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Abstract

There are myriad works that deal with the fuzzy multi-period portfolio selection problem, but when we talk about multi-period
portfolio selection in an intuitionistic fuzzy realm, to the best of our knowledge, there is no research work that deals with the
same. So, to fill this research gap, we propose an intuitionistic fuzzy multi-period portfolio selection model with the objectives
of maximization of the terminal wealth and minimization of the cumulative risk subject to several realistic constraints such
as complete capital utilization, no short selling, fixed transaction costs for buying and selling, bounds on the desired returns
of each period, cardinality constraint, and bounds on the minimal and the maximal proportion of the capital allocated to an
asset. The membership and non-membership of the objectives are modeled using their extreme values. The proposed approach
provides avenues for the inclusion and minimization of the hesitation degree into decision making, thereby resulting in a
significantly better portfolio. Parameters 6y and 8y, are used to introduce the hesitation in the model, and, based on their
values, the model is further categorized into optimistic and pessimistic intuitionistic fuzzy multi-period portfolio selection
models for optimistic and pessimistic investors, respectively. The max—min approach is used to solve the proposed models.
Furthermore, a numerical illustration is presented to exhibit the virtues of the proposed model.

Keywords Multi-period portfolio optimization - Intuitionistic fuzzy - Possibility measure - Multi-objective optimization -
Max—min approach

1 Introduction financial assets, such as equity shares, stocks, mutual funds,

bonds, and cash equivalents. Most people usually invest in

The growth of economic power in any society is unswerv-
ingly linked to a rational and apposite investment; thus,
organizations and people often dedicate a part of their earn-
ings to investment. Investors are always on the lookout for
a propitious place to invest and often choose conventional
portfolios. A portfolio usually consists of several classes of
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property, policies offered by banks or buy a few shares,
plausibly with diverse commodities. By contrast, investors
generally invest in portfolios composed of multiple assets.
One popular way of investment is investing in stock markets
and making portfolios. Such investments are anticipated to
yield a certain return (i.e., profit on investment), but with
concomitant risk. Typically, higher risks commensurate to
higher expected returns and vice versa. Portfolios are gener-
ally designed as per investors’ preferences, as every investor
seeks a propitious portfolio with a coalition of assets that pro-
vides steeper returns with reasonable risk. There are several
quantitative and non-quantitative methods for constructing
an appropriate portfolio. The portfolio selection problem
contemplates the adequate allocation of investment among
the assets to create an optimal portfolio as per some speci-
fied criteria or investors’ preferences.

In the previous few decades, portfolio optimization has
transpired as a fascinating and challenging multi-objective
problem in computational finance. It is still receiving increas-
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ing attention from individual investors, fund management
companies, and researchers around the world. The primary
issues that entail a portfolio selection problem are the selec-
tion of a subset of assets and the determination of their
corresponding optimal weights. The weight of each asset
should be selected in a way to maximize the total return
(profit) of the portfolio, while simultaneously minimizing the
risk. In quantitative finance, this problem is conventionally
studied with the help of the Markowitz portfolio selection
model.

Markowitz’s modern portfolio selection theory (Markowitz
1952), regarded as a landmark in modern portfolio theory
(MPT), examines how the assets’ returns, risks, correlations,
and diversification affect the portfolio return. The model pro-
posed by Markowitz, popularly known as the mean—variance
(MV) model, is a mean-risk bi-criteria optimization model
that selects the assets having the highest expected return for
a specified level of risk (measured by the standard devia-
tion of their returns) to construct an optimal portfolio. The
model is based on the idea that the return of a portfolio is the
weighted linear combination of the returns of the constituent
assets, and the portfolio risk defined by the portfolio variance
is a function of the correlations of component assets. Among
a given set of assets, Markowitz’s MV model seeks the opti-
mal allocation of capital according to investors’ preferences
regarding their expectations of return and risk, by considering
the first two moments about the rate of return of the portfo-
lio. The MV model, through the use of covariances between
individual assets, signifies the importance of diversification
in a portfolio. The overall portfolio risk is expected to reduce
when assets are selected from a set of alternatives. This risk
reduction can be carried out by choosing the assets based not
only on mean and variance but also on their co-moments with
other assets under consideration.

In an attempt to simplify and expand the MV model,
several researchers have proposed different risk measures
or employed various realistic constraints such as cardinality
constraint (Chang et al. 2000), fixed and variable transaction
costs and bounds on investment in each asset. Soleimani et al.
(2009) in addition to the cardinality constraint and minimiza-
tion of transaction costs also considered market sectors as a
constraint on the MV model.

Owing to imprecise, vague, and uncertain data, another
critical factor in a portfolio optimization problem is the
uncertainty. In reality, financial information rather than being
deterministic is more uncertain. Probability theory is widely
used to address this uncertainty. However, it is incapable
of analyzing all types of uncertainty, including vague and
ambiguous linguistic representations of data in financial mar-
kets. Consequently, the use of fuzzy logic is suggested (Liu
et al. 2012).

Since the inception of the fuzzy set theory (Zadeh 1965),
it has been widely used to capture uncertainty. Zimmer-
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mann (1978) applied Bellman and Zadeh’s (1970) max—min
approach (MMA) to a linear programming problem to pro-
pose fuzzy mathematical programming. Katagiri and Ishii
(1999) used fuzzy theory for portfolio selection.

In the literature, fuzzy mathematical programming is
applied in numerous studies for portfolio selection. For
example, Mehlawat and Gupta (2014) tackled portfolio
selection with fuzzy parameters using chance-constrained
multi-objective programming. Kocadagli and Keskin (2015)
used a fuzzy goal programming (GP) technique to propose a
fuzzy portfolio selection (FPS) model. Fang et al. (2006) pre-
sented a portfolio rebalancing model with transaction costs
along with return, risk, and liquidity. Parra et al. (2001)
employed a fuzzy GP approach for portfolio selection with
three objectives, namely return, risk, and liquidity. Li et al.
(2015) proposed a background risk model by using the pos-
sibility theory and solved it using a genetic algorithm. Gupta
et al. (2008) proposed a “semi-absolute deviation portfolio
selection model with five criteria, namely short-term return,
long-term return, dividend, risk, and liquidity” and employed
fuzzy mathematical programming to solve it. More recently,
Mehlawatet al. (2018) proposed a fuzzy multi-objective port-
folio model with higher moments based on data envelopment
analysis and provided several schemes for investors having
varied attitudes. For more literature on FPS, one can refer to
the monograph by Gupta et al. (2014).

