food

sources for an ant colony. Karaboga has designed an arti-

ficial bee colony (ABC) optimization algorithm inspired by

bees’ behaviors (Omkar et al. 2011).

1.1 Binary optimization problem (BOP)

The binary optimization problem (BOP) is shown as a

binary-based problem space that represents an important

class of the combinatorial optimization problems (Rizk-

Allah et al. 2018). In continuous optimization, search

agents take continuous values in search space, while in

binary optimization search agents in the search space take

{0, 1} values. ‘‘0’’ represents the absence, and ‘‘1’’ repre-

sents the presence. Many problems can be solved in a

binary space by using these two values in the search space.

Some algorithms are capable of solving problems with

continuous search spaces, while some problems have dis-

crete search spaces (Mirjalili and Lewis 2013; Kennedy

and Eberhart 1997; Rashedi et al. 2009). BOP has many

applications. They need binary algorithms for their solu-

tion. These include facility location (including emergency

vehicles, health centers and commercial bank branches)

and scheduling tasks (including budgeting, flexible manu-

facturing systems, telecommunications, mass transit ser-

vices and wind turbine placement) (Prescilla and Immanuel

2013; Korkmaz et al. 2017; Beskirli et al. 2018). Also, the

BOP is used in the solution of well-known NP-hard prob-

lems [including knapsack problem, resource allocation

problem, dimensionality reduction, feature selection, net-

work optimization, unit commitment and cell formation

(Rizk-Allah and Hassanien 2018; Rizk-Allah 2014; Fan

et al. 2013; Pal and Maiti 2010; Babaoglu et al. 2010; Qiao

et al. 2006; Emary et al. 2016)]. In the literature, many

traditional methods [including relaxation methods,

Lagrangian techniques, branch-and-bound methods,

reduction schemes and integer programming (Rizk-Allah

et al. 2018)] have been proposed to solve the BOP.

Although these methods perform well in small-scale

problems, they do not perform well in large-scale problem

solutions. Although there are many methods for the solu-

tion of BOPs, the solution with meta-heuristic algorithms

has given us many advantages. In particular, it has short-

ened the solution time of large-scale problems. Due to

these limitations in the deterministic methods, more and

more are becoming interested in the meta-heuristic algo-

rithms inspired by specific phenomena (Shukla and Nanda

2018; Pereira et al. 2014; Rizk-Allah et al. 2018; Mirjalili

and Lewis 2013; Kennedy and Eberhart 1997; Rashedi

et al. 2009; Prescilla and Immanuel 2013; Korkmaz et al.

2017; Beskirli et al. 2018; Rizk-Allah and Hassanien 2018;

Babaoglu et al. 2010; Emary et al. 2016; Ling et al.

2010a, b). There are different methods to develop the

binary version of a continuous heuristic algorithm while

preserving the concepts of the search process (Mirjalili and

Lewis 2013). For instance, Ling et al. developed a proba-

bility estimation operator in order to solve binary problems

by DE (BDE) (Ling et al. 2010a). The binary magnetic

optimization algorithm (BMOA) and binary gravitational

search algorithm (BGSA) have been proposed utilizing

transfer functions and position updating rules (Mirjalili and

Mohd Hashim 2012; Rashedi et al. 2009). Binary harmony

search (BHS) algorithm has been employed a set of har-

mony search considerations and pitch adjustment rules

(Ling et al. 2010b). Kennedy and Eberhart (1997) proposed

binary versions of PSO. They have used two different

components for BPSO (a new transfer function and a dif-

ferent position updating procedure). Rizk-Allah and Has-

sanien (2018) proposed a binary version of the bat

algorithm (BBA). Cuevas et al. (2013) have developed

social spider optimization (SSO). Shukla and Nanda (2018)

developed a binary social spider optimization algorithm

(BSSO) for high-dimensional data sets. Rizk-Allah et al.

(2018) proposed binary salp swarm algorithm (BSalpSA)

and Rizk-Allah (2018) proposed binary sine cosine algo-

rithm (BSCA).

Yu and Li (2015) have offered social spider algorithm

(SSA) which is configured according to social spider

behaviors. Some spider species, which generally live soli-

tary, can live as colonies. Spiders live in colonies can

communicate with each other by a web structure. The

spiders enable this communication with the vibration that

they produce on the web. They can make random walks to

each other by the vibration information they share (Yu and

Li 2015). There are not many studies on SSA in the liter-

ature. El-Bages and Elsayed have solved the static trans-

mission expansion planning problem by using SSA. In the

proposed method, the DC power flow subproblem is solved

by developing an SSA-based web and adding potential

solutions to the result (El-Bages and Elsayed 2017). Yu and

Li have solved economic load dispatch (ELD) formulation

by developing an SSA-based new approach. ELD is one of

the essential components in power system control and

operation (Yu and Li 2016). Mousa and Bentahar have

adapted a QoS-aware web service selection process to the

SSA approach (Mousa and Bentahar 2016). Elsayed et al.

(2016) have solved the non-convex economic load dispatch

problem with an SSA-based approach.

12954 E. Baş, E. Ülker

123

Social spider optimization (SSO) is another heuristic

algorithm that is very similar to the SSA algorithm, but

totally different from it. Cuevas et al. (2013) have devel-

oped SSO algorithm by inspiring from spider behaviors. In

SSO, there are two different searching agents (spider) in

the search space of SSO. These are male and female spi-

ders. Depending upon the gender, each individual operates

a range of different evolutionary operators that imitates

various collaboration behaviors that typically exist in

colonies. In SSO, the vibration structure is very different.

There are three special vibration types in SSO approach.

Vibci: They are perceived by the individual i (Si) as a

result of the information transmitted by the member c (Sc)

who is an individual that has two important characteristics:

It is the nearest member to i and possesses a higher weight

(wc[wi). Vibbi: They are perceived by the individual i as

a result of the information transmitted by the member

b (Sb), with b being the individual holding the best weight

(best fitness value). Vibfi: They perceived by the individual

i (Si) as a result of the information transmitted by the

member f (Sf), with f being the nearest female individual to

i. There are also various different studies in the literature

with SSO. Shukla and Nanda (2018) have developed a

parallel social spider clustering algorithm for high-dimen-

sional data sets and a BSSO algorithm for unsupervised

band selection in compressed hyperspectral images. Pereira

et al. (2014) have developed a SSO-based artificial neural

networks training and applied its applications for Parkin-

son’s disease identification. Sun et al. (2017) have devel-

oped the hybrid SSO algorithms and applied it for the

estimation of thermophysical properties of phase change

material.

1.2 Binary SSA for continuous optimization task

The spider social algorithm is a heuristic algorithm

developed to solve continuous optimization problems. The

aim of this study is to introduce a binary social spider

algorithm (binary SSA) for solving general BOPs. SSA is

chosen in this study because it is a new heuristic algorithm

and there is not enough focus on binary SSA in the liter-

ature. Furthermore, there is no study in the literature on the

performance of binary SSA with respect to different

transfer functions. The main part of the binary optimization

is at transfer function. SSA is modified again according to

four different transfer functions for mapping the continuous

search space to the binary search space. In this paper, four

binary variations of the binary SSA (i.e., binary SSA-Tanh,

binary SSA-Sigm, binary SSA-MSigm and binary SSA-

Arctan) are proposed based on four transfer functions. In

order to ensure the balance between exploration and

exploitation, two different techniques (similarity measure-

ment and logic gate techniques) are developed at the

candidate solution production schema in the variations of

the binary SSA. The similarity measurement technique is

named as SimSSA, and the logic gate technique is named

as LogicSSA. Thus, the variations of binary SSA based on

SimSSA and LogicSSA is developed in this study. The

logic gate technique has a newly developed method in

recent years and preferred for the developed binary SSA.

The logic gate technique provides a strong local search

capacity. Logic gates are very suitable for binary opti-

mizations due to their structure. Input and output values of

logic gates are 0 or 1 value. In binary optimizations, the

search space consists of 0 or 1 value. 0 means the absence

of a value, and 1 indicates its existence. So, it is appropriate

to use logic gates in the search space. The similarity

measurement technique is used to measure the similarity

between two different binary structures, and the explo-

ration ability of binary SSA is increased with the similarity

measurement technique. This ensures that global optimum

is found in the search space instead of local optimums. The

convergence speed of binary SSA is also increased by

SimSSA and LogicSSA.

The primary contributions of this paper are as follows:

(a) We propose a binary SSA to solve general BOPs.

The SSA has modified again according to different

transfer functions for mapping the continuous search

space to the binary search space.

(b) Four different variations of binary SSA (i.e., binary

SSA-Tanh, binary SSA-Sigm, binary SSA-MSigm

and binary SSA-Arctan) are developed with four

different transfer functions.

(c) In order to ensure the balance between exploration

and exploitation, two different techniques (SimSSA

and LogicSSA) are developed at the candidate

solution production stage in the variations of the

binary SSA. There are advantages that both tech-

niques offer different types. For example, LogicSSA

has a strong local search capacity around the current

spider, and SimSSA is good at discovering the new

points on the solution space. So new candidate

solutions (new spiders) are produced by using

similarity and logic gates and more efficient indi-

viduals are obtained by comparing with the current

individuals.

(d) The variations of binary SSA based on SimSSA and

LogicSSA have been tested on various unimodal and

multimodal benchmark functions. Thus, the perfor-

mances between variations of binary SSA are

compared.

The rest of the paper is organized as follows: SSA is

presented in Sect. 2, the variations of binary SSA based on

SimSSA and LogicSSA are studied in Sect. 3 and the

variations of binary SSA are tested by various unimodal

A binary social spider algorithm for continuous optimization task 12955

123

and multimodal benchmark functions in Sect. 4 and the

obtained results are compared with each other and well-

known heuristic methods and new methods in the literature.

The results are evaluated.

2 Social spider algorithm (SSA)

Social spider algorithm (SSA) is a heuristic algorithm that

is created by imitating spiders’ behaviors in nature. SSA is

created for organizing searching space of optimization

problems as a high-dimensional spider web. In SSA, spi-

ders are SSA agents that perform optimization. At the

beginning of the algorithm, a predetermined number of

spiders are placed on the web. Each spider on the web has a

memory. Spider information has stored this memory (the

position of spider, the movement of spider, the dimension

mask of spider, etc.) (Yu and Li 2015). The locations of

spiders are initially set at random. Each spider produces a

vibration when it moves from a position to a different

location. The severity of the vibration is related to the fit-

ness value. The vibration is the most important feature that

distinguishes SSA from other optimization algorithms.

Vibration can spread over the web, and other spiders on the

web can feel it. Thus, other spiders on the web can obtain

the personal information of the spider. Equation 1 is used

to calculate the vibration intensity (Yu and Li 2015).

I Pg;Pg; t
� �

¼ log
1

f pg
� �

� C

 !

þ 1 ð1Þ

where I(Pg, Pg, t) is the vibration value produced by the

spider in the source position at time t. ‘‘g’’ represents a

spider. Pg(t) defines the position of spider g at time t and it

is shown simply as Pg if the time argument is t. f(Pg)

represents the spider of fitness value in its current position.

C is a confidently small constant such that all possible

fitness values are larger than C value for minimization

problems. Logarithms are used for operations with num-

bers that are too large or too small.

Dis Pg;Pb

� �
¼ Pg � Pb ð2Þ

Dis(Pg, Pb) is showing the distance between spider g and

spider b. This distance is calculated by Eq. 2 (Yu and Li

2015). Manhattan distance structure is used when calcu-

lating this distance. The vibration attenuation over distance

is calculated by Eq. 3 (Yu and Li 2015). For vibration

attenuation, the vibration value produced by the spider in

the source position and distance are two important

properties.

I Pg;Pb; t
� �

¼ I Pg;Pg; t
� �

� exp �Dis Pg;Pbð Þ
�r� ra

� �
ð3Þ

where I(Pg, Pb, t) is the felt value of the spider’s vibration

in ‘‘g’’ point, by the spider in ‘‘b’’ point. Pg(t) or simply Pg

represents the position of spider g at time t. Pb(t) or simply

Pb represents the position of spider b at time t. I(Pg, Pg, t) is

the vibration value produced by the spider in the ‘‘g’’

position at time t. �r represents the mean of the standard

deviation of the positions of all spiders in each dimension.

ra is represented as a user-controlled parameter ra [(0,

!). This parameter controls the attenuation rate of the

vibration intensity over the distance. The larger the ra is,

the weaker the attenuation imposed on the vibration (Yu

and Li 2015). The value of ra is selected from the set {1/10,

1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 10}. Yu and Li (2015) have

used for five 10-dimensional benchmark functions to

investigate the impact of this parameter on the performance

of SSA. According to their results, ra = 1 is determined.

