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Abstract
Accurately predicting river flows over daily timescales is considered as an important task for sustainable management of

freshwater ecosystems, agricultural applications, and water resources management. In this research paper, artificial

intelligence (AI) techniques, namely the cascade correlation neural networks (CCNN) and the random forest (RF) models,

were employed in daily river stage and river flow prediction for two river systems (i.e., Dulhunty River and Herbert River)

in Australia. To develop the CCNN and RF models, a significant 3-day antecedent river stage and river flow time series

were used. 80% of the whole data were used for model training and the remaining 20% for model testing. A total of ten

different model structures with different input combinations were used to evaluate the optimal model in the training phase,

and the results were analyzed using statistical metrics including the root mean square error (RMSE), Nash–Sutcliffe

coefficient (NS), Willmott’s index of agreement (WI), and Legate and McCabe’s index (ELM) in the testing phase. The

inter-comparison of CCNN and RF models for both river systems showed that the CCNN model was able to generate a

more accurate prediction of the river stage and river flow compared to the RF model. Due to hydro-geographic differences

leading to a different underlying historical data characteristics, the optimal CCNN’s performance for the Dulhunty River

was found to be most accurate, in terms of ELM = 0.779, WI = 0.964, and ENS = 0.862 versus 0.775, 0.968, and 0.885 for

the Herbert River. Following the performance accuracies, the authors ascertained that the CCNN model can be taken as a

preferred data intelligent tool for river stage and river flow prediction.
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1 Introduction

River flow modeling plays a significant role in water

resources management including flood control, hydropower

generation, watershed management, reservoir operation,Communicated by V. Loia.
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and river sediment management (Khatibi et al. 2012). The

ability to generate accurate river flow rates based on

antecedent (i.e., historical) time series and minimum site

information requirement using an artificial intelligence

(AI) technique is becoming a popular modeling choice of

river system forecasters (Nayak et al. 2004). AI techniques

are simple to formulate, yet they are quite robust and can

handle complex and nonlinear biophysical processes

embedded in hydrological data series. These techniques

have a major advantage compared to the parametric mod-

eling techniques since they do not require a priori concept

on the relationships between the input variables and output

data (Gocić et al. 2015), and they are mathematically less

complex to design and implement.

Nowadays, a variety of AI techniques have been

implemented in river flow prediction. These models

include, among the others, the artificial neural networks

(Tawfik et al. 1997; Jain and Chalisgaonkar 2000; Deka

and Chandramouli 2003; Sudheer and Jain 2003; Wu et al.

2005; Bhattacharya and Solomatine 2005; Habib and

Meselhe 2006; Alvisi et al. 2006; Chen et al. 2006;

Clemmens and Wahlin 2006; Kişi 2007; Baiamonte and

Ferro 2007; Firat 2008; Khatibi et al. 2011; Aggarwal et al.

2012; Ajmera and Goyal 2012; Hasanpour Kashani et al.

2015; Ghorbani et al. 2016a; Khatibi et al. 2017; Zhang

et al. 2018; Kashani and Soltangheys 2018), fuzzy logic

(Alvisi et al. 2006), M5 model trees (Bhattacharya and

Solomatine 2005; Ajmera and Goyal 2012), adaptive

neuro-fuzzy inference system (ANFIS) (Khatibi et al.

2011; Hasanpour Kashani et al. 2015; Zhang et al. 2018;

Kashani and Soltangheys 2018), support vector machines

(Sivapragasam and Muttil 2005; Aggarwal et al. 2012;

Goel and Pal 2012; Ghorbani et al. 2016b; Zhang et al.

