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Abstract

Since chaotic maps have the excellent properties of unpredictability, ergodicity and sensitivity to their parameters and initial
values, they are quite suitable for generating chaotic sequences for securing communication systems and are also especially
useful for securing images, and a lot of chaotic map-based image encryption algorithms have been proposed. But some
existing image encryption algorithms were proved that their security, encryption efficiency or computational speeds are not
quite satisfactory for practical applications. Some of them using only one type of chaotic system may suffer from low key
space, and some others using two or more types of chaotic system may suffer from high computational overheads. In this
paper, based on the classic 1D logistic map, a 2D one-coupling logistic dynamics system and OpenCL, a novel parallel image
encryption algorithm HCMO is proposed. Our algorithm consists of a confusion phase and a diffusion phase using four sub-key
matrices based on the hybrid logistic dynamics systems, the linear transformation and the enlarging operation. In the confusion
phase, the image’s pixel positions are first scrambled by performing row-wise and column-wise permutation operations using
two sub-key matrices; then, in its diffusion phase, both the bit XOR operation and the bit cyclic shifting are applied onto the
scrambled intermediate image matrix using the other two sub-key matrices. In order to reduce the whole encrypting execution
time, we speed up our HCMO on an OpenCL’s heterogeneous and parallel characteristics. Compared to the implementation of
Vihari’s algorithm and some other chaotic map-based algorithms referred in this paper with the OpenCL-based implementation
on the CPU and on the GPU, respectively, our algorithm’s simulation demonstrates remarkable improvement in the operational
speedup, and the experimental result analyses have also shown that HCMO has a higher-level security than some other referred
algorithms.

Keywords Hybrid chaotic maps - Image encryption - Parallel computing - OpenCL - GPU

1 Introduction

In this digital era, more and more digital images have been
transmitting over networks, and most of them have to be
transmitted over public networks. In order to transmit secret
digital images to the receivers, the digital image encryption
technology should be employed. In the past decades, many
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image encryption algorithms have been proposed, such as the
algorithms based on Arnold transform (Chen and Ping 2006)
or on Josephus traversing (Xiang and Xiong 2005). But most
of them were based on the chaos maps (Lian et al. 2005; Wang
et al. 2009; Wong et al. 2008; Patidar et al. 2009; Ye 2010;
Zhu et al. 2011; Zhang et al. 2013; Wu et al. 2012; Hu and
Han 2009; Pareek et al. 2013; Zhao et al. 2015; Askar et al.
2015; Vihari and Manoj 2012; Rodrguez-Vzquez et al 2012;
Pareek et al. 2006; Fridrich 1998; Eklund et al. 2013; Fu
et al. 2013; Bhogal et al. 2018; Gupta et al. 2018; Farajallah
et al. 2016; Hanis and Amutha 2019; Mondal et al. 2018).
However, almost all of these algorithms are implemented
on the CPU, which encryption speed can hardly meet the
requirement of the real-time communication. So how to carry
out the image encryption as fast as possible has also become
a hot issue.
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It is well known that the chaotic system has some good
characteristics, such as ergodicity and pseudorandomness.
Since these features meet some requirements such as diffus-
ing and mixing in the sense of cryptography, it has played
an important role in image encryption. In 1998, Fridrich first
proposed the classical image encryption structure which con-
sisted of some permutations and diffusions (Fridrich 1998),
called Fridrich structure for convenience. This structure has
been demonstrated to be very effective in providing both con-
fusion and diffusion properties in image encryption, and it
has become an important work in the information security.

In this paper, based on the framework of Fridrich struc-
ture, by using hybrid chaotic maps and OpenCL (Munshi
etal. 2011; Qiu 2011), a novel image encryption algorithm is
proposed and it is called HCMO for shortly. Here, the hybrid
chaotic maps combine a one-dimensional logistic map and a
two-dimensional logistic map.

The rest of the paper is organized as follows. In Sect. 2,
the backgrounds of the chaotic maps and the OpenCL, and
also some previous work are described in Sect. 2. In Sect. 3,
a novel image encryption algorithm is proposed by the com-
bined use of a 1D logistic map and a 2D logistic chaotic map.
The OpenCL-based implementation of our algorithm is dis-
cussed in Sect. 4. The simulation results and the performance
analysis are reported in Sect. 5. Finally, some concluding
remarks are drawn in Sect. 6.

2 Background and some previous work
2.1 One-dimensional logistic map

The one-dimensional logistic map is a polynomial recurren-
cial mapping of degree 2, and its mathematical expression
can be described as

Xnt1 = f(n, xn) (D

where x¢ is the initial value and 0 < x, < 1(n =
0, 1, 2,...)and f(n, x) is a polynomial function of degree
2 with n a variable control parameter. The classical logisti-
cal map was first created by the mathematician P. F. Verhulst
in 1845. It is brought up using the two-degree polynomial
f(n,x) = 4nx(1 — x). Hence, the classic logistic map is
expressed as

Xn+1 = 4nxp (1 — xp) 2)
where xg is the initial value, 0 < x, <1 (n =0, 1, 2,...).
If n satisfies 0.89249 < 5 < 1, then the system will enter

a state of chaos, which means that the sequence iteratively
generated by Eq. (1) will keep in a state of pseudorandom
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distribution. When 1 = 1, the system will keep the hyper-
chaotic state. However, only using the one-dimensional
logistic map in an image encryption algorithm cannot ensure
its security since the probability density function of this logis-
tic map is non-uniform and it may make their chaotic orbits
be estimated.

2.2 Two-dimensional logistic map

A two-dimensional logistic map or a 2D logistic map is
an extension of some one-dimensional logistic map or 1D
logistic map. A 2D logistic map not only has more param-
eters than one-dimensional logistic map, but also has some
important advantages over the one-dimensional logistic map,
such as higher information entropy scores (which means that
its trajectory is more random-like), more complex and more
dynamic (that is, larger Lyapunov exponent). For more details
about the chaotic map complexity comparison, one can refer
to Table 1 given in Wu et al.’s work (2012). All these char-
acteristics will make that a 2D logistic map shows a better
performance for image encryption than a 1D logistic map.
Hence, a lot of work have been done to use 2D logistic maps
or even high-dimensional logistic maps for image encryp-
tion. Henon map, a typical 2D chaotic map, was proposed by
Michel Henon in 1976. It is a prototypical two-dimensional
invertible iterated map represented by the state equations with
a chaotic attractor. 2D Arnold cat map is another most com-
monly used 2D chaotic map for image encryption, which was
proposed by Vladimir Igorevich Arnold in 1967.

