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Abstract
The smartness of a city is given by the technologies it put to use, and more than that, by the people empowered by such
technologies; it is worth thinking about how people can be trained to be empowered by smart technologies, and how cities
can become “educational.” So, while sustainability and technology solutions for smart cities are strategic challenges, one
of these is surely distance education and training. In this field, the Web offers many opportunities, such as the e-learning
platforms where students can learn, according to their own needs and pace. The massive open online courses (MOOCs) are
particular distance learning platforms, generally offering, so far, free courses on a huge amount of topics, and characterized
by a (potentially) very high number of enrollments. In a MOOC, a teacher, or tutor, has a hard life when trying to follow and
manage with the learning processes of thousands of students. In particular, assessment can be managed almost exclusively by
letting the student answer questions in closed answers tests. This strategy has some didactic limits, while a valid alternative
is to use peer assessment (PA) over more articulated assessment activities (e.g., open-ended questions). PA makes students
grade their peers’ answers, and provides learners with significant advantages, such as refining their knowledge of the subject
matter, and developing their meta-cognitive skills. In this work, we present a software platform called K-OpenAnswer, which
helps teachers to simulate the dynamic of aMOOCwhere PA is used. The system uses a machine learning technique, based on
a modified version of the K-NN algorithm, and provides teachers with a statistical environment by which they can monitor the
evolving dynamic of a simulated MOOC, according to the techniques we use to implement PA. An experimental evaluation
is presented that highlights the advantages of using the system as a valid tool for the study of real MOOCs.

Keywords Smart cities · Peer assessment · Machine learning · E-learning

1 Introduction

In the debate about smart cities and the change of pace, they
can support in social evolution, important issues regarding
the awareness and competence of the smart citizens (Lytras
and Visvizi 2018), the perception such citizens have of the
smart services, as well in wide urban ecosystem as in smaller
living environments (Visvizi and Lytras 2018), and the role
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of social networks in spreading the opportunities offered by
the smart services (Lytras et al. 2018).

One aspect of the “smart” concept for cities, regions, social
connection and social transformation is in a people-centered
approach. It involvesmany areas, inwhich social networking,
continuing education and social learning are comprised.

In this paper, we deal with educational techniques, based
on peer evaluation and peer learning, instantiated on the case
of massive open online courses (MOOCs), where the class
can more resemble a social learning ecosystem. The tech-
nique we propose has been developed with the purpose of
making it applicable, in real time, to a huge number of learn-
ers, so susceptible of applications in extended social learning
environments, to promote just in time and lifelong learning.
We use methods to model the user that involves a cross-
analysis of their representations in the system, based on their
dependencies, and on the information flowing among them.
The user can be the learner, in our proposal, or the citizen,
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in a lifelong learning prospective. The whole set of users’
(learners’) models is constantly updated during the process,
until the models reach a satisfactory stability, at least locally
to the current learning aims. These techniques use soft com-
putation methodologies, such as machine learning, to allow
for a better assessment of learning tasks, in general, and for
a better mutual assessment among the learners.

Such a learning ecosystem can be nurtured through the
learners’ participation together with teacher’s coordination,
so to display the advantages of a (learning) social network,
certainly a focused one (on a subject matter for instance) but
available to extend, and serve wider areas of competence in
a more general purpose social network.

1.1 Education in the digital era

In recent years, education has been adapting to the effects of
the digital revolution, due to the exponential growth both of
the Internet and ofmultimedia devices. Such two components
have undoubtedly empowered the global educational offer,
for instance with the possibility to propose to highly inter-
active and engaging educational materials. The exponential
growth of the Internet has increased distance education
through the use of the e-learning platforms, web-accessible,
via any connected device, 24 hours a day. They have been
providing education for years to universities, schools, com-
munities of practice and in general to all areas of education.
Moodle,1 Docebo2 and Sakai Project3 are widely known
examples of such platforms. Furthermore, over the past two
years, Social platforms have also been emerging, such as
Edmodo, Fidenia and weSchool. Social platforms are based
on the Social Learning paradigm where the learning process
takes place also by peers’ interaction. Other types of plat-
forms that are becoming increasingly popular today are those
supportingMOOCs.Basically,MOOCs are online e-learning
platforms, where learners can enroll and take courses out of
a huge variety of topics, so far mostly free of charge. To date,
over 900 universities around the world have launched at least
one MOOC. MOOC providers are also partnering with com-
panies to launch courses, mostly on technology-related top-
ics. The numbers of students enrolled toMOOCswas in 2015
about 58 million; in 2018, more than 11 thousands MOOCs
were offered or announced, growing from 9400 and 6850
of the previous years (https://www.classcentral.com/report/
mooc-stats-2018/). Coursera4 is one of the most prominent
platforms, and the largest to date, with at least 1700 active
courses andover 23millionof enrolled students, in courses on

1 https://moodle.org/.
2 https://www.docebo.com/.
3 https://www.sakailms.org/.
4 https://www.coursera.org/.

economics, computer science, mathematics, logic, engineer-
ing, personal development, languages and communication.
In MOOCs, the number of students means richness, from
both a cultural and economic point of view, while it poses
serious challenges to the teachers/tutors/instructors, as they
have a little possibility to personally follow the learning pro-
cesses of each student. So it is important to adopt special
learning strategies, capable to help students in their learn-
ing, and the teacher in monitoring students’ learning paths.
Assessment is a crucial aspect in learning strategies; aside
of taking the learning material, the learner has to undertake
complex tasks, such as answering questions, learning from
the assessment of such answers and in many cases assessing
others’ answers. All such activities are crucial, in order to
help students to train their meta-cognitive skills (Metcalfe
and Shimamura 1994), and their knowledge on the subject
matter, to let it grow at higher cognitive levels (Li et al. 2010;
Bloom et al. 1956; Anderson and Krathwohl 2000).

