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Abstract
The genetic algorithm is a popular meta-heuristic optimization technique whose performance depends on the quality of the

initial population and the crossover operator used to manipulate the individuals to obtain the final optimal solution. It is

evident that when similar principle is followed for population seeding and crossover operators, it can enhance the speed of

convergence and the quality of final individuals. The recent and popular population seeding technique for combinatorial

genetic algorithm is ordered distance vector-based population seeding which works best with respect to convergence rate

and diversity. However, the technique could not achieve the zero error rate convergence for the large-sized test instances.

Thus, in this paper, an ordered distance vector-based crossover operator is proposed that exclusively exploits the

advantages of individuals’ generated using the same initialization methods to attain the complete convergence, particularly

for most of the large-sized test instances considered. One of the famous combinatorial problems of traveling salesman

problem obtained from standard library is chosen as the testbed. From the experimental results, the proposed genetic

algorithm model outshines the other existing and popular working genetic algorithm models in the literature.
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1 Introduction

Genetic algorithms (GAs), the bio-inspired and stochastic

global optimization techniques are most popular in dealing

complex problems with very large search space efficiently

in the majority of the cases. GAs belong to the family of

evolutionary computation models inspired by biological

evolution, natural selection and survival of the fittest in

living organisms. The life cycle of classical GA consists of

the several phases like initial population (population

seeding), selection, crossover, mutation and termination

constraint (Paul et al. 2014). The first phase occurs only
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once, and the rest of the phases are repeated until the ter-

mination condition is satisfied. Generally, the classical GA

takes more computation time to evolve at an optimal

solution, which may be rectified using heuristics in a

problem-specific manner. In other words, the heuristics

may definitely reduce the computation time to improve the

overall ability and to evolve the optimal solution, thus

resulting in hybrid GA (Marinakis et al. Marinakis and

Marinaki 2010; Chen and Chien 2011; Yingzi et al. 2007;

Wang et al. 2014). Many researchers recommend modifi-

cation or hybridization in each phase of the genetic algo-

rithm using problem-specific knowledge to enhance the

solution quality and/or efficiency of the algorithm.

Hybridization of GA makes the algorithm more problem

dependent (less robust), but the performance in terms of

convergence and computation time can be improved sig-

nificantly (Sivanandam and Deepa 2008). The performance

of the GAs may be improved through various phases of

GA. Normally in all cases, the issue of performance tuning

may be carried out in a phase-specific manner and of

course, the phase-specific improvement will automatically

result in overall improvement.

In GA, crossover comprehends the construction of the

offspring using the individuals selected from the popula-

tion (Pandey 2016; Pan et al. 2016). In Nagata (2004),

Nagata discussed the significances of the crossover oper-

ator in GA to evolve the final optimal solution and pre-

sented a set of critical factors to be considered in designing

a crossover operator for GA.

• The ratio of new characteristics introduced into the

offsprings should be adjusted according to the trade-off

between the quality and variety of the offsprings.

• The quality of the new characteristics should be

constructive (the probability that new characteristics

are included in an optimal solution should be high).

Problem-specific crossover methods can be utilized to

recuperate the feasibility of solutions produced by the

traditional crossover operators (El-Mihoub et al. 2006).

The crossover phase is highly associated with the popula-

tion initialization phase; the crossover operator has to

exploit the potential of the individuals generated initially

and to improve the individual’s quality in the successive

generations. The overall performance of the GA highly

depends on the quality of the initial population supplied

and also the type of crossover operator used to manipulate

the individuals to obtain the final optimal solution (Andal

and Sathiamoorthy 2001). Specifically, the association

between the principles of the population seeding technique

and crossover operator plays a vital role in reducing the

computation time and increasing the probability of finding

the global optimal solution. If the population seeding and

the crossover techniques are not principally associated

together, the crossover would destroy the potential infor-

mation induced at the initialization stage and try to enhance

the quality of the solution in its own method at every

generation, which may cause an extensive delay in attain-

ing the optimal value. On the other hand, when the popu-

lation seeding technique and crossover operator follow the

similar principle of generating or improving the quality of

individuals, it can enhance the speed of convergence as

well as the quality of best individual (Andal and Sathi-

amoorthy 2001). From the previous sections, it has been

observed that the ODV-based methods work best with

respect to convergence rate and diversity. However, it is

necessary to point that it could not achieve the zero error-

rate convergence for any of the large-sized test instances

after a certain point of generations. This would be because

of the difference in the principles of the population seeding

and crossover techniques (Poon and Carter 1995). From

this perspective, designing an ODV-based crossover oper-

ator that exclusively exploits the advantages of individuals’

generated using ODV initialization methods may assist to

attain the best optimal solution, particularly for large-sized

test instances.

2 Background study

In this section, the recent and popular population seeding

and crossover techniques for combinatorial GA are dis-

cussed in Sects. 2.1 and 2.2, respectively, for a better

understanding of the work proposed and the experimental

setup.

2.1 Study on the population initialization
techniques

Random Initialization Random population initialization is

the simple and common population generation technique

preferred when lacking prior information on the problem to

solve. A variety of random number generation methods

have been proposed such as quasi-random, Sobol random

and uniform random sequence (Deng et al. 2015; Katayama

et al. 2000).

Nearest Neighbor (NN) Technique Nearest Neighbor

(NN) population seeding technique is a well-known

replacement for random population initialization, to con-

struct the initial population of solutions, in greedy fashion,

for permutation-coded GAs (Kaur and Murugappan 2008;

Ting 2013; Shubhra et al. 2007).

Selective Initialization (SI) Technique In Rong (1997), a

selective initialization scheme using k-nearest-neighbor

sub-graph has been proposed. In this technique, a k-near-

est-neighbor sub-graph is formulated, from the distance

matrix, as a graph includes all routes of cities ci and cj, such
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that the city ci is among the k-nearest neighbors of city cj
or city cj is among the k-nearest neighbors of city ci, i.e., a

list of k-nearest neighbors for each city is generated in

advance.

The hybrid population seeding techniques have the

benefit of good quality individuals and fast convergence,

but lack in terms of randomness, individual diversity and

ability to converge to the global optimal solution. There-

fore, an efficient ordered distance vector (ODV)-based

population seeding technique is proposed and detailed

theoretical discussion can be found in Paul et al. (2013a, b),

Shanmugam et al. (2013) and Moganarangan et al. (2014).

Paul et al. (2013a, b) and Arthi et al. (2015). The two

significant characteristics that make the ODV population

seeding technique distinct from the other techniques are

potential sequence and individual diversity. Based on these

two characteristics, three different varieties of ODV-based

population seeding techniques have been proposed, namely

ODV-EV, ODV-VE and ODV-VV techniques. In the same

literature, ‘ba’ value has been defined as follows: The Best

Adjacent (ba) number is an important factor and derived

using the assumption that, in an optimal solution, any city

ci is connected to city cj such that cj is one of the ci’s

nearest ‘ba’ number of cities.

2.2 Study on the crossover techniques

The quality preserved crossover operators conserve the

good information from the parent individuals and add new

information heuristically such that the quality of the off-

spring could be improved. Whitely et al. (1989) claim that

the preservation of gene order-based quality is more

important than the positions of the individual gene in the

design of crossover operators for combinatorial problems.