In the initialization phase, each spider is assigned a fixed

size memory for storing spider information. The positions

of spiders are randomly generated in the search space.

Fitness values of the spiders calculated and stored. All

spiders produce vibration using their position (Eq. 1). The

algorithm uses vibrations to activate the propagation pro-

cess (Eq. 3). ‘‘V’’ represents spiders’ vibrations. Each spi-

der receives the vibrations generated by other spiders. A

spider selects the strongest of these vibration values. This

value shows as Vg
best, g represents a spider. Spider g stores

the target vibration in the memory as Vg
tar. Each spider g

compares Vg
best and Vg

tar values. If the intensity of the Vg
best is

greater than Vg
tar, the Vg

tar is changed to as Vg
best. The random

walk of each spider is calculated by Eq. 4 (Yu and Li

2015).

Pg t þ 1ð Þ ¼ Pg þ Pg � Pg t � 1ð Þ
� �

� r þ Pfollow
g � Pg

� �

� R

ð4Þ

where R is a vector of random float point numbers gener-

ated from zero to one uniformly. � denotes element-wise

multiplication. Spider g first moves along its previous

direction, which is the direction of movement in the pre-

vious iteration. The distance along this direction is a ran-

dom portion of the previous movement. Then spider

g approaches Pg
follow along each dimension with random

factors generated in (0, 1). Pg
folow represents the following

position. Each spider decides the following position

(Pg
follow) by looking at the dimension mask.

The dimension mask is determined so that a random

walk can be performed toward the Vg
tar. The dimension

mask is a {0, 1} binary vector of length D, and D is the

dimension of the optimization problem. Figure 1 shows the

dimension mask for SSA (Population size 9 Dimension).

12956 E. Baş, E. Ülker

123

The dimension mask in SSA is a structure different from

the mutation operator of the genetic algorithm. In the

genetic algorithm, the mutation operator is used to prevent

new solutions from copying the previous solution and to

reach the result faster (Holland 1975; Kurt and Sematay

2001). For example, in a sequence using a binary encoding,

a new sequence is obtained by changing the element value

randomly selected by the mutation operator to 1 if it is 0 or

1 if it is 0. In the SSA, the dimension mask guides the

random walk phase. Dimension mask is not an individual,

candidate solution or gene. Using the dimension mask,

spiders move toward the Vg
tar or a random spider during the

random walk. Each spider decides the following position

(Pg
follow) by looking at the dimension mask (in Eq. 5). With

the dimension mask, SSA achieves both global search

capability and local search capability. In SSA, a spider

obtains local search capability by performing move toward

the Vg
tar and global search capability by performing move

toward a random spider.

In SSA, all bits of the dimension mask are zero at first.

In each iteration, spiders have a probability of 1 - pc
cs to

change its dimension mask. pc [(0, 1) is a user-defined

attribute that describes the probability of changing mask. If

the dimension mask is decided to be changed, each bit of

the vector has a probability of pm. pm is also a user-con-

trolled parameter defined in (0, 1). The values of pc and pm
are selected from the set {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 0.99}. Yu and Li are used five 10-dimensional

benchmark functions to investigate the impact of these

parameters on the performance of SSA. According to their

results, pc and pm values are determined as 0.7 and 0.1,

respectively. cs is the number of iterations that the spider

has last changed its target vibration. Each bit of the

dimension mask is changed independently. The new

dimension mask does not have any correlation with the

previous dimension mask.

After the dimension mask is determined, a new fol-

lowing position Pg
follow is generated based on the dimension

mask. Pg
follow value is calculated by Eq. 5 (Yu and Li

2015). If the bit value of the dimension mask is 0, it moves

to the position of the target spider in the memory of the

spider or to the position of a random spider.

Pfollow
g;i ¼ Ptar

g;i; dimension maskg;i ¼ 0

Pr
g;i; dimension maskg;i ¼ 1

�
ð5Þ

where r is a random integer value generated in [1, popu-

lation size] and dimension_maskg,i stands for the ith

dimension of the dimension mask of spider g.

After each spider performs a random walk, the spiders

may move out of the web. They violate the constraint of the

optimization problem. Equation 6 is used to prevent pop-

ulation members from moving out of the search space.

Pg;i t þ 1ð Þ ¼ xi � Pg;i

� �
� r if Pg;i t þ 1ð Þ[xi

Pg;i � xi
� �

� r if Pg;i t þ 1ð Þ\xi;

�
ð6Þ

where xi shows upper border and xi shows a lower border.

Pg,i(t ? 1) defines the position of a spider g for the ith

dimension at time t ? 1. r is a random integer value gen-

erated in [1, population size].

Flowchart for SSA is shown in Fig. 2. The work steps of

SSA are shown in Fig. 3.

3 A binary social spider algorithm (binary
SSA)

In general, there are many problems interested in binary

search spaces, such as feature selection and diminishing

dimensionality. In addition, algorithms that have continu-

ous real search spaces can solve binary optimization

problems (BOPs) by converting variables into binary

variables. Regardless of the type of BOPs, binary search

1 0 1 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1 1 1
0 0 0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0

Fig. 1 Dimension mask for SSA (Population size x Dimension)

Iteration
<=

Max_iteration

Fitness evaluation

Spider vibration generation

Dimension mask changing

Perform a random walk for each
spider

Final

Initialization

Create random continuous space, Assign values to the
parameters

Yes

No

Control of violated constraints

Fig. 2 Flowchart for SSA

A binary social spider algorithm for continuous optimization task 12957

123

space has its own unique structure with some limitations. A

binary search space can be considered as a hypercube. The

agents (spiders) of a binary optimization algorithm can

only shift to nearer and farther corners of the hypercube by

flipping various numbers of bits (Kennedy and Eberhart

1997). Hence, in designing the binary version of SSA, the

position updating process must be modified. In SSA, social

spiders continually change their positions as a random

position in the search space according to the lower and

upper limit ranges. In binary optimization, the solution is

restricted to the binary {0, 1} values.

It has been noticed that there is not enough focus on the

binary version of SSA in the literature. The transfer functions,

which are the main part of the binary transformation, are han-

dled individually and their performance is not studied. There is

no study on the performance of SSA to solve generalBOPs. For

these reasons, we have proposed a binary SSA to perform

general binary tasks in this paper. We have obtained different

binary SSA versions using various transfer functions and

compared their performance. In binary SSA, two new different

techniques (SimSSA and LogicSSA) are developed in the

candidate solution production scheme to provide the balance

betweenexploration andexploitation in search space.These are

based on similarity measurement (SimSSA) and logical gate

(LogicSSA) techniques. There are advantages offered by dif-

ferent types of both techniques. For example, LogicSSA is very

powerful in local search and SimSSA is very good at discov-

ering new solutions in solution space. Since both techniques

have advantages offered in different types.

In the binary SSA, social spiders update their positions on

the binary search space according to Eq. 4. In the binary SSA,

the solution pool is represented by {0, 1} binary string values.

The position of a spider is updating through 0–1 flipping

operation. This flipping process is performed by a certain

threshold value that is related to the transfer function. The

transfer function is the most important part of converting to

binary form. A transfer function defines the probability of

changing a position vector’s elements from 0 to 1 and vice

versa (Kennedy andEberhart 1997). There aremanyS-shaped

and V-shaped transfer functions in the literature. Transfer

function families of S-shaped and V-shaped are shown in

Table 1. In this paper, two S-shaped (sigmoidal transfer

function and modified sigmoidal transfer function) and two

V-shaped (tangent hyperbolic transfer function and arctan

transfer function) transfer functions are used. Thus, four dif-

ferent binary SSA variations such as binary SSA-Tanh, binary

SSA-Sigm, binary SSA-MSigm and binary SSA-Arctan are

formed. The transfer function to be selected for binary con-

version affects the performance of the algorithm used in the

BOPs. A transfer function should offer both a high probability

and a small possibility of changing positions.

3.1 According to the transfer functions,
the variations of binary SSA

3.1.1 Binary SSA-Tanh (tangent hyperbolic transfer
function)

In binary SSA-Tanh, a tangent hyperbolic transfer function

is used as the transfer function. The positions of the social

Fig. 3 Work steps of SSA

Table 1 S-shaped and V-shaped transfer functions (Mirjalili and

Lewis 2013)

S-shaped family V-shaped family

Name Transfer function Name Transfer function

S1 T xð Þ ¼ 1
1þe�2x V1 T xð Þ ¼ erf

ffiffi
p

p

2
x

� �

S2 T xð Þ ¼ 1
1þe�x V2 T xð Þ ¼ tanh xð Þj j

S3 T xð Þ ¼ 1

1þe
�x
2

V3 T xð Þ ¼ xffiffiffiffiffiffiffiffi
1þx2

p

S4 T xð Þ ¼ 1

1þe
�x
3

V4 T xð Þ ¼ 2
p arctan

p
2
x

� �

12958 E. Baş, E. Ülker

123

spiders are converted into binary form according to the

tangent hyperbolic transfer function. This function works

as a threshold limit and converts positions between 0 and 1

values. The tangent hyperbolic transfer function is calcu-

lated by Eq. 7 (Rizk-Allah et al. 2018).

T x
j
i t þ 1ð Þ

� �
¼ Tanh x

j
i t þ 1ð Þ

� �
¼ e 2x

j
i
tþ1ð Þð Þ�1

e
2x

j

i
tþ1ð Þð Þþ1

D j
i t þ 1ð Þ ¼ 1 if T x

j
i t þ 1ð Þ

� �
[k1

0 Otherwise

� ð7Þ

where k1 is a random number in [0–1]. x
j
i t þ 1ð Þ is the

position of spider i at iteration t in jth dimension.

3.1.2 Binary SSA-Sigm (sigmoidal transfer function)

In binary SSA-Sigm, a sigmoidal transfer function is used

as the transfer function. The positions of the social spiders

are converted into binary form according to the sigmoidal

transfer function. This function works as a threshold limit

and converts positions between 0 and 1 values. The sig-

moidal transfer function is calculated by Eq. 8 (Rizk-Allah

et al. 2018).

S x
j
i t þ 1ð Þ

� �
¼ Sig x

j
i t þ 1ð Þ

� �
¼ 1

1þ e�x
j
i
tþ1ð Þ

D j
i t þ 1ð Þ ¼ 1 if S x

j
i t þ 1ð Þ

� �
[k2

0 Otherwise

� ð8Þ

where k2 is a random number in [0–1]. x
j
i t þ 1ð Þ is the

position of spider i at iteration t in jth dimension.

3.1.3 Binary SSA-MSigm (modified sigmoidal transfer
function)

In binary SSA-MSigm, a modified sigmoidal transfer

function is used as the transfer function. The positions of

the social spiders are converted into binary form according

to the modified sigmoidal transfer function. This function

works as a threshold limit and converts positions between 0

and 1 values. The modified sigmoidal transfer function is

calculated by Eq. 9 (Rizk-Allah et al. 2018).

MS x
j
i t þ 1ð Þ

� �
¼ MSig x

j
i t þ 1ð Þ

� �
¼ 1

1þ e�10ðx j
i
tþ1Þ�0:5ð Þ

D j
i t þ 1ð Þ ¼ 1 if MS x

j
i t þ 1ð Þ

� �
[k3

0 Otherwise

�

ð9Þ

where k3 is a random number in [0–1]. x
j
i t þ 1ð Þ is the

position of spider i at iteration t in jth dimension.

3.1.4 Binary SSA-Arctan (arctan transfer function)

In binary SSA-Arctan, an arctan transfer function is used as

the transfer function. The positions of the social spiders are

converted into binary form according to the arctan transfer

function. This function works as a threshold limit and

converts positions between 0 and 1 values. The arctan

transfer function is calculated by Eq. 10 (Rizk-Allah et al.

2018).