Peer assessment (PA) is an educational strategy that helps
achieving such enhancements (Sadler and Good 2006). In
a PA session, students can be exposed to open-ended ques-
tions, a tool widely used when one wants not to go to the
extremes of either multiple-choice quizzes or full-fledged
essays. Open-ended questions can implement a wide vari-
ety of tasks, such as (i) short essays (presenting a solution
and its justifications, possibly using complex formulae); (ii)
programming code (with attached technical description); and
(iii) free text answers (proposing solutions to a less tightly
specified problem). Open-ended questions result in a more
challenging and informative source of analysis both for stu-
dents and teachers than multiple-choice tests (Palmer and
Richardson 2003). One aspect of PA is that in the educational
practice, it can be complemented and possibly decisively
enriched by the teacher’s intervention, namely the answers’
grading. To provide the learner with help and awareness, the
teacher’s assessment and PA of the answers could be very
important. In fact, a learnerwill certainly learn from teacher’s
evaluation of her/his answer, but (s)he can learn much from
PA as well (Sadler and Good 2006) (especially from good
PA). On the other hand, grading is a time-expensive activity
for the teacher, and doing it for all the students in a MOOC
class would be prohibitive, with the result of not having PA
at all, or having it in a crippled fashion. There is the option,
though, of having the teacher to grade only a subset of the
answers, using such grading to tune, or calibrate, or medi-
ate PA and get anyway to a good feedback for each learner
(Piech et al. 2013; Sterbini and Temperini 2013; Suen 2014;
Reynolds and Moskovitz 2008).

1.2 Content of the paper and research questions

In this paper, we present the K-OpenAnswer software plat-
form, a standalone computer system designed to simulate
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a MOOC. We assume that in a PA session, each peer has
answered an open-ended question, and peer-assessed someof
her/his peers’ answers. Then, the final grading of the answers
is based on the PA, mediated by the teacher’s grading work,
performedon a subset, asminimal as possible, of the answers.
Based on the PA data, and on the information added into the
system by the teacher’s grading of some answers, the remain-
ing answers are given automated grading.

In the K-OpenAnswer approach, the PA provides an ini-
tial student model (SM), computed based only on the peers’
evaluations. The SM is then enhanced through progressive
updates, determined by the use of the grades that the teacher
will add into the systembygrading someof thepeers answers.
Eventually, the updated SMs are used to infer the remaining
grades.

Basically, the SM is a representation of the individual
learner’s skills on the topic of the question (represented by
the K variable) and of her/his capability to assess correctly
the peers’ answers (represented by the J variable). In the
previous works, we have presented the OpenAnswer frame-
work operating along the lines above described, grounded
on a student modeling process based on a Bayesian Network
(BN) dynamic (Sterbini and Temperini 2012b; De Marsico
et al. 2017a). The use of BN in student modeling can be
effective when the number of peers is not too high. In the
case of a MOOC, such an approach is made expensive by the
computational complexity of the algorithms involved in its
management (and by the sheer amount of data to manage).

To overcome such difficulties, we have previously intro-
duced a different approach, based on the use of a modified
version of the K-NN machine learning method (Mitchell
1997; De Marsico et al. 2017b).

K-OpenAnswer is the implementation of the above-
mentioned approach. Here, we present this implementation
and show how it is possible to use it both for administering
a PA session, and for simulating one. The possibility of sim-
ulating a session is of particular importance in our research
area, as it allows to test the implementation of the framework
without enduring a full-fledged real-world experimentation.

Through simulation we obtained an evaluation of the sys-
tem that we present in this paper.

The evaluation shows how the system can simulate
MOOCs dynamics, once the class composition is initially
stated (in terms of number of students and distribution of
model values). A short description of the system simulation
activities is as follows:

– Initially a class is created, defining the number of students
and configuring each SM by means of a Gaussian distri-
bution, over the values of K , the knowledge level and
J , the assessment capability, as explained in De Marsico

et al. (2018). According to these distributions, the PA is
computed (i.e., the simulated learners’ PAs);

– At this stage, the class is in place, and the PA has been
held, so the teacher can start grading. Each student is
represented in the (K , J ) space, as a point whose coor-
dinates are the model values. So the teacher can have a
graphical representation of the class, and appreciate how
the students are spread. Basing on this representation,
the teacher can choose what answer to grade next. When
an answer is graded, a mechanism of propagation of this
new information is executed. The models of all the stu-
dents related to the new grade (the answer’s author, and
its peer graders) are updated. Accordingly, all the stu-
dents are reclassified, i.e., their models are re-computed,
changing their positions in the (K , J ) space;

– By repeating the grading operation, the teacher can see
the class representation evolving in the (K , J ) space,
and appreciate it. Let us remember that for a student, K
represents the correctness of the answer, while J the cor-
rectness of the assessments (s)he gave. So, for instance,
the teacher could see how the general models are getting
better or worse, or how the proposed exercise was more
or less tough for the current state of the learners.

