METHODOLOGIES AND APPLICATION



# Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models

Pankaj Gupta<sup>1</sup> · Mukesh Kumar Mehlawat<sup>1</sup> · Sanjay Yadav<sup>1</sup> · Arun Kumar<sup>1</sup>

Published online: 7 January 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

#### Abstract

There are myriad works that deal with the fuzzy multi-period portfolio selection problem, but when we talk about multi-period portfolio selection in an intuitionistic fuzzy realm, to the best of our knowledge, there is no research work that deals with the same. So, to fill this research gap, we propose an intuitionistic fuzzy multi-period portfolio selection model with the objectives of maximization of the terminal wealth and minimization of the cumulative risk subject to several realistic constraints such as complete capital utilization, no short selling, fixed transaction costs for buying and selling, bounds on the desired returns of each period, cardinality constraint, and bounds on the minimal and the maximal proportion of the capital allocated to an asset. The membership and non-membership of the objectives are modeled using their extreme values. The proposed approach provides avenues for the inclusion and minimization of the hesitation degree into decision making, thereby resulting in a significantly better portfolio. Parameters  $\theta_W$  and  $\theta_{Va}$  are used to introduce the hesitation in the model, and, based on their values, the model is further categorized into optimistic and pessimistic intuitionistic fuzzy multi-period portfolio selection models for optimistic and pessimistic investors, respectively. The max–min approach is used to solve the proposed models. Furthermore, a numerical illustration is presented to exhibit the virtues of the proposed model.

Keywords Multi-period portfolio optimization  $\cdot$  Intuitionistic fuzzy  $\cdot$  Possibility measure  $\cdot$  Multi-objective optimization  $\cdot$  Max-min approach

# **1 Introduction**

The growth of economic power in any society is unswervingly linked to a rational and apposite investment; thus, organizations and people often dedicate a part of their earnings to investment. Investors are always on the lookout for a propitious place to invest and often choose conventional portfolios. A portfolio usually consists of several classes of

| Cor | nmunicated by V. Loia.                        |
|-----|-----------------------------------------------|
|     | Mukesh Kumar Mehlawat<br>mukesh0980@yahoo.com |
|     | Pankaj Gupta<br>pankajgpta@gmail.com          |
|     | Sanjay Yadav<br>sanjayyadav.du.or50@gmail.com |
|     | Arun Kumar<br>arunkumar.du.or50@gmail.com     |
|     |                                               |

<sup>1</sup> Department of Operational Research, University of Delhi, Flat No. - 01, Kamayani Kunj Apartments, Indra Prastha Extension, Delhi 110092, India

financial assets, such as equity shares, stocks, mutual funds, bonds, and cash equivalents. Most people usually invest in property, policies offered by banks or buy a few shares, plausibly with diverse commodities. By contrast, investors generally invest in portfolios composed of multiple assets. One popular way of investment is investing in stock markets and making portfolios. Such investments are anticipated to yield a certain return (i.e., profit on investment), but with concomitant risk. Typically, higher risks commensurate to higher expected returns and vice versa. Portfolios are generally designed as per investors' preferences, as every investor seeks a propitious portfolio with a coalition of assets that provides steeper returns with reasonable risk. There are several quantitative and non-quantitative methods for constructing an appropriate portfolio. The portfolio selection problem contemplates the adequate allocation of investment among the assets to create an optimal portfolio as per some specified criteria or investors' preferences.

In the previous few decades, portfolio optimization has transpired as a fascinating and challenging multi-objective problem in computational finance. It is still receiving increasing attention from individual investors, fund management companies, and researchers around the world. The primary issues that entail a portfolio selection problem are the selection of a subset of assets and the determination of their corresponding optimal weights. The weight of each asset should be selected in a way to maximize the total return (profit) of the portfolio, while simultaneously minimizing the risk. In quantitative finance, this problem is conventionally studied with the help of the Markowitz portfolio selection model.

Markowitz's modern portfolio selection theory (Markowitz 1952), regarded as a landmark in modern portfolio theory (MPT), examines how the assets' returns, risks, correlations, and diversification affect the portfolio return. The model proposed by Markowitz, popularly known as the mean-variance (MV) model, is a mean-risk bi-criteria optimization model that selects the assets having the highest expected return for a specified level of risk (measured by the standard deviation of their returns) to construct an optimal portfolio. The model is based on the idea that the return of a portfolio is the weighted linear combination of the returns of the constituent assets, and the portfolio risk defined by the portfolio variance is a function of the correlations of component assets. Among a given set of assets, Markowitz's MV model seeks the optimal allocation of capital according to investors' preferences regarding their expectations of return and risk, by considering the first two moments about the rate of return of the portfolio. The MV model, through the use of covariances between individual assets, signifies the importance of diversification in a portfolio. The overall portfolio risk is expected to reduce when assets are selected from a set of alternatives. This risk reduction can be carried out by choosing the assets based not only on mean and variance but also on their co-moments with other assets under consideration.

In an attempt to simplify and expand the MV model, several researchers have proposed different risk measures or employed various realistic constraints such as cardinality constraint (Chang et al. 2000), fixed and variable transaction costs and bounds on investment in each asset. Soleimani et al. (2009) in addition to the cardinality constraint and minimization of transaction costs also considered market sectors as a constraint on the MV model.

Owing to imprecise, vague, and uncertain data, another critical factor in a portfolio optimization problem is the uncertainty. In reality, financial information rather than being deterministic is more uncertaint. Probability theory is widely used to address this uncertainty. However, it is incapable of analyzing all types of uncertainty, including vague and ambiguous linguistic representations of data in financial markets. Consequently, the use of fuzzy logic is suggested (Liu et al. 2012).

Since the inception of the fuzzy set theory (Zadeh 1965), it has been widely used to capture uncertainty. Zimmermann (1978) applied Bellman and Zadeh's (1970) max–min approach (MMA) to a linear programming problem to propose fuzzy mathematical programming. Katagiri and Ishii (1999) used fuzzy theory for portfolio selection.

In the literature, fuzzy mathematical programming is applied in numerous studies for portfolio selection. For example, Mehlawat and Gupta (2014) tackled portfolio selection with fuzzy parameters using chance-constrained multi-objective programming. Kocadağlı and Keskin (2015) used a fuzzy goal programming (GP) technique to propose a fuzzy portfolio selection (FPS) model. Fang et al. (2006) presented a portfolio rebalancing model with transaction costs along with return, risk, and liquidity. Parra et al. (2001) employed a fuzzy GP approach for portfolio selection with three objectives, namely return, risk, and liquidity. Li et al. (2015) proposed a background risk model by using the possibility theory and solved it using a genetic algorithm. Gupta et al. (2008) proposed a "semi-absolute deviation portfolio selection model with five criteria, namely short-term return, long-term return, dividend, risk, and liquidity" and employed fuzzy mathematical programming to solve it. More recently, Mehlawat et al. (2018) proposed a fuzzy multi-objective portfolio model with higher moments based on data envelopment analysis and provided several schemes for investors having varied attitudes. For more literature on FPS, one can refer to the monograph by Gupta et al. (2014).