Note that the aforementioned works are single-period
portfolio selection models. However, in real world, the port-
folio selection process, being a long-term investment, is
generally a multi-period process. It is strongly advised for
the investors to reallocate the wealth among the set of assets
in continuous time periods. Consequently, multi-period port-
folio optimization (MPPO) has attracted the cumulative
attention of several researchers. A plethora of research works
have explored the multi-period portfolio selection (MPPS)
problems, see, e.g., Sadjadi et al. (2011), Zhang et al. (2012),
and Liu et al. (2012). Liu and Zhang (2015) maximized the
terminal wealth and minimized the cumulative risk by formu-
lating a multi-period mean semivariance model. Mehlawat
(2016) used multi-choice aspiration levels to propose a
credibilistic multi-period mean—entropy portfolio selection
model. Guo et al. (2016) employed a genetic algorithm for
solving a fuzzy multi-period portfolio selection (FMPPS)
problem under the credibilistic framework with V-shaped
transaction costs. Liagkouras and Metaxiotis (2018) intro-
duced a multi-objective evolutionary algorithm for solving
an FMPPS problem with two conflicting objectives of ter-
minal wealth and cumulative risk with transaction costs.
Wang et al. (2017) employed particle swarm optimization
to solve an MPPS problem under fuzzy random uncertainty
with dynamic risk and expected levels of return. Gupta et al.
(2013) presented an “expected value multi-objective port-
folio rebalancing model with fuzzy parameters.” Yue et al.
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(2019) constructed a portfolio selection model using both
semivariance and semiabsolute deviation simultaneously and
considering assets’ returns as LR type fuzzy numbers. Zhang
(2019) presented an uncertain multi-period mean absolute
deviation portfolio selection model with risk control, trans-
action costs, threshold, and cardinality constraints. Kar et al.
(2019) proposed a bi-objective fuzzy portfolio selection
model with Sharp ratio and value at risk as objectives and
solved it using multi-objective genetic algorithms. Chen et al.
(2019) developed a modified imperialist competitive algo-
rithm to solve an uncertain multi-period mean—semivariance
portfolio optimization problem with realistic constraints. Liu
et al. (2018) proposed a possibilistic mean—semivariance—
skewness FMPPS model with discounted transaction costs.

Apart from FMPPS problems, Arqub and Abo-Hammour
(2014) employed a continuous genetic algorithm to effi-
ciently solve systems of second-order boundary value prob-
lems with smooth solution curves. Arqub et al. (2016)
proposed a new method to solve kernel-theory-based fuzzy
differential equations under strongly generalized differen-
tiability. Arqub et al. (2017) investigated the analytic and
approximate solutions of reproducing kernel-theory-based
second-order, two-point fuzzy boundary value problems
under strong generalized differentiability. Arqub (2017)
obtained the exact and the numerical solutions of fuzzy
Fredholm—Volterra integrodifferential equations using the
reproducing kernel Hilbert space method.

1.1 Research motivation

To capture the inherent uncertainty in data, previous
approaches proposed in the portfolio optimization litera-
ture used the fuzzy set theory. However, the fuzzy set
theory only captures the membership degree and ignores
the non-membership and hesitation degrees. To exploit this
limitation, we use intuitionistic fuzzy set (IFS) theory. IFS
theory, proposed by Atanassov (1986), Atanassov and Gar-
gov (1989), addresses both the degrees of acceptance and
rejection, thereby clearly illustrating the concept of “ambi-
guity.” We use IFS theory to capture this ambiguity in the
form of hesitation degree. This hesitation degree is effi-
ciently used and minimized in the proposed approach to
obtain significantly better portfolios. Recently, there have
been a few pieces of research on portfolio selection in an
intuitionistic environment. For example, Chen et al. (2011)
proposed an intuitionistic fuzzy optimization-based “mean—
variance—skewness fuzzy portfolio selection model” using an
intuitionistic fuzzy min-max operator. Deng and Pan (2018)
proposed a multi-objective portfolio selection model with the
framework of intuitionistic fuzzy optimization.

Apart from the above research, portfolio optimization
in an intuitionistic setting/environment is still generally
uncharted territory. We have not come across any research

that addresses portfolio selection in an intuitionistic environ-
ment with hesitation explicitly, which makes our proposed
approach (model) a flag-bearer and a pioneer in this direc-
tion. Although there are a plethora of studies on FMPPS,
when we talk about MPPS in an intuitionistic fuzzy realm,
to the best of our insight, none of the previous works deal
with the same. In spite of the abundant literature on FMPPS,
none of the previous research works have attempted to pro-
pose FMPPS in an intuitionistic environment. So, to fill this
research gap, we propose in this paper an intuitionistic fuzzy
multi-period portfolio selection IFMPPS) model, subject to
several realistic constraints, that has been solved using MMA.

1.2 Focus/core of the proposed study

In order to propose the IFMPPS model, we first propose an
FMPPS model with the objectives of maximization of the ter-
minal wealth and minimization of the cumulative risk subject
to several realistic constraints such as complete capital uti-
lization, no short selling, fixed transaction costs, and bounds
on the desired returns of each period. To introduce a certain
degree of diversification in the proposed model, we incorpo-
rate into the model the cardinality constraint and bounds on
the minimal and the maximal fraction of the capital allocated
to an asset. Moreover, to make the proposed model more
general in approach, assets’ returns are assumed as trape-
zoidal fuzzy numbers. Using the possibility theory proposed
by Carlsson and Fullér (2001), we convert the FMPPS model
into a crisp MPPS model. This crisp model is then solved to
obtain the extreme (minimum and maximum) values of the
terminal wealth and cumulative risk.

To define the IFMPPS model, we use these extreme
values to construct the membership and non-membership
functions for both the terminal wealth and cumulative risk.
Parameters Oy and 6y, are used to introduce the hesitation
in the proposed IFMPPS model. The membership, non-
membership, and hesitation functions of the terminal wealth
and cumulative risk now serve as the objective functions of
the IFMPPS model wherein the membership functions are
maximized, while the non-membership and hesitation func-
tions are simultaneously minimized. The MMA has been
used to aggregate these objective functions into a single-
objective function. This single-objective function maximizes
the degree of membership functions while simultaneously
minimizing the degree of non-membership and hesitation
functions of the terminal wealth and cumulative risk. Based
on the values taken (assumed) by the parameters 6y and
Oy, the proposed model is further categorized into an opti-
mistic [IFMPPS model (O > 1,0y, < 1) and a pessimistic
IFMPPS model (Ow < 1,0y, > 1). A real-world portfolio
selection problem comprising twenty assets with trapezoidal
fuzzy returns is elucidated to exhibit the virtues of the
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proposed model. The proposed IFMPPS model is further val-
idated by comparing it to some existing works.

1.3 Novelty of the proposed approach

Though the literature is inundated with works on FMPPS,
there are no works that deal with the problem in an intuition-
istic environment. We summarize some novel contributions
of the proposed study as follows:

1. The proposed approach uses IFS theory to capture
uncertainty using the membership and non-membership
degrees, thereby providing avenues to include the hes-
itation degree in decision making. This feature of the
proposed study overshadows the previous fuzzy opti-
mization approaches in the literature.

2. To the best of our insight, MPPO in an intuitionistic envi-
ronment has not been dealt with earlier in the literature.
This work, being the first of its kind, makes our proposed
model a flag-bearer and a pioneer in this direction.

3. We propose an FMPPS model with the objectives of
maximization of terminal wealth and minimization of
cumulative risk subject to several realistic constraints
such as complete capital utilization, no short selling, fixed
transaction costs, and bounds on the desired returns of
each period. The bounds on the desired returns of each
period can also be varied from one period to another.
Moreover, a certain degree of diversification is also intro-
duced in the proposed model through the incorporation
of a cardinality constraint and bounds on the minimal
and the maximal proportion of the capital allocated to
an asset. This FMPPS model is then used as a catalyst
to propose an IFMPPS model that maximizes the mem-
bership functions while simultaneously minimizing the
non-membership and hesitation functions of the terminal
wealth and cumulative risk. The hesitation parameters
Ow and Oy, provide the decision makers with exclusive
control over the proposed model.