2018), genetic programming (Ghimire and Reddy 2010;

Khatibi et al. 2011; Liu and Chung 2014; Hasanpour

Kashani et al. 2015; Zhang et al. 2018), chaos theory

(Khatibi et al. 2012), hybrid wavelet gene expression

programming (WGEP) (Shoaib et al. 2015), wavelet arti-

ficial neural networks (WANN), hybrid ANN-PSO and

ANN-GA (Zhang et al. 2018), hybrid SVM-QPSO (Ch

et al. 2013), hybrid NNRF-PSO (Taormina and Chau

2014), hybrid ELM-BSO (Taormina et al. 2015), hybrid

ANN-IIS-W (Prasad et al. 2017), and hybrid MLP-FFA

(Khatibi et al. 2017). These research works have revealed

an acceptable level of accuracy for various water man-

agement and water flow prediction tasks that were attained

with many categories of AI techniques. In addition to the

above-mentioned AI techniques, some new hybrid intelli-

gent methods have been developed (Deng et al. 2017a, b;

Zhao et al. 2017; Deng et al. 2018, 2019a, b) and can be

applied for accurate modeling of water management issues.

In this paper, the authors utilize a suite of less-explored

AI techniques, known as the cascade correlation neural

network (CCNN) and random forest (RF) models. The

ability of the CCNN model has led to some investigators

applying the method for river flow prediction. For example,

the study of Karunanithi et al. (1994) has applied the

CCNN model for the prediction of the Huron River flow at

the Dexter sampling station, and the study of Diaman-

topoulou et al. (2007) has developed the CCNN model with

Kalman learning rule to forecast the 1-day ahead daily flow

at Ilarionas station on the Aliakmon River, Northern

Greece. In another study, Alok et al. (2013) used two

neural networks models, known as Elman neural networks

(ENN) and CCNN, to estimate the data of the Indian River

Brahmani, revealing the good ability of the CCNN model

to evaluate the river flow time series.

To benchmark the CCNN model, the random forest (RF)

model, nonparametric regression and rule-based algorithm,

is also used in this study. The RF model entails the pre-

dictions that are created by averaging the predicted values

from multiple regression (or decision) trees, which are

trained on separate bootstrapped resamples of the training

dataset. Zhao et al. (2012) introduced the RF model for

selecting predictor dataset from measured streamflow and a

total of 74 hydro-climatic indices to predict seasonal

streamflow, while the study of Nguyen et al. (2015) has

investigated the application of the RF model, least absolute

shrinkage and selection operator (LASSO) and support

vector regression (SVR) for forecasting of daily water

levels at Thakhek station on the Mekong River. Shortridge

et al. (2016) used the ANN, RF, and other models to

simulate monthly streamflow of five highly seasonal rivers

in the highlands of Ethiopia.

Although there have been different research works to

predict water stage and river flow using ANN-based

models, the applications of the CCNN and RF models, as

attempted in this paper, have been relatively limited com-

pared to the conventional ANN-based models. In view of

this deficit from current knowledge, the novelty of present

study is to design for the first time and to investigate the

capability of CCNN and RF models for river flow predic-

tion and also to broaden their usage in hydrologic time

series predictions where modeling data for two major river

systems in Australia (i.e., Dulhunty and Herbert Rivers) are

employed.

2 Methodology

2.1 Cascade correlation neural networks (CCNN)

The CCNN model, developed by Fahlman and Lebiere

(1990), is a special case of the artificial neural networks

(ANN) model where a parallel information processing

system is used, consisting of a set of neurons arranged in
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input, hidden, and output layers. These neurons provide

suitable conversion functions for weighted inputs. The

CCNN model, as opposed to classical ANN models, can

automatically synthesize the best neural networks archi-

tecture as part of the model’s training process. The CCNN

model is an efficient constructive neural networks model

combining the idea of incremental structure and learning

algorithm during its training. Training starts with minimal

networks consisting of an input and an output layer without

a hidden layer. If the training can no longer reduce the

residual error, then this phase of training is stopped and

enters the next phase for the training of the potential hidden

node. The potential hidden node has associated connection

weights from the input layer and all preexisting hidden

nodes but not toward the output layer (Karunanithi et al.