This kind of crossover operators is also called as edge-

based operators in case of TSP and vehicle routing prob-

lems. The various quality preserved crossover techniques

are discussed as follows:

Edge Recombination Crossover (ERX) Edge Recombi-

nation Crossover was developed by (Whitley et al. 1989),

assuming that only the quality of genes is important not

their direction. It inherits common sequence of genes from

parent solutions as much as possible and randomly adds

new genes to generate feasible solutions. Mathias and

Whitley (1992) introduced subsequent versions of ERX,

Edge-2 and Edge-3. The Edge-2 method improves ERX by

increasing the preference for the information present in

both parents and Edge-3 attempts to minimize the inclusion

of new information on the occurrence of crossover failure.

Edge-4 and Edge-5 proposed by Nguyen et al. (2000) try to

recover from the crossover failures using different meth-

ods, and performance improvement has been investigated

using TSP. Though several variants of ERX are available,

the crossover failure could not be eradicated completely.

Edge Assembly Crossover (EAX) In Nagata and

Kobayashi (1997), Nagata proposed an effective Edge

Assembly Crossover (EAX) in which search block identi-

fies the best individual to exchange the information among

the parents for large problem instance in a considerable

CPU time (Tsai et al. 2004). EAX shows the best perfor-

mance being compared with other crossovers from the

viewpoints of inheritance of good information (Fei and

Guangzhou 2009).

Partition Crossover (PX) The partition crossover oper-

ator (Whitley et al. 2009; Whitley et al. 2010; Hains 2012)

attempts to recombine two parent individuals that are

locally optimal to build the offsprings which are expected

to be local optimal individuals. Thus, the PX acts as a

tunnel between the local optimal solutions in the search

space.

Sub-tour Recombination Crossover operator (SRX)

Masafumi et al. (2010) proposed Sub-tour Recombination

Crossover operator (SRX) that segregates the parent indi-

viduals into several subsequences whose lengths are

restricted to a predefined value and then recombines the

subsequences from both parents to build a new solution

which improves the effective recombination capability.

A multi-parent crossover is a new and interesting

approach in GA to generate the offspring using the

potential information of more than two parent individuals.

In Liu et al. (2012), the authors proposed a novel cluster

oriented differential evolution model using two multi-par-

ent crossover techniques. The proposed crossover is the

hybrid approach of the one-step k-means clustering using

the objective space distance measure and multi-parent

crossover with DE. A novel diversity-based hybrid evolu-

tionary model had been proposed for the graph coloring

problem (Porumbel et al. 2010). In the work, they intro-

duced a special cluster-based multi-parent crossover oper-

ator which depends on the various significant features to

identify the meaningful information for the offspring con-

struction. Ting et al. (2010) proposed a multi-parent par-

tially mapped crossover for combinatorial optimization

problems. The model works by choosing a collection of

parents and applying the partially mapped crossover based

to construct the offspring.

A set of multi-parent crossovers for real-coded GAs had

been proposed in Wang et al. (2016), Tsutsui and Ghosh

(1998), Tsutsui and Jain (1998) such as center of mass

crossover, feature-oriented multi-parent crossover, and

seed crossover. The authors also showed that proposed

multi-parent crossovers can explore and exploit the search

space for improved performance though the performance is

problem-specific. These studies validate the dominance of

multi-parent crossover over traditional two-parent
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crossover. The performance of the multi-parent crossover

approach is often validated on numerical optimization

problems (Eiben 2002; Ting 2005; Tsutsui et al. 1999;

Tsutsui and Ghosh 1998; Tsutsui and Jain 1998) rather than

on combinatorial problems (Ting et al. 2010; Eiben et al.

1994). Thus, the multi-parent crossover-based approach to

solve combinatorial optimization problems is still lacking.

3 Proposed system

3.1 Problem statement

As described in Sect. 1, the coordination between the

population seeding and the crossover techniques used in

the GA plays a vital role in exploring the search space and

exploiting the quality of individuals generated at each

generation. At the same time, the operational difference in

the individual initialization and manipulation techniques

may take a long time to converge to an optimal solution

and also reduce the probability of obtaining the global

optimal solution (Sivanandam and Deepa 2008). On the

other hand, the ODV-based population seeding technique

was proved as an effective method for population initial-

ization for permutation-coded GA (Paul et al. 2014, 2015);

the study also reveals that the existing random and quality

preserved crossovers could not exploit the potential of

individuals generated at the initial stage. These factors

motivated to propose an effective ODV-based Crossover

Operator, based on the ODV matrix used at the population

seeding stage, to bridge the operational difference in the

initialization and crossover methods and also to exploit the

potentials of individuals generated using ODV initializa-

tion technique.

3.2 ODV-based crossover operator (ODVX)

3.2.1 Principles of ODVX operator

The ODV-based crossover operator (ODVX) uses the ODV

matrix (Paul et al. 2014, 2015) and multi-parent techniques

(Chuan 2007) to perform the crossover operation. In

addition to these, the proposed crossover operator modifies

and extends the failure reduction method dealt in Chuan

(2007) to effectively handle the situation of crossover

failures. There are four significant characteristics that make

the ODV-based crossover technique distinct from the oth-

ers and they are as follows:

• Multi-parent crossover In general, crossover operation

is performed by recombining the information of two

parent individuals. But, the multi-parent recombination

technique (Chuan 2007) allows more than two parents

to participate in the recombination process. The main

advantage of the multi-parent method over the two

parent method is that it helps to produce the offsprings

with more possible combinations and quality informa-

tion from different parents improves the diversity of the

offsprings. The multi-parent method also has the inbuilt

characteristic to overcome the crossover failures by

extracting ample information from the parents.

• Two-way potential extraction The best performing

crossovers, like PX and EAX, attempt to extract the

goodness of the parent individuals in a single direction

and completely neglecting the possible extort from

another way. This reduces the quantity of potential

information inherited from the parent individuals and

also the possibility of generating different combinations

of offspring for better search space exploration. The

ODVX operator, similar to ERX, follows two-way

potential extraction method to inherit the goodness of

the parent individuals to the extent that possible.

• Better new information inclusion Inclusion of new

information into the offspring is crucial to enhance the

effectiveness and exploration capability of the cross-

over operator. The existing crossover techniques intro-

duce the new information either by random (Maaranen

et al. 2004) or greedy (Yingzi et al. 2007) methods;

however, the random method may collapse the potential

of the offspring produced and the greedy method

increases the chance of getting trapped in the local

optima (Sivanandam and Deepa 2008). In contrast, the

proposed ODVX technique introduces fresh informa-

tion into the offsprings using ODV matrix, which is

formulated with features such as randomness, potential

sequence and diversity, and helps to overcome the

problems that exist with random and greedy methods.

• Crossover Failure Evading Occurrence of crossover

failure results in the introduction of strange information

into the offspring, either by random or greedy fashion,

to overcome the failure. As discussed, this may get

struck at the local optima and also agitate the quality of

the offspring produced. The proposed ODVX technique

uses a set of rule-based offspring (partially built)

alteration schemes to effectively overcome the cross-

over failure condition.