We will base our evaluation on two research questions
(RQs):

RQ1: Does the K-OpenAnswer System allow the teacher
to simulate a MOOC, and to appreciate its evolution?

Here, we intend to consider the evolution of the MOOC
during the grading phase of a single PA session. Of course at
the end of each PA session, the system provides a picture, by
the distribution of the SMs in the space. By comparing these
pictures along several PA sessions held during the semester,
the teacher could appreciate the evolution of the class in time.

RQ2: Is the analysis supported by K-OpenAnswer con-
ducive to didactic suggestions for the teacher?
Here, we point at some possible hints that a teacher can
receive, about the students learning process, and the exercises
effectiveness, while visualizing the MOOC’s evolution.

1.3 Structure of the paper

The structure of the paper is as follows: Section 2 depicts
some related work. Section 3 shows the SM which is behind
each student and on which the network learning process
is based. In Sect. 4, the K-NN rules are illustrated, while
in Sect. 5, we present the K-OpenAnswer system and dis-
cuss some of its main characteristics. Section 6 depicts the
evaluation of the system and the last section provides some
conclusions and discussion of future work.
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2 Related work

PA (Kane and Lawler 1978) is an activity where a student
(or a group of students) is allowed to evaluate other students’
assignments. This activity can be organized in differentways,
yet a basic aspect is that it can be considered as one of the
tasks by which social interactions and collaborations among
students can be triggered. It can also serve as a way to verify
how the teacher can communicate to the students on her own
quality requirements with respect to the learning topics; if
this happens, assessments from peers and from teacher agree
better (Sadler andGood 2006).Moreover, there are empirical
evidences of the benefits of using PA approaches. In Tenório
et al. (2016), the authors show that about 60% of the studies
reveal improvements in student performance, after PA activ-
ities, and about 1

3 of the studies states that PA is beneficial
for teachers as well.

In relation to MOOCs, the ideal peer grading system
should (1) provide highly reliable/accurate assessment, (2)
allocate a balanced and limited workload across students and
course staff, (3) be scalable to class sizes of tens or hundreds
or thousands of students and (4) apply broadly to a diverse
collection of problemsettings (Piech et al. 2013).However, in
mostMOOCs, due to big numbers, and to the consequent lack
of individual support to students, discussion forums remain
the only channel to exchange information and clarifications
among peers. On the other hand, several studies point out the
limitations of discussion forums, such as low overall partic-
ipation (Kizilcec et al. 2014; Onah et al. 2014) and possible
lack of responsiveness (Yang et al. 2014). Consequently,
there is a gap between the goal of supporting students by
establishing a learning community, and the current practical
implementations of collaboration mechanisms. It has been
argued that effective ways of supporting collaborative learn-
ing in MOOCs, also taking into account the problems given
by the asynchronous communication and by the heterogene-
ity of the population, are still to be found (Penstein Rosé and
Ferschke 2016). In this respect, personalization, support in
finding peers to have information exchange, and support to
the formation of learning groups, have been considered.

Moreover, the learning activities of a class in a MOOC
generate quite large amounts of data. (The data coming from
sessions of PA are an example). Hence, several contributions
in literature point out the usefulness of Machine Learning,
andmore in general artificial intelligence techniques, to visu-
alize and analyze the dynamics of the class, as both a group
of individuals and a community of learners (Limongelli et al.
2008, 2013, 2015).

In De Marsico et al. (2017a), the OpenAnswer system is
presented, asmanaging PAover open-ended questions, based
on the representation of learners models and peer assess-
ments by Bayesian networks. The learner’s SM is defined by
stochastic variables (K representing the learner’sKnowledge

about the question’s matter, and J holding the learner’s abil-
ity to “judge” a peer’s answer). Other variables represent the
correctness of an answer, and the learners’ peer evaluations.
Conditional probability tables (CPT)model the dependencies
among the variables. The OpenAnswer workflow needs that
each peer mark n answers of other peers. Then, the teacher
starts grading, and, with each new grade, adds information
in the BN. The information propagates and the variables are
updated consequently. The grading process continue, until a
termination condition is met; then, all the answers that were
not graded by the teacher are assigned a grade computed
based on the current (final) value of correctness.

OpenAnswer is quite configurable; there are several algo-
rithms available to suggest the teacher what would be the best
next answer to grade, and to compute the final grade. Also
the CPTs nested in the system can be learned out of the class
data from previous PA sessions, allowing to adapt the system
to the class and its teacher(s). However, the BN is basically
a black box, and nothing of it is shown to the teacher; so the
feedback for the teacher is limited to the grades and models
produced by the process. Moreover, the use of BN brings
in computational problems that make it difficult to use the
system when too many peers have to be dealt with (which
is precisely our case when a MOOC is implicated). The sys-
tem we are presenting in this paper try to solve the above
problems, applying a different machine learning approach,
computationally lighter and entailing the possibility to pro-
vide the teacher with simple graphic representations of the
class, to allow analyzing the class dynamics.