1994; Diamantopoulou et al. 2007; Kim et al. 2014;

Zounemat-Kermani et al. 2019).

In a CCNN model, the connection weights associated

with the potential hidden nodes are optimized by the gra-

dient ascent method to maximize the correlation between

its output and the residual error of the CCNN model. When

a potential hidden node is trained, connection weights

associated with the output layer are kept unchanged. When

a potential hidden node is added to the CCNN’s structure,

it becomes a new hidden node, and its incoming connection

weights are fixed for the remainder of training. After

installing a hidden node successfully, the training updates

all of the connection weights, which directly feed the

output layer. The CCNN model automatically constructs a

suitable structure for a given problem (Karunanithi et al.

1994; Thirumalaiah and Deo 1998). Figure 1a shows the

structure of the CCNN model.

2.2 Random forest (RF)

The RF model consists of an ensemble of randomized

regression trees that operate by constructing a multitude of

regression trees and then aggregating them to yield a single

prediction (Fig. 1b). The RF model provides reliable error

estimated by using the out-of-bag (OOB) data and esti-

mates covariate importance by changing the order of

arrangement/arranging the values of each covariate in the

OOB sample and predicting OOB samples using the per-

muted variable (Zhao et al. 2012). The change in OOB

error is then an indication of the importance of that

covariate in the dataset. The RF model depends only on

two user-defined parameters, the mtry (the number of

ancillary data in each random subset) and ntree (the num-

ber of trees in the forest), which are optimized by iterating

mtry values from 1 to 10 (the total number of covariates)

and ntree values from 100 to 10,000 by increments of 100

(Hengl et al. 2015; Were et al. 2015).

2.3 Study area, data available, and performance
criteria

The daily mean river stage and river flow time series data

of Dulhunty and Herbert Rivers in Australia were used in

this study (Table 1). The data are arbitrarily divided into

two parts for training and testing. The training datasets

were chosen at 80% of the length of the time series (from

2014/05/22 up to 2016/10/14), and the testing datasets

covered their remaining 20% (from 2016/10/15 up to

2017/05/21). Figure 2a, b shows a plot of the observed

daily river stage and discharge, respectively, with training

and testing period. The statistical parameters of river stage

and discharge data are given in Table 2. In the table, the

Xmean, Sx, Cv, Csx, Xmax, and Xmin denote the mean, stan-

dard deviation, variation coefficient, skewness, maximum,

and minimum, respectively.

To validate the performance of the models, diagnostic

plots and statistical score metrics were employed in the

testing phase. These metrics are described as:

I. Root mean square error (RMSE) (Willmott and

Matsuura 2005) is expressed as:

Fig. 1 Structure of the models:

a CCNN model (Kim et al.

2014) and b RF model

(Rodriguez-Galiano and

Atkinson 2016)
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Fig. 2 Time series plot for the observed stage and discharge data with a period of 2014/05/22 to 2017/05/21): a Dulhunty River and b Herbert

River

Table 2 Statistical

characteristics of the river daily

stage and discharge data sets

River Dataset Data type Number of data Xmean Sx Cv Csx Xmax Xmin

Dulhunty Training Stage (m) 877 0.95 0.19 0.20 2.62 2.67 0.75

Discharge (m3/s) 877 3.67 5.34 1.45 5.63 78.95 0.42

Testing Stage (m) 219 1.01 0.23 0.23 0.17 1.71 0.73

Discharge (m3/s) 219 5.40 4.95 0.91 0.75 25.91 0.29

Herbert Training Stage (m) 877 1.10 0.54 0.49 4.69 6.14 0.63

Discharge (m3/s) 877 42.84 90.76 2.12 6.57 1111.78 0.00

Testing Stage (m) 219 1.47 0.84 0.57 2.54 6.05 0.77

Discharge (m3/s) 219 96.94 147.53 1.52 3.44 1048.79 3.64

Table 1 Physiographical characteristics of river stage and discharge measurement stations

River Latitude (decimal degree) Longitude (decimal degree) Elevation (m) Record period Number of data

Dulhunty 11.832684 142.421975 51 2014/05/22–2017/05/21 1096

Herbert 18.63275 146.14267 16.5 2014/05/22–2017/05/21 1096
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III. Willmott’s index of agreement (WI) (Willmott et al.