A x
j
i t þ 1ð Þ

� �
¼ A x

j
i t þ 1ð Þ

� �
¼ 2

p
arctan

2

p
x
j
i t þ 1ð Þ

� �

D j
i t þ 1ð Þ ¼ 1 if A x

j
i t þ 1ð Þ

� �
[k4

0 Otherwise

�

ð10Þ

where k4 is a random number in [0–1]. x
j
i t þ 1ð Þ is the

position of spider i at iteration t in jth dimension.

3.2 Similarity-based social spider algorithm
(SimSSA)

3.2.1 Similarity measurement for binary structures

The similarity measurement technique is developed to

measure the similarity between two different binary

structures. There are 76 similarity measurement techniques

for binary data (Qiao et al. 2006). One of the most com-

monly used general-purpose similarity measurement tech-

niques is shown in Eq. 11 (Jaccard’s similarity

measurement technique) (Çınar and Kiran 2018).

Similarity Xi; Yið Þ ¼ m11

m01 þ m10 þ m11

ð11Þ

where Xi and Yi represent two binary structured individuals.

‘‘D’’ is the dimensionality of the problem for Xi and Yi.

Xid [{0, 1}, Xi = [xi1, xi2, …, xid], Yid [{0, 1}, Yi = [yi1,

yi2, …, yid]. In order to measure the similarity between Xi

and Yi, we compare them by means of their bit values.

There are four possible cases, and they are shown in

Table 2.

m11 indicates the number of bits when xid = 1 in Xi and

yid = 1 in Yi, where i = 1, 2,…, D and D is the dimen-

sionality of the problem, which is obtained as follows

(Emary et al. 2016):

m11 ¼
XD

d¼1

Id; where

Id ¼
1; if xid ¼ 1 and yid ¼ 1ð Þ
0; otherwise

� ð12Þ

m10 indicates the number of bits when xid = 1 in Xi and

yid = 0 in Yi, where i = 1, 2,…, D and D is the

A binary social spider algorithm for continuous optimization task 12959

123

dimensionality of the problem, which is obtained as fol-

lows (Emary et al. 2016):

m10 ¼
XD

d¼1

Id; where

Id ¼
1; if xid ¼ 1 and yid ¼ 0ð Þ
0; otherwise

� ð13Þ

m01 indicates the number of bits when xid = 0 in Xi and

yid = 1 in Yi, where i = 1, 2,…, D and D is the dimen-

sionality of the problem, which is obtained as follows

(Emary et al. 2016):

m01 ¼
XD

d¼1

Id; where

Id ¼
1; if xid ¼ 0 and yid ¼ 1ð Þ
0; otherwise

� ð14Þ

m00 indicates the number of bits when xid = 0 in Xi and

yid = 0 in Yi, where i = 1, 2,…, D and D is the dimen-

sionality of the problem, which is obtained as follows

(Emary et al. 2016):

m00 ¼
XD

d¼1

Id; where

Id ¼
1; if xid ¼ 0 and yid ¼ 0ð Þ
0; otherwise

� ð15Þ

m00 is not used in Jaccard’s similarity measurement tech-

nique, because the value of 0 between two binary structures

does not make sense in Jaccard’s similarity measurement

technique.

By taking into account Jaccard’s coefficient of similar-

ity, an intuitive measure of dissimilarity between Xi and Yi,

which defines how far apart Xi and Yi are from each other,

can be calculated as follows (Çınar and Kiran 2018):

Dissimilarity Xi; Yið Þ ¼ 1� Similarity Xi; Yið Þ
¼ 1� m11

m01 þ m10 þ m11

ð16Þ

where dissimilarity (Xi, Yi) is in the range of [0, 1].

3.2.2 Generating a new solution in SimSSA

Two different spider values are used to generate a new

solution in SimSSA (present spider and best spider

(spiderbest in spider population) or present spider and ran-

domly selected neighbor spider). In order to generate a new

solution in the binary search space for binary SSA, Eq. 17

is used.

Dissimilarity Xnew;Xið Þ � u� Similarity Xi; Yið Þ ð17Þ

where Xnew is the newly generated spider (the candidate

solution) for the current spider (Xi), Xi is the current spider,

Yi is a random spider and u is a positive random scaling

factor. And & is the almost equal operator. In other words,

to produce the new binary solution Xnew, the value of the

following three variables (M11, M10 and M01) must be

determined.

min 1� M11

M11 þM10 þM01

� �
� u� 1� m11

m11 þ m10 þ m01

� �

ð18Þ
M11 þM01 ¼ n1 ð19Þ
M10 � n0 ð20Þ
M10;M01;M11 � 0 and integer ð21Þ

where n1 is the total number of bits with value 1 in Xi and

n0 is the total number of bits with value 0 in Xi. For

determining the values of M01, M10 and M11, the integer

mathematical model given by Eqs. (18)–(21) must be

solved. After solving the mathematical model and getting

the optimal values of M01, M10 and M11, the Xnew candidate

solution can be obtained using the new binary solution

generator (NBSG). The workings of the NBSG algorithm

are explained with the example for 16-bit individuals

below:

Let Xi = [0011010110101110], Yi = [1000101111000110]

and u = 0.7

m11 = 4, m01 = 4, m10 = 5, m00 = 3 [m00 is not used in

Jaccard’s similarity measurement technique (Ling et al.

2010b)].

Dissimilarity Xi; Yið Þ ¼ 1� Similarity Xi; Yið Þ

¼ 1� m11

m01 þ m10 þ m11

¼ 1� 4

4þ 4þ 5
¼ 1� 4

13
¼ 0:69

A ¼ u� Dissimilarity Xi; Yið Þ ¼ 0:7� 0:69 ¼ 0:48

According to the integer mathematical model given by

Eqs. (18)–(21):

minf 1� M11

M11 þM10 þM01

� �
� A

¼ minf 1� M11

M11 þM10 þM01

� �
� 0:48

M11 þM01 ¼ 8 n1ð Þ
M10 � 8 n0ð Þ
M10;M01;M11 � 0 and integer

Table 2 Possible cases in similarity

Cases xid yid m11 m10 m01 m00

1 1 1 1 0 0 0

2 1 0 0 1 0 0

3 0 1 0 0 1 0

4 0 0 0 0 0 1

12960 E. Baş, E. Ülker

123

After the model is solved by using an enumeration

scheme, the optimal output is obtained asM01 = 0,M10 = 5

and M11 = 8 and f = 0.1. After all, Xnew is generated as a

1 9 16 zero-bit array by using the NBSG algorithm given

as follows:

Inheritance phase The positions of the bits that are equal

to 1 in Xi are found (OnesXi = [3, 4, 6, 8, 9, 11, 13, 14, 15])

and M11 = 8 bit positions are selected from the OnesXi

(assume that the random selection [3, 4, 6, 8, 9, 11, 13, 15],

and the bits of Xnew in these positions are changed to 1. The

new state of Xnew is [0011010110101010].

Disinheritance phase The positions of the bits that are

equal to 0 in Xi are found (ZerosXi = [1, 2, 5, 7, 10, 12, 16])

and the M10 = 5 bit position is selected from the ZerosXi

(assume that the random selection includes [1, 2, 5, 12,

16]), and the bit of Xnew in these positions is changed to 1.

After this change, the final state of the candidate solution

Xnew is [1111110110111011].

Some examples of using the NBSG algorithm can be

seen in (Çınar and Kiran 2018; Jaccard 1901; Choi et al.

2010). NBSG algorithm operation steps are shown in

Table 3.

3.3 Logic gate-based social spider algorithm
(LogicSSA)

Logic gates are very suitable for working on binary

structures in binary solution space. The input and output

values of these gates are binary values {0, 1}. There are

basically three gates. These are ‘‘AND,’’ ‘‘OR’’ and ‘‘Ex-

clusive or (XOR)’’ logic gates. Exclusive or (XOR) logic

gate is a combination of ‘‘AND’’ and ‘‘OR’’ logic gates and

is widely used in logical situations (Çinar and Kiran 2018;

Aslan et al. 2019; Kiran and Gunduz 2013). In LogicSSA,

the ‘‘XOR’’ logic gate is used in a new candidate solution

(new spider) production stage. Because the changing

probability of the bit (bit value = 0 and bit value = 1) in

the solution is 50% in this gate. In the ‘‘OR’’ logic gate, the

changing probability of the bit (bit value = 1) in the solu-

tion is 75% and the changing probability of the bit (bit

value = 0) in the solution is 25. In the ‘‘AND’’ logic gate,

the changing probability of the bit (bit value = 1) in the

solution is 25% and the changing probability of the bit (bit

value = 0) in the solution is 75. In the ‘‘XOR’’ logic gate,

the probabilities are equal to each other. The truth

tables and these situations are given in Table 4. ‘‘?’’

symbol represents ‘‘OR’’ logic gate, ‘‘&’’ symbol repre-

sents ‘‘AND’’ logic gate and ‘‘	’’ symbol represents

‘‘XOR’’ logic gate. In order to improve the search capa-

bility of binary SSA, the XOR gate is used in candidate

solution production and the behavior of the ST control

parameter is slightly changed. In this paper, the control

parameter value of ST is taken as 0.3 (Çınar and Kiran

2018). In LogicSSA, a new candidate solution (spider) has

been created with Eq. 22.

Skj ¼
Xij 	 Bj 	 Nrj

� �
; if randij\ST

� �

Xij; otherwise

�
ð22Þ

where Skj is the jth dimension of kth new spider (candidate

solution) produced for the ith spider, Xij is the jth dimen-

sion of ith spider, Bj is the jth dimension of best spider

obtained so far and Nrj is the jth dimension of neighbor

spider randomly selected from the search space.

3.4 Binary SSA based on similarity measurement
and logic gate

Binary SSA is an algorithm consisting of a combination of

LogicSSA and SimSSA techniques. We use both tech-

niques in the production of candidate solutions in binary

SSA. One of the SimSSA or LogicSSA techniques is

selected according to a randomly generated variable in the

[0, 1] range. This selection process is shown in Eq. 23.

Candidate Solution ProductionMethod

¼ SimSSA; if ðrand\0:5Þ
LogicSSA; otherwise

�
ð23Þ

In the binary SSA approach, one of the SimSSA or

LogicSSA techniques is selected for the production of new

candidate solutions. Both techniques (SimSSA and Log-

icSSA) in search space have some advantages. LogicSSA

has a strong local search capacity, and SimSSA is good at

discovering the points on the solution space. Therefore,

Table 3 NBSG algorithm (Jaccard 1901)

Step 1. Compute the value of A through u:Dissimilarity Xi;Yið Þ and use it in the mathematical programming model (18)–(21) with outputM01,

M10 and M11. Apply the total enumeration (TE) scheme to solve the mathematical programming problem optimally. Initialize by a

1 9 D zero solution vector

Step 2. (Inheritance phase). Based on any logic, select M11 number of zero bits from Xnew which their corresponding value in Xi is 1. Change

the value of the selected bits from 0 to 1

Step 3. (Disinheritance phase). Based on any logic, select M10 number of zero bits from which their corresponding value in Xi is 0. Change

the value of the selected bits from 0 to 1. Then, report the new binary solution vector Xnew as output

A binary social spider algorithm for continuous optimization task 12961

123

binary SSA based on SimSSA and LogicSSA is also useful

to provide a balanced search in the solution space. So new

candidate solutions (new spiders) are produced by using

similarity measurement and logic gate techniques, and

more efficient individuals are obtained by comparing with

the current individuals. Since both techniques have

advantages in different views, the probability of selecting

any of the techniques is determined as 0.5. This fixed

selection rate can be changed according to the structure of

BOPs. The detailed pseudocode of the binary SSA is

shown in Fig. 4.

According to Fig. 4, the proposed binary SSA consists

of three main stages. In the first stage, the basic parameters

are defined and random binary positions for the social

spiders are determined in binary space. In the second stage,

the fitness function is run in binary space for the spiders

and the best fitness value is calculated. Vibrations are

calculated for each spider, random walking is performed.

Spider positions in the continuous search space are calcu-

lated according to the transfer function, and their equiva-

lents in the binary space are determined. They are

converted to binary {0, 1} according to a certain threshold

value. In addition, we show the binary SSA as binary SSA-

Tanh when k = 1, binary SSA-Sigm when k = 2, binary

SSA-MSigm when k = 3 and binary SSA-Arctan when

k = 4. In the third stage, the candidate solutions production

method (including SimSSA and LogicSSA) is run to pro-

duce candidate solutions (new spiders). Produced candidate

solutions are compared with the existing spider population.