Another work (Anson and Goodman 2014) proposes peer
assessment to improve student team experiences. An online
peer assessment system and team improvement process were
developed based on three design criteria, namely efficient
administration of the assessment, promotion of quality feed-
back and fostering effective team processes.

In Sterbini and Temperini (2012a), the authors propose
an approach to open answers grading, based on constraint
logic programming (CLP) and peer assessment, where stu-
dents are modeled as triples of finite domain variables. The
CLP Prolog module supported the generation of hypotheses
of correctness for answers (grounded on students peer eval-
uation), and the assessment of such hypotheses (also based
on the answers already graded by the teacher).

In Piech et al. (2013), the authors formulate and evalu-
ate intuitive probabilistic peer grading models for estimating
submission grades and grader biases/reliability. This could
allow for compensating grader idiosyncrasies. As in our
work, the authors address peer grading as a critical tool for
scaling the grading of complex, open-ended assignments, to
accommodate courses with tens or hundreds of thousands of
students. They propose some algorithms for estimating and
correcting grader biases and reliability, showing consequent
improvements in peer grading accuracy. They use real data,
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based on 63,199 peer grades given in a course in Human
Computer Interaction offered by Coursera. The probabilistic
approach does not take into account a student model. This is
because the experimentation was done on real data.

3 The student model

In this section, we illustrate the SM, which is behind the
MOOC’s learning processes. This model is the result of an
evolution, of which different development steps have been
reported in the previous papers (De Marsico et al. 2017b,
2018). Each student is represented by a set of variables,
SM ≡ {K , J , Dev, St}, where K ≡ [1, 10] is the grade
of the learner’s answer in the PA session. It represents the
learner’s competence (Knowledge). The variable J ≡ [0, 1]
is a measure of the learner’s assessing capability (Judge-
ment). It depends on K , under the assumption that to grade
effectively an answer, knowing about the matter of the ques-
tion is necessary. The standard deviation Dev represents the
credibility of the current value of K ; it is computed on the
grades given by peers to the student answer in the session; the
higher this value, the less K is given assured credit. Finally,
St ≡ {CORE,NO_CORE} represents the student state. Each
student can be in two different states: CORE (the student’s
answer has been graded by the teacher) and NO_CORE (so,
only peers graded the answer so far). Initially, all the stu-
dents are NO_CORE. A NO_CORE student is represented
as s−. CORE students are represented by s+, and their K
is the teacher’s grade. The community of students is, at any
given moment, dynamically parted into two groups: theCore
Group (CG) of theCORE students (we shall also use S+), and
its complement CG (also S−). By this representation, each
learner can be represented as a point in the two-dimensional
space (K , J ).

Figure 1 represents the distribution of the (K , J ) values in
the (K , J ) space. This kind of students representation allows
for a clear monitoring of the learning process.

3.1 Student model initialization

Each SM is initialized by means of a PA. This phase evolves
as follows:

1. The tutor assigns an open-ended question to all the
MOOC students;

2. Each student grades the answers of n different peers,
while she receives n peer grades;

3. Each SM is initialized as follows:

K−
l =

∑n
i=1 K

−
i

n
(1)
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0.
0

0.
2

0.
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8

1.
0

#St=7,000 − # PA=5

Knowledge

A
ss

es
sm

en
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Fig. 1 An example of a MOOC composed by 7000 learners and five
PAs

where K−
i is the grade received by the i th of the n peers

who graded the s−
l student;

4. For each s−
l student, J−

l is initialized as follows:

J−
l = 1

1 +
√∑n

i=1 �i
2

(2)

�2
i = (Kl j − K j )

2, being Kl j the grade assigned by the
student sl to the student s j and K j the arithmetic mean,
i.e., the initial K− of the student s j , computed by Eq. 1;

5. The standard deviation Dev is computed:

Devi =
√∑n

l=1(Ki − Kl)2

n
(3)

where Kl is the grade of the peer l, belonging to the set of
the n students that graded her in the PA step. Otherwise,
this value is the teacher’s grade.

6. All students are initialized to St = NO_CORE.

At each step, the module changes the SMs in S−, until
a termination condition suggests to stop cycling, i.e., the
inferred S− students’ grades distribution is sufficiently close
to the teacher’s distribution. Figure 1, shows a community of
n = 7000 peers, built by means of a PA of f ive grades for
each learner. Figure 2 shows the peers grades distribution of
the same community, while Fig. 3 depicts an example of the
Dev distribution after the initial PA session.