4. Using the hesitation parameters, the proposed IFMPPS
model is further categorized into two different models:
an optimistic [IFMPPS model and a pessimistic [IFMPPS
model, for optimistic and pessimistic investors, respec-
tively.

5. The proposed approach enables the decision makers to
obtain the best results by using different combinations of
the values of hesitation parameters to yield a variety of
results.

6. The proposed IFMPPS model is a simple approach, com-
putationally easier to solve and yields better results in
comparison with existing works.

7. The proposed study effectively fills the void, by propos-
ing an IFMPPS model, that has been there for quite a long
time in the FMPPS literature.
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To highlight the above-mentioned novel contributions, the
proposed model is compared with several existing works in
Table 1.

1.4 Organization of the paper

Section 2 acquaints the readers with the preliminaries and
basic concepts required to understand the proposed approach.
The proposed IFMPPS models for optimistic and pessimistic
scenarios are presented in Sect. 3; they are empirically val-
idated by a numerical illustration in Sect. 4. The paper
concludes with Sect. 5.

2 Preliminaries

In this section, we discuss some definitions and theorems
which are used in the subsequent sections.

Letafuzzy set £ in X, where X is the universe of discourse,
be defined as § = {(x, Mg (x))|x € X} with membership
function Mg X — [0, 1].

Definition 1 (Zadeh 1965) Trapezoidal fuzzy number: A
fuzzy set £ = (p,q: a, B) with tolerance interval [p, g,
left spread o, and right spread 8 on R, is called a trapezoidal
fuzzy number (TrFN) if its membership function is

x—pt+ao)/(@), p—a=<x=<p,

R I p<x=gq,
MEW =0 Gt p—0/(B) g =x<q+5,
0, otherwise.

Definition 2 (Zadeh 1965) A y-level set of a fuzzy number
& is defined as [£]Y = {x € R|§(x) > y}if y > 0 and
[£] = cl{x e RIE(x) > 0}if y = 0.

So, the y-level setof a TrFNé = (p, g; o, B) canbe obtained
as:

€)Y =[p— 1 -y, g+ (1 —p)B].

2.1 The concept of intuitionistic fuzzy set

An IFS é in X has the form§ = {(x, p,g(x), v§(x))|x € X}
with membership function Mg and non-membership function
Vg, where Mg - X —>[0,1],x e X > Mg(x) e [0, 1]; Vg
X—>[0,1,x e X —> v§(x) € [0, 1], andug(x)+v§(x) <
1, Vx € X.ForeachIFS £ in X, if g (0) = 1 — pz(x) —
Vg (x), Vx € X, then g (x) is called the hesitation of x to

3
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2.2 The concept of possibility theory

Carlsson and Fullér (2001) proposed the concept of “possi-
bilistic mean, variance and covariance of fuzzy numbers.”

Definition 3 (Carlsson and Fullér 2001) Possibilistic mean:
Let & be a fuzzy number with y-level set, [£]Y = [EL(y),
Er(y)], v € [0, 1]. Then, the possibilistic mean of £ is given
by

1
ME) = /0 VIEL(Y) + ER()1dy,

where &7, and & are the left and right cut of the fuzzy number

&, respectively.

Theorem 1 (Carlsson and Fullér 2001) Let &; and &> be two
Sfuzzy numbers and let L1, »> € R be real numbers. Then

M (i) + 2abd) = MM (€1) + MM ().

Definition 4 (Carlsson and Fullér 2001) Possibilistic vari-
ance: Let € be a fuzzy number with y-level set, E) =
[EL(v), Er(¥)], ¥ € [0, 1]. Then, the possibilistic variance
of £ is given by

1
Va® = [y (1916~ 6.0)F + 131 &xr) 1) dy.

Theorem 2 (Carlsson and Fullér2001) Let &71 and & be fuzzy
numbers and Ay, Ay € R be real numbers. Then

Va(rél + raé)
= A2Va(&) + M3Va(é) + 2y rirmCov(El, 6),

where r is a sign function,

1, if A1 =+ve, Ay = +ve,
1, if A1 = —ve, Ay = —ve,
—1, if A = Hve, Ay = —ve,
—1, if A = —ve, Ay = +ve.

Definition 5 (Carlsson and Fullér 2001) Possibilistic covari-
ance: Let &1, & € F be fuzzy numbers with y-level sets,

(6] =[E1.(). Eir()]and [£2]7 = [E22.(y). E2r(V)]. ¥ €
[0, 1], respectively. Then, the possibilistic covariance between
&1 and &; is given by

1
Cov(é). &) = /0 y (IME) - .M E) - 1))
+ M) — &M E) — £2r()]) dy.
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3 Model development
3.1 Model description and notation

In this section, we discuss an FMPPS model with n risky
assets having fuzzy asset returns. The computation of assets’
mean and variance is based on possibility theory. For the con-
venience of the readers, we set down the following notations
that are used in the subsequent sections.

Notation
Indices

i,j: Index of the risky asset, i, j =1,2,...,n
t: Index of the time period, t = 1,2,..., T

Parameters

&.i = (P1.is qris %, Br.i): Fuzzy rate of return of ith risky

asset for time period ¢ with tol-
erance interval (p;;, q;.;), left
spread oy ;, and right spread B; ;

M & .0): Possibilistic mean of the return
of the ith risky asset for time
period ¢

‘/_a(é,,i): Possibilistic variance of the

va(ft,i, Et,j):

return of the ith risky asset for
time period ¢

Possibilistic covariance of the
return

between the ith and jth risky
assets for time period ¢

r(t): Minimum expected return of
the portfolio for time period ¢
Wi Initial wealth to be invested in

W1 max> Wrmin:
Val(t):

Varmaxs Varmin:

the portfolio

Extreme values of the terminal
wealth

Variance (risk) of the portfolio
for time period ¢

Extreme values of the cumula-
tive risk

Ow, Ova: Hesitation in terminal wealth
and cumulative risk, respectively

lyit Lower bound on the proportion
of investment in each of the ith
risky asset for time period ¢

Ui Upper bound on the proportion
of investment in each of the ith
risky asset for time period ¢

Crit Transaction cost of the ith risky
asset for time period ¢

K;: Number of assets to be chosen

among the set of assets con-
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sidered for investment for time

period ¢
Variables
Xt Proportion of total investment invested in the ith
risky asset for time period ¢

Re(t): Expected return of the portfolio for time period ¢
Wr: Terminal wealth of the portfolio

Var: Cumulative risk of the portfolio

Vit Binary variable for time period ¢

p, T, w: Degree of satisfaction for membership, non-

membership and hesitation functions, respec-
tively

3.2 Objectives and constraints of the proposed
model

In areal market environment, investors must take into consid-
eration several aspects of investment that affect the output of
aportfolio. Besides this, the preferences of different decision
makers may be different, so to make the investment process
more realistic, the decision makers must consider multiple
criteria in addition to their preferences.