These characteristics facilitate the proposed ODVX

technique to effectively inherit the potential information

from the parent individuals into the offspring and also to

enhance the exploitation and exploration capabilities of the

crossover operator.

A novel ODV crossover operator-based genetic algorithms for traveling salesman problem 12859

123



3.2.2 Algorithm for ODVX operator

The algorithm for ODVX operator consists of five different

stages as in Algorithm 1, and each stage performs a set of

operations to produce the offspring(s) with better quality.

The five stages of the ODVX, shown in Fig. 1, can be

briefed as follows:

• Stage-1: Parents Selection This stage selects a precise

number of parent individuals from the current popula-

tion based on the size of the problem instance and the

frequency of crossover failure.

• Stage-2: Initial Reduction This stage offers a single-

step quality improvement operation on each parent

individuals selected.

• Stage-3: City List Formulation A City List is formu-

lated using the information present in these of improved

parent individuals.

• Stage-4: Offspring Construction This stage performs a

set of rule-based offspring generation operations using

the City List generated at the Stage-3 of the algorithm.

• Stage-5: Failure Evading This stage is an on-demand

scenario; invoked only on the occurrence of crossover

failure at the Stage-4. This stage uses a set of rule-based

0 2 3 0 . . 2
2 0 2 3 . . 3 
3 2 0 2 . . 1 
0 3 2 0 . . 2 
. . . . 0 . . 
. . . . . 0 . 
2 3 1 2 . . 0 

Fig. 1 Stages of ODV crossover operator
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offspring (partially built) alteration schemes to effec-

tively overcome the crossover failure condition.

• Stage-6: Final Reduction This stage offers a single-step

quality improvement operation on each offspring indi-

viduals generated at the Stage-4 of the algorithm.

The functionalities of each stage of the algorithm are

explained as follows:

Stage-1: Parents Selection

The Stage-1 decides the number parent individuals to be

selected for recombination with respect to the factors such

as the size of the problem, expected the quality of the

offspring and the frequency of the crossover failure. Let ‘k’

be the set of ‘m’ number of parents selected from the

current population,

k ¼ k0; k1; k2. . .kmf g

The mixture of ‘m’ number of parents chosen can be

given as,

m ¼ mel þ mpop

where

• ‘mel’ refers to the number of parents selected from the

elitist part of the current population.

• ‘mpop’ refers to the number of parents selected from the

current population (except elitist).

The value of ‘m’ is decided based on the size of the

problem and requirement to reduce the number of cross-

over failure. The value of ‘m’ is inversely proportional to

the number of crossover failures and directly proportional

to the computation time. The value of ‘mel’ is chosen based

on the requirement of the transfer of quality information

from the best (elitist) solutions of the current population.

The ‘mel’ is kept high on the need of fast convergence and

low to increase the exploration of the search space. It is

better to gradually increase the ‘mel’ toward the termination

of the algorithm. The ‘mpop’ helps to evolve different

combinations of the offspring and also decides the cross-

over failure evading and search space exploration abilities

of the operator.

Stage-2: Single Reduction

This stage helps to improve the quality of the parent

individuals in prior to the actual crossover process. Let ‘ki’

be a parent individual from the set ‘k’. Find ci and cj are the

cities in ki with the largest distance value and then discover

the cities cx and cy in ki which satisfy the following

condition,

dist ci; cj
� �

þ dist cx; cy
� �

[min dist ci; cxð Þð
þ dist cj; cy

� �
; dist ci; cy

� �
þ dist cj; cx

� ��

It should be also noted that the rank of cities to which ci
and cj are joined (cx and cy, respectively) should be less

than or equal to the ‘ba’ value used at the population

seeding stage of the GA (Paul et al. 2013a, b). If no cities

satisfy such condition, then the condition has to be checked

for the next largest distance cities in ki. The total number of

times the Single Reduction step n SRð Þ is performed at the

completion of the GA can be given as,

n SRð Þ ¼ n� Gen

where

• ‘n’ is the size of the population.

• ‘Gen’ is the total number of generations of execution.

Thus, the Stage-2 of ODVX attempts to improve the

quality of the individuals with a simple operation which

helps to enhance the overall efficacy of the algorithm.

Stage-3: City List Formulation

In this stage, a City List cityList has been formulated,

similar to Edge List in ERX (Whitley et al. 1989), which is

a two-dimensional matrix of size n� 2m and filled up

using the information present in the set of improved parent

individuals. Each row in the cityList corresponds to the city

ci; where i 2 1; nf g; can be represented as cityList cið Þ and
initialized as cityList cið Þ ¼ ; at the start of the stage. The

cityList cið Þ can be updated with the cities adjacent to the

city ci in each of the parent individual in the set k. The

same city can be adjacent to a particular city in more than

one parent individual and such repeated adjacent city is

marked with its corresponding repetition number. The

repetition number of city ci for city cj, rep ci; cj
� �

can be

given as,

rep ci; cj
� �

¼
Xm

i¼1
ki adj ci; cj

� �� �
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where ki adj ci; cj
� �� �

¼
1; if 0c0i is adjacent city to 0c0j in the individual 0k0i
0; otherwise

�

In the existing works, the range of length of the cityList

for any city can be given as

2� len cityListð Þ� 4 [ERX]. But in the proposed ODVX

technique, the range of the possible length of the cityList

for a city can be 2� len cityListð Þ� 2m. This increased size

of the cityList helps to achieve the aforesaid characteristics

such as better crossover failure evading and search space

exploration.

Stage-4: Child Initialization and Neighbor City Selection

This stage produces a set ‘l’ with ‘m’ number of off-

springs l ¼ l0; l1; . . .lmf g using the cityList formulated at

the previous stage of the algorithm. ‘l’ will create a set of

children ‘l’ with ‘m’ individuals. For each offspring li in ‘l’,

the initial city would be assigned from the parent individual

ki in the set ‘k’.

8i 2 1;m½ �; inicity lið Þ  inicity kið Þ

where

• inicity kið Þ refers to the initial city of the ith parent

individual in the set k.

• inicity lið Þ refers to the initial city of the ith offspring in

the set l.

For each offspring, the successive cities are identified,

until lenðcyÞ\li; as follows: Let cx be the current city of

the offspring li, next city nextðcxÞ has to be chosen from the

cityListðcxÞ using the following conditions in sequence,

Condition 1 If each of the city in the cityListðcxÞ already
present in the partially built offspring li, then the operation

halts without the continuing city and the situation is

referred as crossover failure at city cx; the failðcxÞ:. The
Stage-5 is called upon to overcome the failure using a set of

offspring modification rules.

Condition 2 If any city cy such that cy 2 cityList cxð Þ and
has the highest repetition number corresponding to the cx;,

it would be chosen as the next city provided is not already

present in the partially built offspring li:

rep cx; cy
� �

[ 8o 2 1; cityList cxð Þ � 1½ �; rep cx; coð Þ
and rep cx; cy

� �
[ 2

) nextðcxÞ ¼ cy

where

• cityList cxð Þ � 1 refers to the cityList of corresponding

city cx excluding the city cy:

This condition identifies the city which is adjacent to

city cx in most of the parents and consequently helps to

inherit the combined better information from the set of

parent individuals.