If the fitness values of the candidate solutions are better

than the fitness values of the current population individuals,

the population of individuals is swapped mutually with the

candidate solutions. Otherwise, no changes will be made.

The best result is obtained.

In this paper, the continuous test function is handled as a

BOP where each dimension is encoded by Q-bit binary

string such that first bit for the sign of the number, the

subsequent P bits for the integer part and the final Q -

P - 1 bits for a fractional part of the number. The values

of Q and P were chosen for each test function according to

the range values of the number. For example, for f1

benchmark function, we used Q = 13, P = 7, the first bit of

Q = the sign of bit and a fractional part = Q - (P ? 1(the

sign bit)) = 13 - (7 ? 1) = 5 where the problem is han-

dled with binary strings until the termination condition is

satisfied. Afterward, each of these Q-bit strings is con-

verted into a real number, and the fitness value is

computed.

4 Experimental results and analysis

Binary social spider algorithm is tested on MATLAB

R2014a that installed over windows 7, 64 bit, the system of

2.30 GHz processor with 4 GB RAM. Each binary SSA

variation is tested twenty independent runs with the same

maximum number of iterations for each run. To have fair

comparisons, all binary SSA variations have been carefully

run in the same programming language, similar platform

and similar parameter values. In experimental studies,

eighteen different unimodal and multimodal benchmark

functions, which are shown in Table 5, are solved sepa-

rately. Wilcoxon signed-rank test is applied for the varia-

tions of binary SSA for obtained fitness values of spider

populations.

Benchmark functions divided into two groups according

to their type. These functions are obtained from various

sources (Yu and Li 2015; Rizk-Allah et al. 2018; Sur-

janovic and Bingham 2019; Jamil and Yang 2013).

Group I Unimodal benchmark functions f1–f11, which

has only one global optimum and can evaluate the

exploitation capability of the investigated algorithms.

Group II Functions f12–f18 (multimodal), which

include many local optimal whose number increases

exponentially with the problem size, become highly useful

when the purpose is to evaluate the exploration capability

of the investigated algorithms.

For each benchmark function, four measures are used to

evaluate the performance of each algorithm to solve that

function. These measures include (1) average (mean), (2)

standard deviation (sd), (3) minimum value (best) and (4)

maximum value (worst) any they defined as in Table 6. nrun
represents the total number of runs.

Table 4 OR, AND and XOR

truth tables
Positions OR gate AND gate XOR gate

Xi Xk Xi ? Xk Xi & Xk Xi 	 Xk

0 0 0 0 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 0

75% = 1, 25% = 0 25% = 1, 75% = 0 50% = 1, 50% = 0

12962 E. Baş, E. Ülker

123

Fig. 4 Detailed pseudocode of

the binary SSA

A binary social spider algorithm for continuous optimization task 12963

123

Ta
bl
e
5

C
la
ss
ic
al

b
en
ch
m
ar
k
fu
n
ct
io
n
s
u
se
d
in

th
e
ex
p
er
im

en
ta
l
st
u
d
y

T
y
p
e

N
am

e
F
u
n
ct
io
n

R
an
g
e

f m
in
im

u
m

U
n
im

o
d
al

f 1
f 1

Xð
Þ¼

PD i¼
1

x2 i

[-
1
0
0
,
1
0
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 2
f 2

Xð
Þ¼

PD i¼
1

ix
4 i

[-
2
.5
6
,
2
.5
6
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 3
f 3

Xð
Þ¼

PD i¼
1

x i
þ
0
:5

½

ð
Þ2

[-
1
0
,
1
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 4
f 4

xð
Þ¼

PD i¼
1

ix
4 i
þ
ra
n
d
o
m

0
;1

½
Þ

[-
2
.5
6
,
2
.5
6
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 5
f 5

xð
Þ¼

m
ax

i
x ij
j;

1
�
i�

D
f

g
[-

1
0
0
,
1
0
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 6
f 6

Xð
Þ¼

PD i¼
1

x ij
jþ
QD i¼
1

x ij
j

[-
1
0
0
,
1
0
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 7
f 7

Xð
Þ¼

PD�
1

i¼
1

1
0
0
x i
þ
1
�
x2 i

�
� 2
þ

x i
�
1

ð
Þ2

h
i

[-
3
0
,
3
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 8
f 8

Xð
Þ¼

PD i¼
1

ix
2 i

[-
1
0
,
1
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 9
f 9

Xð
Þ¼

x 1
�
1

ð
Þ2
þ
PD i¼

1

i
2
x2 i

�
x i
�
1

�
� 2

[-
1
0
,
1
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
0

f 1
0
Xð
Þ¼

PD i¼
1

x ij
jiþ

1
[-

1
,
1
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
1

f 1
1
Xð
Þ¼

PD i¼
1

Pi j¼
1

x2 j

[-
6
5
,
6
5
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

M
u
lt
im

o
d
al

f 1
2

f 1
2
xð
Þ¼

1
�
co
s

2
p

ffiffiffi
ffiffiffi
ffiffiffi
ffiffi

PD i¼
1

x2 i

s

!

þ
0
:1

ffiffiffi
ffiffiffi
ffiffiffi
ffiffi

PD i¼
1

x2 i

s
[-

1
0
0
,
1
0
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
3

f 1
3
Xð
Þ¼

P10 i¼
1

x i
�
1

ð
Þ2
�
P10 i¼

2

x i
x i
�
1

[-
n
2
,
n
2
]D

i
=
1
,
2
,
…
,
D
);
x i
=
(D

?
1
-

i)
f(
X
*
)
=
-D

(D
?

4
)(
D

-
1
)/
6

f 1
4

f 1
4
Xð
Þ¼

0
:1

si
n
2
3
p
x i

ð
Þþ

PD i¼
1

x i
�
1

ð
Þ2

1
þ
si
n
2
3
p
x i
þ
1

ð
Þ

�
�

�

þ
x D

�
1

ð
Þ2

1
þ
si
n
2
2
p
x D

ð
Þ

�
� g

þ
PD i¼

1

u
x i
;5
;1
0
0
;4

ð
Þ;
u
x i
;a
;k
;m

ð
Þ¼

k
x i
�
a

ð
Þm

x i
[

a

0
�
a
\
x i
\

a

k
�
x i
�
a

ð
Þm

x i
\

�
a

8 < :

[-
1
0
,
1
0
]D

X
*
=
(1
,
…
,
1
);
f(
X
*
)
=
0

f 1
5

f 1
5
Xð
Þ¼

PD i¼
1

x2 i
�
1
0
co
s
2
p
x i

ð
Þþ

1
0

�
�

[-
5
0
,
5
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
6

f 1
6
Xð
Þ¼

1
4
0
0
0

PD i¼
1

x2 i
�
QD i¼
1

co
s

x i
ffi i

p�
�
þ
1

[-
6
0
0
,
6
0
0
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
7

f 1
7
Xð
Þ¼

�
2
0
ex
p

�
0
:2

ffiffi 1 n

q
PD i¼

1

x2 i

�
�
�
ex
p

1 n

PD i¼
1

co
s
2
p
x i

ð
Þ

�
�
þ
2
0
þ
ex
p

[-
3
2
,
3
2
]D

X
*
=
(0
,
…
,
0
);
f(
X
*
)
=
0

f 1
8

f 1
8
Xð
Þ¼

PD i¼
1

�
x i
si
n

ffiffiffi
ffiffiffiffi x ij
j

p �
�

[-
5
0
0
,
5
0
0
]D

X
*
=
(4
2
0
,
…

,
4
2
0
);
f(
X
*
)
=
-

4
1
8
.9
8
2
9
9

D

12964 E. Baş, E. Ülker

123

4.1 Determination of initial population size
on the fitness function

Different combinations of population size are tested on f1,

f5, f15 and f17 selected randomly unimodal and multi-

modal benchmark functions. The results are shown in

Table 7. According to the results, the most appropriate

values are determined as 30 for the initial population size.

The same parameters used in the variations of binary

SSA comparison, which are population size (N), maximum

iteration value and other parameters, are shown in Table 8.

4.2 Comparison between different variations
of binary SSA

The variations of binary SSA based on SimSSA and Log-

icSSA (i.e., binary SSA-Tanh, binary SSA-Sigm, binary

SSA-MSigm and binary SSA-Arctan) are tested in eighteen

different unimodal and multimodal benchmark functions.

Each benchmark function is run 20 times. The best, worst,

mean and standard deviation (SD) are done for obtained

benchmark function results. The best, worst, mean and

standard deviation (SD) comparison results, which are

obtained for unimodal benchmark functions (f1–f11) by

selecting population size (N) = 30 and maximum itera-

tion = 50 values for binary SSA, are shown in Table 9. The

standard deviation results, the mean results and the best

results of variations of binary SSA’s superior performance

are marked in bold.

According to the standard deviation results, binary SSA-

Arctan has shown better performance than binary SSA-

Tanh, binary SSA-Sigm and binary SSA-MSigm in all

unimodal benchmark functions. The binary SSA-Arctan

variation shows success at roughly 81.81% of unimodal

benchmark functions for 9 out of 11 benchmark functions

(f1, f2, f3, f4, f5, f6, f7, f9 and f10). According to the mean

results, binary SSA-Arctan has shown better performance

than binary SSA-Tanh, binary SSA-Sigm and binary SSA-

MSigm in all unimodal benchmark functions. The binary

SSA-Arctan variation shows success at roughly 63.63% of

Table 6 Performance measure
Mean

Mean ¼ 1
nrun

�
Pnrun

i¼1

Fitness funci

Standard deviation
SD ¼

ffi
1

nrun

Pnrun

i¼1

gbesti �Meanð Þ2
s

Best Fitness func Best ¼ mini¼1nrun Fitness func Besti

Worst Fitness func Worst ¼ maxi¼1nrun Fitness func Worsti

Table 7 Mean of the fitness

values according to different

combinations of population size

(N) on f1, f5, f15 and f17

Variations of binary SSA Population size (N) f1 f5 f15 f17

Binary SSA-Tanh 10 0.0000 2.0000 34.0000 25.0000

20 0.0000 0.0000 32.0000 22.0000

30 0.0000 0.0000 0.0000 20.0000

Binary SSA-Sigm 10 12.5000 11.500 20.0000 21.0000

20 2 53.0000 11.4000 6.0000 21.0000

30 - 23.0000 9.0000 14.0000 20.0000

Binary SSA-MSigm 10 80.0000 9.0000 50.0000 20.0000

20 1.7000 7.5000 32.0000 20.0000

30 0.0000 2.6000 21.0000 20.0000

Binary SSA-Arctan 10 0.0000 10.5000 45.0000 1.2E-04

20 0.0000 0.0000 0.0000 1.2E-05

30 0.0000 0.0000 0.0000 1.2E-06

The best results are marked with bold

Table 8 Parameter setup for

binary SSA variations (i.e.,

binary SSA-Tanh, binary SSA-

Sigm, binary SSA-MSigm and

binary SSA-Arctan)

Parameters Values

Population size (N) 30

Maximum iteration 50

Number of runs 20

Other parameters ra = 1, pc = 0.7; pm = 0.1; ST = 0.3 (Yu and Li 2015; Emary et al. 2016)