Note that the aforementioned works are single-period portfolio selection models. However, in real world, the portfolio selection process, being a long-term investment, is generally a multi-period process. It is strongly advised for the investors to reallocate the wealth among the set of assets in continuous time periods. Consequently, multi-period portfolio optimization (MPPO) has attracted the cumulative attention of several researchers. A plethora of research works have explored the multi-period portfolio selection (MPPS) problems, see, e.g., Sadjadi et al. (2011), Zhang et al. (2012), and Liu et al. (2012). Liu and Zhang (2015) maximized the terminal wealth and minimized the cumulative risk by formulating a multi-period mean semivariance model. Mehlawat (2016) used multi-choice aspiration levels to propose a credibilistic multi-period mean-entropy portfolio selection model. Guo et al. (2016) employed a genetic algorithm for solving a fuzzy multi-period portfolio selection (FMPPS) problem under the credibilistic framework with V-shaped transaction costs. Liagkouras and Metaxiotis (2018) introduced a multi-objective evolutionary algorithm for solving an FMPPS problem with two conflicting objectives of terminal wealth and cumulative risk with transaction costs. Wang et al. (2017) employed particle swarm optimization to solve an MPPS problem under fuzzy random uncertainty with dynamic risk and expected levels of return. Gupta et al. (2013) presented an "expected value multi-objective portfolio rebalancing model with fuzzy parameters." Yue et al.

(2019) constructed a portfolio selection model using both semivariance and semiabsolute deviation simultaneously and considering assets' returns as LR type fuzzy numbers. Zhang (2019) presented an uncertain multi-period mean absolute deviation portfolio selection model with risk control, transaction costs, threshold, and cardinality constraints. Kar et al. (2019) proposed a bi-objective fuzzy portfolio selection model with Sharp ratio and value at risk as objectives and solved it using multi-objective genetic algorithms. Chen et al. (2019) developed a modified imperialist competitive algorithm to solve an uncertain multi-period mean–semivariance portfolio optimization problem with realistic constraints. Liu et al. (2018) proposed a possibilistic mean–semivariance– skewness FMPPS model with discounted transaction costs.

Apart from FMPPS problems, Arqub and Abo-Hammour (2014) employed a continuous genetic algorithm to efficiently solve systems of second-order boundary value problems with smooth solution curves. Arqub et al. (2016) proposed a new method to solve kernel-theory-based fuzzy differential equations under strongly generalized differentiability. Arqub et al. (2017) investigated the analytic and approximate solutions of reproducing kernel-theory-based second-order, two-point fuzzy boundary value problems under strong generalized differentiability. Arqub (2017) obtained the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations using the reproducing kernel Hilbert space method.

#### 1.1 Research motivation

To capture the inherent uncertainty in data, previous approaches proposed in the portfolio optimization literature used the fuzzy set theory. However, the fuzzy set theory only captures the membership degree and ignores the non-membership and hesitation degrees. To exploit this limitation, we use intuitionistic fuzzy set (IFS) theory. IFS theory, proposed by Atanassov (1986), Atanassov and Gargov (1989), addresses both the degrees of acceptance and rejection, thereby clearly illustrating the concept of "ambiguity." We use IFS theory to capture this ambiguity in the form of hesitation degree. This hesitation degree is efficiently used and minimized in the proposed approach to obtain significantly better portfolios. Recently, there have been a few pieces of research on portfolio selection in an intuitionistic environment. For example, Chen et al. (2011) proposed an intuitionistic fuzzy optimization-based "meanvariance-skewness fuzzy portfolio selection model" using an intuitionistic fuzzy min-max operator. Deng and Pan (2018) proposed a multi-objective portfolio selection model with the framework of intuitionistic fuzzy optimization.

Apart from the above research, portfolio optimization in an intuitionistic setting/environment is still generally uncharted territory. We have not come across any research that addresses portfolio selection in an intuitionistic environment with hesitation explicitly, which makes our proposed approach (model) a flag-bearer and a pioneer in this direction. Although there are a plethora of studies on FMPPS, when we talk about MPPS in an intuitionistic fuzzy realm, to the best of our insight, none of the previous works deal with the same. In spite of the abundant literature on FMPPS, none of the previous research works have attempted to propose FMPPS in an intuitionistic environment. So, to fill this research gap, we propose in this paper an intuitionistic fuzzy multi-period portfolio selection (IFMPPS) model, subject to several realistic constraints, that has been solved using MMA.

#### 1.2 Focus/core of the proposed study

In order to propose the IFMPPS model, we first propose an FMPPS model with the objectives of maximization of the terminal wealth and minimization of the cumulative risk subject to several realistic constraints such as complete capital utilization, no short selling, fixed transaction costs, and bounds on the desired returns of each period. To introduce a certain degree of diversification in the proposed model, we incorporate into the model the cardinality constraint and bounds on the minimal and the maximal fraction of the capital allocated to an asset. Moreover, to make the proposed model more general in approach, assets' returns are assumed as trapezoidal fuzzy numbers. Using the possibility theory proposed by Carlsson and Fullér (2001), we convert the FMPPS model into a crisp MPPS model. This crisp model is then solved to obtain the extreme (minimum and maximum) values of the terminal wealth and cumulative risk.

To define the IFMPPS model, we use these extreme values to construct the membership and non-membership functions for both the terminal wealth and cumulative risk. Parameters  $\theta_W$  and  $\theta_{Va}$  are used to introduce the hesitation in the proposed IFMPPS model. The membership, nonmembership, and hesitation functions of the terminal wealth and cumulative risk now serve as the objective functions of the IFMPPS model wherein the membership functions are maximized, while the non-membership and hesitation functions are simultaneously minimized. The MMA has been used to aggregate these objective functions into a singleobjective function. This single-objective function maximizes the degree of membership functions while simultaneously minimizing the degree of non-membership and hesitation functions of the terminal wealth and cumulative risk. Based on the values taken (assumed) by the parameters  $\theta_W$  and  $\theta_{Va}$ , the proposed model is further categorized into an optimistic IFMPPS model ( $\theta_W > 1$ ,  $\theta_{Va} < 1$ ) and a pessimistic IFMPPS model ( $\theta_W < 1, \theta_{Va} > 1$ ). A real-world portfolio selection problem comprising twenty assets with trapezoidal fuzzy returns is elucidated to exhibit the virtues of the proposed model. The proposed IFMPPS model is further validated by comparing it to some existing works.

#### 1.3 Novelty of the proposed approach

Though the literature is inundated with works on FMPPS, there are no works that deal with the problem in an intuitionistic environment. We summarize some novel contributions of the proposed study as follows:

- 1. The proposed approach uses IFS theory to capture uncertainty using the membership and non-membership degrees, thereby providing avenues to include the hesitation degree in decision making. This feature of the proposed study overshadows the previous fuzzy optimization approaches in the literature.
- To the best of our insight, MPPO in an intuitionistic environment has not been dealt with earlier in the literature. This work, being the first of its kind, makes our proposed model a flag-bearer and a pioneer in this direction.
- 3. We propose an FMPPS model with the objectives of maximization of terminal wealth and minimization of cumulative risk subject to several realistic constraints such as complete capital utilization, no short selling, fixed transaction costs, and bounds on the desired returns of each period. The bounds on the desired returns of each period can also be varied from one period to another. Moreover, a certain degree of diversification is also introduced in the proposed model through the incorporation of a cardinality constraint and bounds on the minimal and the maximal proportion of the capital allocated to an asset. This FMPPS model is then used as a catalyst to propose an IFMPPS model that maximizes the membership functions while simultaneously minimizing the non-membership and hesitation functions of the terminal wealth and cumulative risk. The hesitation parameters  $\theta_W$  and  $\theta_{Va}$  provide the decision makers with exclusive control over the proposed model.
- 4. Using the hesitation parameters, the proposed IFMPPS model is further categorized into two different models: an optimistic IFMPPS model and a pessimistic IFMPPS model, for optimistic and pessimistic investors, respectively.
- The proposed approach enables the decision makers to obtain the best results by using different combinations of the values of hesitation parameters to yield a variety of results.
- 6. The proposed IFMPPS model is a simple approach, computationally easier to solve and yields better results in comparison with existing works.
- 7. The proposed study effectively fills the void, by proposing an IFMPPS model, that has been there for quite a long time in the FMPPS literature.