2012) is expressed as:

WI ¼ 1�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 jPi � Oi j þ jOi � Oi j
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IV. Legate and McCabe’s index (ELM) (Legates and

Davis 1997; Legates and McCabe 1999, 2013) is

expressed as

ELM ¼ 1�
PN

i¼1 jOi � Pij
PN

i¼1 jOi � Oi j

" #

; 0\ELM � 1 ð4Þ

where Oi and Pi are the observed and predicted ith

value of the Q, and �O is the average of observed

Q value.

3 Results and discussion

This study has used daily river stage and river flow data

from the Dulhunty and Herbert Rivers in Australia. As

stated previously, the evaluation and comparison for the

performance of CCNN and RF models are the core point of

the paper based on the prediction of daily river flow.

3.1 Development of CCNN model

Various combinations of river stage and river flow vari-

ables for the Dulhunty and Herbert Rivers were applied as

the input variables for CCNN and RF models to determine

the best input variables. Therefore, the CCNN and RF

models are a priori fed with water stage (H). It was adopted

as the minimum number of input combinations represented

by the CCNN 1 and RF 1 for choosing the optimal input

combinations. Various input combinations of river stage

and river flow variables to estimate the river flow are

shown in Table 3.

A difficult task with ANN modeling is to choose its

optimal architecture and determine the number of hidden

layers and nodes using a trial and error method. The net-

work geometry and architecture rely on the addressed

problem (Kişi 2007; Kim et al. 2012; Seo et al. 2015). This

study started using one hidden layer for the construction of

the CCNN model since one hidden layer can be enough to

represent the specific nonlinear relationships (Kumar et al.

2002). The number of hidden nodes was determined using

a trial and error method for the CCNN model with the

different input combinations based on the statistical

criteria.

Table 4 shows a summary of the statistical indices of

each CCNN model during the training and test phases. It

can be given from Table 4 that the CCNN 6 model, whose

input variables are flow discharges at times t and t - 1 (Qt,

Qt-1), produced the most accurate results among the other

input combinations for the Dulhunty River. Moreover, the

CCNN 10 model, whose input variables are river stage and

river flow at times t until t - 3 (Ht, Ht-1, Ht-2, Ht-3, Qt,

Qt-1, Qt-2, Qt-3), provided the most accurate results

among the other input combinations for the Herbert River.

Here, the optimum structure of the CCNN 6 (2, 3, 1)

denotes a CCNN model comprising two input, three hid-

den, and one output nodes, respectively. Also, the optimum

structure of the CCNN 10 (8, 1, 1) denotes a CCNN model

comprising eight input, one hidden, and one output nodes,

respectively. Figure 3a, b shows observed and predicted

river flow values and their corresponding scatter plots

during the test phase for the CCNN 6 and CCNN 10

models for the Dulhunty and Herbert Rivers, respectively.

Figure 3 shows that although there can be found little

errors in peak flows prediction, the CCNN 6 and CCNN 10

models can estimate nonlinear river stage and river flow

values efficiently. This is in agreement with the previous

reports provided by Alok et al. (2013).