A mostly used equation of 2D logistic dynamics system
can be expressed as the following equation set:

{xn+1 = 4nix, (1 — xn) + g1 (Xn, Yn) 3)
Va1 =408y, (1 — yp) + g2(xu, Yn)

where 0 < x,, vy, < lfori = 0,1, 2, ..., xo and yg
are the system initial values, while 1, A and § are the con-
trol parameters that control the system dynamic behavior.
In addition, each g;(—) (i = 1, 2) are one- or two-variable
polynomials which are called coupling terms. If g1 (x,,, y») =
g2(Xn, Yyn) = VX, yn, then g;(—) are called symmetric two-
coupling terms. If g1(x,, ¥») = yyn and g2(xs, Yu) = TXn,
then g;(—) and g»(—) are called one-coupling terms with
two control parameters y and t, respectively. In this work,
we assure that g1 (—) and g (—) are one-coupling terms with
different control parameters, that is, we will employ the fol-
lowing 2D logistic chaotic dynamics system as the following
equation set expressed:

{Xn+1 =4dnix, (1 —x,) + Vyn @)
Yn+1 =408y, (1 — yu) + Txp
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where 0.2 < A, § <0.9,0.1 <y, 7 <0.9 and 0.89249 <
n <L

2.3 OpenCL overview

The OpenCL (Munshi et al. 2011) is not only a kind of
programming language but also a heterogeneous parallel
computing framework consisted of programming language
standards, application programming interfaces, function
libraries and other processors. The OpenCL allows execut-
ing calculation programs on many-core processors. In order
to deliver high-level portability, the OpenCL not only sup-
ports different kinds of CPUs, GPUs and other hardware, but
also provides an abstract underlying hardware model. The
OpenCL 1.1 specification (Qiu 201 1) is made up of four main
parts: platform model, execution model, memory model and
programming model.

2.3.1 Platform model

This model is shown in Fig. 1, and it is composed of a single
host and one or more OpenCL devices. The latter is responsi-
ble for implementing the OpenCL kernel program. The host is
connected to one or more OpenCL devices where the instruc-
tion streams of the kernels execute.

2.3.2 Execution model

This execution model is an abstract representation of how
the instruction stream executes on the heterogeneous plat-
form. It defines how an OpenCL application is mapped onto
the processing elements, the memory regions and the host.
An OpenCL program consists of two distinct parts: a host
program and a collection of one or more kernels. The host
program runs on the host. The OpenCL execution model
defines how the kernels execute on the OpenCL devices.
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memory memory |y
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Fig.2 OpenCL memory model

2.3.3 Memory model

An OpenCL memory model defines the collection of some
memory regions within the OpenCL and how the kernels
execute and how they interact with the host, etc. The model
defines four distinct memory regions: the constant memory,
the local memory, the global memory and the private mem-
ory. Figure 2 shows the memory regions and how they relate
to the platform and work with the execution models.

2.3.4 Programming model

The programming model is a high-level abstract model that a
programmer uses to design some algorithms to implement an
application. The OpenCL programming model is defined by
two different models, that is, the task parallel model and the
data parallel model. The data parallel model is the primary
model driving the design of OpenCL. In the data parallel
model, an index space is associated with the OpenCL execu-
tion model and it defines the work items and how the data are
mapped onto the work items. All the work items in one com-
pute unit execute the same instructions. A N-dimensional
grid of the index space is called a NDRange, whose length
is defined by the integer N which denotes the size of the
dimensional space (where N = 1,2 or 3).

For the task parallel programming model, different kernels
are passed through the command queue to be executed on
different compute units or processing elements. An index
space is also defined for task parallel processing, in which
both the number of work groups and the work items are 1,
since the parallel command stream needs to contain a single
work item to handle and schedule all the tasks.

2.4 GPU

The term graphics processing unit (GPU) was popularized
by Nvidia in 1999, who marketed the GeForce 256 as “the
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world’s first GPU.” It is a specialized electronic circuit
designed to rapidly manipulate and alter memory to accel-
erate the creation of images in a frame buffer intended for
output to a display. GPUs are used in embedded systems,
mobile phones, personal computers, workstations and game
consoles. Modern GPUs are very powerful and efficient at
manipulating computer graphics and image processing, and
their highly parallel structure makes them much more effec-
tive than general-purpose CPUs for algorithms where the
processing of large blocks of visual data is done in parallel.

Architecturally, the CPU is composed of just few cores
with lots of cache memory that can handle a few software
threads at a time. In contrast, a GPU is composed of hundreds
of cores that can handle thousands of threads simultaneously.
The ability of a GPU with 100 more cores to process thou-
sands of threads can accelerate some software by 100 more
times over a CPU alone. What’s more, the GPU can achieve
this acceleration while being more power and cost efficient
than a CPU. In this paper, we will use the Nvidia GPU
called GeForce GTX 580 for our proposed algorithm’ s sim-
ulation. The GTX 580 boasts 16 streaming multiprocessors
(SMs) and 512 CUDA cores with the frequency 1.544 GHz.
In Vihari and Manoj (2012), Nvidia Tesla C2050 GPU was
used for speedup a chaotic image encryption algorithm. This
kind of GPU had 14 SMs and 448 CUDA cores with the
frequency 1.15 GHz. Obviously, GeForce GTX 580 is more
powerful and more efficient than a Nvidia Tesla C2050 GPU.

2.5 Some previous work

Encryption algorithms for digital image data can be classed
as two kinds of methods, that is, the non-chaos-based method
and the chaos-based method. The traditional text encryption
algorithms, such as DES and AES, including the public key
encryption algorithms, are non-chaos-based methods. In gen-
eral, the size of an image is always much larger than that
of a text; therefore, it will take much longer time for a tra-
ditional encryption algorithm to encrypt/decrypt the image
data than to encrypt/decrypt the text data. Moreover, for a tra-
ditional encryption algorithm, the size of the decrypted text
is required to be exactly equal to that of the original text, but
this requirement is not necessary for an image data because
of the characteristics of human perception, and some small
distortions in the decrypted image are usually acceptable.
Compared to the traditional encryption algorithm, the chaos-
based encryption algorithms provide some advantages, such
as the high security level, high speed especially in stream
ciphers, high flexibility and high degree of modularity, low
computational overheads and power and easier to be imple-
mented. These features make them more suitable for large-
scale data encryption, such as images and videos.
Nowadays, a lot of chaos-based encryption algorithms
have been proposed, in which the confusion processes were
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completed based on some kinds of chaotic standard maps.
Most of them are based on the confusion—diffusion architec-
ture (Fridrich 1998), which was also used in the conventional
cryptographic algorithms (DES, 3DES, AES, etc.).