To highlight the above-mentioned novel contributions, the proposed model is compared with several existing works in Table 1.

#### 1.4 Organization of the paper

Section 2 acquaints the readers with the preliminaries and basic concepts required to understand the proposed approach. The proposed IFMPPS models for optimistic and pessimistic scenarios are presented in Sect. 3; they are empirically validated by a numerical illustration in Sect. 4. The paper concludes with Sect. 5.

#### 2 Preliminaries

In this section, we discuss some definitions and theorems which are used in the subsequent sections.

Let a fuzzy set  $\tilde{\xi}$  in X, where X is the universe of discourse, be defined as  $\tilde{\xi} = \{(x, \mu_{\tilde{\xi}}(x)) | x \in X\}$  with membership function  $\mu_{\tilde{\xi}} : X \to [0, 1]$ .

**Definition 1** (Zadeh 1965) Trapezoidal fuzzy number: A fuzzy set  $\tilde{\xi} = (p, q; \alpha, \beta)$  with tolerance interval [p, q], left spread  $\alpha$ , and right spread  $\beta$  on  $\mathbb{R}$ , is called a trapezoidal fuzzy number (TrFN) if its membership function is

$$\mu_{\tilde{\xi}}(x) = \begin{cases} (x - p + \alpha)/(\alpha), \ p - \alpha \le x \le p, \\ 1, \qquad p \le x \le q, \\ (q + \beta - x)/(\beta), \ q \le x \le q + \beta, \\ 0, \qquad \text{otherwise.} \end{cases}$$

**Definition 2** (Zadeh 1965) A  $\gamma$ -level set of a fuzzy number  $\tilde{\xi}$  is defined as  $[\tilde{\xi}]^{\gamma} = \{x \in \mathbb{R} | \tilde{\xi}(x) \geq \gamma\}$  if  $\gamma > 0$  and  $[\tilde{\xi}]^{\gamma} = cl\{x \in \mathbb{R} | \tilde{\xi}(x) > 0\}$  if  $\gamma = 0$ .

So, the  $\gamma$ -level set of a TrFN  $\tilde{\xi} = (p, q; \alpha, \beta)$  can be obtained as:

$$[\tilde{\xi}]^{\gamma} = \left[ p - (1 - \gamma)\alpha, \ q + (1 - \gamma)\beta \right].$$

#### 2.1 The concept of intuitionistic fuzzy set

An IFS  $\xi$  in X has the form  $\xi = \{(x, \mu_{\xi}(x), v_{\xi}(x)) | x \in X\}$ with membership function  $\mu_{\xi}$  and non-membership function  $v_{\xi}$ , where  $\mu_{\xi} : X \to [0, 1], x \in X \to \mu_{\xi}(x) \in [0, 1]; v_{\xi} : X \to [0, 1], x \in X \to v_{\xi}(x) \in [0, 1], \text{ and } \mu_{\xi}(x) + v_{\xi}(x) \leq 1, \forall x \in X.$  For each IFS  $\xi$  in X, if  $\pi_{\xi}(x) = 1 - \mu_{\xi}(x) - v_{\xi}(x), \forall x \in X$ , then  $\pi_{\xi}(x)$  is called the hesitation of x to  $\xi$ .

| Attributes                                   | Guo et al.<br>(2016)     | Liagkouras and<br>Metaxiotis (2018) | Liu and<br>Zhang (2015)  | Liu et al.<br>(2012)                           | Mehlawat<br>(2016)                        | Wang et al. (2017)       | Zhang et al.<br>(2012)   | Proposed<br>Approach   |
|----------------------------------------------|--------------------------|-------------------------------------|--------------------------|------------------------------------------------|-------------------------------------------|--------------------------|--------------------------|------------------------|
| Objective functions                          | Multiple                 | Multiple                            | Multiple                 | Multiple                                       | Multiple                                  | Multiple                 | Multiple                 | Multiple               |
| Mean (return)                                | >                        | >                                   | >                        | >                                              | >                                         | >                        | >                        | >                      |
| Variance (risk)                              | >                        | >                                   | >                        | >                                              | >                                         | >                        | >                        | >                      |
| Intuitionistic<br>environment                | ×                        | ×                                   | ×                        | ×                                              | ×                                         | ×                        | ×                        | >                      |
| Membership<br>function                       | Linear                   | Linear                              | S-shaped                 | ×                                              | Linear                                    | Linear                   | ×                        | Linear                 |
| Defuzzification                              | Credibility mea-<br>sure | a- Possibility mea-<br>sure         | Possibility mea-<br>sure | Possibility mea-<br>sure                       | Credibility<br>measure                    | Possibility mea-<br>sure | Possibility mea-<br>sure | Possibility<br>measure |
| Solution approach                            | FSGA                     | MOEA                                | Heuristic                | TOPSIS<br>compro-<br>mised<br>program-<br>ming | Multi-<br>choice<br>goal pro-<br>gramming | PSO                      | Heuristic                | Max-min                |
| Bounds on pro-<br>portion of invest-<br>ment | >                        | >                                   | >                        | ~                                              | >                                         | ×                        | ×                        | >                      |
| Cardinality constraint                       | ×                        | >                                   | >                        | ×                                              | >                                         | ×                        | ×                        | >                      |
| No short selling constraint                  | >                        | >                                   | >                        | >                                              | >                                         | >                        | >                        | >                      |
| Full utilization of capital constraint       | >                        | >                                   | >                        | >                                              | >                                         | >                        | >                        | >                      |
| Transaction cost                             | ~                        | >                                   | >                        | >                                              | >                                         | ×                        | >                        | >                      |

11935

#### 2.2 The concept of possibility theory

Carlsson and Fullér (2001) proposed the concept of "*possibilistic mean, variance and covariance of fuzzy numbers.*"

**Definition 3** (Carlsson and Fullér 2001) Possibilistic mean: Let  $\tilde{\xi}$  be a fuzzy number with  $\gamma$ -level set,  $[\tilde{\xi}]^{\gamma} = [\xi_L(\gamma), \xi_R(\gamma)], \gamma \in [0, 1]$ . Then, the possibilistic mean of  $\tilde{\xi}$  is given by

$$\bar{M}(\tilde{\xi}) = \int_0^1 \gamma[\xi_L(\gamma) + \xi_R(\gamma)] \mathrm{d}\gamma,$$

where  $\xi_L$  and  $\xi_R$  are the left and right cut of the fuzzy number  $\tilde{\xi}$ , respectively.