Condition 3 If two or more cities have the same repetition

number corresponding to the cx; the city which belongs to

the same parent of the previous city of cx in the partially

built offspring li would be chosen as the next city. This

condition can be represented as,

cy; cz 2 cityList cxð Þ and rep cx; cy
� �

¼ rep cx; czð Þ� 2

If cx�1 in li ¼ cy�2 in ki then nextðcxÞ ¼ cy

Similarly; If cx�1 in li ¼ cz�2 in ki then nextðcxÞ ¼ cz

where

• cx�1 is the city at the previous position to the current

city cx in li:

This condition attempts to inherit the long better infor-

mation from the same parent individual.

Condition 4 If the previous city cx�1 does not belong to

position cy�2 or cz�2 in any of the parents corresponding to

the cities cy and cz; the next city which has the least

len cityListð Þ would be chosen from the cities with the same

repetition number.

If cx�1 in li 6¼ cy�2 in ki and cx�1 in li 6¼ cz�2 in ki then;

Check len cityListðcyÞ
� �

\len cityListðczÞð Þ
) nextðcxÞ ¼ cy

If len cityListðcyÞ
� �

¼ len cityListðczÞð Þ, then nextðcxÞ is

chosen among the cities cy and cz randomly. This condition

tries to choose the city with minimum continuing cities and

thus helps to improve the crossover evading feature of the

operator.

If the conditions 2, 3 and 4 fail to select the nextðcxÞ for
the current city cx, then this situation is also referred as the

crossover failure, failðcxÞ and Stage-5 is called upon to

overcome the failure.

Stage-5: Failure Evading

The Stage-5 is invoked on the occurrence of crossover

failure at the Stage-4. This stage applies a set of rule-based

alteration schemes on the partially built offspring li to

effectively overcome the crossover failure condition. If

crossover failure failðcxÞ occurred at the current city cx,

then following rules are employed, in sequence, to over-

come the crossover failure,

Rule 1 Check whether the other end of the partially built

offspring li has any unvisited city in its cityList. If so,
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continue from the city at the corresponding end. Let, the

partially built individual is

li ¼ c1; c2; c3. . .cxf g, where cx is the current city with

crossover failure.

If len cityListðc1Þð Þ� 1, then li  li ¼ cx; cx�1; cx�2f
. . .c2; c1g

Now, the current city is c1 and continue with Stage-4 of

operations to find the nextðc1Þ:

Rule 2 If the Rule 1 fails, check whether the current city

cx has the first city c1 in its cityList. If so, identify any city

in the partially built child li has len cityListðÞð Þ[ 0: If exist,

join the ends of the partially built child and continue with

two new ends. This can be exemplified as,

Let li be the partially built child,

li ¼ c1; c2; . . .cu; cv; . . .cx�1; cxf g
cx 2 cityList c1ð Þ

failðc1Þ and failðcxÞ is TRUE,If len cityList cvð Þð Þ[ 0Then

modify li as, li  li ¼ cu; cu�1; . . .c2;c1; cx; cx�1. . .
�

cvþ1; cvg
Now, the current city is cv and continue with Stage-4 of

operations to find the nextðcvÞ:

Rule 3 If both Rules 1 and 2 fail, find a list of cities

listðcxÞ using the cities present in the partially built child li
and also in the cityList of the current city cx: Then, find a

city in li which is right adjacent to the city in listðcxÞ and
also has minimum unvisited cities in its cityList. If so,

rotate the partially built child in such a way to connect the

corresponding city in the listðcxÞ with the city cx and

continue with the corresponding adjacent city.

Let li be the partially built child,

li ¼ c1; c2; . . .cu�1; cu; cv; cvþ1. . .cx�1; cxf g
listðcxÞ  8co; co in li 2 cityList cxð Þ

failðc1Þ; failðcxÞ and cx 62 cityList c1ð Þ is TRUEIf, cu  
9co 2 listðcxÞ; adjðco; coþ1Þ in li and min len cityListðð
ðcoþ1ÞÞÞ
Modify li as,

li  li ¼ c1; c2; . . .cu�1;cu; cx; cx�1. . .cvþ1; cv
� �

Now, the current city is cv and continue with Stage-4 of

operations to find the nextðcvÞ: Similarly, attempt the same

steps for another end city c1 by formulating the list c1ð Þ;
however, it has to find a city in li which is left adjacent to

the city in listðc1Þ:

Rule 4 If the rules 1, 2 and 3 fail, formulate the listðcxÞ as
in Step 3, but using the ODVðcxÞ instead of cityListðcxÞ:
And rotate the partially built individual li as in (iii) and

continue with the new end of li:

Let li be the partially built child,

li ¼ c1; c2; . . .cu�1; cu; cv; cvþ1. . .cx�1; cxf g
listðcxÞ  9co; co 2 ODV cxð Þ

failðc1Þ; failðcxÞ and cx 62 cityList c1ð Þ is TRUEIf cu  
9co 2 listðcxÞ; adjðco; coþ1Þ in li and min len cityListðð
ðcoþ1ÞÞÞ
Modify li as,

li  li ¼ c1; c2; . . .cu�1;cu; cx; cx�1. . .cvþ1; cv
� �

Now, the current city is cv and continue with Stage-4 of

operations to find the nextðcvÞ: Similarly, attempt the same

steps for another end city c1 by formulating the list c1ð Þ;
however, it has to find a city in li which is left adjacent to

the city in listðc1Þ:

Rule 5 If all the above Rules fail, possibly the last few

cities to be included, then the nextðcxÞ would be chosen

randomly from the available unvisited cities.

After the successful crossover failure evasion, the off-

spring construction operation is continued with the Stage-4

of the algorithm.

Stage-6: Final Reduction

This stage works similar to the Stage-2, but it improves

the quality of the offsprings generated after the successful

recombination process. The main objective of this stage is

to optimize the distance between the first and last cities of

the offspring which are usually anonymous to each other.

Let ci and cj are the first and the last cities in the com-

pletely built offspring li; find the two consecutive cities cx
and cy in li such that,

dist ci; cj
� �

þ dist cx; cy
� �

[min dist ci; cxð Þ þ dist cj; cy
� �

;
�

dist ci; cy
� �

þ dist cj; cx
� �

Þ
If the condition holds, then modify the offspring to connect

ci and cj with the corresponding cx and cy cities. It should

be noted that the rank of cities to which ci and cj are joined

should be less than or equal to the ‘ba’ value used at the

population seeding stage.

If no cities satisfy such condition, then the condition has

to be re-checked for the city cj and cj�1 in li and so on.

Thus, the Stage-6 of ODVX attempts to improve the

quality of the individuals with simple operations which

helps to enhance the overall efficacy of the algorithm.