A binary social spider algorithm for continuous optimization task 12965

123

Table 9 Comparison of binary SSA-Tanh, binary SSA-Sigm, binary SSA-MSigm and binary SSA-Arctan with population size = 30 in unimodal

benchmark functions with the maximum number of iterations = 50

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan

f1

Best 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 0.0000 0.0000

Worst 0.0000 0.0000 0.0000 0.0000

SD 0.0000 0.0000 0.0000 0.0000

f2

Best 0.0000 2.0000 2.0000 0.0000

Mean 1.0124 2.0410 2.1045 1.0214

Worst 1.5600 2.5600 2.3600 1.1500

SD 0.0280 0.2800 0.4500 0.0250

f3

Best 0.0000 6.0001 7.5000 0.0000

Mean 0.0000 6.0001 7.5000 0.0000

Worst 0.0000 6.0001 7.5000 0.0000

SD 0.0000 0.0000 0.0000 0.0000

f4

Best 1.26E-05 4.26E-04 4.25E-04 1.22E205

Mean 0.000135 0.0535 0.0452 1.85E-04

Worst 0.00157 7.56E-03 6.85E-03 2.77E-03

SD 0.0006 0.0007 0.0007 0.0006

f5

Best 0.0000 68.0050 55.0400 0.0000

Mean 1.0100 75.0900 60.7580 0.0000

Worst 6.0000 85.0600 65.7700 0.0000

SD 2.1200 10.0080 3.0020 0.0000

f6

Best 0.0000 62.4250 56.7450 0.0000

Mean 0.0000 63.2500 66.9800 0.0000

Worst 0.0000 68.1100 87.5500 0.0000

SD 0.0000 5.4780 11.2540 0.0000

f7

Best 0.0000 4.0001 8.012700 0.0000

Mean 13.0017 17.0127 15.1027 8.4150

Worst 18.0020 35.0002 29.0001 14.0000

SD 0.0129 0.1441 0.02100 0.0128

f8

Best 0.0000 2 15.0001 2 15.0001 2 15.0001

Mean 4.0174 2 12.0014 - 10.0042 - 6.4710

Worst 10.0000 15.0001 15.0001 12.0002

SD 0.3340 0.3210 0.3220 0.3240

f9

Best 0.0000 1.00E-05 0.0000 0.0000

Mean 2.1700 7.1700 0.0000 0.0000

Worst 10.0000 10.0000 0.0000 0.0000

SD 3.6704 4.8448 0.0000 0.0000

f10

Best 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 5.00E-01 0.0000 0.0000

12966 E. Baş, E. Ülker

123

unimodal benchmark functions for 7 out of 11 benchmark

functions (f1, f3, f5, f6, f7, f9 and f10). According to the

best results, binary SSA-Arctan has shown high perfor-

mance in all unimodal benchmark functions. The binary

SSA-Arctan variation shows success at roughly 100% of

unimodal benchmark functions for 11 out of 11 benchmark

functions. The reason for this success is due to a more

balanced diversification between the candidate solutions

with the similarity measurement and logic gate techniques

and type of the transfer function.

The best, worst, mean and standard deviation (SD)

comparison results, which are obtained for multimodal

benchmark functions (f11–f18) by selecting population size

(N) = 30 and maximum iteration = 50 values for binary

SSA, are shown in Table 10.

For Table 10, according to the standard deviation

results, binary SSA-Arctan has shown better performance

than binary SSA-MSigm, binary SSA-Sigm and binary

SSA-Tanh in all multimodal benchmark functions. The

binary SSA-Arctan variation shows success at roughly

71.43% of multimodal benchmark functions for 5 out of 7

benchmark functions (f12, f13, f14, f15 and f18). According

to the mean results, binary SSA-Arctan has shown better

performance than binary SSA-MSigm, binary SSA-Sigm

and binary SSA-Tanh in all multimodal benchmark func-

tions. The binary SSA-Arctan variation shows success at

roughly 57.14% of multimodal benchmark functions for 4

out of 7 benchmark functions (f13, f14, f15 and f18).

According to the best results, binary SSA-Arctan has

shown better performance than binary SSA-Tanh, binary

SSA-Sigm and binary SSA-MSigm in all multimodal

benchmark functions. The binary SSA-Arctan variation

shows success at roughly 57.14% of multimodal bench-

mark functions for 4 out of 7 benchmark functions (f13,

f14, f15 and f16). According to the best results, binary

SSA-Arctan and binary SSA-MSigm variations show suc-

cess at roughly 57.14% of multimodal benchmark func-

tions for 4 out of 7 benchmark functions and binary SSA-

Tanh variation shows success at roughly 71.43% of mul-

timodal benchmark functions for 5 out of 7 benchmark

functions. According to the results, binary SSA-Tanh and

binary SSA-Arctan have shown superior performance

compared to other variations of binary SSA according to

many measurement criteria (best, worst, mean and SD).

Based on the observed results, it can conclude that binary

SSA-Tanh and binary SSA-Arctan have good quality and

stability than the others. Binary SSA-Tanh and binary

SSA-Arctan variations have established a more stable bal-

ance between exploration and exploitation.

The comparison results of fitness value, which are

obtained for eighteen unimodal and multimodal benchmark

functions by selecting population (N) size as 30 and max-

imum iteration as 50 for variations of binary SSA, are

shown in Fig. 5. Based on the convergence graphics of the

benchmark functions, three significant conclusions can be

drawn: (1) Binary SSA-Tanh and binary SSA-Arctan pro-

vide the best convergence speed on almost selected func-

tions, and also, binary SSA-Tanh and binary SSA-Arctan

perform better than the other comparative variations of

binary SSA. (2) The binary SSA-Tanh and binary SSA-

Arctan provide stable solutions on almost selected bench-

mark functions, which imply the reliability of solutions,

especially for large-scale instances. (3) Most results of the

binary SSA-Tanh, binary SSA-MSigm and binary SSA-

Arctan exhibit a continuous improvement during the opti-

mization process.

In particular, the variation of binary SSA-Arctan has

quickly reached an optimum solution in almost all bench-

mark test functions. The convergence speed of this algo-

rithm is increased by the logic gate and similarity

measurement techniques added during the candidate solu-

tion production stage. With the similarity measurement

technique (SimSSA), this algorithm has succeeded in

finding new points in binary search space and finding

global optimum instead of local optimums. Logic gates, a

new and successful technique, have become very popular

in recent years. In this paper, the LogicSSA technique is

proposed, which is based on logic gates. With the Log-

icSSA technique, binary SSA has been saved from local

Table 9 (continued)

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan

Worst 0.0000 1.00E?00 0.0000 0.0000

SD 0.0000 0.5000 0.0000 0.0000

f11

Best 0.0000 20.0000 0.0000 0.0000

Mean 1.3300 35.2000 1.00E205 2.50E-05

Worst 8.0001 65.0000 4.00E-05 9.00E-05

SD 2.9800 13.0000 1.53E205 3.25E-05

SD is the standard deviation; best is the minimum value; worst is the maximum value; the mean is the average of the unimodal benchmark

function results

A binary social spider algorithm for continuous optimization task 12967

123

traps in the local search space and the ability to discover

local optimums has been increased.

4.3 Wilcoxon signed-rank test and evaluation
of binary SSA variations

In this paper, variations of binary SSA are operated with 20

times various eighteen unimodal and multimodal bench-

mark functions with population size = 30 and maximum

iteration = 50. Twenty trials are done in each of the

unimodal and multimodal benchmark functions, and

twenty data sets are obtained. Whether there is a significant

difference in this data set is searched by using the Wil-

coxon signed-rank test (Derrac et al. 2011). The test results

are shown in Table 11 for unimodal benchmark functions,

and Table 12 shows multimodal benchmark functions. In

Wilcoxon signed-rank test, alpha = 0.05 meaning level and

determined value are 52 for n = 10 (n is data set number)

(Acılar 2013). Two hypotheses are evaluated in the results.

In the H0 hypothesis,Mdata1 = Mdata2, and in H1 hypothesis,

Table 10 Comparison of binary

SSA-Tanh, binary SSA-Sigm,

binary SSA-MSigm and binary

SSA-Arctan with population

size = 30 in multimodal

benchmark functions with the

maximum number of

iterations = {50, 50, 50, 50}

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan

f12

Best 4.0000 3.0000 1.000 17.0001

Mean 35.7000 64.800 40.3000 54.0000

Worst 80.0010 100.0000 91.0001 86.0001

SD 24.0040 30.0745 29.7247 22.2411

f13

Best 2 127.0000 2 127.0000 2 127.0000 2 127.0000

Mean - 19.500 - 57.5000 - 124.0000 2 127.0000

Worst 127.0000 - 125.0000 - 111.0000 - 127.0000

SD 67.8939 85.9569 5.9628 0.0000

f14

Best 0.0000 - 15.0001 2 15.0002 2 15.0002

Mean 2.8000 - 0.333 - 15.0001 2 15.0002

Worst 6.0000 14.0000 - 15.0001 - 15.0002

SD 2.3152 10.8884 3.73E-05 1.78E215

f15

Best 0.0000 31.0540 0.0000 0.0000

Mean 25.0050 41.0010 29.0410 0.0000

Worst 47.0140 49.0140 38.0740 0.0000

SD 75.1000 55.1000 95.1000 0.0000

f16

Best 0.0000 529.4650 365.7485 0.0000

Mean 0.0000 580.4650 368.7480 0.25470

Worst 0.0000 600.0000 524.7840 0.43257

SD 0.0000 233.4580 324.5740 0.09684

f17

Best 20.0015 20.5471 20.4175 20.5472

Mean 20.0478 20.9870 21.1004 20.5147

Worst 20.5410 21.0141 21.9840 20.5470

SD 0.0147 0.0502 1.1470 0.0287

f18

Best 2 500.0000 - 421.1470 - 435.8540 - 498.0178

Mean - 468.1247 - 395.1240 - 400.2140 2 489.6045

Worst - 250.7480 - 120.0124 - 80.1450 - 330.5480

SD 250.4012 240.1204 410.2100 140.2140

The best results are marked with bold

SD is the standard deviation; best is the minimum value; worst is the maximum value; mean is the average

of the multimodal benchmark function results

12968 E. Baş, E. Ülker

123

Fig. 5 Convergence graphics for variations of binary SSA for benchmark functions (f1–f18)

A binary social spider algorithm for continuous optimization task 12969

123

Mdata1 = Mdata2. H0 hypothesis is rejected in h = 1 values

and it is called that there is a semantic difference between

the algorithms. The p values of the hypothesis are calcu-

lated by using MATLAB R2014a software. By these

hypothesizes, the superiority among two optimizers can be

determined. In this paper, we investigated whether there is

a significant difference between variations of the binary

SSA results. All variations of binary SSA are tested with

Wilcoxon signed-rank test. If the obtained results in

benchmark functions are equal, the Wilcoxon signed-rank

test is not applied and the result is ‘‘NaN.’’ According to

the obtained results through implementing the Wilcoxon

signed-rank test for pair-wise comparisons between varia-

tions of the binary SSA, there is not a semantic difference

between the results obtained from binary SSA-Arctan and

binary SSA-MSigm.

Table 13 shows the obtained results through imple-

menting the Wilcoxon signed-rank test for comparisons

between binary SSA-Arctan and the other variations of the

binary SSA. From these results, we can conclude that the

binary SSA-Arctan has a superior performance over the

other variations.

Fig. 5 continued

12970 E. Baş, E. Ülker

123

4.4 Comparison of binary SSA with other meta-
heuristic algorithms

Case Study 1 Well-known heuristic algorithms of the lit-

erature and recently developed binary algorithms are

shown in Table 14. In this paper, particle swarm opti-

mization (PSO), genetic algorithm (GA), binary hybrid

particle swarm optimization with wavelet mutation

(BHPSOWM), BSalpSA, binary particle swarm optimiza-

tion (BPSO), binary bat algorithm (BBA), BSCO, BSSO

and binary SSA are compared in various unimodal and

multimodal benchmark functions in equal comparison

parameters. The parameters used in all comparison algo-

rithms are shown in Table 15.