In Lian et al. (2005), based on the chaotic standard map,
Lian et al. proposed a block cipher which could be used for
encrypting multimedia data. Their block cipher consisted of
three parts: a confusion process, a diffusion function and a
key generator, where confusion process was based on the
chaotic standard map. In Wang et al. (2009), a block encryp-
tion scheme based on dynamic substitution S-boxes was
proposed. In this scheme, the dynamic S-boxes was gener-
ated based on a chaotic tent map, and the plain texts were
divided into the blocks and each of which was encrypted
with a different S-box. In addition, a cipher feedback was
used to change the state value of the chaotic tent map, which
made the S-boxes relate to the plain text and enhanced the
confusion and diffusion properties of the encryption.

An effective chaos-based image encryption, composed of
multiple rounds of substitutions and diffusions, was proposed
in Wong et al. (2008). As the confusion and diffusion effects
were solely contributed by the substitution and the diffusion
stages, respectively, the required overall rounds of operations
in achieving a certain level of security are found more than
necessary. In this letter, the authors suggested to introduce
a certain diffusion effect in the substitution stage by simple
sequential add-and-shift operations. Patidar et al. (2009) pro-
posed aloss-less symmetric image cipher based on the widely
used substitution—diffusion architecture which utilized some
chaotic standard and logistic maps. This encryption scheme
was specifically designed for color images, and its secret key
was composed of the initial conditions and system param-
eters of the chaotic standard map and the iteration number.
This encryption scheme had four rounds. In the fourth round,
a robust substitution/confusion was accomplished by gener-
ating an intermediate chaotic key stream image with the help
of chaotic standard and logistic maps.

In Ye (2010), a scrambling encryption algorithm for
images was proposed based on a chaotic map. This algorithm
used a single chaotic map only once to implement the gray
image scrambling encryption, and it drastically transformed
the statistical characteristic of original image information
and so increased the difficulty for an unauthorized individual
to break the encryption. Zhu et al. (2011) proposed a chaos-
based image encryption by employing the Arnold cat map for
bit-level permutation and the logistic map for diffusion. Since
the bit-level permutation has the effects of both confusion
and diffusion, it made their chaos-based image encryption
have the much higher security level and more computation-
ally efficient than some other chaos-based image encryptions
using pixel-level permutation.

Zhang et al. (2013) proposed an image encryption scheme
(Algorithm 1 in Zhang et al. 2013) in which a 1D logistic
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map was first used with two keys to, respectively, generate
two sequences which were then used to perform confusion—
diffusion operations based on the reverse 2D cat map, and
it would make that the confusion effect on the encrypted
image cannot be removed by a homogeneous plain image
and lead that this image encryption cannot be compromised
by conventional known/chosen-plaintext attacks.

In 1998, Fridrich first described how to adapt invert-
ible two-dimensional chaotic maps to create new symmetric
block encryption schemes by producing permutations and
diffusions on the pixel data of the images. In addition, he
explained the construction of such cipher scheme with the
two-dimensional Baker map. Wu et al. (2012) proposed an
image encryption method based on a two-dimensional logis-
tic map which is different from the Baker map or the Cat
map.

In Hu and Han (2009), a medical image encryption sys-
tem was proposed based on a novel pixel-based scrambling
scheme. This system used a simple pixel-level XOR oper-
ation for image scrambling in an innovative way with the
structural parameters serving as a part of the cryptographic
key which was a number sequence generated from the
multi-scroll chaotic attractors. Using key-dependent diffu-
sion and substitution techniques, Pareek et al. also proposed
an encryption algorithm for gray images (Pareek et al. 2013).
These gray image encryption algorithms can be employed
for the protection of medical images, such as magnetic res-
onance images. In Zhao et al. (2015), using a new improper
fractional-order chaotic system, the authors proposed a sym-
metric image encryption algorithm in which the initial
conditions, parameters and fractional orders of chaos were
influenced by gray value of all pixels and used as the secret
key. While in Askar et al. (2015), a new image encryption
algorithm was proposed using a kind of chaotic map called
chaotic economic map. These chaotic map-based image
encryption algorithms almost showed that the encrypted
images had both good information entropy and high security,
but most of their computational speeds showed less satisfac-
tory.

Though chaos-based image encryption algorithms per-
form better compared to conventional encryption algorithms,
but most of these algorithms still require considerable amount
of time which would increase the overall computational over-
heads. Compared with the traditional central processing units
(CPUs), GPUs not only can dramatically accelerate paral-
lel computing, but also have low energy consumption and
low cost. Since 2011, Vihari et al. and Rodrguez-Vzquez et
al. began to apply GPU-equipped computers to speedup the
simulation implementation of chaos-based image encryption
algorithms, respectively. Vihari and Manoj (2012) showed
that a CUDA-based implementation works for chaotic image
encryption algorithm using logistic map with NVIDIA’s
Tesla C2050 GPU device had significant amount of improve-

ment in terms of operational speedup compared to original
implementation on CPUs, and they also affirmed that there
are several other chaotic image encryption algorithms which
are more complex and computationally intensive in nature
that can be accelerated using CUDA version.

Rodrguez-Vzquez et al (2012) assessed the image encryp-
tion algorithm (given by Pareek et al. 2006) based on both
an external secret key of 80-bit and the chaotic logistic map
Xn4+1 = 3.9999x, (1 — x;) using GPU, and they showed that
the efficiency of Pareek’s image encryption algorithm per-
formed on the GPU was some worse than that performed on
the OpenMP! variant. It implied that Pareek’s algorithm was
not suitable for GPU implementation, and it should be made
some profound changes if some GPU device is to be used
to speed up Pareek’s algorithm. In 2014, Lee et al. (2014)
experimentally demonstrated that the double random phase
encoding algorithm (DRPE) (given in Refregier and Javidi
1995) and the traditional AES algorithm executed on a GPU-
based stream-processing model. The authors experimentally
demonstrated that for the encryption of an image with a pixel
size of 1000 x 1000, the DRPE and AES techniques executed
on a GPU with a parallel computing scheme can dramatically
reduce computing time compared to using CPU sequential
processing.

Nowadays, more and more digital medical images have
been needed to be securely stored or transmitted over public
networks or IoTs, and so they should be encrypted before
being stored or transmitted. Because some small distortions
in the decrypted images are usually acceptable, it makes that
chaotic map-based encryption be much more suitable for
securing a large mount of medical images and show supe-
rior to the traditional symmetric encryptions. In addition, as
the work in Lee et al. (2014) had shown, encryption imple-
mentation on a GPU can reduce much more computation time
than on a CPU. A lot of chaotic map-based medical image
encryption methods have been proposed (Eklund et al. 2013;
Fu et al. 2013; Bhogal et al. 2018; Gupta et al. 2018), and
all these chaotic map-based medical image encryptions had
been implemented using GPU device or can be optimized
and improved using GPU-based parallel processing model.