**Theorem 1** (Carlsson and Fullér 2001) Let  $\tilde{\xi_1}$  and  $\tilde{\xi_2}$  be two fuzzy numbers and let  $\lambda_1, \lambda_2 \in \mathbb{R}$  be real numbers. Then

$$\bar{M}(\lambda_1\tilde{\xi_1}+\lambda_2\tilde{\xi_2})=\lambda_1\bar{M}(\tilde{\xi_1})+\lambda_2\bar{M}(\tilde{\xi_2})$$

**Definition 4** (Carlsson and Fullér 2001) Possibilistic variance: Let  $\tilde{\xi}$  be a fuzzy number with  $\gamma$ -level set,  $[\tilde{\xi}]^{\gamma} = [\xi_L(\gamma), \xi_R(\gamma)], \gamma \in [0, 1]$ . Then, the possibilistic variance of  $\tilde{\xi}$  is given by

$$\bar{Va}(\tilde{\xi}) = \int_0^1 \gamma \left( [\bar{M}(\tilde{\xi}) - \xi_L(\gamma)]^2 + [\bar{M}(\tilde{\xi}) - \xi_R(\gamma)]^2 \right) \mathrm{d}\gamma.$$

**Theorem 2** (Carlsson and Fullér 2001) Let  $\tilde{\xi_1}$  and  $\tilde{\xi_2}$  be fuzzy numbers and  $\lambda_1, \lambda_2 \in \mathbb{R}$  be real numbers. Then

$$\begin{split} \bar{Va}(\lambda_1\tilde{\xi_1} + \lambda_2\tilde{\xi_2}) \\ &= \lambda_1^2 \bar{Va}(\tilde{\xi_1}) + \lambda_2^2 \bar{Va}(\tilde{\xi_2}) + 2\psi\lambda_1\lambda_2 \bar{Cov}(\tilde{\xi_1}, \tilde{\xi_2}), \end{split}$$

where  $\psi$  is a sign function,

$$\psi = \begin{cases} 1, & if \ \lambda_1 = +ve, \lambda_2 = +ve, \\ 1, & if \ \lambda_1 = -ve, \lambda_2 = -ve, \\ -1, & if \ \lambda_1 = +ve, \lambda_2 = -ve, \\ -1, & if \ \lambda_1 = -ve, \lambda_2 = +ve. \end{cases}$$

**Definition 5** (Carlsson and Fullér 2001) Possibilistic covariance: Let  $\tilde{\xi_1}$ ,  $\tilde{\xi_2} \in F$  be fuzzy numbers with  $\gamma$ -level sets,  $[\tilde{\xi_1}]^{\gamma} = [\xi_{1L}(\gamma), \xi_{1R}(\gamma)]$  and  $[\tilde{\xi_2}]^{\gamma} = [\xi_{2L}(\gamma), \xi_{2R}(\gamma)], \gamma \in [0, 1]$ , respectively. Then, the possibilistic covariance between  $\tilde{\xi_1}$  and  $\tilde{\xi_2}$  is given by

$$\bar{Cov}(\tilde{\xi}_{1}, \tilde{\xi}_{2}) = \int_{0}^{1} \gamma \left( [\bar{M}(\tilde{\xi}_{1}) - \xi_{1L}(\gamma)] [\bar{M}(\tilde{\xi}_{2}) - \xi_{2L}(\gamma)] + [\bar{M}(\tilde{\xi}_{1}) - \xi_{1R}(\gamma)] [\bar{M}(\tilde{\xi}_{2}) - \xi_{2R}(\gamma)] \right) d\gamma.$$

## **3 Model development**

#### 3.1 Model description and notation

In this section, we discuss an FMPPS model with n risky assets having fuzzy asset returns. The computation of assets' mean and variance is based on possibility theory. For the convenience of the readers, we set down the following notations that are used in the subsequent sections.

#### Notation Indices

*i*, *j*: Index of the risky asset, *i*, j = 1, 2, ..., n*t*: Index of the time period, t = 1, 2, ..., T

#### Parameters

| $\xi_{t,i} = (p_{t,i}, q_{t,i}; \alpha_{t,i}, \beta_{t,i}):$<br>$\bar{M}(\xi_{t,i}):$ | Fuzzy rate of return of <i>i</i> th risky<br>asset for time period <i>t</i> with tol-<br>erance interval $(p_{t,i}, q_{t,i})$ , left<br>spread $\alpha_{t,i}$ , and right spread $\beta_{t,i}$<br>Possibilistic mean of the return<br>of the <i>i</i> th risky asset for time |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{Va}(\xi_{t,i})$ :                                                          | period <i>t</i><br>Possibilistic variance of the<br>return of the <i>i</i> th risky asset for<br>time period <i>t</i>                                                                                                                                                         |
| $\bar{Cov}(\xi_{t,i},\xi_{t,j})$ :                                                    | Possibilistic covariance of the return between the <i>i</i> th and <i>j</i> th risky                                                                                                                                                                                          |
|                                                                                       | assets for time period $t$                                                                                                                                                                                                                                                    |
| r(t):                                                                                 | Minimum expected return of the portfolio for time period $t$                                                                                                                                                                                                                  |
| $W_1$ :                                                                               | Initial wealth to be invested in the portfolio                                                                                                                                                                                                                                |
| $W_{T \max}, W_{T \min}$ :                                                            | Extreme values of the terminal wealth                                                                                                                                                                                                                                         |
| <i>Va</i> ( <i>t</i> ):                                                               | Variance (risk) of the portfolio for time period $t$                                                                                                                                                                                                                          |
| $Va_{T\max}, Va_{T\min}$ :                                                            | Extreme values of the cumula-<br>tive risk                                                                                                                                                                                                                                    |
| $\theta_W, \ \theta_{Va}$ :                                                           | Hesitation in terminal wealth and cumulative risk, respectively                                                                                                                                                                                                               |
| $l_{t,i}$ :                                                                           | Lower bound on the proportion of investment in each of the <i>i</i> th                                                                                                                                                                                                        |
| $u_{t,i}$ :                                                                           | risky asset for time period <i>t</i><br>Upper bound on the proportion<br>of investment in each of the <i>i</i> th                                                                                                                                                             |
| $c_{t,i}$ :                                                                           | risky asset for time period <i>t</i><br>Transaction cost of the <i>i</i> th risky                                                                                                                                                                                             |
| <i>K</i> <sub><i>t</i></sub> :                                                        | asset for time period $t$<br>Number of assets to be chosen<br>among the set of assets con-                                                                                                                                                                                    |
|                                                                                       |                                                                                                                                                                                                                                                                               |

sidered for investment for time period t

Variables

| $x_{t,i}$ : | Proportion of total investment invested in the <i>i</i> th |
|-------------|------------------------------------------------------------|
|             | risky asset for time period t                              |
|             |                                                            |

- Re(t): Expected return of the portfolio for time period t
- $W_T$ : Terminal wealth of the portfolio
- $Va_T$ : Cumulative risk of the portfolio
- $y_{t,i}$ : Binary variable for time period t
- $\rho$ ,  $\tau$ ,  $\omega$ : Degree of satisfaction for membership, nonmembership and hesitation functions, respectively

# 3.2 Objectives and constraints of the proposed model

In a real market environment, investors must take into consideration several aspects of investment that affect the output of a portfolio. Besides this, the preferences of different decision makers may be different, so to make the investment process more realistic, the decision makers must consider multiple criteria in addition to their preferences.

For the purpose, let n risky assets be considered for constructing a portfolio. We construct an MPPS model with maximization of the terminal wealth of investment and minimization of the cumulative risk as objective functions, subject to several realistic constraints. Now, we discuss the objectives and all the constraints that are used to construct the FMPPS model.