Table 11 Wilcoxon signed-rank test on variations of binary SSA in the maximum number of iterations = 50 and population size = 30 in

unimodal benchmark functions (f1–f11)

F (Binary SSA-

Arctan) - (Binary

SSA-Sigm)

(Binary SSA-

Arctan) - (Binary

SSA-MSigm)

(Binary SSA-

Arctan) - (Binary

SSA-Tanh)

(Binary SSA-

Sigm) - (Binary

SSA-MSigm)

(Binary SSA-

Sigm) - (Binary

SSA-Tanh)

(Binary SSA-

MSigm) - (Binary

SSA-Tanh)

(P) (h) (P) (h) (P) (h) (P) (h) (P) (h) (P) (h)

f1(x) 2.016E-05 1 NaN 0 0.0198 1 2.02E-05 1 0.0042 1 0.0198 1

f2(x) 0.3039 0 0.6358 0 0.1403 0 0.8816 0 0.4884 0 0.3363 0

f3(x) 0.0021 1 NaN 0 0.0400 1 0.0021 1 0.1607 0 0.0400 1

f4(x) 0.8710 0 0.1805 0 0.7149 0 0.0759 0 1 0 0.0616 0

f5(x) 0.0367 1 0.4879 0 0.2420 0 0.2769 0 0.1758 0 0.4508 0

f6(x) 3.72E-04 1 NaN 0 0.005E-04 1 3.71E-04 1 0.8217 0 4.05E-04 1

f7(x) 0.1624 0 0.1624 0 0.1624 0 4.68E-10 1 NaN 0 6.69E-10 1

f8(x) 0.3421 0 NaN 0 1 0 0.3421 0 0.5940 0 1 0

f9(x) 0.002 1 NaN 0 0.3421 0 0.0020 1 0.0084 1 0.3421 0

f10(x) NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0

f11(x) 1.096E-06 1 NaN 0 1.64E-04 1 1.09E-06 1 0.05 1 1.64E-04 1

The p-values are below 0.05 for the majority of the benchmark functions

Table 12 Wilcoxon signed-rank test on variations of binary SSA in the maximum number of iterations = 50 and population size = 30 in

multimodal benchmark functions (f12–f18)

F (Binary SSA-

Arctan) - (Binary

SSA-Sigm)

(Binary SSA-

Arctan) - (Binary

SSA-MSigm)

(Binary SSA-

Arctan) - (Binary

SSA-Tanh)

(Binary SSA-

Sigm) - (Binary

SSA-MSigm)

(Binary SSA-

Sigm) - (Binary

SSA-Tanh)

(Binary SSA-

MSigm) - (Binary

SSA-Tanh)

(P) (h) (P) (h) (P) (h) (P) (h) (P) (h) (P) (h)

f12(x) 0.6072 0 0.9667 0 0.9667 0 0.7972 0 0.8709 0 0.7763 0

f13(x) 6.59E-05 1 6.59E-05 1 6.59E-05 1 4.68E-10 1 NaN 0 4.68E-10 1

f14(x) 0.3421 0 0.3421 0 0.3421 0 4.68E-10 1 NaN 0 4.68E-10 1

f15(x) 2.51E-05 1 NaN 0 0.0197 1 2.52E-05 1 0.0350 1 0.0197 1

f16(x) 0.3421 0 NaN 0 0.3421 0 0.3421 0 1 0 0.3421 0

f17(x) 1.09E-06 1 NaN 0 4.01E-04 1 1.09E-06 1 0.0192 1 4.0005E-04 1

f18(x) 3.92E-04 1 0.9031 0 5.33E-06 1 1.54E-04 1 0.0451 1 9.83E-07 1

The p-values are below 0.05 for the majority of the benchmark functions

Table 13 Wilcoxon signed-rank

test for comparison results in

Tables 9 and 10

Compared approaches Evaluations

The variations Compared R- R? p value Winner

Binary SSA-Arctan Binary SSA-Tanh 72.5 37 0.2284 Binary SSA-Arctan

Binary SSA-Arctan Binary SSA-MSigm 47 33 0.9569 Binary SSA-Arctan

Binary SSA-Arctan Binary SSA-Sigm 106 29 0.4617 Binary SSA-Arctan

A binary social spider algorithm for continuous optimization task 12971

123

BPSO, BBA, BSCA, BSalpSA, BSSO and variations of

binary SSA (i.e., binary SSA-Tanh, binary SSA-Sigm,

binary SSA-MSigm and binary SSA-Arctan) algorithms

are compared according to four different criteria. There are

the mean, the standard deviation (SD), the best and the

worst criteria. In the compared algorithms, the population

size (N) is determined as 30 and a maximum number of

iterations is determined as 50 for variations of binary SSA

equally. The comparison results are shown in Table 16.

In Table 16, the standard deviation, the mean and the

best results of variations of binary SSA’s superior perfor-

mance are marked in bold. The variations of binary SSA

have displayed an extremely good performance in selected

benchmark functions in various comparison criteria

according to comparison results. According to the standard

deviation results, binary SSA has shown better perfor-

mance than BPSO, BBA, BSCA and BSalpSA in all the

unimodal and multimodal benchmark functions. According

to the standard deviation, mean and best results, the binary

SSA shows success at roughly 88.89% of multimodal

benchmark functions for 8 out of 9 benchmark functions

(f1, f3, f4, f5, f6, f15, f16 and f17). BSalpSA is the second-

best performing algorithm after binary SSA. The results

show that binary SSA finds superior solutions with satis-

factory standard deviation values. Binary SSA has

achieved this success thanks to its similarity measurement

and logic gate methods. Thus, the exploration and

exploitation capability of binary SSA in the binary search

space has been improved. Thus, it is more advantages than

other comparison algorithms.

Case Study 2 Social spider optimization is another

comparative heuristic algorithm that is very similar to the

SSA algorithm, but totally different from it. In SSO, there

are two different searching agents (spider) in the search

space of SSO. These are male and female spiders.

Depending upon the gender, each individual operates a

range of different evolutionary operators that imitates

various collaboration behaviors that typically exist in

colonies (Cuevas et al. 2013; Shukla and Nanda 2018). In

SSA, there is no gender discrimination between the spiders.

There is a single type searching agent (spider) in search

space. In this paper, BSSO and binary SSA are also com-

pared in various unimodal and multimodal benchmark

functions in equal comparison parameters. Table 17 shows

the parameters for both algorithms. The results of the best,

mean, worst and standard deviation are shown in Tables 18

Table 14 Keys commonly used for comparative algorithms

Key Method name References

PSO Particle swarm optimization Jiang et al. (2017)

GA Genetic algorithm Jiang et al. (2017)

BHPSOWM Binary hybrid particle swarm optimization with wavelet mutation Jiang et al. (2017)

BSalpSA Binary salp swarm algorithm Rizk-Allah et al. (2018)

BPSO Binary particle swarm optimization Rizk-Allah and Hassanien (2018)

BBA Binary bat algorithm Rizk-Allah and Hassanien (2018)

BSCA Binary sine cosine algorithm Rizk-Allah (2018)

BSSO Binary social spider optimization Cuevas et al. (2013), Shukla and Nanda (2018)

Binary SSA Binary social spider algorithm

Table 15 Parameters of all algorithms

Key Method name

BPSO Inertia weight: wmin = 0.4; wmax = 0.9; acceleration coefficients: c1= c2 = 2

BBA Minimum and maximum frequencies: Fmin = 0 and Fmax = 2; pulse emission rate: r = 0.5;

loudness: A = 0.25; constants: a; � = 0.9

BSCA r1 = 1–0 (linear decreasing parameter); r2 [[0, 2p], r3 [[0, 2]

BSalpSA c1 = 1–0 (nonlinear decreasing parameter); c2 [[0, 1], c3 [[0, 1]

Binary SSA-Tanh ra = 1; pc = 0.7; pm = 0.1; ST = 0.3

Binary SSA-Sigm ra = 1; pc = 0.7; pm = 0.1; ST = 0.3

Binary SSA-MSigm ra = 1; pc = 0.7; pm = 0.1; ST = 0.3

Binary SSA-Arctan ra = 1; pc = 0.7; pm = 0.1; ST = 0.3

Common settings Population size (N) = 30; number of runs = 20; maximum iterations = 50

12972 E. Baş, E. Ülker

123

Table 16 Variations of binary SSA and its comparison with comparative algorithms in BPSO, BBA, BSCA and BSalpSA

Function BPSO BBA BSCA BSalpSA Binary SSA-

Tanh

Binary SSA-

Sigm

Binary SSA-

MSigm

Binary SSA-

Arctan

f1

Best 1.99E?09 1.76E?08 5.58E?09 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 3.42E?09 3.01E?08 7.82E?09 0.0000 0.0000 0.0000 0.0000 0.0000

Worst 4.45E?09 5E?08 8.69E?09 0.0000 0.0000 0.0000 0.0000 0.0000

SD 5.41E?08 97.588.6050 7.56E?08 0.0000 0.0000 0.0000 0.0000 0.0000

f3

Best 39,863.33 2278.4530 85,869.500 7.5000 0.0000 6.0001 7.5000 0.0000

Mean 51,400.34 5407.4590 112,325.20 7.5000 0.0000 6.0001 7.5000 0.0000

Worst 60,413.45 7471.4220 138,006.70 7.5000 0.0000 6.0001 7.5000 0.0000

SD 5783.194 1488.3310 15,623.490 0.0000 0.0000 0.0000 0.0000 0.0000

f4

Best 2.55E?09 21,957,400 1.01E?10 3.48E-05 1.26E-05 4.26E-04 4.250E-04 1.22E2 05

Mean 3.33E?09 70,533,281 1.28E?10 0.000925 1.35E2 04 5.35E-02 4.52E-02 1.85E-04

Worst 4.17E?09 1.39E?08 1.5E?10 0.001824 1.57E-03 7.56E-03 6.85E-03 2.77E-03

SD 7.21E?08 49613853 2.33E?09 0.0007 0.0006 0.0007 0.0007 0.0006

f5

Best 79.375 41.5000 102.5000 0.0000 0.0000 68.0050 55.0400 0.0000

Mean 90.9125 54.4188 112.1125 0.0000 1.0100 75.0900 60.7580 0.0000

Worst 100.25 67.6250 118.5000 0.0000 6.0000 85.0600 65.7700 0.0000

SD 6.2326 7.5482 4.2774 0.0000 2.1200 10.0080 3.0020 0.0000

f6

Best 949.8750 254.8750 1565.125 0.0000 0.0000 62.4250 56.7450 0.0000

Mean 1174.231 330.4313 1.37E?46 0.0000 0.0000 63.2500 66.9800 0.0000

Worst 1354.500 452.5000 1.36E?47 0.0000 0.0000 68.1100 87.5500 0.0000

SD 108.9784 53.8048 3.34E?46 0.0000 0.0000 5.4780 11.2540 0.0000

f15

Best 3.44E?09 1.4E?09 7.3E?09 0.0000 0.0000 31.0540 0.0000 0.0000

Mean 4.29E?09 3E?09 8.71E?09 0.0000 25.0050 41.0010 29.0410 0.0000

Worst 5.23E?09 4.4E?09 1.02E?10 0.0000 47.0140 49.0140 38.0740 0.0000

SD 5.67E?08 7.8E?08 7.51E?08 0.0000 75.1000 55.1000 95.1000 0.0000

f16

Best 876,800.5 304,285.6 1,678,091 0.0000 0.0000 529.4650 365.7485 0.0000

Mean 1,078,648 488,418.4 2,249,554 0.0000 0.0000 580.4650 368.7480 0.2547

Worst 1,355,679 775,537.3 2,494,999 0.0000 0.0000 600.0000 524.7840 0.4326

SD 130,769.2 130,750.7 202,932.8 0.0000 0.0000 233.4580 324.5740 0.0968

f17

Best 21.0415 20.4844 21.1001 20.0517 20.0015 20.5471 20.4175 20.5472

Mean 21.2117 20.6155 21.1911 20.0675 20.0478 20.9870 21.1004 20.5147

Worst 21.3183 20.7620 21.3143 20.1489 20.5410 21.0141 21.9840 20.5470

SD 0.0836 0.0824 0.0537 0.0240 0.0147 0.0502 1.1470 0.0287

f18

Best - 1182.27 - 1492.81 - 1146.07 2 1499.51 - 500.0000 - 421.1470 - 435.8540 - 498.0178

Mean - 1046.53 2 1114.58 - 1013.75 - 1066.95 - 468.1247 - 395.1240 - 400.2140 - 489.6045

Worst - 948.489 - 996.391 - 859.003 - 814.186 - 250.7480 - 120.0124 - 80.1450 - 330.5480

SD 72.5534 141.134 103.7176 203.8991 250.4012 240.1204 410.2100 140.2140

A binary social spider algorithm for continuous optimization task 12973

123

and 19 for unimodal and multimodal benchmarks, respec-

tively. According to the mean of fitness results, binary SSA

shows a higher success than BSSO. According to the

standard deviation of fitness results, the binary SSA shows

high success at roughly 94.44% of benchmark functions for

17 benchmarks out of 18 benchmarks (f1, f2, f3, f4, f5, f6,

f7, f8, f9, f10, f11, f12, f13, f14, f15, f16 and f18) and the

BSSO shows success at roughly 38.89% of benchmark

functions for 7 benchmarks out of 18 benchmarks (f1, f3,

f5, f7, f10, f13 and f17). According to the mean of fitness

results, the BSSO shows success at roughly 22.22% of

benchmark functions for 4 benchmarks out of 18 bench-

marks (f1, f5, f10 and f17). Thanks to the logic gate and

similarity measurement techniques, binary SSA has passed

BSSO. It has developed the ability to search locally and

search globally in binary space.