3.2 Teacher grading

After the SM initialization, all learners belong to the S− set.
Each learner evolves in the (K , J ) space as follows:
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Fig. 2 PA distribution for the example of Fig. 4, concerning the K
distribution

Dev Distribution

#St=7,000 − #PA=5
Dev

F
re

qu
en

cy

1 2 3 4

0
20

0
40

0
60

0

Fig. 3 PA distribution for the example of Fig. 4 concerning the Dev
distribution

1. The teacher is suggested a ranked list of students/answers
to grade, sorted by the Dev key; this choice represents
the possibility for the teacher to grade the least reliable
values among the votes of each student;

2. The teacher selects a group of students in the ranked list,
and grades their answers. Such grades are the new, final,
K+ values for such students;

3. The graded students become s+ students, and their posi-
tion in the (K , J ) space changes. First, the K value:

K+ = Kteacher (4)

and after, the J value:

J+
new = Jold + α(JMAX − Jold) (0 ≤ α ≤ 1)

J+
new = Jold + α Jold with (α < 0)

α = Kteacher − K−
old

IMAX
(5)

Here and in the following, we use KMIN and KMAX to
denote the minimum and maximum values for K (i.e.,
here respectively 1 and 10). IMAX will denote the max-
imum difference between two values of K, i.e., here 9.
Moreover JMIN and JMAX will denote the minimum
and maximum values for J (i.e., here resp. 0 and 1).
Finally, Devmin and Devmax represent the lowest and
highest values for the variable Dev, i.e., Devmin = 0
and Devmax = 4.5. In fact, given a set of n statistical
units, where Xmax and Xmin are, respectively, the max-
imum and minimum values among the them, then the
maximum value that the standard deviation S can take is
equal to (see for example Wonacott Thomas andWonna-
cott Ronald 1977):

S2 = (Xmax − Xmin)
2

4
(6)

4. All peers who had graded the student who became s+
change their SM. The model updating algorithm follows
recursively a graph path starting from the s+ students
and so on backwards. So, for each learner, first K and
subsequently J are updated, changing their position in
the (K , J ) space. Once all the students influenced by the
teacher’s vote have been updated, their Dev values are
updated as well.

The graded learner model is updated. First the K value,
and after the other values. Notice, in Eq. (5):

1. A linear function has been adopted for the variable J
update, providing the two cases according to the possible
value of α. In particular Jold could stand for J

+
old or J

−
old,

depending on the student being already in S+ (case J+
old),

or being just entering in S+ (case J−
old) or remaining in

S− (case J−
old again);

2. In general, we assume that the assessment skill of a stu-
dent depends on her Knowledge Level K , so the J value
is a function of K . We used this type of evolutionary
form as it is the easiest to treat as a first approach and
also because it is used very often in automatic learning
as an update of statistical variables in a machine learning
context (see for example Bishop 2006).

Subsequently, the value of Dev is modified taking into
account the teacher’s grade. All the students, s−, who are
influenced by the graded student are modified, according to
the following rules (students s+ are fixed because graded by
the teacher):

K−
new = K−

grading + α(KMAX − K−
graded) (0 ≤ α ≤ 1)

K−
new = K−

graded + αK−
graded (α < 0)
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α = 1

IMAX
(K−

grading − K−
graded)

Devgraded
IMAX

(7)

where Knew is the new value of K of the intermediate student.

The ratio
Devgraded
IMAX represents a kind of inertia of the value of

K to change.
Each J value is changed as follows:

J−
new = J−

grading + β(JMAX − J−
grading) (0 ≤ β ≤ 1)

J−
new = J−

grading + β J−
grading (β < 0)

J−
new = J−

grading + (K−
grading − K−

graded)

(β = 0 ∧ J−
grading = J−

graded)

with:

β = 1

IMAX
(K−

new − K−
grading)|Jgrading − Jgraded|Devgraded

IMAX
(8)

After, in order to complete the SMs, all the Dev values
are updated.

4 The network learning process

In this section,we show the algorithms and the data structures
that the MOOC dynamics are based on. The algorithms are
based on a modified version of the K-NN machine learning
algorithm (Mitchell 1997). K-NN is a supervised learning
algorithm, whose purpose is to predict a new instance by
knowing the K-data points currently in its neighbor. We use
this algorithmboth for its simplicity and its reduced computa-
tional time; it is possible to simulateMOOCs with thousands
of students, with respect to other machine learning algo-

rithms, such as Bayesian networks, where the computational
time is unpredictable (NP-complete).

After the teacher has graded a set of s− students, themodi-
fied K-NN algorithm can start. The learning process changes
by means of the laws:

K−
new = K−

old + α(KMAX − K−
old) (0 ≤ α ≤ 1)

K−
new = K−

old + α(1 − K−
old) (α < 0)

α = 1

Imax

∑k
i=1

1
di

(K+
i − K−

old)
∑k

i=1
1
di

Devi
IMAX

(9)

where

1. di is the Euclidean distance between the s−
old student

under update, and the i th student in the Core Group (s+
i );

2. The K−
new value is given as a convex function, to keep K

in [1, 10];
3. The acronym K-NN features a K, possibly misleading

here, so we are using k for the number of nearest neigh-
bors to be used in the learning algorithm;

4. The Devi
IMAX factor has the same meaning as in Eq. 7.

J−
new = J−

old + (K−
new − K−

old)

IMAX
J−
old (β = 0 ∧ J+

i

= J−
old, i = 1 . . . k)

J−
new = J−

old + β(JMAX − J−
old) (0 ≤ β ≤ 1)

J−
new = J−

old + β J−
old (β < 0)

with β = (K−
new − Kold)

IMAX

∑k
i=1

1
di

|J+
i − J−

old|
∑k

i=1
1
di

Devi
IMAX

.