In this paper, we will propose a novel image encryption
algorithm combining a 1D logistic map and a 2D logistic
chaotic map based on the OpenCL. In our algorithm, the 2D
logistic chaotic map was first used with two keys to, respec-
tively, generate four initial key streams which were applied
to, respectively, produce four metrics based on the 1D logistic
map for confusion operations and diffusion operations.

I OpenMP is a multi-threaded program design for shared memory par-
allel system. OpenMP provides a high-level abstract description of
parallel algorithms, especially for parallel programming on multi-core
CPU machines.
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3 A novel image encryption algorithm HCMO

In this section, based on hybrid chaotic maps and OpenCL,
we will propose a novel parallel image encryption algo-
rithm, which is called HCMO for short. Our algorithm mainly
includes three kinds of operations: a pixel position shuffling
(called PPS for short), a bit cyclic shift (called BCS for short)
and a bit XOR operation. The first operation is used to con-
fuse pixel locations; then, BCS and bit XOR operations are
used for the diffusion of pixel values. The encryption process
of our proposed algorithm is shown in Fig. 3.

The three steps of our algorithm applied on a given image
are described in Sects. 3.1-3.3, and the parameters appeared
in Fig. 3 are also illustrated in these subsections.

3.1 Generation of the chaotic sub-key matrices
3.1.1 Initializing the image and secret key

We store the original gray image in a matrix / having m
rows and n columns. The secret key used for encrypting,
denoted as key, consisting of two parts, that is, key =
(keyy, keys) with key, = (xo, Yo, A1, 81, y1, 71) and
key, = (ag, Po, A2, 62, 2, T2), are randomly selected
but satisfy the conditions: xg, yo, @p and By selected from
the open interval (0, 1), both A; and §; from the interval
[0.2, 0.9] and both y; and 7; from the interval [0.1, 0.9].
Here, xo, yo, oo and By represent the initial values of Eq.
(4), while A;, 8;, y; and t; represent the control parameters
of Eq. (4) withi =1, 2.
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3.1.2 Generating the four chaotic sub-key matrices

Here, we will describe how to generate four sub-key matrices
with dimension m x n denoted as P, Q, R and S, respectively.
The P and Q will be used in the BCS and bit XOR phases,
while R and S will be used to scramble the pixels row-by-row
and column-by-column. The four matrices can be generated
as follows.

Step 1 Use the secret key key; to generate the two initial
key streams {x}} and {y}} (j=0,1,2,...,n — 1) based
on Eq. (4). The key; includes the initial conditions and the
control parameters of Eq. (4) with a given 7. In order to avoid
the transient effects, the chaotic map should be iterated ¢ 4+ n
times (¢ > 3000) and the results got in the previous f times are
thrown away. As a result, we can obtain the two key streams

{x}} and {3/},

Step 2 Execute the linear transformation of {x}} and { y}}
to get the two chaotic sequences {X;} and {y;} by using the
following linear equation set Eq. (5), respectively.

J

: ¥j=x"'xa+b

withO <a, b, c,d <1l,a+b=1andc+d = 1. In order
to make Eq. (1) become a state of chaos when we use Xx; or
y; as its control parameters, we choose a, b, ¢ and d such
that Eq. (1) for n = X; or for n = y; will become chaotic.

Step 3 Take {x,} and {x}} as the control parameters and the
initial values of Eq. (1), respectively, and iteratively apply
Eq. (1) m times for t = 1, 2, ..., n — 1 and then get the

following sequence {x;}""; !

xo = f(X0,x0)s - s Xem = f(Xe, X));
x1 = f(X0,%0), -+ Xemt1 = f K, Xpm);
.. (6)
Xm—1 = [ (X0, Xm—2), .-,
Xtm+(m—1) = f &1y Xemgn—2))-

If we choose the classic logistic map Eq. (2), then, we
have the sequence as following:

xo = 4%oxy (1 — x(), - .., X = 4Xx((1 — x{);
x1 = 4xXox0(1 = x0), -, Xem+1 = 4% X (1 — Xpm);
... ... (7)
Xm—1 = 4Xoxm—2(1 — Xpp—2), ...,
Xim+(m—1) = 4% Xpmtm—2) (1 — Xtmtm—2))-

Similarly, we can obtain another sequence {y;};";" ! by
using {y;} and {y}} as the control parameters and the initial
values of Egs. (1) or (2), respectively.
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Step 4 Set {r;} = {x;} x 10* mod m and {s;} = {y;} x
10 mod n,i =0, 1, 2,..., mn— 1. Express {r;} and {s;}
in matrix by row and column as the following matrices R and
S, respectively.

ro ri n—1
'n n+1 2n—1
R = .
Fm—1n  Tm—1)n+1 Imn—1
and
S0 Sm S(n—1)m
S1 Sm+1 S(n—1)m+1
S = .
Sm—1  $2m—1 Snm—1

Step 5 Similar to Step 1, we use the key key; to generate the
two initial key streams {a;.} and {,3;.} (j=0,1,2,...,n—
1).

Step 6 Execute the linear transformations of {(x}} and { ,8;.}
using Eq. (5) and obtain two new sequences {&;} and (B iz
Take {(x}}, {a;} and {r;} as the initial values, the control
parameters and the iteration times, respectively, and apply
Algorithm 1, then, we can generate a new chaotic sequence

{pi} denoted as the following matrix P, which has a length
of m x N.

Po P1 Pn—1
Pn Pn+1 P2n—1

P = . . .
Pm—Dn  Pm—1)n+1 Pmn—1

Similarly, we take {/3;. 1, {Bj} and {s;} as the initial values,
the control parameters and the iteration times, respectively,
and then generate another chaotic sequence {g;} as the fol-
lowing matrix Q.

q0 qm qdn—1)m

q1 qm+1 qd(n—)m+1
0= . . .

qm—1 q2m—1 9mn—1

Algorithm 1. Generation of the Sequences {p;}!” ! and
faiiy "
Input: {ozj,ﬂ} {oz],,B]}and{r,,s,} i=0,1,. mn—
1,j=0,1,. — 1
Output: {p; }”’" land {giyrm!
1. i <0

2. for j < Oton — 1,

3. pj < L'P(a], @;, ri) x 10'* mod 256;
/I L'P denotes one-dimensional logistic map such as
Eq. (2);
4. q; < L'P(B], B;, si) x 10" mod 256;
5. forl < Otom — 1;
6. i «—i+1;
7. Pjm+t < L™ (pjmra—1), &;, ri) x 10'* mod 256;
8. qjmti < L'°(qjm+a—1). Bj. si) x 10'* mod 256;
9. end.
10. end.

3.2 Image confusion by chaotic sub-key matrices

Let 1(i, j) denote an element of the image matrix / located
at ith row and jth column in the matrix. Then, we scramble
I by using the following pixel position shuffling (PPS) rule
Eq. (8).