For the purpose, let n risky assets be considered for con-
structing a portfolio. We construct an MPPS model with
maximization of the terminal wealth of investment and mini-
mization of the cumulative risk as objective functions, subject
to several realistic constraints. Now, we discuss the objectives
and all the constraints that are used to construct the FMPPS
model.

Objectives:

e Terminal wealth of the portfolio:

T

Max Wy = W, ]"[(1 + Re(1)),
t=1

n

n
where Re(1) = ZM(Ez,i)Xz,i - th,ilxz,i —Xxr—1,il,

i=1 i=1

B 1
M ) = /0 vIpi — (=)
+4qr,i + (1 —y)Bildy

Pri +qri Bri — i
= Pl T4 L)
2 ~I—( G > )]

e Cumulative risk of the portfolio:

T T n
Min Var = Y Va(t) =y (Z x;Va()

t=1 t=1 \i=lI

n
+2 Z xt,ixt,jcz)v(st,ivst,j) s

j>i=1

1 [ / s — .
where Va(& ;) = / y H:p”’ + 4 n <5t,: Olz,,)
0 2 6

- (Pt,i -(1- V)Olt,i)]z
+ |:Pt,i + qt,i n <,Bt,i - ar,i)

2 6
~ui+ (= )p] fdy

(g — Pt,i)2 I (Gr,i — pri)(asi + Bri)

4 6
4 (ari + ﬂz,i)2
24 ’

1
_ ) ) ) )
Cov(&i, &, 5) —/ y ”:pt” 5 qr.i + P g i
0

Pr.j+qr,j
2

@)

—(pi—a —y)az,i)][

Brj—

6
Dri+qri  Bri— i
+ [ > T %

+ _(pt,j _(I_V)at,j)]

Prj T qr.j

—(qri +0— J’),Bt,i)] |: )

’31% —(qij+(1— y)ﬂt,p]}dy

@i — pri)@Gr,j — Pr,j)
4
(CIz,i - pt.i)(at,j - ﬂz,j) + (Qr,j - Pt,j)(az,i - ,Br,i)
_l’_
12
+ (ar,i + ﬂz,i)(at,j + ,Bz.,j)
24 '

+

3

Constraints:
e Expected return of the portfolio for time period ¢:
Re(t) =r(@), t=1,2,...,T. )

e Full utilization of the capital for time period #:
n
sz.i=1, t=12,...,T. 5)

e Cardinality constraint: To restrict the number of assets
(K;) that comprise the portfolio for time period ¢, the
cardinality constraint is put to use. Since managing a
large number of assets is cumbersome, conventionally,
investors choose to have only a certain number of assets
in the portfolio. This also helps in ensuring diversification

@ Springer



11938

P.Gupta et al.

in the portfolio.

n

Zyz,i=Kz, t=12,...,T. (6)
i=1

e No short selling constraint:
x; >0, i=12,...,n;t=1,2,...,T. @)

e Minimal and maximal fraction constraint: Any asset that
is included in the portfolio has bounds on the fraction
of the capital allocated to it. This constraint specifies the
minimal and maximal fraction of the capital allocated to
the assets in the portfolio.

Liyei < Xei < Ur iV,

i=1,2,....,n;t=1,2,...,T. (®)
3.3 Fuzzy multi-period portfolio selection model

The FMPPS model is now formulated as follows:
(Model 1)

T
Max Wr = W) [ [(1+ Re())

=1

T
Min Var =) Va(t)
t=1
subject to Egs. (4)—(8).
Crisp form of the proposed model

By substituting Egs. (1)—(2) and using Theorems 1 and 2 in
Model 1, we get the following model:
(Model 2)

Max Wrp

d ~ (Pritai | Bri— o
—W 1 1,i 1,i 1,i 1,i }
(130 (gt B
t=1 i=1
n
- th,i|xt,i - xz—l,il)
i=1

Min Var

. 2
+(05[,t +ﬂl,l) )xﬁ[

i ((qt,l- —pei)? (@i — pri)owi + Bri)
4 + 6

24

n
(qr.i —Pti)(fItj—Ptj)
) , , , ,
+ Z( 2

j>i=1
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(Gr,i — pr.i)es,j — Br,j) +(qr,j — pr,j)oi — Br.i)
+
12
(or,i + Bri)ar,j + Br.j)
i t,i 1124 t,j t,j X%t
subject to Egs. (4)—(8).

3.4 Construction of the proposed intuitionistic fuzzy
multi-period portfolio selection model

Model 2 is solved as a single-objective minimization and
maximization problem separately to obtain the extreme
values of the terminal wealth and cumulative risk; these
values are then used to construct their membership and non-
membership functions as follows:

0, Wr < Wrmin,
vy () = § e Wr iy < Wr < Wrmax, (%)
17 WT = WTma)n
1, Wr < WTmin,
vy (x) = { ot Wiy < Wr < Wrmax,  (9b)
0, Wr > WTmam
1, Var < Varmin,
KVar (x) = { %’ Varmin < Var < Varmax,
0, Var = Varmax,
(%)
0, Var < Varmin,
Vyar(x) = [ ma Varmin < Var < Varmax,
1, Var > Varpax-

(9d)

To incorporate the hesitation into the model, we intro-
duce the parameters Oy and 6y, into the picture. Based on
the values taken (assumed) by these parameters and whether
they are applied to the membership or the non-membership
functions, we have the following two cases:

e Case 1: Optimistic scenario (Bw > 1,6y, < 1)

In the optimistic scenario, in order to increase the member-
ship degree of the terminal wealth and cumulative risk, Oy
and Oy, are multiplied to W7 i, and Var .y, respectively,
in the membership functions of the two objectives. From
Egs. (92)—(9d), we have

0, Wr < Wrnin,
W1 —0w - Wr min .
WI max —Ow - W min WTmm < WT = WTmax’

l, WT > WTma)u

Hwy (X)) =

(10a)
I, Wr < WTmin»
WTmax_WT .
W max— W min WTmm < WT = WTmaXa
0, Wr > WTmaxs

vy (x) = (10b)
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v(Wr)

wWr)

Wr

WTmin

Fig.1 Optimistic scenario

v(Wp) u(Wr)

Wr
Wrmin Ow - Wray  Wronax
Fig.2 Pessimistic scenario
L, Var < Varwin,
Hvar (x) = m%’ Varmin<Var < Varmax,
0, Var=Varmax,
(10c)
0, Var < Varmin,
YWar (x) = %, Varmin < Var<Varmax,
1, Var > Varmax-
(10d)

e Case 2: Pessimistic scenario (B < 1,0y, > 1)

In the pessimistic scenario, the non-membership degree
of the terminal wealth and cumulative risk is decreased by
multiplying Oy and Oy, to Wr nax and Var min, respectively,
in the non-membership functions of the two objectives. From
Egs. (92)—(9d), we have

0, Wr < W nin,
Wr—Wr mi
W W " Tmin < WT = Wrmax,
1a WT > WTmax’
1, Wr < WTmina
Ow . WT max —Wr
B Wrmas Wran® V Tmin < W1 = Wrimax,