At the end of the algorithm, ‘m’ number of offsprings

have been generated using the parent individuals chosen

from the current population and the same procedure is

repeated until the generation of ‘n’ offsprings which con-

stitute a generation.
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4 Experimentation and result analyses

4.1 Experimental setup

4.1.1 Test bed design

Experiments are carried out in a different combination of

crossover operators and population seeding techniques

under the similar environmental condition to validate the

significances of the proposed crossover operator. The

experimental setup framework is shown in Fig. 2 in which

the initial populations generated with different population

initialization techniques are made to recombine with recent

and best working specific crossover operators until the

termination condition is satisfied. The resultant populations

of individuals, which are generated under similar test set-

tings, are evaluated with the defined performance factors.

The various GA parameters and their corresponding values

used in the evaluation are given in Table 1. For experi-

ments, the authors used Windows PC with Intel i5 pro-

cessor with 8 GB RAM, MATLAB R2017a for

implementation and SPSS for mean value-based analyses.

One of the famous combinatorial hard problems trav-

eling salesman problem (TSP) obtained from standard

TSPLIB is being chosen as the testbed [TSPLIB]. Classi-

fication of TSP instances based on the size is given in

Table 2. For experiments, the performance of the ODVX

crossover has been compared with the state-of-art cross-

over operators in combination with different population

seeding techniques of the permutation-coded GA. The best

performing population seeding techniques such as Ran-

dom, Nearest Neighbor (NN), Selective Initialization (SI)

and ODV-based techniques are chosen at the population

initialization stage. The crossover techniques such as the

Edge Assembly Crossover (EAX), Partition Crossover

(PX), Modified Order Crossover (MOX), Sub-tour

Recombination Crossover (SRX) and ODV-based cross-

over (ODVX) operators are selected to perform recombi-

nation operation at each generation of the GA. Therefore,

with six different population seeding techniques and five

different crossover operators, the final populations of thirty

different GA models can be obtained which are analyzed

with various assessment criteria defined in Sect. 4.1.2. This

combinational style of analyses helps to validate the per-

formance of the proposed ODVX crossover operator with

different existing population seeding techniques and also

the ODV-based population seeding technique proposed in

(Paul et al. 2014).

4.1.2 Assessment criteria

There are three critical performance factors used to observe

the importance of the proposed ODVX operator, and they

are summarized as follows:

Computation Time The computational time is the total

time taken to complete the 250 generations of GA with the

corresponding crossover operator. This factor is used to

measure the computational complexity of the complete GA

Popsize = 100, Path Representation, 6 Classes of TSP instances, MATLAB, SPSS
Experimental 
Environment

Population 
Generation    

Performance 
Assessment 

Random 
Initialization

Nearest 
Neighbour 

Initialization

Selective 
Initialization

ODV-EV 
Initialization

ODV-VE 
Initialization

ODV-VV 
Initialization

ANOVA, Duncan's Multiple Range Test (DMRT) Computation Time, Error Rate, Average Error Rate

ODVXEAX MOX PX SRX

POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP

Fig. 2 Experimental framework
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and is directly proportional to the size of the problem

instance. The measuring unit of computation time is

seconds(s).

Error Rate (%) Error Rate of a solution can be defined

as the percentage of difference in the fitness value of the

solution with the known optimal solution for the problem.

Error Rate %ð Þ ¼ Fitness�Optimal Fitness

Optimal Fitness
� 100

Average Error Rate (%) It is the average of the error rate

of the solutions in the population after the completion of

the GA with a predefined number of generations and it is

defined as follows:

AverageErrorRate %ð Þ¼AverageFitness�Optimal Fitness

Optimal Fitness
�100

where

• Average Fitness is the average fitness value of solutions

in the population

• Optimal Fitness is the known optimal value of the

corresponding instance

This factor is used to measure the quality of the final

population generated by finding the average fitness of

individuals in the population.

4.2 Result analyses

In this section, the effectiveness of the various models of

GA with Random, NN, SI, EV, VE and VV population

seeding techniques in combination with EAX, PX, MOX,

SRX and ODVX crossover operators for the defined

number of generations is discussed based on the perfor-

mance criteria discussed in Sect. 4.1.2. ‘‘Appendix G–

Appendix L’’ show the performance of the different GA

models for the Classes I, II, III, IV, V and VI of TSP test

instances, respectively, under similar experimental setup.

For each technique, the executions are carried out for 25

times and the average of each case has been considered for

experimental analyses. ‘‘Appendix A–Appendix F’’ show

the mean value-based assessment of different factors, and

the best mean value obtained for each class of test instances

is shown in ‘bold’.

4.2.1 Error rate

The error rate-based analyses on different models of GA

show that the GA models with VV & ODVX, EV &

ODVX, NN & ODVX, VV & EAX and NN & PX out-

perform other GA models comfortably. The mean values of

the error rate of different GA models for Classes I, II & III

and Classes IV, V & VI of instances are depicted in

‘‘Appendix A and Appendix B’’, respectively.

The performance of GA models with MOX and SRX

crossover operators performs worst for all the class of test

instances, regardless of the kind of population seeding

Table 1 Genetic algorithm

parameters
S.No Parameter Value/Technique

1 Pop Size 100 Individuals

2 Limit 250 Generations

3 Initialization models Random, Selective Initialization, Nearest Neighbor and ODV

4 Crossover Technique EAX, PX, SRX and ODVX

5 Crossover Probability 0.6 [3,35]

6 Mutation Technique Swap [35]

7 Mutation Probability 0.02 [3,32]

8 Elite 5 individuals

9 Termination Condition Generation Limit

Table 2 Classification of TSP

instances based on the size
Sl. No Instance class Size (No. of Cites) Name of the instances

1 Class I Size B 100 eil51, rat99, kroA100

2 Class II 100\ Size B 500 tsp225, lin318, d493

3 Class III 500\ Size B 1000 d657, u724, rat783

4 Class IV 1000\Size B 5000 fl1577, d2103, fnl4461

5 Class V 5000\Size B 15,000 rl5915, rl11849, brd14051

6 Class VI Size C 15,000 d15112, d18512
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techniques used. For most of the classes of test instances,

the MOX and SRX operators yield three times the mean

error rate value obtained by other crossover operators. This

justifies that these recombination operators are not chal-

lengeable enough for the other crossover operators con-

sidered for evaluation. The EAX and PX operators offer

better mean error rate value with the population seeding

techniques such as NN, EV and VV than the Random, SI

and VE techniques. It is also observed that the mean error

rate value of EAX and PX operators degrades with an

increase in the size of the problem instances. The PX

operator outperforms the other recombination operators,

for Classes IV & V of test instances, with NN as the

population seeding technique.

The GA model with the proposed ODVX operator,

regardless of the population seeding technique used, yields

better mean error rate value than the other recombination

operators. From Tables 3 and 4, it can be observed that the

best performing GA models have the ODVX as their

recombination operator and it can also be noted that the

performance degradation in the mean error rate, due to the

increase in the size of the problem instance, is relatively

minimal in the ODVX operator. The ODVX operator offers

to mean error rate lesser than 0.5%, for every class of test

instance, with the NN, EV and VV population seeding

techniques, whereas with SI and VE techniques the same

has been increased to the maximum of 1.5%. The Error

Rate (%) obtained for largest test instances of each class

with respect to the different GA models is shown in Fig. 3.