Table 3 Different input

combinations of the models
No. Input combination Output RF CCNN

1 Ht Qt?1 RF1 CCNN1

2 Ht, Ht-1 Qt?1 RF2 CCNN2

3 Ht, Ht-1, Ht-2 Qt?1 RF3 CCNN3

4 Ht, Ht-1, Ht-2, Ht-3 Qt?1 RF4 CCNN4

5 Qt Qt?1 RF5 CCNN5

6 Qt, Qt-1 Qt?1 RF6 CCNN6

7 Qt, Qt-1, Qt-2 Qt?1 RF7 CCNN7

8 Qt, Qt-1, Qt-2, Qt-3 Qt?1 RF8 CCNN8

9 Ht, Ht-1, Qt, Qt-1, Qt-2, Qt-3 Qt?1 RF9 CCNN9

10 Ht, Ht-1, Ht-2, Ht-3, Qt, Qt-1, Qt-2, Qt-3 Qt?1 RF10 CCNN10
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Table 4 Result of the CCNN model for different input combinations of the Dulhunty and Herbert Rivers

River Model Model structure Training set Testing set

RMSE (m3/s) ENS WI ELM RMSE (m3/s) ENS WI ELM

Dulhunty CCNN1 1-1-1 2.274 0.819 0.946 0.754 1.966 0.841 0.962 0.685

CCNN2 2-3-1 2.190 0.832 0.952 0.794 1.943 0.845 0.958 0.760

CCNN3 3-2-1 2.209 0.829 0.950 0.825 1.933 0.847 0.961 0.750

CCNN4 4-1-1 2.235 0.825 0.948 0.784 1.959 0.842 0.961 0.719

CCNN5 1-5-1 2.170 0.835 0.952 0.802 1.955 0.843 0.959 0.771

CCNN6 2-3-1 2.239 0.824 0.949 0.839 1.836 0.862 0.964 0.778

CCNN7 3-9-1 1.934 0.869 0.963 0.822 1.895 0.853 0.962 0.768

CCNN8 4-1-1 2.268 0.820 0.947 0.830 1.833 0.862 0.963 0.765

CCNN9 6-0-1 2.299 0.815 0.946 0.802 1.892 0.853 0.961 0.755

CCNN10 8-0-1 2.236 0.825 0.949 0.805 1.858 0.858 0.963 0.753

Herbert CCNN1 1-4-1 42.107 0.785 0.937 0.697 59.441 0.837 0.953 0.719

CCNN2 2-0-1 37.689 0.827 0.952 0.634 54.551 0.863 0.960 0.744

CCNN3 3-1-1 35.194 0.849 0.958 0.710 53.533 0.868 0.963 0.749

CCNN4 4-1-1 35.741 0.845 0.956 0.716 53.158 0.870 0.963 0.758

CCNN5 1-3-1 42.163 0.784 0.937 0.726 59.068 0.839 0.953 0.732

CCNN6 2-2-1 38.221 0.822 0.950 0.736 52.223 0.874 0.964 0.769

CCNN7 3-0-1 37.932 0.825 0.951 0.751 52.644 0.872 0.964 0.775

CCNN8 4-1-1 36.975 0.834 0.953 0.780 51.612 0.877 0.965 0.780

CCNN9 6-0-1 36.702 0.836 0.954 0.736 51.710 0.877 0.965 0.774

CCNN10 8-1-1 33.389 0.865 0.963 0.761 49.925 0.885 0.968 0.775
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Fig. 3 Comparative plots of the

observed and predicted flow of

the best CCNN models and their

corresponding scatter plots

during the testing phase:

a Dulhunty River and b Herbert

River
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Table 5 Result of the RF model for different input combinations of the Dulhunty and Herbert Rivers

River Model Model structure Training set Testing set

RMSE (m3/s) ENS WI ELM RMSE (m3/s) ENS WI ELM

Dulhunty RF1 No. of trees: 52; leaf size: 5 1.364 0.935 0.982 0.893 2.286 0.785 0.942 0.736

RF2 No. of trees: 51; leaf size: 5 1.283 0.942 0.985 0.908 2.270 0.788 0.945 0.741

RF3 No. of trees: 50; leaf size: 5 1.325 0.938 0.983 0.909 2.205 0.800 0.947 0.739

RF4 No. of trees: 50; leaf size: 5 1.184 0.951 0.987 0.911 2.034 0.830 0.954 0.756