0, Wr > WTmax ’

pwy (x) = (11a)

vy (X) =

(11b)

v(Var)

Var

Var im Ova-Var, .. Var,, .«

u(Var)

v(Var)

Var

1, Var < Varpin,
_ Varmax—Var .
Hvar (X)= Varmx—Varmn’ Varmin < Var = Varmax,
0, Var = Varmax,
(11c)
0, Var < Varpin,
_ Var—0ya.Var min .
VV(JT (x) - Varmax—0va-Varmin’ VaTmln < VanvaTmax,
1, Var>Varmax.
(11d)
Note that the values of 8y and 6y, for the optimistic and
pessimistic scenarios are computed as Oy = ‘;VV;’“E_“ , bvag =
min

VaTmin — WTmin — VaTmax 3
Varn aTmaX.ar.ld .QW = W Ova = v - respectlvely. For
the optimistic scenario, the values of Oy and 0y, vary in the
ranges 1 < Oy < % and % < Oy, < 1, respec-
. . "YTmin .aTmm
tively. For the pessimistic scenario, the values of Oy and 0y,
vary in the ranges <bw <land1 < 0Oy, < “i’;;mﬁ”‘ ,
min

respectively.

The cases of optimistic and pessimistic scenarios are rep-
resented graphically in Figs. 1 and 2, respectively.

Now, we define the IFS of Oy and 6y, as follows:

WT min
Wr max

Wr = {u(Wr), v(Wr), m1(Wr)},
Var = {u(Var),v(Var), r(Var)}.

@ Springer
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Table 2 Trapezoidal data of assets’ return

t=3

(0.1181, 0.12714; 0.02439, 0.00543)
(0.1041, 0.11179; 0.01374, 0.0106)
(0.10974, 0.11322; 0.02734, 0.03172)
(0.12207, 0.13013; 0.02181, 0.02004)
(0.11206, 0.12232; 0.01742, 0.02193)
(0.10562, 0.1288; 0.00601, 0.01961)
(0.09265, 0.11246; 0.01908, 0.0273)
(0.11569, 0.12564; 0.01309, 0.02061)
(0.11256, 0.13251; 0.02132, 0.00964)
(0.08535, 0.10541; 0.02277, 0.04918)
(0.11876, 0.13564; 0.02834, 0.00646)
(0.08456, 0.09564; 0.01597, 0.00892)
(0.10563, 0.11625; 0.01933, 0.0094)
(0.08255, 0.09253; 0.01469, 0.02309)
(0.09498, 0.11252; 0.02263, 0.01343)
(0.11226, 0.12645; 0.01663, 0.01982)
(0.09255, 0.11252; 0.02001, 0.0261)
(0.10523, 0.12299; 0.01997, 0.01226)
(0.09257, 0.12652; 0.02005, 0.00603)

Asset t=1 t=2
A (0.1281, 0.14143; 0.03429, 0.02429)
Ar (0.09298, 0.11933; 0.03987, 0.01987)
A3 (0.08855, 0.10729; 0.02909, 0.01909)
Ay (0.10069, 0.1213; 0.02043, 0.01043)
As (0.1157,0.12319; 0.03106, 0.04106)
Ag (0.08562, 0.10804; 0.03601, 0.0266)
A7 (0.09286, 0.11786; 0.02929, 0.03986)
Ag (0.10913, 0.12837; 0.01946, 0.01946)
Ag (0.11306, 0.13807; 0.03691, 0.02958)
Ao (0.11543,0.12143; 0.01714, 0.02446)
Aqq (0.10787, 0.12101; 0.02367, 0.01367)
A (0.08706, 0.10449; 0.01816, 0.01678)
Az (0.08584, 0.11845; 0.02615, 0.02801)
Ala (0.08481, 0.10402; 0.03801, 0.02918)
Als (0.11982, 0.13466; 0.02489, 0.02529)
Ale (0.10685, 0.12159; 0.03053, 0.02462)
A7 (0.08508, 0.11202; 0.03068, 0.02425)
Arg (0.1196, 0.14299; 0.041, 0.00941)
Ajg (0.11974, 0.14202; 0.03734, 0.01292)
Ao (0.09096, 0.12179; 0.0206, 0.04045)

(0.08524, 0.10252; 0.0202, 0.0207)

(0.1081, 0.11271; 0.02429, 0.01886)
(0.08298, 0.10259; 0.01987, 0.02633)
(0.08597, 0.12202; 0.01357, 0.02734)
(0.10691, 0.12513; 0.01665, 0.00939)
(0.07014, 0.09319; 0.0155, 0.01324)
(0.10562, 0.1138; 0.00601, 0.01161)
(0.10563, 0.12622; 0.00979, 0.02939)
(0.11234, 0.12645; 0.02104, 0.03333)
(0.09031, 0.12945; 0.01872, 0.0131)
(0.10525, 0.1252; 0.01696, 0.02739)
(0.10528, 0.11561; 0.01124, 0.01895)
(0.08577, 0.09564; 0.00988, 0.03057)
(0.09126, 0.10584; 0.01169, 0.02041)
(0.09255, 0.11254; 0.00688, 0.02472)
(0.0963, 0.10265; 0.01375, 0.02272)
(0.07623, 0.08542; 0.02367, 0.0072)
(0.09255, 0.11252; 0.0173, 0.02533)
(0.0826, 0.10659; 0.00734, 0.01904)
(0.0853, 0.09522; 0.01008, 0.02041)
(0.08521, 0.10252; 0.01001, 0.0237)

Using the above IFSs, we can rewrite the following
IFMPPS model wherein we maximize the membership func-
tions and minimize the non-membership and hesitation
functions of the terminal wealth and cumulative risk:
(Model 3)

max w(Wy), min v(Wr), min w(Wr)
max u(Var), min v(Var), min mw(Var)
subject to

uwWr) >0, v(Wr) >0, m(Wr) >0,
uVar) 20, v(Var) =20, n(Var) =0,
wWr) +v(Wr) + n(Wr) =1,

uwVar) +v(Var) +n(Var) =1,
Eqs.(4)~8).

Note that (a) when Oy = 0Oy, = 1, # (W) =
7w (Var) = 0 for both the optimistic and pessimistic sce-
narios, and (b) when Oy, 6y, — oo, then u (Wr) —
1 and v(Wp), # (W) — 0, and pu(Var) — 1
and v (Var), w (Var) — 0 for the optimistic sce-
nario, while for the pessimistic scenario, v (Wr) — 1
and u (W), n (Wr) — 0, and v(Var) — 1 and
nwVar), 7 Var) — 0.