#### **Objectives:**

• Terminal wealth of the portfolio:

$$\begin{aligned} \text{Max } W_T &= W_1 \prod_{t=1}^{T} (1 + Re(t)), \\ \text{where } Re(t) &= \sum_{i=1}^{n} \bar{M}(\xi_{t,i}) x_{t,i} - \sum_{i=1}^{n} c_{t,i} |x_{t,i} - x_{t-1,i}|, \\ \bar{M}(\xi_{t,i}) &= \int_0^1 \gamma [p_{t,i} - (1 - \gamma)\alpha_{t,i} \\ &+ q_{t,i} + (1 - \gamma)\beta_{t,i}] d\gamma \\ &= \frac{p_{t,i} + q_{t,i}}{2} + \left(\frac{\beta_{t,i} - \alpha_{t,i}}{6}\right). \end{aligned}$$
(1)

• Cumulative risk of the portfolio:

Min 
$$Va_T = \sum_{t=1}^{T} Va(t) = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} x_{t,i}^2 \bar{Va}(\xi_{t,i}) \right)$$

$$+ 2 \sum_{j>i=1}^{n} x_{t,i} x_{t,j} \bar{Cov}(\xi_{t,i}, \xi_{t,j}) \bigg),$$
where  $\bar{Va}(\xi_{t,i}) = \int_{0}^{1} \gamma \left\{ \left[ \frac{p_{t,i} + q_{t,i}}{2} + \left( \frac{\beta_{t,i} - \alpha_{t,i}}{6} \right) - \left( p_{t,i} - (1 - \gamma)\alpha_{t,i} \right) \right]^{2} + \left[ \frac{p_{t,i} + q_{t,i}}{2} + \left( \frac{\beta_{t,i} - \alpha_{t,i}}{6} \right) - \left( q_{t,i} + (1 - \gamma)\beta_{t,i} \right) \right]^{2} \right\} d\gamma$ 

$$= \frac{(q_{t,i} - p_{t,i})^{2}}{4} + \frac{(q_{t,i} - p_{t,i})(\alpha_{t,i} + \beta_{t,i})}{6} + \frac{(\alpha_{t,i} + \beta_{t,i})^{2}}{24},$$

$$Cov(\xi_{t,i}, \xi_{t,j}) = \int_{0}^{1} \gamma \left\{ \left[ \frac{p_{t,i} + q_{t,i}}{2} + \frac{\beta_{t,i} - \alpha_{t,i}}{6} - \left( p_{t,i} - (1 - \gamma)\alpha_{t,i} \right) \right] \left[ \frac{p_{t,j} + q_{t,j}}{2} + \frac{\beta_{t,j} - \alpha_{t,j}}{6} - \left( p_{t,i} - (1 - \gamma)\alpha_{t,j} \right) \right] \right] + \left[ \frac{p_{t,i} + q_{t,i}}{2} + \frac{\beta_{t,i} - \alpha_{t,i}}{6} - \left( q_{t,i} + (1 - \gamma)\beta_{t,i} \right) \right] \left[ \frac{p_{t,j} + q_{t,j}}{2} + \frac{\beta_{t,j} - \alpha_{t,j}}{6} - \left( q_{t,i} + (1 - \gamma)\beta_{t,j} \right) \right] \right] d\gamma$$

$$= \frac{(q_{t,i} - p_{t,i})(q_{t,j} - p_{t,j})}{4} + \frac{(q_{t,i} - p_{t,i})(\alpha_{t,j} - \beta_{t,j}) + (q_{t,j} - p_{t,j})(\alpha_{t,i} - \beta_{t,i})}{12} + \frac{(\alpha_{t,i} + \beta_{t,i})(\alpha_{t,j} + \beta_{t,j})}{24}.$$
(3)

#### **Constraints:**

• Expected return of the portfolio for time period *t*:

$$Re(t) \ge r(t), \ t = 1, 2, \dots, T.$$
 (4)

• Full utilization of the capital for time period *t*:

$$\sum_{i=1}^{n} x_{t,i} = 1, \ t = 1, 2, \dots, T.$$
(5)

• Cardinality constraint: To restrict the number of assets  $(K_t)$  that comprise the portfolio for time period t, the cardinality constraint is put to use. Since managing a large number of assets is cumbersome, conventionally, investors choose to have only a certain number of assets in the portfolio. This also helps in ensuring diversification

in the portfolio.

$$\sum_{i=1}^{n} y_{t,i} = K_t, \ t = 1, 2, \dots, T.$$
(6)

• No short selling constraint:

$$x_{t,i} \ge 0, \ i = 1, 2, \dots, n; \ t = 1, 2, \dots, T.$$
 (7)

• Minimal and maximal fraction constraint: Any asset that is included in the portfolio has bounds on the fraction of the capital allocated to it. This constraint specifies the minimal and maximal fraction of the capital allocated to the assets in the portfolio.

$$l_{t,i} y_{t,i} \le x_{t,i} \le u_{t,i} y_{t,i}, i = 1, 2, \dots, n; \ t = 1, 2, \dots, T.$$
(8)

#### 3.3 Fuzzy multi-period portfolio selection model

The FMPPS model is now formulated as follows: (Model 1)

Max 
$$W_T = W_1 \prod_{t=1}^{T} (1 + Re(t))$$
  
Min  $Va_T = \sum_{t=1}^{T} Va(t)$   
subject to Eqs. (4)–(8).

#### Crisp form of the proposed model

By substituting Eqs. (1)–(2) and using Theorems 1 and 2 in Model 1, we get the following model: (Model 2)

Max  $W_T$ 

$$= W_1 \prod_{t=1}^{T} \left( 1 + \sum_{i=1}^{n} \left( \frac{p_{t,i} + q_{t,i}}{2} + \frac{\beta_{t,i} - \alpha_{t,i}}{6} \right) x_{t,i} - \sum_{i=1}^{n} c_{t,i} |x_{t,i} - x_{t-1,i}| \right)$$
  
In Var

Min Va

$$=\sum_{t=1}^{T} \left[\sum_{i=1}^{n} \left(\frac{(q_{t,i} - p_{t,i})^2}{4} + \frac{(q_{t,i} - p_{t,i})(\alpha_{t,i} + \beta_{t,i})}{6} + \frac{(\alpha_{t,i} + \beta_{t,i})^2}{24}\right) x_{t,i}^2 + 2\sum_{j>i=1}^{n} \left(\frac{(q_{t,i} - p_{t,i})(q_{t,j} - p_{t,j})}{4}\right)$$

$$+\frac{(q_{t,i} - p_{t,i})(\alpha_{t,j} - \beta_{t,j}) + (q_{t,j} - p_{t,j})(\alpha_{t,i} - \beta_{t,i})}{12} + \frac{(\alpha_{t,i} + \beta_{t,i})(\alpha_{t,j} + \beta_{t,j})}{24} x_{t,i} x_{t,j}$$

subject to Eqs. (4)-(8).