RF5 No. of trees: 52; leaf size: 5 1.214 0.948 0.986 0.914 2.105 0.818 0.952 0.747

RF6 No. of trees: 51; leaf size: 5 1.299 0.941 0.984 0.918 2.107 0.818 0.951 0.756

RF7 No. of trees: 50; leaf size: 5 1.371 0.934 0.982 0.917 2.079 0.822 0.953 0.750

RF8 No. of trees: 50; leaf size: 5 1.069 0.960 0.989 0.921 2.199 0.801 0.948 0.742

RF9 No. of trees: 49; leaf size: 5 1.238 0.946 0.985 0.914 2.030 0.831 0.954 0.758

RF10 No. of trees: 48; leaf size: 5 1.152 0.953 0.988 0.918 2.086 0.821 0.952 0.753

Herbert RF1 No. of trees: 52; leaf size: 5 25.952 0.918 0.977 0.817 66.273 0.797 0.940 0.697

RF2 No. of trees: 51; leaf size: 5 31.145 0.882 0.965 0.844 62.638 0.819 0.942 0.748

RF3 No. of trees: 50; leaf size: 5 32.533 0.871 0.962 0.836 67.436 0.790 0.934 0.732

RF4 No. of trees: 50; leaf size: 5 33.403 0.864 0.959 0.827 67.461 0.790 0.930 0.720

RF5 No. of trees: 52; leaf size: 5 34.903 0.852 0.956 0.838 64.366 0.809 0.941 0.734

RF6 No. of trees: 51; leaf size: 5 31.221 0.882 0.965 0.870 58.869 0.840 0.950 0.766

RF7 No. of trees: 50; leaf size: 5 31.489 0.879 0.964 0.863 63.236 0.815 0.941 0.747

RF8 No. of trees: 50; leaf size: 5 32.676 0.870 0.961 0.853 72.061 0.760 0.921 0.713

RF9 No. of trees: 49; leaf size: 5 33.082 0.867 0.960 0.861 64.121 0.810 0.937 0.765

RF10 No. of trees: 48; leaf size: 5 18.046 0.960 0.989 0.894 65.926 0.799 0.937 0.747
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Fig. 4 Comparative plots of the

observed and predicted flow of

the best RF models and their

corresponding scatter plots

during the testing phase:

a Dulhunty River and b Herbert

River
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3.2 Development of RF model

The performance of the RF model for different input

combinations is presented in Table 5 based on the statis-

tical measures. In the RF technique, two parameters (i.e.,

no. of trees and leaf size) need optimizing at first using a

trial and error method. Table 5 presents the optimal

parameters for the RF model. The results indicated that the

best performance of the RF model could be achieved with

the low no. of trees (49) and leaf size of 5 (RF 9, whose

input variables are Ht, Ht-1, Qt, Qt-1, Qt-2, Qt-3) and

higher no. of trees (51) and leaf size of 5 (RF 6, whose

input variables are Qt, Qt-1) for the Dulhunty and Herbert

Rivers, based on the statistical criteria.

Figure 4a, b shows the observed and predicted river flow

values and their corresponding scatter plots during the test

Fig. 5 Taylor diagrams of RF and CCNN models for predicting the daily river flow over the training and testing phases: a Dulhunty River and

b Herbert River
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Fig. 6 Result of optimal RF and CCNN models for predicting the daily river flow in Dulhunty and Herbert Rivers over the testing phase
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phase for the RF 9 and RF 6 models in the Dulhunty and

Herbert Rivers, respectively. It can be found in Fig. 4 that

the RF 9 and RF 6 models can provide the nonlinear river

stage and river flow values successfully. This result is in

agreement with the former paper obtained by Zhao et al.

(2012). Like the CCNN model, it provided some errors for

predicting the peak flows. This is also following the outputs

obtained by Shortridge et al. (2016).