@ Springer

3.5 Solution methodology

The objective functions in Model 3 are aggregated using
the MMA proposed by Zimmermann (1978) in order to
construct an IFMPPS model wherein the objectives now
become constraints. The new objective function maximizes
the degree of satisfaction of the membership functions while
simultaneously minimizing the degree of satisfaction of the
non-membership and hesitation functions of the terminal
wealth and cumulative risk. The incorporation of the hes-
itation into the proposed model enables us to propose the
following two models depending on the values of Oy and
Oy, and whether they are applied to the membership or the
non-membership functions:

Optimistic IFMPPS model

In the optimistic IFMPPS model, 8y and 6y, are applied
to the membership functions of the terminal wealth and
cumulative risk, respectively. The satisfaction degree of
the membership functions (p) is being maximized while
simultaneously minimizing the satisfaction degrees of the
non-membership (7) and hesitation () functions. From Eqs.
(10a)—(10d), we have

(Model 4)

Max p — 1t —w
subject to Egs. (4)8),
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max{(Wr — 6w Wrmin), 0} _

sl ’

Wrmax — 9W~WTmin
max{(fvq.Varma — Var), 0} .

A

- El

Ova.-Varmax — Varmn
WTmax - WT
Wrmax — Wrmin

Var — Varmin

Ao

=T,

Agg

b

Varmax — Varmin —
| — max{Wr = Ow - Wrmin). 0} Wrmax — Wr
WTmax — Ow . Wrmin WTmax — Wrmin
_ max{(fvq.Varma — Var), 0}

= w,

A1y

Ova.-Varmax — Varmin
Var — Varmn

Al

Varmax — Varmin
p, T, w>0.

)

Als

Ay

Pessimistic IFMPPS model

A3

In the pessimistic IFMPPS model, 8y and 0y, are applied
to the non-membership functions of the terminal wealth
and cumulative risk, respectively. The satisfaction degree
of the membership functions (p) is being maximized while
simultaneously minimizing the satisfaction degrees of the
non-membership (7) and hesitation (w) functions. From Eqgs.
(11a)—(11d), we have

(Model 5)

Ay

A

Ag

Max p -7 —w

subject to Egs. (4)8),

WTmax - WTmin
Varmax — Var

Ag

jl )

A7

)

Varmax — Varmin —
max{(QW-WTmax - WT), 0} <

= QW-WTmaX — Wrmin -
max{(Var — Ova-Varmin). 0} _
< Varmax — 0va-Varmin -
1— Wr — Wrmin . max{(Ow.Wrmax — Wr), 0} —w
o+ Wrmax — Wrmin QW-WTmax — Wrmin '
= 1— Varmax — Var . max{(Var — Oyq.Varmin), 0} _
Varmax — Varmin Varmax — Ova-Varmin '

p, T, > 0.

A3

Ay

Model 4 and Model 5 can be solved for different combina-
tions of Oy and Oy, that represent the attitude (optimistic
and pessimistic) of the investors so as to obtain a variety of
results enabling the investors to choose the best results as per
their preferences.

Aq
t =1 0.13310 0.10282 0.09625 0.10933 0.12111 0.09526 0.10712 0.11875 0.12434 0.11965 0.11277 0.09555 0.10246 0.09294 0.12731 0.11324 0.09748 0.12603 0.12681 0.10968

t=2 0.11946 0.10742 0.11221 0.12581 0.11794 0.11948 0.10393 0.12192 0.12059 0.09978 0.12355 0.08893 0.10929 0.08894 0.10222 0.11989 0.10355 0.11283 0.10721 0.09396
t =3 0.10950 0.09386 0.10629 0.11481 0.08129 0.11064 0.11919 0.12144 0.10894 0.11696 0.11173 0.09415 0.10000 0.10552 0.10097 0.07808 0.10387 0.09655 0.09198 0.09615

Table 3 Expected rate of returns of assets

Asset Aj
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Table 7 Extreme values of the terminal wealth and cumulative risk

Scenario ‘Wealth minimization Wealth maximization Cumulative risk minimization Cumulative risk maximization
Wy 12,854.60 14,034.92 13,341.66 13,389
Var 0.00085 0.00078 0.00038 0.001535

4 Numerical illustration

The proposed models are illustrated through a real-world
portfolio selection problem, the data for which is taken from
Mehlawat (2016). For the convenience of the readers, the data
are presented in Table 2. As given in Mehlawat (2016), we
consider a problem with r = 3, W; = 10,000 INR (Indian
Rupee), and a set of 20 assets provided the wealth can be
readjusted at the initiation of each period. The assets’ return
rates (Sz,i, t=1,2,3i=1, 2, ..., 20) are character-
ized by TrFNs. Furthermore, K; is assumed as 5 and ¢;; is
assumed as 0.3% for all the assets for each transaction (sell-
ing and buying). Also, r (¢), I;;,and u;; are fixed as 8%,
10%, and 25% for all the three periods, respectively.

The possibilistic returns and variance—covariance matri-
ces of the assets for the three periods are computed using Eqgs.
(1)—(3) and are presented in Tables 3,4, 5, and 6, respectively.

The results from Tables 3, 4, 5, and 6 are used to
build Model 2 to compute the extreme values of the ter-
minal wealth and cumulative risk by first solving Model 2
as a single-objective minimization problem and then as a
single-objective maximization problem subject to the same
constraints. Corresponding to the obtained solutions, the
other objectives’ values are also computed. The results are
presented in Table 7. These results offer bounds on the termi-
nal wealth and cumulative risk, which are used to construct
the membership, non-membership, and hesitation functions
to build Models 4 and 5, as discussed in Sects. 3.4 and 3.5.
Models 4 and 5 are then solved using the global solver in
LINGO 11.0 for different combinations of Oy and y, (1 <
Ow < 1.09, 0.25 < Oy, < 1 for the optimistic scenario,
and 0.89 < Oy < 1, 1 < Oy, < 4.04 for the pessimistic
scenario). The obtained results are set down in Tables 8 and
9.

4.1 Results and discussion

As seen from the results in Tables 8 and 9, we fix the value
of Oy and vary the value of 0y, in both the optimistic and
pessimistic scenarios to obtain different sets of results with
different combinations of Oy and 6y,,.

Optimistic analysis

In this scenario, the value of Oy varies from 1.01 to 1.08,
while the value of 0y, varies from 0.9 to 0.3. Each set of
results in Table 8 starts by attaining the maximum possi-

ble terminal wealth and minimum cumulative risk, which
decrease as the value of 6y, decreases. A similar trend can
be seen throughout the obtained results. The values of termi-
nal wealth and cumulative risk progressively increase from
one set of results to another as the value of 6y increases.
This increase in Oy enables the model to attain maximum
possible terminal wealth.

e The assets A1, A4, As, Ag, Ao, Ao, Al1, A2, Als,
and A9 constitute the portfolio for ¢+ = 1 for different
combinations of Oy and Oy,.

e Theassets A1, Ay, A4, As, Ag, Ag, Ag, A1, Al2, Al3,
and A ¢ are included in the portfolio for ¢ = 2 for differ-
ent combinations of Oy and fy,. The assets A; and Ag
are included in the portfolio for all combinations of Oy
and Oy, with a constant maximum proportion of 25% of
the capital invested in the asset A. The assets A| and Ag
offer better returns (subject to their associated risks) in
comparison with other assets; therefore, they are included
in the portfolio for all combinations of 6y and 0y, and,
owing to the same reason, the asset A1 has been endowed
with 25% of the capital.

e The assets A;, A4, Ag, A7, Ag, A9, A1, Ais, and
A9 comprise the portfolio for r = 3 (should be pro-
cess in math mode) for different combinations of 6y and
Oy, with asset A1 being included in the portfolio for all
combinations of Oy and 0y, as the asset A1 offers better
return (subject to its associated risks) in comparison with
other assets.