{I(i,j) — I(R(, J), J); ®)
1, j) — 1@, 8@, j)).

where i = 0,1,...,m — 1, j = 0,1,...,n — 1. The
sign “— ” means each element at the position (i, j) in

I is replaced by the element at the position (R(i, j), j) or
(i, 8@, j)) in I. R and § are, respectively, the row-wise
scrambling and column-wise scrambling matrices given in
Sect. 3.1.

Because each element in R is non-correlative to any one
in S, the matrix / will be sufficiently scrambled by using R
and S. From Eq. (8), we know that the scrambling rule is
reversible. Therefore, if we perform the scrambling process
inversely on the scrambled image, then we will recover the
plain image.

3.3 Image diffusion by four direction matrix
transformation

The diffusion operation includes two kinds of operations:
BCS and bit XOR. In order to make the diffusion, we need
to execute the following operations (9)—(12) in turn on the
scrambled matrix / obtained by using the PPS rule (8). The
three different symbols “<<<”, “ >>> " and “ @ ” denote
the left or right BCS of a binary string, and the bit XOR,
respectively, where P and Q are given as in Sect. 3.1.

IG.j) < 1G.H®PE—1.)®G—1,)eli—1)
<<< (PG, j)y®Ii—1,j)mod8,i=1,2,...,m—1.
©)

IG.j) < IG. )@ PG.j-1D)® QG- )& j—1)
<<<(QG,j)®I@G,j—1)mod8, j=1,2,...,n—1.
(10)
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(a) Plain Image A (c) From Top to Bottom

(b) Pixel A, /)

(d) From Left to Right (e) From Bottom to Top (f) From Right to Left

Fig.4 Diffusion processes of the pixell (i, j)

I[(—1,))«<1G—=1,))® PG j))® QG J)®Ii,))
>>> (0@ -1, ))®IG, j)mod8, i=m—1,...21
(11)

IG,j—1)«1G,j—1)® P> j)®0G )&, ))
>>> (P(i,j—D®I3G, j))mod8, j=n—1,...,2,1.
(12)

Equations (9)—(12) show the diffusion of the matrix [ from
four different directions, respectively, i.e., from the top to the
bottom, from the left to the right, from the bottom to the top
and from the right to the left. One of the benefits is that we
can spread any pixel value of / to the entire cipher image as
much as possible, which can improve the plain sensitivity of
our algorithm. The specific diffusion processes are shown in
Fig. 4. I (i, j) will be spread to the whole area of the cipher
image after it is diffused from the four different directions.

In Fig. 4, “ -” denotes the pixel 1_(1', J), e ” means that
the pixel is not diffused while “ — ” means that the pixel is
diffused.

The above analysis shows that our algorithm is a symmet-
ric algorithm, and so the decryption process is similar to the
encryption process. We can easily recover the original image
by using the inverse operations of the encryption.

4 OpenCL implementation

From the above description, we know that the computational
overhead of our algorithm is mainly focused on both the gen-
eration phase of R, S, P and Q and the image encryption
phase. The two phases are highly suitable for parallel pro-
cessing which can greatly improve the performance of our
algorithm. Our parallel OpenCL implementation consists of
two different kernel functions which will be described in the
following two subsections.

@ Springer

4.1 The parallel implementation for generating the
sub-key matrices

Algorithm 2. Implementation of Kernel Function
__kernel void ChaosKeyMatGenRSP Q().
Input: m, n, key1 = (xo, yo, A1, 81, ¥1, T1),
keys = (ag, Bo, A2, 82, ¥2, T2);
Output: The sub-key matrices R, S, P and Q.

1. j < get_global_id(0) for j =0, 1,..., n—1;
2.(x,y") < L*P(xq, yo, A1, 81, 1, 71, j +1) fort > 3000;
3., B) < L*P(ag, By, 22, 82, 12, To, j+1) fort > 3000;
4.(X,9) < (X' xa+b, y xc+d);

5.@,p) < (@ xa+b, B xc+d).

6.fori < Otom — 1;

7.r <« L'YP(x', %, i) x 101 mod m;

8.5 «— L'°(y, 3,i) x 10 mod n.

9. ifi =0 then

10.  p < L'/, a&,r) x 10" mod 256;

11. g < LB, B,s) x 10" mod 256.

12. else,

13. p <« L'"P(p,a,r) x 10" mod 256;

14. g < L'P(q, B, s) x 10" mod 256.

15. end;

16. R(i, j) < r; SU,j) < s;

17. P@,j) < ps QG.J) <q.

18. end.

In Algorithm 2, “_kernel void ChaosKeyMatGenRSPQ()”
denotes the kernel function used for the generation of the
four sub-key matrices R , S, P and Q. These matrices will
be used in the image confusion phase and the diffusion phase
of our algorithm. In this kernel function, the host parameter
NDRange is set to 1, and both the global_work_size and the
local_work_size are set to [N, 0, 0] which means that the
NDRange only use the first dimensional space having N work
items. In addition, L'P denotes a one-dimensional logistic
map and LZP denotes a two-dimensional logistic map.

4.2 The parallel implementation of our image
encryption algorithm HCMO

Algorithm 3. Implementation of kernel function
__kernelvoid imageEncryption().
Input: A plain image / of the matrix type m x n,
and four matrices R, S, P and Q;
Output: A cipher image /.

1.1 < 1.

2.j < get_global_id(0) for j =0, 1, ..., A —
max(m, n);

3.if j < n then

4. fori < Otom — 1;

I, A=
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5.1(, j) — I(R(, J), J);

6. end.

7. end.

8. barrier(GLK_GLOBAL_MEM_FENCE)

// The barrier function will queue a memory fence to ensure
the correct ordering of memory operations to the global mem-
ory, the same hereinafter. //

9.if j < m then

10. fori < Oton —1;

1L TG — 1G,SG, )

12. end.

13. end.

14. barrier(GLK_GLOBAL_MEM_FENCE).
15.if j < n then

16. fori < 1tom —1;

17.1(G, j) < IG, H@PI—1, N®QG—1. HSI-1, ));
18.1(i, j) <<< (P, j)® 1( — 1, j)) mod 8;

19. end.

20. end.

21. barrier(GLK_GLOBAL_MEM_FENCE)

22.1if j < m then

23. fori < 1ton—1;

241 1) < 1, DOP(, i=D®Q, i=D®I(j,i=1);
25.1(j,1) <<< (Q(,i)®I(j,i —1)) mod 8;

26. end.

27. end.

28. barrier(GLK_GLOBAL_MEM_FENCE)

29.if j < n then

30. fori < m — 1 downto 1;

3.1G—1,)) < 1i—1, )@ PG, )® QG NI, j);
32.1(G—1,j)>>>(QG — 1, ) ® I, j)) mod 8;

33. end.