3.3 Comparisons and discussions of results

In this chapter, the performances of two applied models

(i.e., CCNN and RF) were compared based on different

figures. Figure 5a, b provides Taylor diagrams for the

results generated by the CCNN and RF models, respec-

tively. Here, the Taylor diagrams represent a simple

graphical comparison that the similarity between the

observed and predicted river flow values in terms of the

correlation coefficient and standard deviations (Taylor

2001) has been used to investigate the efficiency of applied

models visualized using the points as a polar plot. The ratio

of variance can be calculated to produce the relative depths

of predicted and observed variations in the testing phase

(Taylor 2001; Gleckler et al. 2008). In this study, the

Taylor plot has been used to outline the proposed models

(i.e., CCNN and RF) to represent the degree prediction

accuracy where the distance from the observed point can be

measured from the centered RMSE (Taylor 2001). It can be

seen from these visualizations that the model denoted as

CCNN 10 and RF 6 generated the results that were the

closest to the observed point compared to other models for

the Herbert River. However, for the Dulhunty River, it is

difficult to judge which one of these models is superior in

their performance.

Figure 6 shows the performance evaluation criteria for

the two models. Given the obtained results in Fig. 6, it

indicated that all models have efficient performances in

flow river prediction. As a comparison result of RMSE,

NSE, WI, and ELM values for predicting daily river flow, it

can be concluded that the CCNN model provided an

accurate performance compared with the RF model for

both the Dulhunty and Herbert Rivers. A direct comparison

of CCNN and RF models can be also illustrated in Fig. 6 in

terms of residual plots and histograms for the two rivers

during the testing phase. The residual plots showed that the

residuals (error) of the CCNN model were less than those

of the RF model. In determining the best input combina-

tion, all models produced almost the different results for

both the Dulhunty and Herbert Rivers. This indicates that

the model architecture can be considered as an important

factor to determine the most effective input variables

It can be seen from the results that the CCNN and RF

models could estimate the river flow within

acceptable ranges. Since the application of CCNN and RF

models could not be found in hydrologic time series

modeling fields (e.g., streamflow, sediment, rainfall,

evaporation, and groundwater), they can provide the

diverse development and application processes based on

the different data groups. Besides, two models (i.e., CCNN

and RF) among the different ANNs-based models are a

minimum level to select the optimal input combination in

general. The clear selection for optimal input combinations

based on the specific environments (i.e., river, watershed,

lake, and reservoir) can depend on the number of devel-

oped and applied models. Therefore, the continuous

researches are required to select and specify the optimal

input combination using the different ANNs-based models.

4 Conclusion

In this study, the effectiveness of CCNN and RF models is

investigated for the river flow prediction. To achieve this

goal, the river stage and river flow data for two gauging

stations in Australia for three years (2014/05/22-2017/05/

21) are used. For training and testing the models, the time

series data for each station are divided into 80% and 20%,

respectively. Several statistical indicators such as RMSE,

NSE, WI, and ELM are used to compare the applied models’

performances. Following the archived outcomes, the per-

formance indicators reveal that the CCNN model is able to

provide the accurate and reliable predictions in comparison

with the RF model. The advantages of the RF model are:

(i) there is no need for feature normalization, (ii) individual

decision trees can be trained in parallel, (iii) the RF model

is widely used, (iv) this method reduces overfitting, and

(v) it accommodates the nonlinear relationship between

input and output. Also, the RF model has some disadvan-

tages such as (i) it is not easily interpretable and (ii) it is not

a state-of-the-art algorithm.

The advantages of CCNN model are that since there is

no need for a user to worry about the topology of the

network, the CCNN model learns much faster than the

usual learning algorithms, and training is quite robust.

Also, the disadvantages of CCNN model are categorized as

an extreme potential for overfitting the training data and

less accurate than probabilistic neural networks on small-

to-medium-size problems. To improve the current models

and make them particularly useful for operational river

system forecasting, further research may be warranted,

using the different hydro-climatic datasets to explore the

models’ ability to predict river stage and river flow

variables.
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