(10)

where

Fig. 4 Architecture of the
K-OpenAnswer system
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Fig. 5 Current K-OpenAnswer
GUI

1. As mentioned earlier, we assume J depending on K ; this
is expressed through the difference between the K−

new
value, obtained by Eq. 9, and the K−

old value;
2. di is the Euclidean distance between the s−

old student
under update, and the i th student in the Core Group (s+

i );
3. The Jnew value is given as a convex function, to keep J

in its normal range [0, 1];
4. k is as explained in the previous equation;
5. About the coefficient β, some notices are due, for the

cases when β = 0. On the one hand, when the J+ of the
k nearest neighbors is equal to the J−

old value of the s−
i

student under update, J−
new is computed by the difference

between K−
new and K−

old only. The rationale is that when
the s− student changes her K− value, her assessment skill
should change as well (by the assumption of dependence
of J on K). On the other hand, when the K− value for the
student under update is not changed, the assessment skill
stays unchanged as well.

As can be seen from the updating rules 9 and 10, for each
involved student s, the update is done by taking into consid-
eration the K core students closest to her, calculating their
distances as the Euclidean distance, (as in classicK-NN algo-
rithm). After that, starting from this setting, the user model is
updated. In the first step, the network dynamics follows the
classic K-NN rule, to find which students are in the nearest
neighborhood, while in the second step, the updating rules
are different from those used in classic K-NN algorithm to
classify new instances.

5 The K-OpenAnswer architecture

The K-OpenAnswer system in a standalone software plat-
form is implemented in C language, to have the best
computational efficiency. The overall functional architecture
is shown in Fig. 4.

The system is divided into different modules, specialized
to perform different functions:

– The Graphical User Interface (GUI)
– The MOOC Manager
– The STAT Manager
– The SYS Manager
– The SM Manager

5.1 The GUI

In this first version of the system, the GUI is very elementar;
it appears as a list of features that the user can launch through
a choice to be made with the selection of the desired num-
ber. Currently, the user can select an activity among the 21
shown in the general menu. Figure 5 shows the current GUI.
Until now, there has not been much concern about the design
of the GUI, having given priority to the development of the
other functional modules. Obviously, the GUI represents an
important aspect to have an adequate human–computer inter-
action. For this reason, the development of a more interactive
communication environment is planned.
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Table 1 MOOC Manager

Module Goals

Build a new MOOC A new MOOC is created

Load MOOC A MOOC can be uploaded from a file

Export MOOC All the students are exported into a file

Teacher Grading The teacher can grade a group of students

Fig. 6 An example of the MOOC graph where an arc from node Si to
node S j represents a grade given by the student Si to the student S j and
whose weight is the grade

5.2 TheMOOCmanager

This component is used to manage the simulated MOOC.
The functionalities of this module are given in Table 1.

5.2.1 Build a newMOOC

Here, a new MOOC can be build. After having selected this
choice, the user is requested to input the number of students
and the number of peer assessments for student. A new data
structure is created in a dynamic way. In our trials, we tried
several configurations to test the feasibility at machine time
required. The MOOC is represented by a direct and weighed
graph where each node is a student and each arc from a node
Si to a node S j represents the grade assigned from the student
Si to the student S j , as shown in Fig. 6.

The user can leave the system possibility to completely
simulate a peer evaluation; in this case, a Gaussian grades
distribution among peers is used, as shown in Fig. 7, or she
can manually enter the grades directly, either in online mode
or in offlinemode or by filling in aMOOCon file. As a result,
we obtain a MOOC where each student has received n peer
grades.

Peer Grades Distribution

K
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80
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10

00

Fig. 7 An example of peer assessment distribution for a MOOC com-
posed by 1000 students andwith si x peer evaluations. This is aGaussian
distribution with μ = 5.75 and σ = 1.74

5.2.2 Load MOOC

This function loads a MOOC from a file. The file format is a
text format representing the adjacency matrix of the MOOC.
When loading theMOOC, for each student, the SM is created
by means of the rules shown in Sect. 3.

5.2.3 Export MOOC

This module allows to export someMOOC variables to CSV
files. In particular, one can export all the SMs, i.e., K , J and
DEV variables, in group or separated. Thanks to this func-
tion, we can monitor the MOOC dynamic by other statistical
programs like the R program allowing for a more in-depth
study as well.

5.2.4 Teacher grading

By this option, the user (the tutor or the teacher) can grade
one, all or a group of students. When a MOOC is loaded, all
the students are presented to the user sorted according to their
Dev value. First, this allows the user to select the students
to grade, basing this choice on the reliability of their current
K value as graded by peers. Secondly, the teacher can give a
grade from 1 to 10.

5.3 The STATmodule

The STAT module performs some statistical tasks, shown in
Fig. 8.

In the following, we explain the twomost significant mod-
ules.
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Fig. 8 Statistics of the system

5.3.1 Distances between teacher and student distributions

This module computes the metric used for measuring the
average among all students. It is the average Euclidean dis-
tance.