34. end.
35.barrier(GLK_GLOBAL_MEM_FENCE)

36.if j < n then

37. fori < n — 1 downto 1

38.1(j,i—1) < I(j,i—1D)®PG,D)®QU,H)®I(,0);
39.1(j,i —1)>>> (P(j,i—1)@®I(j,i)) mod 8;

40. end.

41. end.

2.1, < I;

43. end.

In Algorithm 3, *“_kernelvoidimageEncryption()” is
another kernel function used to implement the image encryp-
tion. the parameters global_work_size and NDRange are set
to the same values as in Sect. 4.1.

The decryption algorithm of Algorithm 3 can be imple-
mented as the following Algorithm 4.

Algorithm 4. Implementation of kernel function
__kernelvoid imageDecryption().
Input: A cipher image /. of the matrix type m X n,

. —1 —1 .
and four matrices R, ,,, S__;» P and Q; where

R} or S;O} denotes their row-based or column-
based inverse permutation matrix, respectively.

Output: The plain image /.

1.1 <~ 1.

2.j < get_global_id(0) for j =0,1, ..., A—1, A=

max(m, n);

3.if j < n then

4. fori <—n —1downto 1

5.0(ji=1) < I(.i=D@®PG.HSQG. DS, 1)

6.1(j,i—1) <<< (P(j,i—1D)@®I(j,i)) mod 8;

7. end.

8. end.

9. barrier(GLK_GLOBAL_MEM_FENCE)

10.if j < n then

11. fori <= m — 1 downto 1;

12.1G=1.)) < 1G—=1L.)® PG J)® QU ))®IG. )

13.1G0—1,j) <<< (QG—1,j)® I, j)) mod 8;

14. end.

15. end.

16. barrier(GLK_GLOBAL_MEM_FENCE)

17.1f j < m then

18. fori < 1ton —1;

19.1(j,1) < 1(, D®P(,i=D®Q(, i—DDI(j, i=1);

20.1(j,i) >>> (Q(j,i)® I(j,i — 1)) mod 8;

21. end.

22. end.

23. barrier(GLK_GLOBAL_MEM_FENCE).

24.if j < n then

25. fori < 1tom —1;

26.1(i, j) < 1, N@P(—1, NBOG—1, H®I(i—1, j);

27.1(, j) >>> (P>, j))® 1 —1, j)) mod 8;

28. end.

29. end.

30. barrier(GLK_GLOBAL_MEM_FENCE)

31.if j < m then

32. fori < Oton —1;

33, I(.i) —> 1. S0 )

34. end.

35. end.

36. barrier(GLK_GLOBAL_MEM_FENCE)

37.if j < n then

38. fori < Otom —1;

39.1G, j) — I1(Rgr, s ), )3

40. end.

41. end.

2.7 « I

43. end.

5 Simulation experiments

In this section, the experimental results of our algorithm
on the CPU and the GPU are, respectively, presented. The
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;:Ibalrenlteiocr)lfﬁ fl?rri‘;i;n Host-param Values GPU-parameters Values
environment CPU Intel i5-3470 Num. of Mp 16
Clock rate 3.2GHz Num. of CUDA 512
RAM 4GB Global memory 1503MB
GPU GTX 580 Local memory 48 KB
oS Windows 7 64-bit Constant buffer 64 KB
OpenCL 1.1 Work-group sizes 1024

(d) Original Gray Cameraman (e) Encrypted Gray Cameraman (f) Decrypted Gray Cameraman

Fig.5 Encrypted and decrypted results of the gray Lena and Camera-
man image by our HCMO algorithm

OpenCL implementation work of our algorithm is carried out
by using MATLAB R2011b on the CPU and the GPU, respec-
tively. All the simulations are performed on a workstation
computer equipped with NVIDIA GeForce GTX 580 device.
The control parameter 7 is set 1, key is chosen as key =
(key1, keyr) with key; = (0.8765, 0.6123, 0.8, 0.2, 0.3,
0.4) and key, = (0.7654, 0.4123, 0.7, 0.3, 0.2, 0.1), and
the constant parameters used in the linear transformation
Eq. (5) are chosen as (a,b) = (0.43,0.57) and (c,d) =
(0.37,0.63). Table 1 shows the host’s parameters and the
main properties of NVIDIA GeForce GTX 580, where Host-
param denotes Host-parameters, Num. of Mp denotes the
number of multiprocessors (that is, Compute Units) and
Num. of CUDA denotes the number of CUDA cores.

In our experiment, we choose two standard gray images
“Lena” and “Cameraman” from the USC-SIPI image
database” to demonstrate the effects of our algorithm both
on the CPU and the GPU, respectively. Figure 5 shows the
original images, the encrypted and decrypted results of a gray
Lenaimage and a gray Cameraman image (512 x 512) by our
HCMO algorithm, respectively. In Fig. 5, the parts marked
in red show that the two decrypted images are somewhat dif-
ferent from their original images, but it does not affect our

2 USC-SIPI image database, http://sipi.usc.edu/database/.
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(a) Original Color Lena

(b) Encrypted Color Lena (c) Decrypted Color Lena

Fig. 6 Encrypted and decrypted results of a color Lena image by
HCMO algorithm

visual perception that the two decrypted images are the same
as their original images, respectively.

In addition, our algorithm is also suitable for encrypting
color images. For a given color image I/, we first perform
RGB three-primary decomposition on each pixel of the color
image to obtain three image matrices Ir, Ig and Ig, that is,
we can suppose I = (IR, Ig, Ig), and then, we apply our
encryption algorithm HCMO to encrypt IR, Ig and Ip in
parallel to produce three cipher images Ir., Ig. and Igc,
respectively. Finally, Ir., Ig. and Ig. are composited into
one color image to obtain the encrypted image I, as shown in
the following equation, where ENgcpo (X) denotes encrypt-
ing an image matrix X using the algorithm HCMO, and
Compositing(Ir. U Ig. U Ip.) denotes that the three RGB
component cipher images Ir., Ig. and Ip. are composited
into one color image.

ENncemo (1)
= (ENucmo (Ir), ENnemo(Ic), ENuemo (/B))
= (Ir¢, e, Io)-

I, = Compositing(Ir. U Ig. U Ic).

We can also get the decrypted result from the encrypted color
image by the decryption algorithm Algorithm 4. Figure 6
shows the original, the encrypted and decrypted results of
a color Lena image (512 x 512) by our HCMO algorithm,
respectively.