Note that in accordance with the cardinality constraint,
only five assets are included in the portfolio for each combi-
nation of Oy and 6y, in each period.

It can be seen from the results that the maximum terminal
wealth is obtained for y = 1.08 (case of maximum hesita-
tion in terminal wealth) and 6y, = 0.9, viz. 14,027.45 with a
minimum cumulative risk of 0.07%. The minimum terminal
wealth is obtained for Oy = 1.01 (case of minimum hesita-
tion in terminal wealth) and 0y, = 0.3, viz. 13,472.49 with
a minimum cumulative risk of 0.039%. Note that with the
increase in the value of Oy that represents the increase in
the degree of hesitation in terminal wealth, the value of the
terminal wealth increases, i.e., within the obtained bounds
on the value of Oy (1.01 < 6 < 1.09), the terminal wealth
is consistently increasing. Consequently, there is an increase
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(decrease) in the degree of non-membership and hesitation
(membership).

Pessimistic analysis

In this scenario, the value of @y varies from 0.99 to 0.90
while the value of 0y, varies from 1.1 to 4. The values of
terminal wealth and cumulative risk are constant for Oy =
0.99t00.90 and Oy, = 1.1 to 1.4, viz. 14002.41 and 0.06%,
respectively. Also, for Oy = 0.99 to 0.90 and Oy, = 1.5 to
4, the terminal wealth and cumulative risk are constant, viz.
13924.28 and 0.049%, respectively.

e The capital is allocated to the assets Ay, Ag, A1, A1,
Ais, and A9 for t = 1 for different combinations of Oy
and 6y ,, with a constant maximum proportion of 25%
of the capital invested in the assets A; and A;s for all
combinations of fy and fy,,.

e The assets A;, Ay, A4, Ag, Ag, and Ay are included
in the portfolio for + = 2 for different combinations of
Ow and Oy,. The assets A, Ag, and Ay are included
in the portfolio for all combinations of Oy and 6y, with
a constant maximum proportion of 25% of the capital
invested in the assets A; and Ag.

e The assets A1, As4, Ag, Ag,and A constitute the port-
folio for + = 3 for all combinations of Oy and 0y, with
a constant maximum proportion of 25% of the capital
invested in the asset Aj.

The assets Ay, Ag, and A5 are endowed with the maxi-
mum allowable proportion of 25% of the capital as they offer
better returns (subject to their associated risks) in compari-
son with other assets. Owing to this reason, the asset A has
been included in the portfolio for all the periods.

It is clear from the results that the maximum terminal
wealth is obtained for Oy =0.99t00.90and by, =1.1to 1.4,
viz. 14002.41 with a cumulative risk of 0.06%. The minimum
terminal wealth is obtained for Oy = 0.99 to 0.90 and Oy, =
1.5to4, viz. 13924.28 with a cumulative risk of 0.049%. Note
that with the increase in the value of 6y, that represents
the increase in the degree of hesitation in cumulative risk,
the value of the terminal wealth decreases as a tight upper
bound on the terminal wealth and a tight lower bound on
the cumulative risk force the terminal wealth to decrease
in contrast to the optimistic scenario. Therefore, within the
bounds on the value of 0y, (1.1 < 6y, < 4), the terminal
wealth decreases.

For the convenience of the readers, the terminal wealth and
cumulative risk for both the optimistic and pessimistic sce-
narios are graphically represented in Figs. 3 and 4. A pictorial
representation of the terminal wealth against the cumulative
risk for both the optimistic and pessimistic scenarios is also
presented in Figs. 5 and 6, respectively.

@ Springer

4.2 Comparative analysis

The proposed model is compared with the following research
works for a stronger validation:

1. Comparison with Zhang et al. (2012): For the purpose of
comparison of our proposed approach with Zhang et al.
(2012), we operate their numerical data set on our opti-
mistic and pessimistic [IFMPPS models. Keeping in mind
the coherency of numerical comparison, we drop the car-
dinality constraint from our model, as only a three-asset
MPPS problem is considered in Zhang et al. (2012). Fur-
thermore, there are no bounds on the capital allocated
to an asset. We operate with the numerical data set of
example 1 from Zhang et al. (2012), which is a two-
period (¢ = 2) portfolio problem with trapezoidal fuzzy
returns. The extreme values of the terminal wealth and
cumulative risk obtained using Model 2 are presented in
Table 10.

The membership, non-membership, and hesitation func-
tions for the terminal wealth and cumulative risk are
constructed using these extreme values in order to build
Models 4 and 5. Both the models are then solved using
the global solver in LINGO 11.0, and the obtained results
are set down in Tables 11 and 12.

The maximum terminal wealth obtained using our approach
on the data set of Zhang et al. (2012) is 13,725.21 and
13,708.54 with cumulative risks of 26.59% and 26.29%
for the optimistic and pessimistic scenarios, respectively.
However, the maximum terminal wealth in Zhang et al.
(2012) is 12900.25. Though semivariance has been used
as arisk measure in Zhang et al. (2012), for the purpose of
comparison with the proposed approach, we have calcu-
lated the variance with respect to the results in Zhang et al.
(2012), which is 15.41%. The terminal wealth obtained
using our approach is better, and also, in accordance
with the portfolio return—risk principle (higher returns
are obtained at the cost of higher risks), has a slightly
higher cumulative risk. Clearly, our proposed approach,
in addition to providing a variety of results, also provides
better results. This fact serves as a testament to justify
our proposed approach.

2. Comparison with Mehlawat (2016): As mentioned ear-
lier, the numerical illustration in Sect. 4 is implemented
using the numerical data of Mehlawat (2016). The max-
imum terminal wealth obtained using our approach is
14027.45 and 14002.41 with cumulative risks of 0.07%
and 0.06% in the optimistic and pessimistic scenarios,
respectively. However, the maximum terminal wealth in
Mehlawat (2016) is 14000 and 14081 with arisk of 8.27%
and 9.57% obtained using models M-I and M-II, respec-
tively. The terminal wealth of 14081 in Mehlawat (2016)
is greater than the terminal wealth obtained using our
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approach. This can be owing to the fact that our approach
is an IFMPPS approach with hesitation incorporated
into it. This hesitation, out of its own natural tendency,
can lead to unexpected gains/losses. But when we bring
the cumulative risk into the picture along with the termi-
nal wealth, our approach offers much lesser cumulative
risk when compared to Mehlawat (2016). (Note that in
Mehlawat (2016), the portfolio risk has been incorpo-

Oy =0.99 - 0.90

. By = 0.99 — 0.90
By =154

Bye=11-14

14020
14002.41

14000
13980
13960
13940 13924.28
13920

Terminal wealth

13900

13880

0.049% 0.060%

Cumulative risk

Fig.6 Terminal wealth versus cumulative risk for all values of 6y and
Oy, for the pessimistic scenario

rated using the entropy measure.) In addition to this, our
approach offers a variety of results that are superior to
the results in Mehlawat (2016) in an overall viewpoint.
These facts collectively justify our proposed approach.