From the graph, it can be noted that the GA models VV &

ODVX, NN & PX, EV & ODVX and NN & ODVX give

better error rate (%) than the other GA models regardless of

the class of the instance.

4.2.2 Average error rate

The average error rate (%)-based analyses reveal the ability

of the different GA models to move toward the optimal

point in the search space as a whole population rather than

the single solution. ‘‘Appendix C and Appendix D’’ show

the mean values of the average error rate of the different

GA models for different classes of test instances. It can be

observed that the different GA models with MOX and SRX

as recombination operators give maximum mean values of

average error rate and consequently these crossover oper-

ators could not exploit the potential of the initial popula-

tions generated by the VV, EV and NN population seeding

techniques.

The GA models with NN & EAX obtained the best

mean value of the average error rate % for the Class I of

instances, whereas the GA model with ODV-based popu-

lation seeding and the ODVX operator offers best mean

value of the same for all the other Class of test instances.

This justifies that the ODVX operator explores and exploits

the potential sequence generated by the ODV-based pop-

ulation seeding techniques. It can also be observed that the

ODVX operator yields a better average error rate in com-

bination with NN, SI and Random seeding techniques than

the other crossover operators. This shows the ability of the

ODVX operator to extract better quality individuals from

the initial populations that are generated with seeding

techniques with a different principle of individual

generation.

For the Class VI of test instances, the GA models VV &

ODVX and EV & ODVX yield the mean value of the

average error rate of 1.465% and 1.705%, respectively.

This shows that the ODV-based GA models enable the

whole population to converge toward the optimal point

Table 3 Performance Order of

crossover operators for different

performance criteria

S.No Performance criteria Performance order (best ? worst)

1 Error rate ODVX ? EAX ? PX ? SRX ? MOX

2 Average error rate ODVX ? EAX ? PX ? SRX ? MOX

3 Computation time MOX ? ODVX ? SRX ? PX ? EAX

Overall ODVX ? EAX ? PX ? SRX ? MOX

Table 4 Best performing GA

model for different class of test

instances with respect to various

performance criteria

S. No Performance criteria Error rate Average error rate Computation time

1 Class I NN & ODVX NN & EAX NN & SRX

2 Class II VV & ODVX VV & ODVX SI & SRX

3 Class III VV & ODVX EV & ODVX EV & MOX

4 Class IV VV & ODVX VV & ODVX EV & MOX/ODVX

5 Class V VV & ODVX VV & ODVX EV & ODVX

6 Class VI VV & ODVX VV & ODVX EV & ODVX

Overall VV & ODVX VV & ODVX EV & ODVX
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effectively for the problems with the large and complex

search space. Figure 4 portrays the average error rate (%)

obtained for largest test instances of each class with respect

to the different GA models. From the graph, it can be noted

that the GA models with ODVX as the recombination

operator offer better average error rate (%) than the other

GA models regardless of the class of the instance.

4.2.3 Computation time

The computation time-based analyses show that the

crossover techniques such as EAX, NN and ODVX take

more time to complete the defined GA termination condi-

tion. This is because of the complex decision system used

to identify the potential information from the parent to
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generate the offspring individuals. On the other hand, the

MOX and SRX techniques which have relatively lesser

complexity in the crossover operation and consequently

faster than the other crossover operators are considered for

evaluation. ‘‘Appendix E and Appendix F’’ depict the mean

values of computation time of different GA models for

Classes I, II & III and Classes IV, V & VI of instances,

respectively.

For Classes I and II of test instances, the SRX operator

takes minimum time for the initial population generated

with the NN and SI techniques, respectively. At the same

time, the MOX operator offers better computation time

Class III of TSP instances with EV population seeding
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technique. The interesting fact is that the MOX and ODVX

techniques complete the GA at the same time using the EV

seeding technique for the Class IV of test instances.

Moreover, the ODVX & GA model outperforms the MOX

& EV model of GA with respect to the computation time

using the EV seeding technique for Classes V and VI of

instances. These points support the following assessments:

• With respect to the computation time, the SRX operator

performs better for small-sized TSP instances, MOX

and ODVX recombination operators outperform other

techniques for medium and large-sized test instances,

respectively.

• The NN and SI seeding techniques offer minimum

computation time for small-sized test problems,
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whereas the EV technique shows outstanding perfor-

mance with the computation time for the medium and

large-sized TSP test instances.

The computation time measured for largest test instan-

ces of each class with respect to the different GA models is

shown in Fig. 5. From the graph, it can be understood that

the performance of the GA model with EV & ODVX

improves with an increase in the size of the test instances.

4.3 Discussion

The performance of the proposed ordered distance vector-

based crossover (ODVX) operator has been evaluated with

the different recent and best working crossover operators

based on various performance criteria defined. The per-

formance order of the crossover operators of GA for dif-

ferent performance criteria based on the overall mean value

using DMRT on different crossover techniques is shown in

Table 3. The overall performance order of different

crossover operators has been identified after neglecting the

computation time factor which has no significant difference

between the mean values of the different techniques.

From Table 3, it can be observed that the proposed

ODVX operator outperforms the other well-known cross-

over operators studied for the Permutation-coded GA in

solving TSP. Though PX yields a better quality solution for

some of the test problems, EAX operator outperforms the

PX in the mean values using DMRT analyses. Thus, the

proposed ODVX operator has the following versatile

capabilities: the multi-parent characteristic helps to effec-

tively transfer the good information from the parents to the

offsprings, the two-way potential extraction enables the

individual to extract the goodness of the parents to the

maximum possible extent, ability to overcome the cross-

over failure avoids the inclusion or addition of unnecessary

random information into the offspring which may spoil the

potential of the individual, and the selective new infor-

mation inclusion facilitates the operator from getting stuck

in the local optimal point that leads to premature conver-

gence. This clearly evident that the proposed ODVX is

better than the existing crossover operators by effectively

utilizing the potential sequence generated at the initializa-

tion stage of the GA.

Table 4 shows the best performing GA model for dif-

ferent classes of test instances with respect to various

performance criteria. From the table, it can be justified that

the GA model with the proposed ODV-based population

initialization techniques and the ODV-based crossover

operators works outstanding for different classes of test

instances. Especially, in case of medium and large-sized

TSP test instances, the performance of ODV-based VV/EV

technique with ODVX is exceptional. Thus, the signifi-

cances of the proposed crossover operator have been val-

idated with the suitable test environment and the

performance factors.