5.3.2 Compare distributions

This module computes the difference between the student
grade distribution and the teacher grade distribution. In fact
in our approach, the teacher can grade a group of students,
speeding up in this way the convergence of the students’ K
distribution toward the one proposed by the teacher.

5.4 The SMmanagement module

During the MOOC life cycle, the student model changes
according to the K-NN algorithm. The models are stored
in files and this module is responsible for managing changes.
As shown in Sect. 3, each model consists of three sizes: K ,
J and Dev. The module is responsible for managing the per-
sistence on file models. In particular, by this module, the user
can save all the SMs inCSv or other formats, ready to beman-
aged by specialized external programs like the R statistical
package.

5.5 The overall workflow

The functionalities offered by the system are basically imple-
menting the following workflow

– a MOOC simulation can be defined by specifying the
number of students in the class and the number of peer
assessments that each peer is expected to provide;

– the students in a MOOC can be given and initial distri-
bution of models;

– a number of teacher’s grades can be added into the sys-
tem, determining a phase of network update (student
models and grades); when n students are graded in a turn,
they become members of S+ (referring to the previous

section) and the value of the Dev model variable is recal-
culated.

– a MOOC, represented as a direct and weighed graph,
can be saved in a file for future use, and loaded back
when needed; When a MOOC is loaded, students are
presented to the tutor sorted according to the value of the
Dev parameter of their model. This allows the teacher
to possibly select answers to grade, basing the choice on
students’ characteristics.

– the distribution of the student models, as points on the
(K,J) plan, and grades can be visualized;

– a distribution of values (Gaussian) can be used to assign
grades to the students in the class.

6 Evaluation

The goals of theK-OpenAnswer system are: (i) to provide the
teacher with an environment capable to simulate a MOOC
(RQ1); (ii) to give the teacher some didactic insights about
the class, coming from the evolution of the student models
during a PA session. Such insights could then be applied to set
up appropriate teaching strategies in a real MOOC (RQ2).

6.1 Research question RQ1

Wefirst summarize themost important features of the system
that regard the simulation of a MOOC:

– Simulation of a big classThe teacher has the possibility to
create different instances of a class, also possibly com-
posed by thousands of learners, which is an important
issue when MOOCs are the subject of study.

– Peer Assessment As the system allows for PA didactic
strategy, where the teacher can grade a group of students
in such a way to speed up the convergence of the com-
munity toward her/his grades;

– StudentmodelingEach student is represented by amodel.
In the current version of the system, the models are
defined automatically based on a Gaussian distribution
given by the teacher (through definition of mean μ and
variance σ ). So the teacher can select different distri-
butions to use. In a real MOOC, the distribution might
come from previous records of the class, or it can be the
best fitting after trying and testing different distributions.
One of the functionality of our system allows to set up
the distribution of grades on the students in the class, as
illustrated, by an example, in Fig. 12.

– The statistical hypotheses The above-mentioned Gaus-
sian distribution can be used to simulate both PA and
teacher grades distributions.
In particular, the simulated teacher’s grades are assigned
based on a Grading on a Curve modality, i.e., a quite
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Table 2 MOOC simulation
trials

# Students # Peer evaluations

100 3

500 4

1000 5

1500 3

2000 3

7000 5

10,000 5

common practice in higher education (Kulick andWright
2008). It seeks to obtain, at the end of the grading oper-
ation, a pre-specified distribution of grades. Notice that,
here, the term curve refers to the bell curve, the graphical
representation of the probability density of the normal
distribution, but this method can be used to achieve any
desired distribution of the grades—for example, a uni-
form distribution.

– The export functions The system allows to extract from a
PA session the data produced by the learning community
during the described process (peers’ grades and teacher’s
grades), for further processing. In particular, these data
can be processed by the R statistical software,5 by means
of a set of dedicated functions that we built, so to allow
an accurate analysis of the data produced by the MOOC;
Table 1 shows a list of the above-mentioned function-
alities. (Each one is implemented in a module of the
software system.)

– The learning process The learning process is based on
a modified version of the K-NN machine learning algo-
rithm where each student is represented in the (K , J )

space. Each point moves in the space until the shifts are
less than a predetermined amount ε.

From the above features descriptions, it is possible to
answer affirmatively to the first RQ; in fact, the initial state
of the SMs is represented in the SMs’ space; then, each grade
added by the teacher (simulated grade in the simulation, yet
possibly real grade in a real-world application) will make
theMOOC evolve, and the new graphical representation will
show “at a glance” how the SMs/points are changing posi-
tions. This is the basic feature allowing the teacher to look at
the evolution of the MOOC models.

Table 2 presents a list of sample definitions of MOOC
simulations used in our experimental work, while Fig. 9 illus-
trates the students distribution in the (K , J ) space, produced
by the Visualization menu functionality.

5 https://www.r-project.org/.