5.1 Analyses on key space and sensitivity

As described in Sect. 3, we know that the key of our
HCMO algorithm consists of two parts, that is, key; =
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(x0, Y0, A1, 81, v1, T1) and keyr = (o, Bo, A2, 02, V2, T2)-
In our algorithm, these parameters are all represented as
decimal number with the precision 10~'* in the interval
(0, 1), [0.2, 0.9] or [0.1, 0.9]. It will give a key space size
KS; = (10" — D*(7 x 101 + D*@8 x 1013 + 1)*. In
addition, we use four parameters a, b, ¢ and d in Eq. (5)
witha +b = 1 and ¢ +d = 1, and it will contribute a
key space size KS> = (10'* — 1)2. Hence, our key space
size KS = KS; x KS; = (10" — )*(7 x 1013 + 1)*(8 x
1083 + D*(10™ — 1)? =~ 56* x 1019 ~ 2675 Therefore,
our key space size is much large and can resist any brute-
force attacks. Compared with AES’s key space size, our key
space size is more than three times larger. And our algorithm
HCMO’s key space size is much more larger than most of the
existed chaotic-based image encryption algorithms, such as
Zhang’s Algorithm 2 (2013), Farajallah’s second algorithm
(2016), Hanis’s algorithm (2019) and Mondal’s algorithm
(2018) with the key space size 2°2 , 2124, 2212 and 2728,
respectively.

For considering our algorithm’s trade-off on security and
efficiency in practical applications, we can reduce the key
space based on the required security level by setting A = §,
or y = 7 or both of them. And we can also set (a, b) = (c, d)
to reduce our key space. In addition, we can also reduce our
key space by reducing the key parameters’ precision. For
example, if our key parameters’ precision is set 1071, then
our key space size will be reduced to 2462,

To ensure the safety of this key, we can secretly store
the keyr = (xo, yo, A1, 1, y1, T1) and key> = (@0, fo, A2,
82, y2, T2) in two smart cards, respectively, or store the initial
parameters initial_paras = (xo, yo, &0, Bo) and the control
parameters control_paras = (A1, A2, 81,82, V1, V2, T1, T2)
in two different cards or other mediums. We can employ a
fingerprint-based fuzzy vault scheme (You et al. 2017) to
safely keep the key; and key>.

Figure 7 shows that just a slight change in the given
key will make us unable to obtain any meaningful informa-
tion about the original gray Lena image from the decrypted
images. It proves that our proposed image encryption
algorithm is sensitive to the key. In our key sensitivity
test, for the cipher image obtained by using our HCMO
algorithm with the control parameter n = 1, key; =
(0.8765, 0.6123, 0.8, 0.2, 0.3, 0.4) and key, = (0.7654,
0.4123, 0.7, 0.3, 0.2, 0.1), we have performed our HCMO’s
decryption algorithm (Algorithm 4) on this cipher image a
lot of times by changing some parameters a little but failed
to recover the original image, as shown in Fig. 7.

5.2 Encryption efficiency analysis
We simulate our algorithm for different sizes of Cameraman

image and Lena image on the (OpenCL-based) CPU and
the GPU (GeForce GTX 580), respectively. The encrypt-

(¢) zo reduces 10~ *2

(b) Cipher Image

(a) Original Image

(d) ao increases 10712 (e) ~1 reduces 10712 (f) 7o reduces 10712

Fig.7 Key sensitivity test

ing efficiency is measured in terms of speedup which is
the ratio of CPU time to GPU time. Table 2, respectively,
lists the average speed time (in second) on the (OpenCL-
based) CPU and on the GPU, and the ratio of CPU time to
GPU time (in the form CPU time/GPU time/Speedup) for
our HCMO algorithm, Vihari’s algorithm (on the GPU-Tesla
C2050) (2012), Zhang’s second algorithm (shortly denoted
as Zhang’s) (2013), Hanis’s algorithm (2019) and Mondal’s
algorithm (2018). Compared to the other four algorithms,
our algorithm HCMO shows some greater improvement in
terms of operational speedup, that is, our HCMO is some
more encrypting efficiency than the others. In addition, our
OpenCL-based implementation results on the CPU also indi-
cates that our algorithm HCMO is more efficient than Vihari’s
algorithm and Mondal’s algorithm.

5.3 Plaintext sensitivity analysis

In the digital image encryption, the number of pixel change
rate (NPCR) measures the rate of different pixel numbers
between two cipher images whose plain images only have
one-pixel difference, while UACI (unified average chang-
ing intensity) measures the average intensity of differences
between two cipher images. NPCR and UACI are usually
taken as the measure standard for how tiny change of the
plaintext or the key affects the cipher images. The ideal value
for NPCR is 100%, while the ideal value for UACI is 33.33%.
When its NPCR gets closer to 100%, the encryption algo-
rithm is more sensitive to the plain image changing; hence,
it makes the algorithm more effectively resist the known-
plaintext attack and the chosen-plaintext attack. Also when
its UACI gets closer to 33.33%, the encryption algorithm can
more effectively resist the differential attack.

UACT and NPCR can be represented by the following for-
mulas, respectively:
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Table 2 Average speed time and speedup of our HCMO algorithm and others on the images of three different sizes

Image size HCMO Vihari’s Zhang’s Hanis’s Mondal’s

256 x 256 0.0365/0.0086/4.2442  0.0373/0.0089/4.1910 0.0046/0.0011/4.1196  0.0267/0.0064/4.1762  0.5124/0.1240/4.1321
512 x 512 0.1034/0.0114/9.0700  0.1401/0.0162/8.6481 0.0105/0.0012/8.9632  0.0661/0.0076/8.7254  1.1307/0.1260/8.9736
1024 x 1024  0.3864/0.0241/16.0332  0.5121/0.03592/14.2567  0.0408/0.0026/15.7235  0.3042/0.0198/15.3736  4.0120/0.2576/15.5733

1  (C1, H—Ca(, j)
UACI = — 2.i,j(C10 N=Cali. ) x100%. (13)
mn 255
DG, )
NPCR = Z”—] x 100%. (14)
mn

where m and n are the row number and the column number
of the plain image matrices, respectively. C is the cipher
image matrix of the plain image that has no pixels changed.
C, is the cipher image matrix of the plain image that has one
pixel changed. C1 (i, j) and C(i, j), respectively, shows the
pixel values of C1 and C; at the location (i, j). D(i, j) takes
0 or 1 as the following expression:

L it GG, j) # Cali, ),

0, others. (5)

D(, j) = {
and so,

> D, j) = > 1. (16)
i.J

C1(, NF#C20, )

By using the equations from Egs. (13) to (16), we can
compute the UACI and the NPCR of an image encryption
algorithm. Tables 3 and 4 shows the UACI and the NPCR
about our algorithm HCMO, Farajallah’s V2-32bit algo-
rithm (shortly denoted as Fara’s) (2016), Zhang’s second
algorithm (shortly denoted as Zhang’s) (2013), Hanis’s algo-
rithm (2019) and Mondal’s algorithm (2018) on four images,
respectively. They show that the UACI and the NPCP of
our algorithm and the other four algorithms are all closer
to the values 33% and 99% for the different images, respec-
tively, except for that Mondal’s algorithm’s UACI is 37.76
(for Lena image) or 37.39 (for Peppers image) which are
some larger than the ideal value 33%. Furthermore, our algo-
rithm’s UACI and NPCP are some closer to their respective
ideal values than that of the four others in average. Hence,
our algorithm HCMO has better plaintext sensitivity than the
other four algorithms, and so it can more effectively resist
the differential attack, the known-plaintext attack and the
chosen-plaintext attack.