Case Study 3: Other meta-heuristic algorithms which

are BHPSOWM, PSO, GA and variations of binary SSA

are compared according to four different criteria. These are

the mean, the standard deviation (SD), the best and the

worst criteria. In the compared algorithms, the population

size (N) is determined as 30 and the maximum number of

iterations is determined as 50 for variations of binary SSA

equally. The comparison results are shown in Table 20.

The standard deviation, the mean and the best results of

variations of binary SSA’s superior performance are

marked in bold. According to the standard deviation and

mean results, binary SSA has shown better performance

than BHPSOWM, PSO and GA in all the unimodal and

multimodal benchmark functions. The SimSSA and Log-

icSSA techniques have a significant impact on the perfor-

mance of binary SSA. Based on the obtained results, it is

concluded that the proposed binary SSA has promising

results for BOPs.

4.5 Discussion about the variations of binary
SSA

In this paper, the SSA is modified again according to four

different transfer functions for mapping the continuous

search space to the binary search space. Four variations of

binary SSA are proposed based on four transfer functions.

In order to ensure the balance between exploration and

exploitation, two different techniques (SimSSA and Log-

icSSA) are developed at the candidate solution production

stage. Performances of the variations of binary SSA are

tested with eighteen benchmark functions which are widely

used unimodal and multimodal benchmark functions in the

literature. The variations of binary SSA are compared

according to four different criteria. There are the mean, the

standard deviation (SD), the best and the worst criteria.

Performances of the variations of binary SSA are also

compared with well-known and recently developed binary

methods in the literature.

f2, f7, f8, f9, f10, f11, f12, f13 and f14 benchmark

functions are also used as a test function for variations of

binary SSA, and the obtained results are compared with

variations of binary SSA. But, related performance com-

parisons could not be performed and are not mentioned in

this paper as there are not many papers that are studied with

the benchmark functions in the literature.

According to the comparisons among the variations of

binary SSA, we can state that binary SSA-Tanh and the

binary SSA-Arctan variations have high performance

among other variations of binary SSA and comparative

algorithms. In this context, the advantages behind this high

performance are due to one reason: Binary SSA combines

the methods of SimSSA and LogicSSA which can make

the balance between exploration and exploitation capabil-

ities. The transfer function is supported by these methods.

Thus, binary SSA’s binary optimization problem-solving

success is increased.

5 Conclusion

Social spider algorithm (SSA) is a heuristic algorithm that

is created by imitating spider behaviors in nature. In this

paper, SSA has studied details and a binary SSA has been

proposed to solve binary optimization problems (BOPs). In

order to obtain binary search space in binary SSA, four

different transfer functions are used. Four different varia-

tions of binary SSA (binary SSA-Tanh, binary SSA-Sigm,

binary SSA-MSigm and binary SSA-Arctan) have been

developed. Two new techniques (SimSSA and LogicSSA)

are developed during the candidate solutions production

phase in binary SSA, and the variations of binary SSA

based on SimSSA and LogicSSA are developed. The

SimSSA technique uses Jaccard’s similarity in a new spider

(candidate solution) production phase, and the LogicSSA

technique uses consist of XOR logic gate in the new spider

(candidate solution) production phase. In the binary SSA,

Table 17 Parameter settings for

BSSO and binary SSA
Key Method Name

BSSO fpl = 0.65 (lower female percent); fpu = 0.9 (upper female percent)

Binary SSA ra = 1; pc = 0.7; pm = 0.1; ST = 0.3

Common settings Population size (N) = 30; number of runs = 20; maximum iterations = 50

12974 E. Baş, E. Ülker

123

Table 18 Variations of binary SSA and its comparison with BSSO in all the unimodal benchmark functions

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan BSSO

f1

Best 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000

Worst 0.0000 0.0000 0.0000 0.0000 0.0000

SD 0.0000 0.0000 0.0000 0.0000 0.0000

f2

Best 0.0000 2.0000 2.0000 0.0000 0.0000

Mean 1.0124 2.0410 2.1045 1.0214 3.1020

Worst 1.5600 2.5600 2.3600 1.1500 5.2400

SD 0.0280 0.2800 0.4500 0.0250 0.3250

f3

Best 0.0000 6.0001 7.5000 0.0000 1.0579

Mean 0.0000 6.0001 7.5000 0.0000 1.0579

Worst 0.0000 6.0001 7.5000 0.0000 1.0579

SD 0.0000 0.0000 0.0000 0.0000 0.0000

f4

Best 1.26E-05 4.26E-04 4.25E-04 1.22E205 4.50E-03

Mean 1.35E204 5.35E-02 4.52E-02 1.85E-04 1.74E-02

Worst 1.57E-03 7.56E-03 6.85E-03 2.77E-03 7.14E-04

SD 0.0006 0.0007 0.0007 0.0006 0.0084

f5

Best 0.0000 68.0050 55.0400 0.0000 0.0000

Mean 1.0100 75.0900 60.7580 0.0000 0.0000

Worst 6.0000 85.0600 65.7700 0.0000 0.0000

SD 2.1200 10.0080 3.0020 0.0000 0.0000

f6

Best 0.0000 62.4250 56.7450 0.0000 1.4428

Mean 0.0000 63.2500 66.9800 0.0000 1.8501

Worst 0.0000 68.1100 87.5500 0.0000 2.5410

SD 0.0000 5.4780 11.2540 0.0000 0.0475

f7

Best 0.0000 4.0001 8.0127 0.0000 9.1710

Mean 13.0017 17.0127 15.1027 8.4150 9.1710

Worst 18.0020 35.0002 29.0001 14.0000 9.1710

SD 0.0129 0.1441 0.0210 0.0128 0.0000

f8

Best 0.0000 2 15.0001 2 15.0001 2 15.0001 0.8830

Mean 4.0174 2 12.0014 - 10.0042 - 6.4710 9.1240

Worst 10.0000 15.0001 15.0001 12.0002 15.0002

SD 0.3340 0.3210 0.3220 0.3240 15.4100

f9

Best 0.0000 1.00E-05 0.0000 0.0000 1.2386

Mean 2.1700 7.1700 0.0000 0.0000 8.1900

Worst 10.0000 10.0000 0.0000 0.0000 9.1900

SD 3.6704 4.8448 0.0000 0.0000 3.4750

f10

Best 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.5000 0.0000 0.0000 0.0000

A binary social spider algorithm for continuous optimization task 12975

123

Table 18 (continued)

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan BSSO

Worst 0.0000 1.0000 0.0000 0.0000 0.0000

SD 0.0000 0.5000 0.0000 0.0000 0.0000

f11

Best 0.0000 20.0000 0.0000 0.0000 0.0562

Mean 1.3300 35.2000 1.00E205 2.50E-05 27.2000

Worst 8.0001 65.0000 4.00E-05 9.00E-05 40.2000

SD 2.9800 13.0000 1.53E205 3.25E-05 21.0172

The best results are marked with bold

Table 19 Variations of binary SSA and its comparison with BSSO in all the multimodal benchmark functions

Function Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan BSSO

f12

Best 4.0000 3.0000 1.0000 17.0001 0.1999

Mean 35.7000 64.8000 40.3000 54.0000 66.9000

Worst 80.0010 100.0000 91.0001 86.0001 92.9000

SD 24.0040 30.0745 29.7247 22.2411 30.1240

f13

Best 2 1.27E102 2 1.27E102 2 1.27E102 2 1.27E102 - 17.4184

Mean - 1.95E?01 - 5.75E?01 - 1.24E?02 2 1.27E102 - 17.4184

Worst 1.27E?02 - 1.25E?02 - 1.11E?02 - 1.27E?02 - 17.4184

SD 67.8939 85.9569 5.9629 0.0000 0.0000

f14

Best 0.0000 - 15.0001 2 15.0002 2 15.0002 7.94E-04

Mean 2.8000 - 3.33E-01 - 15.000117 2 15.000200 7.4800

Worst 6.0000 14.0000 - 15.0001 - 15.0002 16.9000

SD 2.3152 10.8884 3.73E-05 1.78E215 4.4780

f15

Best 0.0000 31.0540 0.0000 0.0000 1.8700

Mean 25.0050 41.0010 29.0410 0.0000 2.6700

Worst 47.0140 49.0140 38.0740 0.0000 3.0001

SD 75.1000 55.1000 95.1000 0.0000 15.2140

f16

Best 0.0000 529.4650 365.7485 0.0000 8.59E-04

Mean 0.0000 580.4650 368.7480 0.2547 3.68E?02

Worst 0.0000 600.0000 0524.7840 0.4326 5.69E?02

SD 0.0000 233.4580 324.5740 0.0968 286.1200

f17

Best 20.0015 20.5471 20.4175 20.5472 1.2013

Mean 20.0478 20.9870 21.1004 20.5147 1.2013

Worst 20.5410 21.0141 21.9840 20.5470 1.2013

SD 0.0147 0.0502 1.1470 0.0287 0.0000

f18

Best 2 500.0000 - 421.1470 - 435.8540 - 498.0178 - 300.1407

Mean - 468.1247 - 395.1240 - 400.2140 2 489.6045 - 259.1470

Worst - 250.7480 - 120.0124 - 80.1450 - 330.5480 - 17.5120

SD 250.4012 240.1204 410.2100 140.2140 300.1420

The best results are marked with bold

12976 E. Baş, E. Ülker

123

Table 20 Variations of binary SSA and its comparison with comparative algorithms in BHPSOWM, PSO and GA

Function BHPSOWM PSO GA Binary SSA-Tanh Binary SSA-Sigm Binary SSA-MSigm Binary SSA-Arctan

f1

Best 0.0000 312.1800 216.3200 0.0000 0.0000 0.0000 0.0000

Mean 42.3960 612.2510 487.2180 0.0000 0.0000 0.0000 0.0000

Worst – – – 0.0000 0.0000 0.0000 0.0000

SD 52.1120 204.0760 175.8240 0.0000 0.0000 0.0000 0.0000

f3

Best 7.5000 7.8430 7.7590 0.0000 6.0001 7.5000 0.0000

Mean 7.6140 8.6110 8.3570 0.0000 6.0001 7.5000 0.0000

Worst – – – 0.0000 6.0001 7.5000 0.0000

SD 0.0670 0.3530 0.3380 0.0000 0.0000 0.0000 0.0000

f4

Best 1.740 0 1.8000 1.7270 1.26E-05 4.26E-04 4.250E-04 1.22E205

Mean 2.1150 2.0300 1.9810 1.35E204 5.35E-02 4.52E-02 1.85E-04

Worst – – – 1.57E-03 7.56E-03 6.85E-03 2.77E-03

SD 0.1110 0.0900 0.1120 0.0006 0.0007 0.0007 0.0006

f5

Best 20.8000 16.0000 11.3000 0.0000 68.0050 55.0400 0.0000

Mean 25.2760 26.5240 14.1710 1.0100 75.0900 60.7580 0.0000

Worst – – – 6.0000 85.0600 65.7700 0.0000

SD 1.3890 2.1860 1.2810 2.1200 10.0080 3.0020 0.0000

f6

Best 0.0000 5.4200 4.3200 0.0000 62.4250 56.7450 0.0000

Mean 2.1460 10.8530 8.5200 0.0000 63.2500 66.9800 0.0000

Worst – – – 0.0000 68.1100 87.5500 0.0000

SD 0.8130 2.5970 2.2780 0.0000 5.4780 11.2540 0.0000

f15

Best 25.2790 115.5050 55.8390 0.0000 31.0540 0.0000 0.0000

Mean 76.182 0 275.2180 226.6330 25.0050 41.0010 29.0410 0.0000

Worst – – – 47.0140 49.0140 38.0740 0.0000

SD 26.7490 78.3830 84.4340 75.1000 55.100 95.1000 0.0000

f16

Best 10 (- 9) 10 (- 9) 10 (- 9) 0.0000 529.4650 365.7485 0.0000

Mean 10 (- 9) 10 (- 9) 10 (- 9) 0.0000 580.4650 368.7480 0.2547

Worst – – – 0.0000 600.0000 524.7840 0.4326

SD 0.0000 0.0000 0.0000 0.0000 233.4580 324.5740 0.0968

f17

Best 1.7180 1.7180 1.7180 20.0015 20.5471 20.4175 20.5472

Mean 1.7180 1.7180 1.7180 20.0478 20.9870 21.1004 20.5147

Worst – – – 20.5410 21.0141 21.9840 20.5470

SD 0.0000 0.0000 0.0000 0.0147 0.0502 1.1470 0.0287

f18

Best 946.4870 1153.4540 1210.0810 2 500.0000 - 421.1470 - 435.8540 - 498.0178

Mean 1984.8750 1960.3150 2072.1080 - 468.1247 - 395.1240 - 400.2140 -489.6045

Worst – – – - 250.7480 - 120.0124 - 80.1450 - 330.5480

SD 267.4130 401.9830 472.0120 250.4012 240.1204 410.2100 140.2140

A binary social spider algorithm for continuous optimization task 12977

123

one of the SimSSA or LogicSSA techniques is selected for

the production of new candidate solutions at any time.