Fig. 9 MOOC with 1000 students and 3 peers evaluations

Fig. 10 An example of PA Gaussian distribution
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Fig. 11 Dev distribution for 10,000 students and five PA
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Fig. 12 (K , Dev) distribution for 10,000 students and five PA

6.2 The research question RQ2

As it can be expected, the answer to the second research ques-
tion is supported by less evidence coming from our simulated
experimentation (Figs. 10, 11). On the one hand, it is quite

clear that three main insights can come from the use of the
simulation system, also in the case of a real MOOC class:

1. During the teacher mediation, that is the grading activity,
it is possible to select the next answer to grade basing
on the visual state of the space. In particular, it is con-
ceivable that grading the most isolated points (students)
would help the system to possibly include them in the
successive classification. The teacher might decide to use
different criteria, still based on the visualization of the
space of models allowed by our system, but on the other
hand, the actual effect of such choices, and their being the
best possible, can be determined only after an in-depth
analysis of real-life experimentation. We think, however,
that our systemprovides the teacherwith an attractive and
easy to use means, on which (s)he could capitalize, to be
guided during the grading activity, even if it were sub-
optimal. Figures 12 and 13 give good indications about
the grading strategies to apply.

2. A second insight, coming from the use of the sys-
tem, is in the possibility to appreciate how the student
models evolve, as a whole, during the teacher’s grad-
ing phase, and how they converge (or not) toward the

Fig. 13 A compact vision of all
the SMs’ variables
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ideal (teacher’s) grades distribution. In this sense, a non-
convergence might mean that the topic of the question
was too hard at this time for the class, and that some
didactic preparations (further learning activities) should
be undertaken before taking that topic again. Also in this
case, the fact that our system can currently provide only
simulations is a limit, andwe can take the above consider-
ation more as a working hypothesis that as a conclusion.

3. Finally, it seems important to underline a possible great
outcomeour systemcan offer to a teacher during a course.
Several PA sessions can be held during the semester, and
the evolution of the students models can be observed also
considering how the model of each student evolves in
time. This is a very useful source of information, made
possible by the characteristics of our system, and of
course, it is also quite difficult to demonstrate by means
of simulations as well.

In conclusion, we can give a tentatively positive answer
to the RQ2, noticing that while the system positively offers
some didactic insights, the value for the teacher of such
insights can be confirmed only by a real-life experimenta-
tion.

7 Conclusions and future work

In this paper, we have presented the K-OpenAnswer sim-
ulation environment, deemed to allow the teacher simulate
and monitor the evolution of the student models in a MOOC
class, during sessions of PA. The PA approach implemented
by K-OpenAnswer is based on the K-NNmethod of machine
learning, and provides a student modeling method repre-
senting the peers by their skill in answering to open-ended
questions, and their capability to assess other peers’ answers.
The quality of the automated grading provided by the system
for the answers is increased by using the grades the teacher
assigned on a subset of the answers.

In K-OpenAnswer, the teacher can define a MOOC class,
by giving a statistical distribution of models, and follow
the simulation through the phases of (simulated) teacher’s
grading and student models update. During the process, the
teacher canmonitor the evolution of the peers models, appre-
ciate the dynamics of the class, and get hints about the best
answers to grade further, and on the reaction of the class to
the given question/exercise.

The system allows also to apply the whole process in real
(not simulated) cases, where the PA data, student models and
grades are related to a real class and a real teacher.

We propose that this approach can allow for a reason-
able applicability in MOOC contexts, and make it possible
to widely adopt PA in MOOC classes.

There are limitations in the work we have presented. For
one, several further analysis tools are to be implemented, such
as the possibility of using different distribution policies for
the initialization of the MOOCs PA data, or the support of an
analysis of howmany grades would be needed by the teacher
to reach a safe configuration of the models, and better grade
inference. These developments, as well as a pilot application
to a real case of MOOC, are planned for future work.

In conclusion, we like to come back on the debate about
the application of smart technologies in the city environment.
It has been observed that a “normative bias” does occur in
research on smart services for social ecosystems (Lytras and
Visvizi 2018; Visvizi and Lytras 2018). This is the case when
smart services are designed basing only on the information
and communication technologies (ICT)-clouded perspective
of the designer, which is often an ICT professional. This
might bring a separation, and lack of correspondence, among:
(i) what is implemented (decided basing on what is techni-
cally possible); (ii) what the end user might wish to have (if
already conscious of such wish); (iii) the actual willingness
of use, by the end user, rather than the perplexities and uneasi-
ness about the safety, usefulness, accessibility, effectiveness
and efficiency of those services. Among the advocated solu-
tions for the above-mentioned normative bias, we think that
participation is a factor, whether it is supported in a wide
social network or in a more polarized social learning envi-
ronment. In this paper, we have declined participation in the
context of education, implemented as the PA activity per-
formed by students in a large class. PA has several different
declinations, from the sole answer to a question, and grading
of some peers’ answers, through activities of production and
assessment of projects, with or without interaction by means
of social exchange, to the performance and assessment of
group work. PA is a great formative tool too, and can be
extended to application involving ecosystem-wide training
on demand. An interesting item for future work is then in
the study of the extension of our framework to use in big-
ger social groups, for educational and exchange purposes. In
this activity, we plan to import the research efforts done in the
past with respect to the community of practice (CoP) concept
(Wenger 2010), whereas a CoP presents itself with charac-
teristics of social networks, and of exchange environments
where learning can be ignited.
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