5 Conclusion

To conclude, the research work is projected to design an

effective GA model with ODV-based crossover technique

and thereby to improve the overall performance of the GA

with ODV initialization to solve the large-sized combina-

torial problem. Precise experimental setup has been

designed, and experiments are performed on different sized

benchmark TSP instances obtained from standard TSPLIB

in order to validate the proposed crossover technique. The

assessment is intended to evaluate the performance of the

proposed ODVX operator with respect to the different

state-of-the-art crossover operators. A variety of GA

models have been generated for examination with various

population seeding techniques in combination with cross-

over operators, and the result values are noted after the 250

generations. From the experimental results, the GA model

with ODV initialization and ODVX crossover operator

outshines the other existing and best working GA model in

the literature. This work can be extended to validate the

performance of the proposed GA model with ODV-based

seeding and crossover operator with different generation

limits and with respect to the state-of-the-art metaheuristic

approaches for TSP.
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Appendix A: The mean values of the error
rate of different GA models for Classes I, II
and III of instances

Dependent variable: error rate Mean

Class Population seeding Crossover

Class I Random EAX 0.541

PX 0.610

SRX 0.687

MOX 0.813

ODVX 0.283

NN EAX 7.6E-16

PX 1.3E-15

SRX 0.280

MOX 0.430

ODVX 7.7E216

SI EAX 0.480

PX 0.243

SRX 0.523

MOX 0.600

ODVX 0.283

EV EAX 4.96E-16

PX 5.24E-16

SRX 0.530

MOX 0.473

ODVX 1.93E-15

VE EAX 0.042

PX 7.772E-16

SRX 0.400

MOX 0.680

ODVX 0.003

VV EAX 0.005

PX 1.277E-15

SRX 0.460

MOX 0.560

ODVX 1.199E-14

Dependent variable: error rate Mean

Class Population seeding Crossover

Class II Random EAX 0.736

PX 1.830

SRX 1.740

MOX 1.363

ODVX 0.693

NN EAX 0.250

PX 0.060

SRX 0.477

Dependent variable: error rate Mean

Class Population seeding Crossover

MOX 0.573

ODVX 0.050

SI EAX 0.628

PX 1.660

SRX 1.270

MOX 0.900

ODVX 0.560

EV EAX 0.129

PX 0.017

SRX 0.447

MOX 0.537

ODVX 0.010

VE EAX 0.248

PX 0.163

SRX 0.490

MOX 0.663

ODVX 7.073

VV EAX 0.010

PX 0.003

SRX 0.320

MOX 0.487

ODVX 2E214

Dependent variable: error rate Mean

Class Population seeding Crossover

Class III Random EAX 1.358

PX 1.663

SRX 2.107

MOX 2.770

ODVX 1.047

NN EAX 0.343

PX 0.190

SRX 0.530

MOX 0.647

ODVX 0.093

SI EAX 1.337

PX 1.970

SRX 2.110

MOX 2.160

ODVX 1.113

EV EAX 0.269

PX 0.237

SRX 0.523

MOX 0.577

ODVX 0.057
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Dependent variable: error rate Mean

Class Population seeding Crossover

VE EAX 0.459

PX 0.257

SRX 0.757

MOX 0.600

ODVX 0.173

VV EAX 0.104

PX 0.030

SRX 0.420

MOX 0.527

ODVX 1.94E214

Appendix B: The mean values of the error
rate of different GA models for Classes IV, V
and VI of instances

Dependent variable: error rate Mean

Class Population seeding Crossover

Class IV Random EAX 1.520

PX 1.970

SRX 1.820

MOX 2.380

ODVX 0.853

NN EAX 0.202

PX 0.060

SRX 1.073

MOX 1.213

ODVX 0.093

SI EAX 1.196

PX 1.803

SRX 1.387

MOX 1.800

ODVX 0.747

EV EAX 0.149

PX 0.087

SRX 0.980

MOX 1.170

ODVX 0.030

VE EAX 0.231

PX 0.533

SRX 1.067

MOX 1.247

ODVX 0.140

VV EAX 0.109

PX 0.033

Dependent variable: error rate Mean

Class Population seeding Crossover

SRX 0.887

MOX 1.100

ODVX 0.007

Dependent variable: error rate Mean

Class Population seeding Crossover

Class V Random EAX 1.435

PX 2.030

SRX 1.550

MOX 2.863

ODVX 0.927

NN EAX 0.585

PX 0.147

SRX 1.263

MOX 1.967

ODVX 0.307

SI EAX 1.174

PX 1.843

SRX 1.297

MOX 2.480

ODVX 0.827

EV EAX 0.328

PX 0.133

SRX 1.003

MOX 1.807

ODVX 0.160

VE EAX 0.454

PX 0.160

SRX 1.380

MOX 1.893

ODVX 0.293

VV EAX 0.207

PX 0.110

SRX 0.857

MOX 1.727

ODVX 0.030

Dependent variable: error rate Mean

Class Population seeding Crossover

Class VI Random EAX 3.357

PX 4.515

SRX 4.300

MOX 6.615

ODVX 1.755
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Dependent variable: error rate Mean

Class Population seeding Crossover

NN EAX 1.400

PX 0.995

SRX 2.500

MOX 5.435

ODVX 0.930

SI EAX 2.724

PX 4.460

SRX 3.325

MOX 6.115

ODVX 1.720

EV EAX 1.023

PX 0.650

SRX 1.915

MOX 4.320

ODVX 0.375

VE EAX 1.132

PX 0.770

SRX 2.200

MOX 4.610

ODVX 0.610

VV EAX 0.692

PX 0.465

SRX 1.365

MOX 4.230

ODVX 0.130

Appendix C: The mean values of the average
error rate of different GA models for Classes
I, II and III of instances

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class I Random EAX 0.642

PX 0.777

SRX 1.067

MOX 1.030

ODVX 0.643

NN EAX 0.018

PX 0.037

SRX 0.463

MOX 0.473

ODVX 0.030

SI EAX 0.587

PX 0.710

Dependent variable: average error rate Mean

Class Population seeding Crossover

SRX 0.913

MOX 1.023

ODVX 0.597

EV EAX 0.056

PX 0.043

SRX 0.667

MOX 0.747

ODVX 0.030

VE EAX 0.101

PX 0.023

SRX 0.743

MOX 0.853

ODVX 0.053

VV EAX 0.054

PX 0.040

SRX 0.540

MOX 0.690

ODVX 0.040

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class II Random EAX 0.882

PX 1.967

SRX 2.193

MOX 1.850

ODVX 0.827

NN EAX 0.296

PX 0.180

SRX 0.680

MOX 0.750

ODVX 0.160

SI EAX 0.774

PX 1.800

SRX 1.480

MOX 1.190

ODVX 0.673

EV EAX 0.268

PX 0.160

SRX 0.770

MOX 0.667

ODVX 0.137

VE EAX 0.339

PX 0.203

SRX 0.967
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Dependent variable: average error rate Mean

Class Population seeding Crossover

MOX 0.823

ODVX 0.187

VV EAX 0.188

PX 0.200

SRX 0.697

MOX 0.520

ODVX 0.083

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class III Random EAX 1.418

PX 2.497

SRX 2.703

MOX 3.407

ODVX 1.230

NN EAX 0.532

PX 0.383

SRX 0.727

MOX 1.160

ODVX 0.347

SI EAX 1.281

PX 2.550

SRX 2.520

MOX 3.113

ODVX 1.393

EV EAX 0.526

PX 0.407

SRX 0.670

MOX 0.817

ODVX 0.157

VE EAX 0.571

PX 0.447

SRX 0.823

MOX 1.230

ODVX 0.250

VV EAX 0.456

PX 0.290

SRX 0.593

MOX 0.677

ODVX 0.183

Appendix D: The mean values of the average
error rate of different GA models for Classes
IV, V and VI of instances