5.4 Histogram analysis

A histogram shows the distribution of the pixel values of an
image. The ideal histogram of the cipher image should be
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Table 3 UACI for five different images (512 x 512)

Image HCMO Zhang’s Fara’s Hanis’s Mondal’s
Lena 33.28 - 33.46 33.47 37.76
Pirate 33.25 - - 33.40 -
Peppers 33.50 - 33.47 33.46 37.39
Barb 33.39 33.42 33.46 - -
Table 4 NPCR for five different images (512 x 512)

Image HCMO  Zhang’s  Fara’s Hanis’s  Mondal’s
Lena 99.65 - 99.608  99.60 99.6937
Pirate 99.74 - - 99.61 -
Peppers  99.85 - 99.609  99.60 99.6971
Barb 99.61 99.58 99.609 - -
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() Original Image (b) Original Image Histogram

600

400

200

0

0 50 100 150 200 250
(d) Encrypted Image Histogram

(C) Encrypted Image

Fig.8 Histogram analysis

uniformly distributed and is significantly different from that
of the plain image (Zhu et al. 2011). From Fig. 8, we know
that the pixel values have been uniformly distributed after the
original gray image is encrypted by our algorithm.



A novel parallel image encryption algorithm based on hybrid chaotic maps with OpenCL...

12425

2000

0

0 50 100 150 200 250

(a) Original Color Image (b) Original Color Image Histogram

0
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(C) Encrypted Color Image (d) Encrypted Color Image Histogram

Fig.9 Histogram analysis

Our minor revised algorithm’s simulating result on Lena
colorimage, as shown in Fig. 9, also proves that our algorithm
has secure encryption effect for color image.

5.5 Correlation analysis

The pixel correlation can reflect the scrambling effect of an
image encryption algorithm. We randomly select 4000 pairs
of adjacent pixels from the horizontal direction, the verti-
cal direction and the diagonal direction in the cipher image,
respectively. Using the following Eqs. (17)—(20), we can eas-
ily obtain the correlation coefficients between two adjacent
pixels in Lena image. The results are expressed in Table 5.

E(x) = % ;xi (17)
D(x) = % ; [x; — E(x))? (18)
covx, ) = - Z v — E@)llyi — EO)] (19)

cov(x. ) 0

"= DD

where x and y are the gray value of two adjacent pixels. E (x),
D(x) and cov(x, y) denote the expectation of x, variance of
x and covariance of x and y, respectively. ry, denotes the
correlation coefficient between x and y. N denotes the total
number of the samples.

Table 5 Correlation coefficients of the Lena image (512 x 512) for
HCMO algorithm

Model Plain image Cipher image
Horizontal 0.9715 0.0149
Vertical 0.9855 0.0151
Diagonal 0.9587 0.0113

E I w ] ] E3

(¢) Diagonal

(a) Horizational (b) Vertical
Fig. 10 Correlation plots of adjacent pixels in the plain image Lena in
three directions

0 ] ] E]

(a*) Horizational

(b*) Vertical

(C*) Diagonal

Fig. 11 Correlation plots of adjacent pixels of the Cipher image
obtained by HCMO on three directions

From Table 5, we know that the correlation coefficients
of the plain gray image are close to 1, while the correlation
coefficients are close to 0 after the plain image is encrypted
by our algorithm HCMO. As shown in Figs.10 and 11, the
pixel gray values are gathered around in an oblique straight
line at the horizontal direction, the vertical direction or the
diagonal direction in the plain image Lena, but the pixel gray
values are scattered over the entire cipher image Lena after
the image Lena is encrypted at the three directions.

According to our experimental result analyses, an
encrypted image by our algorithm would lost the whole
intrinsic space location information of the original image,
and it means that we cannot get any useful information of
the original image by the visual system. Hence, our HCMO
algorithm has good scrambling effect.

5.6 Information entropy analysis

Information entropy is one of the criteria to measure the
strength of a cryptosystem, which was proposed by Shan-
non (1949). Suppose that H(—) is the general information
entropy of the image A, then we have
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Table 6 Information entropies of the different five images (512 x 512)
obtained by HCMO

Origin image Origin entropy Cipher entropy
Cameraman 7.0480 7.9895
Lena 7.4451 7.9457
Mandrill 7.2925 7.9316
Pirate 7.2367 7.9846
Peppers 7.5937 7.9472
271
H(T)=— )" p(t)logyp(t) 1)

i=0

where p(t;) means the probability of the occurrence of ¢; in 1
and T is the number of the bits used to represent a pixel. For an
ideal random source which emits 28 symbols, its information
entropy is 8, as given in Eq. (21). The information entropy
of our algorithm can be found in Table 6. As indicated by
the calculated values, the entropy values are very close to
the ideal value 8, and it means that the information leakage
by the cipher image is negligible and our algorithm is secure
against entropy attacks.

6 Conclusions

A novel parallel image encryption algorithm HCMO is
proposed based on hybrid chaotic maps and some other oper-
ations with the OpenCL-based implementation in this paper.
Our algorithm can implement the position encryption and
gray value encryption simultaneously. For example, for every
fixed j < n,onone core (CUDA), if the position scrambling
operations I (i, j) — I(R(i, j), j) (fori <~ Otom — 1)
is performed, then the gray value encryption operations with
Eq. (9) (fori <~ 1tom —1)and Eq. (11) (fori <~ m —1to
1) can be simultaneously performed. Hence, N such opera-
tions can be parallel performed on N cores simultaneously,
respectively.

Compared to the Vihari’s algorithm and some other algo-
rithms referred in this paper, our algorithm shows remarkable
improvement in terms of the speedup on the CPU or on the
GPU, respectively. Our simulation results and performance
analyses have also shown that our algorithm have some supe-
rior to Zhang’s algorithm, Hanis’s algorithm and Mondal’s
algorithm in resisting brute-force attack, differential attack,
the known-plaintext attack and the chosen-plaintext attack.
Our algorithm can also be applied to encrypt color images
in parallel with the OpenCL-based implementation through
some minor improvement as we described in Sect. 5.
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