#### 3.4 Construction of the proposed intuitionistic fuzzy multi-period portfolio selection model

Model 2 is solved as a single-objective minimization and maximization problem separately to obtain the extreme values of the terminal wealth and cumulative risk; these values are then used to construct their membership and nonmembership functions as follows:

$$\mu_{W_{T}}(x) = \begin{cases} 0, & W_{T} \leq W_{T\min}, \\ \frac{W_{T} - W_{T\min}}{W_{T\max} - W_{T\min}}, & W_{T\min} < W_{T} \leq W_{T\max}, \\ 1, & W_{T} \geq W_{T\max}, \end{cases}$$
(9a)  
$$\nu_{W_{T}}(x) = \begin{cases} 1, & W_{T} \leq W_{T\min}, \\ \frac{W_{T\max} - W_{T}}{W_{T\max} - W_{T\min}}, & W_{T\min} < W_{T} \leq W_{T\max}, \\ 0, & W_{T} \geq W_{T\max}, \end{cases}$$
(9b)

$$\mu_{Va_{T}}(x) = \begin{cases} 1, & Va_{T} \leq Va_{T\min}, \\ \frac{Va_{T\max} - Va_{T}}{Va_{T\max} - Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 0, & Va_{T} \geq Va_{T\max}, \end{cases}$$
(9c)

$$\nu_{Va_{T}}(x) = \begin{cases} 0, & Va_{T} \leq Va_{T\min}, \\ \frac{Va_{T} - Va_{T\min}}{Va_{T\max} - Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 1, & Va_{T} \geq Va_{T\max}. \end{cases}$$
(9d)

To incorporate the hesitation into the model, we introduce the parameters  $\theta_W$  and  $\theta_{Va}$  into the picture. Based on the values taken (assumed) by these parameters and whether they are applied to the membership or the non-membership functions, we have the following two cases:

• Case 1: Optimistic scenario ( $\theta_W > 1, \theta_{Va} < 1$ )

In the optimistic scenario, in order to increase the membership degree of the terminal wealth and cumulative risk,  $\theta_W$ and  $\theta_{Va}$  are multiplied to  $W_{T\min}$  and  $Va_{T\max}$ , respectively, in the membership functions of the two objectives. From Eqs. (9a)–(9d), we have

$$\mu_{W_{T}}(x) = \begin{cases} 0, & W_{T} \leq W_{T\min}, \\ \frac{W_{T} - \theta_{W} \cdot W_{T\min}}{W_{T\max} - \theta_{W} \cdot W_{T\min}}, & W_{T\min} < W_{T} \leq W_{T\max}, \\ 1, & W_{T} \geq W_{T\max}, \end{cases}$$
(10a)

$$\nu_{W_T}(x) = \begin{cases}
1, & W_T \le W_{T\min}, \\
\frac{W_{T\max} - W_T}{W_{T\max} - W_{T\min}}, & W_{T\min} < W_T \le W_{T\max}, \\
0, & W_T \ge W_{T\max},
\end{cases}$$
(10b)



Fig. 1 Optimistic scenario



Fig. 2 Pessimistic scenario

$$\mu_{Va_{T}}(x) = \begin{cases} 1, & Va_{T} \leq Va_{T\min}, \\ \frac{\theta_{Va}.Va_{T\max} - Va_{T}}{\theta_{Va}.Va_{T\max} - Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 0, & Va_{T} \geq Va_{T\max}, \end{cases}$$
(10c)  
$$\nu_{Va_{T}}(x) = \begin{cases} 0, & Va_{T} \leq Va_{T\min}, \\ \frac{Va_{T} - Va_{T\min}}{Va_{T\max} - Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 1, & Va_{T} \geq Va_{T\max}. \end{cases}$$
(10d)

• Case 2: Pessimistic scenario ( $\theta_W < 1, \theta_{Va} > 1$ )

In the pessimistic scenario, the non-membership degree of the terminal wealth and cumulative risk is decreased by multiplying  $\theta_W$  and  $\theta_{Va}$  to  $W_{T \max}$  and  $Va_{T \min}$ , respectively, in the non-membership functions of the two objectives. From Eqs. (9a)–(9d), we have

$$\mu_{W_{T}}(x) = \begin{cases} 0, & W_{T} \leq W_{T\min}, \\ \frac{W_{T} - W_{T\min}}{W_{T\max} - W_{T\min}}, & W_{T\min} < W_{T} \leq W_{T\max}, \\ 1, & W_{T} \geq W_{T\max}, \end{cases}$$
(11a)  
$$\nu_{W_{T}}(x) = \begin{cases} 1, & W_{T} \leq W_{T\min}, \\ \frac{\theta_{W} \cdot W_{T\max} - W_{T}}{\theta_{W} \cdot W_{T\max} - W_{T\min}}, & W_{T\min} < W_{T} \leq W_{T\max}, \\ 0, & W_{T} \geq W_{T\max}, \end{cases}$$
(11b)



 $\mu(Va_T)$ 

$$\mu_{Va_{T}}(x) = \begin{cases} 1, & Va_{T} \leq Va_{T\min}, \\ \frac{Va_{T\max} - Va_{T}}{Va_{T\max} - Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 0, & Va_{T} \geq Va_{T\max}, \end{cases}$$
(11c)

$$\nu_{Va_{T}}(x) = \begin{cases} 0, & Va_{T} \leq Va_{T\min}, \\ \frac{Va_{T} - \theta_{Va} \cdot Va_{T\min}}{Va_{T\max} - \theta_{Va} \cdot Va_{T\min}}, & Va_{T\min} < Va_{T} \leq Va_{T\max}, \\ 1, & Va_{T} \geq Va_{T\max}. \end{cases}$$
(11d)

Note that the values of  $\theta_W$  and  $\theta_{Va}$  for the optimistic and pessimistic scenarios are computed as  $\theta_W = \frac{W_{T \max}}{W_{T \min}}$ ,  $\theta_{Va} = \frac{Va_{T \min}}{Va_{T \max}}$  and  $\theta_W = \frac{W_{T \min}}{W_{T \max}}$ ,  $\theta_{Va} = \frac{Va_{T \max}}{Va_{T \min}}$ , respectively. For the optimistic scenario, the values of  $\theta_W$  and  $\theta_{Va}$  vary in the ranges  $1 < \theta_W < \frac{W_{T \max}}{W_{T \min}}$  and  $\frac{Va_{T \max}}{Va_{T \min}} < \theta_{Va} < 1$ , respectively. For the pessimistic scenario, the values of  $\theta_W$  and  $\theta_{Va}$ vary in the ranges  $\frac{W_{T \min}}{W_{T \max}} < \theta_W < 1$  and  $1 < \theta_{Va} < \frac{Va_{T \max}}{Va_{T \min}}$ , respectively.

The cases of optimistic and pessimistic scenarios are represented graphically in Figs. 1 and 2, respectively.

Now, we define the IFS of  $\theta_W$  and  $\theta_{Va}$  as follows:

$$W_T = \{\mu(W_T), \nu(W_T), \pi(W_T)\},\$$
  
$$Va_T = \{\mu(Va_T), \nu(Va_T), \pi(Va_T)\}$$

 $v(Va_T)$ 

Table 2 Trapezoidal data of assets' return

| Asset           | t = 1                                | t = 2                                | <i>t</i> = 3                         |
|-----------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $A_1$           | (0.1281, 0.14143; 0.03429, 0.02429)  | (0.1181, 0.12714; 0.02439, 0.00543)  | (0.1081, 0.11271; 0.02429, 0.01886)  |
| $A_2$           | (0.09298, 0.11933; 0.03987, 0.01987) | (0.1041, 0.11179; 0.01374, 0.0106)   | (0.08298, 0.10259; 0.01987, 0.02633) |
| $A_3$           | (0.08855, 0.10729; 0.02909, 0.01909) | (0.10974, 0.11322; 0.02734, 0.03172) | (0.08597, 0.12202; 0.01357, 0.02734) |
| $A_4$           | (0.10069, 0.1213; 0.02043, 0.01043)  | (0.12207, 0.13013; 0.02181, 0.02004) | (0.10691, 0.12513; 0.01665, 0.00939) |
| $A_5$           | (0.1157, 0.12319; 0.03106, 0.04106)  | (0.11206, 0.12232; 0.01742, 0.02193) | (0.07014, 0.09319; 0.0155, 0.01324)  |
| $A_6$           | (0.08562, 0.10804; 0.03601, 0.0266)  | (0.10562, 0.1288; 0.00601, 0.01961)  | (0.10562, 0.1138; 0.00601, 0.01161)  |
| $A_7$           | (0.09286, 0.11786; 0.02929, 0.03986) | (0.09265, 0.11246; 0.01908, 0.0273)  | (0.10563, 0.12622; 0.00979, 0.02939) |
| $A_8$           | (0.10913, 0.12837; 0.01946, 0.01946) | (0.11569, 0.12564; 0.01309, 0.02061) | (0.11234, 0.12645; 0.02104, 0.03333) |
| $A_9$           | (0.11306, 0.13807; 0.03691, 0.02958) | (0.11256, 0.13251; 0.02132, 0.00964) | (0.09031, 0.12945; 0.01872, 0.0131)  |
| $A_{10}$        | (0.11543, 0.12143; 0.01714, 0.02446) | (0.08535, 0.10541; 0.02277, 0.04918) | (0.10525, 0.1252; 0.01696, 0.02739)  |
| $A_{11}$        | (0.10787, 0.12101; 0.02367, 0.01367) | (0.11876, 0.13564; 0.02834, 0.00646) | (0.10528, 0.11561; 0.01124, 0.01895) |
| $A_{12}$        | (0.08706, 0.10449; 0.01816, 0.01678) | (0.08456, 0.09564; 0.01597, 0.00892) | (0.08577, 0.09564; 0.00988, 0.03057) |
| A <sub>13</sub> | (0.08584, 0.11845; 0.02615, 0.02801) | (0.10563, 0.11625; 0.01933, 0.0094)  | (0.09126, 0.10584; 0.01169, 0.02041) |
| $A_{14}$        | (0.08481, 0.10402; 0.03801, 0.02918) | (0.08255, 0.09253; 0.01469, 0.02309) | (0.09255, 0.11254; 0.00688, 0.02472) |
| A <sub>15</sub> | (0.11982, 0.13466; 0.02489, 0.02529) | (0.09498, 0.11252; 0.02263, 0.01343) | (0.0963, 0.10265; 0.01375, 0.02272)  |
| $A_{16}$        | (0.10685, 0.12159; 0.03053, 0.02462) | (0.11226, 0.12645; 0.01663, 0.01982) | (0.07623, 0.08542; 0.02367, 0.0072)  |
| $A_{17}$        | (0.08508, 0.11202; 0.03068, 0.02425) | (0.09255, 0.11252; 0.02001, 0.0261)  | (0.09255, 0.11252; 0.0173, 0.02533)  |
| $A_{18}$        | (0.1196, 0.14299; 0.041, 0.00941)    | (0.10523, 0.12299; 0.01997, 0.01226) | (0.0826, 0.10659; 0.00734, 0.01904)  |
| $A_{19}$        | (0.11974, 0.14202; 0.03734, 0.01292) | (0.09257, 0.12652; 0.02005, 0.00603) | (0.0853, 0.09522; 0.01008, 0.02041)  |
| $A_{20}$        | (0.09096, 0.12179; 0.0206, 0.04045)  | (0.08524, 0.10252; 0.0202, 0.0207)   | (0.08521, 0.10252; 0.01001, 0.0237)  |

Using the above IFSs, we can rewrite the following IFMPPS model wherein we maximize the membership functions and minimize the non-membership and hesitation functions of the terminal wealth and cumulative risk: (Model 3)

 $\begin{array}{ll} \max \ \mu(W_T), & \min \ \nu(W_T), & \min \ \pi(W_T) \\ \max \ \mu(Va_T), & \min \ \nu(Va_T), & \min \ \pi(Va_T) \\ \text{subject to} \\ \mu(W_T) \ge 0, & \nu(W_T) \ge 0, & \pi(W_T) \ge 0, \\ \mu(Va_T) \ge 0, & \nu(Va_T) \ge 0, & \pi(Va_T) \ge 0, \\ \mu(W_T) + \nu(W_T) + \pi(W_T) = 1, \\ \mu(Va_T) + \nu(Va_T) + \pi(Va_T) = 1, \\ Eqs.(4)-(8). \end{array}$ 

Note that (a) when  $\theta_W = \theta_{Va} = 1$ ,  $\pi(W_T) = \pi(Va_T) = 0$  for both the optimistic and pessimistic scenarios, and (b) when  $\theta_W$ ,  $\theta_{Va} \to \infty$ , then  $\mu(W_T) \to 1$  and  $\nu(W_T)$ ,  $\pi(W_T) \to 0$ , and  $\mu(Va_T) \to 1$  and  $\nu(Va_T)$ ,  $\pi(Va_T) \to 0$  for the optimistic scenario, while for the pessimistic scenario,  $\nu(W_T) \to 1$  and  $\mu(W_T)$ ,  $\pi(W_T) \to 0$ , and  $\nu(Va_T) \to 1$  and  $\mu(W_T)$ ,  $\pi(W_T) \to 0$ , and  $\nu(Va_T) \to 1$  and  $\mu(Va_T)$ ,  $\pi(W_T) \to 0$ .

#### 3.5 Solution methodology

The objective functions in Model 3 are aggregated using the MMA proposed by Zimmermann (1978) in order to construct an IFMPPS model wherein the objectives now become constraints. The new objective function maximizes the degree of satisfaction of the membership functions while simultaneously minimizing the degree of satisfaction of the non-membership and hesitation functions of the terminal wealth and cumulative risk. The incorporation of the hesitation into the proposed model enables us to propose the following two models depending on the values of  $\theta_W$  and  $\theta_{Va}$  and whether they are applied to the membership or the non-membership functions:

#### **Optimistic IFMPPS model**

In the optimistic IFMPPS model,  $\theta_W$  and  $\theta_{Va}$  are applied to the membership functions of the terminal wealth and cumulative risk, respectively. The satisfaction degree of the membership functions ( $\rho$ ) is being maximized while simultaneously minimizing the satisfaction degrees of the non-membership ( $\tau$ ) and hesitation ( $\omega$ ) functions. From Eqs. (10a)–(10d), we have (Model 4)

 $\begin{array}{ll} Max \quad \rho \ -\tau \ -\omega \\ \text{subject to Eqs. (4)-(8),} \end{array}$ 

| Asset $A_1$ $A_2$ $A_3$ $A_4$ $A_5$ $A_6$                           | $A_2$   | $A_3$     | $A_4$   | $A_5$   |         | $A_7$   | $A_8$   | $A_9$   | $A_{10}$ | $A_{11}$ | $A_{12}$ | $A_7$ $A_8$ $A_9$ $A_{10}$ $A_{11}$ $A_{12}$ $A_{13}$ $A_{14}$ $A_{15}$ $A_{16}$ $A_{17}$ $A_{18}$ $A_{19}$ $A_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{14}$ . | 415     | $A_{16}$ | $A_{17}$ | $A_{18}$ | $A_{19}$ | $A_{20}$ |
|---------------------------------------------------------------------|---------|-----------|---------|---------|---------|---------|---------|---------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------|----------|----------|----------|----------|
| t = 1 0.13310 0.10282 0.09625 0.10933 0.12111 0.09526               | 0.10282 | 2 0.09625 | 0.10933 | 0.12111 |         | 0.10712 | 0.11875 | 0.12434 | 0.11965  | 0.11277  | 0.09555  | 0.10712 0.11875 0.12434 0.11965 0.11277 0.09555 0.10246 0.09294 0.12731 0.11324 0.09748 0.12603 0.12681 0.10968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.09294    | 0.12731 | 0.11324  | 0.09748  | 0.12603  | 0.12681  | 0.10968  |
| t = 2 0.11946 0.10742 0.11221 0.12581 0.11794 0.11948               | 0.10742 | 2 0.11221 | 0.12581 | 0.11794 | 0.11948 | 0.10393 | 0.12192 | 0.12059 | 0.09978  | 0.12355  | 0.08893  | 0.10393 0.12192 0.12059 0.09978 0.12355 0.08893 0.10929 0.08894 0.10222 0.11989 0.10355 0.11283 0.10721 0.09396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08894    | 0.10222 | 0.11989  | 0.10355  | 0.11283  | 0.10721  | 0.09396  |
| $t = 3 \ 0.10950 \ 0.09386 \ 0.10629 \ 0.11481 \ 0.08129 \ 0.11064$ | 0.09386 | 5 0.10629 | 0.11481 | 0.08129 |         | 0.11919 | 0.12144 | 0.10894 | 0.11696  | 0.11173  | 0.09415  | 0.11919  0.12144  0.10894  0.11696  0.11173  0.09415  0.10000  0.10552  0.10097  0.07808  0.10387  0.09655  0.09198  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09615  0.09 | 0.10552    | 0.10097 | 0.07808  | 0.10387  | 0.09655  | 0.09198  | 0.09615  |