Binary SSA’s local search capability has been improved

with logic gates that are frequently used in the BOPs in

recent years. With the similarity measurement technique,

the power of binary SSA to discover new points in binary

search space is increased. With the similarity measurement

technique, this algorithm guarantees to find global opti-

mum instead of local optimums. The variations of binary

SSA are operated in eighteen different unimodal and

multimodal benchmark functions in order to evaluate their

performances. The performance of variations of binary

SSA is compared in various criteria. Wilcoxon signed-rank

test is operated on obtained results. Particle swarm opti-

mization (PSO), genetic algorithm (GA), BSalpSA,

BHPSOWM, BPSO, BBA, BSCA and BSSO which are

well-known heuristics algorithms in the literature are

compared with the variations of binary SSA.

According to the comparisons among the variations of

binary SSA, we can state that binary SSA-Arctan and

binary SSA-Tanh variations have high performance among

other variations of binary SSA. The comparison results

affirmed the superiority of the binary SSA-Arctan and

binary SSA-Tanh variations in providing a good quality of

solutions for most tests.

In future research, we will design new transfer func-

tions. Besides, we will measure the performance of our

proposed method in different applications including knap-

sack problems and feature selection in classification.

5.1 Replication of results

Most of the codes required to replicate the results in this

paper are available under open-source licenses and are

maintained in version control repositories. The spider

social algorithm and the spider social optimization are

available from GitHub (https://github.com/James-Yu/

SocialSpiderAlgorithm). Benchmark test functions are

available from http://www.sfu.ca/ssurjano.

Compliance with ethical standards

Conflict of interest There is no conflict of interest between the

authors to publish this manuscript.

References

Acılar AM (2013) Yapay Bağışıklık Algoritmaları Kullanılarak
Bulanık Sistem Tasarımı, Konya, Turkey. Ph.D. thesis (in
Turkish)

Aslan M, Gunduz M, Kiran MS (2019) JayaX: Jaya algorithm with

xor operator for binary optimization. Appl Soft Comput J

82:105576

Babaoglu I, Findik O, Ulker E (2010) A comparison of feature

selection models utilizing binary particle swarm optimization

and genetic algorithm in determining coronary artery disease

using support vector machine. Expert Syst Appl 37:3177–3183

Beskirli M, Koc I, Hakli H, Kodaz H (2018) A new optimization

algorithm for solving wind turbine placement problem: binary

artificial algae algorithm. Renew Energy 121:301–308

Choi SS, Cha SH, Tappert CC (2010) A survey of binary similarity

and distance measures. J Syst Cybern Inform 8(1):43–48

Çınar AC, Kiran MS (2018) Similarity and logic gate-based tree-seed

algorithms for binary optimization. Comput Ind Eng

115:631–646

Cuevas E, Cienfuegos M, Zaldı́var D, Pérez-Cisneros M (2013) A

swarm optimization algorithm inspired in the behavior of the

social-spider. Expert Syst Appl 40:6374–6384

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on

the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms.

Swarm Evol Comput 1:3–18

Dorigo M (1990) Optimization learning and natural algorithms.

Politecnico di Milano, Italie, Ph.D. thesis

El-Bages MS, Elsayed WT (2017) Social spider algorithm for solving

the transmission expansion planning problem. Electr Power Syst

Res 143:235–243

Elsayed WT, Hegazy YG, Bendary FM, El-Bages MS (2016)

Modified social spider algorithm for solving the economic

dispatch problem. Eng Sci Technol Int J 19:1672–1681

Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf

optimization approaches for feature selection. Neurocomputing

172:371–381

Fan K, Weijia Y, Li Y (2013) An effective modified binary particle

swarm optimization (mBPSO) algorithm for multi-objective

resource allocation problem (MORAP). Appl Math Comput

221:257–267

Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Ann Arbor

Jaccard P (1901) Etude comparative de la distribution florale dans une

portion des Alpes et du Jura: Impr. Corbaz

Jamil M, Yang XS (2013) A literature survey of benchmark functions

for global optimization problems. Int J Math Model Numer

Optim 4:150–194

Jiang F, Xia H, Tran QA, Ha QM, Tran NQ, Hu J (2017) A new

binary hybrid particle swarm optimization with wavelet muta-

tion. Knowl Based Syst 130:90–101

Karaboga D (2005) An idea based on honey bee swarm for numerical

optimization. Erciyes University, Engineering Faculty, Com-

puter Engineering Department, Kayseri, Turkey, pp 1–10. Ph.D.

thesis (in Turkish)
Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of IEEE international conference on neural net-

works, Perth, WA, pp 1942–1948

Kennedy J, Eberhart R (1997) A discrete binary version of the particle

swarm algorithm. In: Proceedings of the IEEE international

conference on computational cybernetics and simulation. https://

doi.org/10.1109/icsmc.1997.637339

Kiran MS, Gunduz M (2013) XOR-based artificial bee colony

algorithm for binary optimization. Turk J Electr Eng Comput Sci

21:2307–2328

Korkmaz S, Babalik A, Servet KM (2017) An artificial algae

algorithm for solving binary optimization problems. J Mach

Learn Cybern, Int. https://doi.org/10.1007/s13042-017-0772-7

Kurt M, Semetay C (2001) Genetik Algoritma ve Uygulama Alanları.
Turk J Mühendis ve Makina 42(501):19–24 (in Turkish)

12978 E. Baş, E. Ülker

123

https://github.com/James-Yu/SocialSpiderAlgorithm
https://github.com/James-Yu/SocialSpiderAlgorithm
http://www.sfu.ca/ssurjano
https://doi.org/10.1109/icsmc.1997.637339
https://doi.org/10.1109/icsmc.1997.637339
https://doi.org/10.1007/s13042-017-0772-7

Ling W, Fu X, Menhas M, Fei M (2010a) A modified binary

differential evolution algorithm. In: Li K, Fei M, Jia L, Irwin

GW (eds) Life system modeling and intelligent computing, vol

6329. Springer, Berlin, pp 49–57

Ling W, Xu Y, Mao Y, Fei M (2010b) A discrete harmony search

algorithm. In: Li K, Fei M, Jia L, Irwin GW (eds) Life system

modeling and intelligent computing, vol 98. Springer, Berlin,

pp 37–43

Mallipeddi R, Mallipeddi S, Suganthan PN, Tasgetiren MF (2011)

Differential evolution algorithm with ensemble of parameters

and mutation strategies. Appl Soft Comput 11:1679–1696

Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer

functions for binary particle swarm optimization. Swarm Evol

Comput 9:1–14

Mirjalili S, Mohd Hashim SZ (2012) BMOA: binary magnetic

optimization algorithm. Int J Mach Learn Comput 2(3):204–208

Mousa A, Bentahar J (2016) An efficient QoS-aware web services

selection using social spider algorithm. In: The 13th international

conference on mobile systems and pervasive Computing (Mo-

biSPC 2016), procedia computer science, vol 94, pp 176–182

Omkar S, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S

(2011) Artificial bee colony (ABC) for multi-objective design

optimization of composite structures. Appl Soft Comput

11:489–499

Pal A, Maiti J (2010) Development of a hybrid methodology for

dimensionality reduction in Mahalanobis–Taguchi system using

Mahalanobis distance and binary particle swarm optimization.

Expert Syst Appl 37:1286–1293

Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelli-

gence: a survey. Int J Bio-Inspired Comput 3(1):1–16

Pereira LAM, Rodrigues D, Ribeiro PB, Papa JP, Weber SAT (2014)

Social-spider optimization-based artificial neural networks train-

ing and its applications for Parkinson’s disease identification. In:

2014 IEEE 27th international symposium on computer-based

medical systems, pp 14–17

Prescilla K, Immanuel SA (2013) Modified binary particle swarm

optimization algorithm application to real-time task assignment

in a heterogeneous multiprocessor. Microprocess Microsyst

37:583–589

Qiao LY, Peng XY, Peng Y (2006) BPSO-SVM wrapper for feature

subset selection. Dianzi Xuebao (Acta Electron Sin) 34:496–498

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) BGSA: binary

gravitational search algorithm. Nat Comput 9(3):727–745

Rizk-Allah RM (2014) A novel multi-ant colony optimization for

multi-objective resource allocation problems. Int J Math Arch

5:183–192

Rizk-Allah RM (2018) Hybridizing sine cosine algorithm with a

multi-orthogonal search strategy for engineering design prob-

lems. J Comput Des Eng 5:249–273

Rizk-Allah RM, Hassanien AE (2018) New binary bat algorithm for

solving 0–1 knapsack problem. Complex Intell Syst 4:31–53

Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2018)

A new binary salp swarm algorithm: development and applica-

tion for optimization tasks. Neural Comput Appl. https://doi.org/

10.1007/s00521-018-3613

Shukla UP, Nanda SJ (2018) A binary social spider optimization

algorithm for unsupervised band selection in compressed

hyperspectral images. Expert Syst Appl 97:336–356

Sun S, Qi H, Sun Jianping, Ren Y, Ruan L (2017) Estimation of

thermophysical properties of phase change material by the

hybrid SSO algorithms. Int J Therm Sci 120:121–135

Surjanovic S, Bingham D (2019) Virtual library of simulation

experiments: test functions and datasets. http://www.sfu.ca/

ssurjano

Talbi EG (2009) Metaheuristics: from design to implementation.

Wiley, Hoboken

Yu JJQ, Li VOK (2015) A social spider algorithm for global

optimization. Appl Soft Comput 30:614–627

Yu JJQ, Li VOK (2016) A social spider algorithm for solving the non-

convex economic load dispatch problem. Neurocomputing

171(C):955–965

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

A binary social spider algorithm for continuous optimization task 12979

123

https://doi.org/10.1007/s00521-018-3613
https://doi.org/10.1007/s00521-018-3613
http://www.sfu.ca/ssurjano
http://www.sfu.ca/ssurjano

	A binary social spider algorithm for continuous optimization task
	Abstract
	Introduction
	Binary optimization problem (BOP)
	Binary SSA for continuous optimization task

	Social spider algorithm (SSA)
	A binary social spider algorithm (binary SSA)
	According to the transfer functions, the variations of binary SSA
	Binary SSA-Tanh (tangent hyperbolic transfer function)
	Binary SSA-Sigm (sigmoidal transfer function)
	Binary SSA-MSigm (modified sigmoidal transfer function)
	Binary SSA-Arctan (arctan transfer function)

	Similarity-based social spider algorithm (SimSSA)
	Similarity measurement for binary structures
	Generating a new solution in SimSSA

	Logic gate-based social spider algorithm (LogicSSA)
	Binary SSA based on similarity measurement and logic gate

	Experimental results and analysis
	Determination of initial population size on the fitness function
	Comparison between different variations of binary SSA
	Wilcoxon signed-rank test and evaluation of binary SSA variations
	Comparison of binary SSA with other meta-heuristic algorithms
	Discussion about the variations of binary SSA

	Conclusion
	Replication of results

	References