For the convenience of the readers, the comparison
results of our proposed approach with the above research
works are summarized in Table 13.

5 Conclusions

This study proposed an IFMPPS model bounded by sev-
eral realistic constraints such as complete capital utilization,
no short selling, fixed transaction costs, and bounds on the
desired returns of each period. To introduce a certain degree
of diversification in the proposed model, a cardinality con-
straint and bounds on the minimal and maximal fraction of
the capital allocated to an asset were incorporated into the
model. These constraints efficiently mimic the market con-
ditions and investors’ preferences and make the proposed
model significantly more realistic.

The proposed IFMPPS model maximizes the member-
ship functions while simultaneously minimizing the non-

Table 10 Extreme values of the terminal wealth and cumulative risk using numerical data set of example 1 from Zhang et al. (2012)

Scenario Wealth minimization Wealth maximization Cumulative risk minimization Cumulative risk maximization
Wr 12,636 13,933.80 12,636 13,933.80
Var 0.13226 0.30535 0.11624 0.30535

Table 11 Results for the optimistic scenario using numerical data set of Zhang et al. (2012)

Ow, Ova) t A Ar A3 Re(t) Wr Var P T w Computation time (mm:ss)

(1.01,0.9) 1 04575 05425 0 0.21532  13177.44 0.17798 0.35433 0.58281 0.06287 00:01
2 0 1 0 0.08427

(1.01, 0.7) 1 02156 0.7844 0O 0.18249 12838.56 0.13456 0.06505 0.84392 0.09103 00:01
2 0 1 0 0.08573

(1.01-1.09,0.5) 1 0.1236 0.8764 0 0.17 12636 0.11624 0 1 0 00:01
2 0.1238 0.6037 0.2725 0.08

(1.03,0.9) 1 07253 02747 O 0.25166 13551.36  0.23566 0.24694 0.63146 0.12159 00:01
2 0 1 0 0.08267

(1.03,0.7) 1 04104 0.5896 0 0.20892 13111.45 0.16887 0.10490 0.63365 0.26145 00:01
2 0 1 0 0.08456

(1.05,0.9) 1 0.8501 0.1499 0 0.26860 13725.21 0.26599 0.05566 0.79186 0.15248 00:01
2 0 1 0 0.08192

(1.05,0.7) 1 05782 04218 0 0.23170  13346.07 0.20272 0.11311 0.45728 0.42961 00:01
2 0 1 0 0.08355

(1.07-1.09,09) 1 0.1236 0.8764 0 0.17 12636.34 0.11650 0 0.99974  0.00026 00:01
2 0 0.6503 0.3497 0.08

(1.07-1.09,0.7) 1 0.5364 0.0887 0.3750 0.19715 12929.19 0.16171 0 0.77409  0.22591 00:02
2 0 0.8050 0.1950 0.08

@ Springer
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Table 12 Results for the pessimistic scenario using numerical data set of Zhang et al. (2012)

Ow, Ova) t Ap Ar Az Re(t) Wr Var ] T w Computation time (mm:ss)
(L, 1) 1 05762 04238 0 0.23143 13343.28 0.20228 0.54498 0.45502 0 00:01
2 0 1 0 0.08356
0.99, 1.1) 1 04267 05733 0 0.21114 13134.34 0.17199 0.38398 0.56983 0.04618 00:03
2 0 1 0 0.08446
(0.99, 1.5) 1 0.8381 0.1619 0 0.26697 13708.54 0.26298 0.22403 0.67657 0.09940 00:03
2 0 1 0 0.08199
(0.99, 2) 1 04104 0.5896 0 0.20892 13111.45 0.16887 0.10490 0.63365 0.26145 00:05
2 0 1 0 0.08456
(0.99, 2.5) 1 0.1236 0.8764 0 0.17 12636.00 0.11624 0 1 0 00:04
2 0.1236 0.6037 0.2727 0.08
0.97,1.1) 1 0.1917 0.8083 0 0.17924 12801.57 0.13033 0.12757 0.81181 0.06061 00:01
2 0.0435 09565 0 0.08558
(097, 1.5) 1 0.5592 0.4408 O 0.22912  13319.56 0.19869 0.52671 0.22304 0.25025 00:02
2 0 1 0 0.08366
(0.97,2-2.5) 1 0.1538 0.8462 0 0.17409 12739.68 0.12342 0.07989 0.88215 0.03796 00:02
2 0.1538 0.8462 0 0.08507
(0.95, 1.1) 1 02730 0.5461 0.1808 0.17635 12704.83 0.1278  0.05303 0.88550 0.06147 00:01
2 0 0.6165 0.3835 0.08
(0.95,1.5) 1 05557 0 0.4443 0.19443 12899.79 0.16079 0.20326 0.56117 0.23557 00:01
2 0.1522 0.8478 O 0.08
(0.95-0.91,2-25) 1 05762 04238 O 0.23143 13343.28 0.20229 0.54498 O 0.45502  00:01
2 0 1 0 0.08356
(0.93,1.1) 1 03280 0.3199 0.3520 0.17064 12662.37 0.12786 0.02032 0.91821 0.06147 00:01
2 0.0000 0.8404 0.1596 0.08166
(0.93, 1.5) 1 04570 0O 0.5430 0.17343 12684.99 0.13783 0.03775 0.84806 0.11419 00:02
2 0 1 0 0.08102
(091, 1.1) 1 03633 0.2143 04224 0.17 12638.78 0.12786 0.00215 0.93639 0.06147 00:01
2 0.1154 0.7217 0.1628 0.08023
(0.91, 1.5) 1 04408 O 0.5592 0.17 12640.07 0.13323 0.00313 0.90705 0.08982 00:01
2 0.1003 0.8997 0 0.08035
Table 13 Summarized comparison results models were solved using the global solver in LINGO
Approach Maximum Cumulative 11.0 using MMA. Furthermore, the proposed approach was
terminal wealth risk (%) substantiated through a numerical illustration and compar-
ative analysis with existing works in the literature. The
Proposed 13,725.21 26.59 proposed approach enables the decision makers to obtain
Zhang et al. (2012) 12,900.25 1541 the best results as per their preferences out of a variety
Proposed 14,027.45 0.07 of results obtained through different combinations of the
Mehlawat (2016) 14,081 9.57

membership and hesitation functions of the terminal wealth
and cumulative risk. The hesitation parameters 6y and 6y,
provide the decision makers with exclusive control over
the proposed model. The proposed IFMPPS model was
further classified as an optimistic IFMPPS model and a
pessimistic IFMPPS model for optimistic and pessimistic
investors. Both the optimistic and the pessimistic IFMPPS

hesitation parameters. The results obtained using our pro-
posed approach are superior to those acquired using other
approaches, thereby justifying our proposed approach. The
proposed IFMPPS model is a simple and powerful approach
that is computationally easier to solve and yields better results
in comparison with existing works.

The proposed approach can further be extended using
higher moments and other risk measures such as semivari-
ance, VaR, CVaR, or entropy in a possibilistic as well as the
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credibilistic environment. Various evolutionary algorithms
prevalent in the literature can be used to solve the extended
models to shorten the computation time.
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