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class IV Random EAX 1.644

PX 2.040

SRX 2.053

MOX 2.680

ODVX 0.983

NN EAX 0.296

PX 0.160

SRX 1.157

MOX 1.433

ODVX 0.203

SI EAX 1.319

PX 1.873

SRX 1.620

MOX 2.090

ODVX 0.843

EV EAX 0.266

PX 0.143

SRX 1.063

MOX 1.357

ODVX 0.107

VE EAX 0.334

PX 0.427

SRX 1.260

MOX 1.500

ODVX 0.247

VV EAX 0.226

PX 0.103

SRX 0.963

MOX 1.273

ODVX 0.060

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class V Random EAX 2.007

PX 2.480

SRX 2.020

MOX 3.067

ODVX 1.227

NN EAX 1.416

PX 1.003

SRX 1.800
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Dependent variable: average error rate Mean

Class Population seeding Crossover

MOX 2.803

ODVX 0.643

SI EAX 1.779

PX 2.360

SRX 1.833

MOX 2.720

ODVX 1.233

EV EAX 0.923

PX 0.703

SRX 1.443

MOX 2.550

ODVX 0.263

VE EAX 1.132

PX 0.830

SRX 1.730

MOX 2.807

ODVX 0.450

VV EAX 0.804

PX 0.610

SRX 1.287

MOX 2.343

ODVX 0.097

Dependent variable: average error rate Mean

Class Population seeding Crossover

Class VI Random EAX 8.200

PX 8.655

SRX 10.655

MOX 13.545

ODVX 3.520

NN EAX 6.374

PX 8.240

SRX 6.615

MOX 10.400

ODVX 2.630

SI EAX 7.447

PX 8.640

SRX 9.475

MOX 10.145

ODVX 3.690

EV EAX 6.956

PX 6.035

SRX 5.950

MOX 9.580

ODVX 1.705

Dependent variable: average error rate Mean

Class Population seeding Crossover

VE EAX 7.411

PX 6.465

SRX 6.295

MOX 9.485

ODVX 2.250

VV EAX 6.404

PX 5.720

SRX 5.490

MOX 11.300

ODVX 1.465

Appendix E: The mean values
of computation time of different GA models
for Classes I, II and III of instances

Dependent variable: computation time Mean

Class Population seeding Crossover

Class I Random EAX 10.361

PX 10.377

SRX 7.910

MOX 8.310

ODVX 10.783

NN EAX 10.470

PX 10.830

SRX 7.073

MOX 7.713

ODVX 10.123

SI EAX 11.388

PX 10.583

SRX 7.817

MOX 8.753

ODVX 10.617

EV EAX 13.309

PX 12.960

SRX 9.883

MOX 10.307

ODVX 12.727

VE EAX 14.474

PX 14.700

SRX 11.210

MOX 12.187

ODVX 14.607

VV EAX 16.949

PX 14.807
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Dependent variable: computation time Mean

Class Population seeding Crossover

SRX 11.637

MOX 12.400

ODVX 13.730

Dependent variable: computation time Mean

Class Population seeding Crossover

Class II Random EAX 78.962

PX 74.610

SRX 68.867

MOX 65.807

ODVX 72.443

NN EAX 73.161

PX 67.477

SRX 58.663

MOX 54.017

ODVX 61.240

SI EAX 66.219

PX 58.803

SRX 47.963

MOX 48.537

ODVX 55.123

EV EAX 66.090

PX 60.963

SRX 54.643

MOX 51.787

ODVX 57.863

VE EAX 71.648

PX 77.437

SRX 67.807

MOX 66.697

ODVX 71.567

VV EAX 74.592

PX 71.730

SRX 64.627

MOX 64.833

ODVX 66.577

Dependent variable: computation time Mean

Class Population seeding Crossover

Class III Random EAX 188.115

PX 170.677

SRX 153.583

MOX 146.550

ODVX 155.080

Dependent variable: computation time Mean

Class Population seeding Crossover

NN EAX 178.599

PX 162.673

SRX 145.187

MOX 136.583

ODVX 145.713

SI EAX 154.989

PX 137.927

SRX 123.103

MOX 118.537

ODVX 126.933

EV EAX 142.093

PX 136.397

SRX 117.913

MOX 110.457

ODVX 120.757

VE EAX 157.083

PX 146.907

SRX 114.403

MOX 116.097

ODVX 121.463

VV EAX 180.009

PX 178.667

SRX 160.643

MOX 144.237

ODVX 166.273

Appendix F: The mean values
of Computation Time of different GA models
for Classes IV, V and VI of instances

Dependent variable: computation time Mean

Class Population seeding Crossover

Class IV Random EAX 797.182

PX 788.497

SRX 765.300

MOX 757.280

ODVX 776.177

NN EAX 556.384

PX 548.070

SRX 536.020

MOX 532.020

ODVX 535.780

SI EAX 620.295

PX 603.697
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Dependent variable: computation time Mean

Class Population seeding Crossover

SRX 589.613

MOX 579.983

ODVX 596.510

EV EAX 537.149

PX 528.503

SRX 509.220

MOX 502.133

ODVX 502.133

VE EAX 600.023

PX 587.080

SRX 574.607

MOX 565.857

ODVX 574.817

VV EAX 631.661

PX 620.040

SRX 605.910

MOX 591.057

ODVX 604.690

Dependent variable: computation time Mean

Class Population seeding Crossover

Class V Random EAX 4.14E3

PX 3.98E3

SRX 3.62E3

MOX 3.59E3

ODVX 3.61E3

NN EAX 3.49E3

PX 3.35E3

SRX 3.14E3

MOX 3.00E3

ODVX 3.05E3

SI EAX 4.08E3

PX 3.95E3

SRX 3.60E3

MOX 3.55E3

ODVX 3.59E3

EV EAX 3.42E3

PX 3.39E3

SRX 3.04E3

MOX 2.98E3

ODVX 2.91E3

VE EAX 3.49E3

PX 3.36E3

SRX 3.10E3

Dependent variable: computation time Mean

Class Population seeding Crossover

MOX 3.09E3

ODVX 3.09E3

VV EAX 3.73E3

PX 3.78E3

SRX 3.40E3

MOX 3.26E3

ODVX 3.37E3

Dependent variable: computation time Mean

Class Population seeding Crossover

Class VI Random EAX 1.115E4

PX 1.015E4

SRX 9.272E3

MOX 9.004E3

ODVX 9.062E3

NN EAX 8.372E3

PX 7.832E3

SRX 7.085E3

MOX 6.862E3

ODVX 7.287E3

SI EAX 9.754E3

PX 8.852E3

SRX 8.188E3

MOX 7.845E3

ODVX 8.187E3

EV EAX 7.727E3

PX 6.902E3

SRX 6.477E3

MOX 6.257E3

ODVX 6.202E3

VE EAX 8.416E3

PX 7.828E3

SRX 7.313E3

MOX 7.295E3

ODVX 7.282E3

VV EAX 1.015E4

PX 9.039E3

SRX 8.462E3

MOX 8.637E3

ODVX 8.221E3
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