 Table 3
 Expected rate of returns of assets

$$\begin{aligned} &\frac{\max\{(W_T - \theta_W, W_T \min), 0\}}{W_T \max - \theta_W, W_T \min} \ge \rho, \\ &\frac{\max\{(\theta_{Va}, Va_T \max - Va_T), 0\}}{\theta_{Va}, Va_T \max - Va_T \min} \ge \rho, \\ &\frac{W_T \max - W_T}{W_T \max - W_T \min} \le \tau, \\ &\frac{Va_T - Va_T \min}{Va_T \max - Va_T \min} \le \tau, \\ &1 - \frac{\max\{(W_T - \theta_W, W_T \min), 0\}}{W_T \max - \theta_W, W_T \min} - \frac{W_T \max - W_T}{W_T \max - W_T \min} = \omega, \\ &1 - \frac{\max\{(\theta_{Va}, Va_T \max - Va_T), 0\}}{\theta_{Va}, Va_T \max - Va_T \min} = \omega, \\ &\frac{Va_T - Va_T \min}{Va_T \max - Va_T \min} = \omega, \\ &\rho, \tau, \omega \ge 0. \end{aligned}$$

#### Pessimistic IFMPPS model

In the pessimistic IFMPPS model,  $\theta_W$  and  $\theta_{Va}$  are applied to the non-membership functions of the terminal wealth and cumulative risk, respectively. The satisfaction degree of the membership functions ( $\rho$ ) is being maximized while simultaneously minimizing the satisfaction degrees of the non-membership ( $\tau$ ) and hesitation ( $\omega$ ) functions. From Eqs. (11a)–(11d), we have (Model 5)

$$\begin{aligned} &Max \quad \rho - \tau - \omega \\ &\text{subject to Eqs. (4)-(8),} \\ &\frac{W_T - W_T \min}{W_T \max - W_T \min} \ge \rho, \\ &\frac{Va_T \max - Va_T}{Va_T \max - Va_T \min} \ge \rho, \\ &\frac{\max\{(\theta_W.W_T \max - W_T), 0\}}{\theta_W.W_T \max - W_T \min} \ge \tau, \\ &\frac{\max\{(Va_T - \theta_{Va}.Va_T \min), 0\}}{Va_T \max - \theta_{Va}.Va_T \min} \le \tau, \\ &1 - \frac{W_T - W_T \min}{W_T \max - W_T \min} - \frac{\max\{(\theta_W.W_T \max - W_T), 0\}}{\theta_W.W_T \max - W_T \min} = \omega, \\ &1 - \frac{Va_T \max - Va_T}{Va_T \max - Va_T \min} - \frac{\max\{(Va_T - \theta_{Va}.Va_T \min), 0\}}{Va_T \max - \theta_{Va}.Va_T \min} = \omega, \\ &\rho, \tau, \omega \ge 0. \end{aligned}$$

Model 4 and Model 5 can be solved for different combinations of  $\theta_W$  and  $\theta_{Va}$  that represent the attitude (optimistic and pessimistic) of the investors so as to obtain a variety of results enabling the investors to choose the best results as per their preferences.

| -         |  |
|-----------|--|
| 11        |  |
| r t       |  |
| foi       |  |
| matrix    |  |
| ovariance |  |
| Ice-cov   |  |
| Variano   |  |
| Table 4   |  |

|               | $\sigma_1$ | $\sigma_2$ | σ3      | $\sigma_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σ5      | σ6 0      | σ7 σ            | σ8 0            | σ <sub>9</sub> σ | σ <sub>10</sub> σ | σ11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ12 6   | σ13     | σ14     | σ15 0     | σ <sub>16</sub> 6 | σ17     | σ18     | σ19 G     | σ20     |
|---------------|------------|------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------------|-----------------|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-----------|-------------------|---------|---------|-----------|---------|
| $\sigma_1$    | 0.00032    | 0.00043    | 0.00033 | 0.00032 0.00043 0.00033 0.00028 0.00032 0.00041 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00032 | 0.00041   | 0.00045 (       | ).00030 (       | 0.00044          | 0.00020           | 00045 0.00030 0.00044 0.00020 0.00024 0.00027 0.00046 0.00040 0.00030 0.00032 0.00042 0.00037 0.00036 0.00047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00027 | 0.00046 | 0.00040 | 0:00030   | 0.00032 (         | 0.00042 | 0.00037 | 0.00036 ( | 0.00047 |
| $\sigma_2$    |            | 0.00058    | 0.00044 | $0.00043 \ 0.00058 \ 0.00044 \ 0.00038 \ 0.00042 \ 0.00055 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00042 | 0.00055 ( | 00061           | 0.00040         | 0.00060          | 0.00026           | $0.00060 \ \ 0.00026 \ \ 0.00033 \ \ 0.00063 \ \ 0.00063 \ \ 0.00054 \ \ 0.00041 \ \ 0.00043 \ \ 0.00057 \ \ 0.00051$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00037 | 0.00063 | 0.00054 | 0.00041 ( | 0.00043           | 0.00057 |         | 0.00049 ( | 0.00064 |
| $\sigma_3$    |            | 0.00044    | 0.00034 | $0.00033 \ 0.00044 \ 0.00034 \ 0.00029 \ 0.00032 \ 0.00042 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00032 | 0.00042 ( | 0.00046 0.00031 |                 | 0.00045          | 0.00020           | $0.00045 \ 0.00020 \ 0.00025 \ 0.00048 \ 0.00041 \ 0.00031 \ 0.00033 \ 0.00043 \ 0.00038$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00028 | 0.00048 | 0.00041 | 0.00031 ( | 0.00033 (         | 0.00043 |         | 0.00037 ( | 0.00049 |
| $\sigma_4$    | 0.00028    | 0.00038    | 0.00029 | 0.00028  0.00038  0.00029  0.00025  0.00027  0.00036  0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00027 | 0.00036   | 0.00040 0.00027 |                 | 0.00039          | 0.00017           | $0.00039 \ 0.00017 \ 0.00021 \ 0.00024 \ 0.00041 \ 0.00035 \ 0.00027 \ 0.00028 \ 0.00037 \ 0.00033$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00024 | 0.00041 | 0.00035 | 0.00027   | 0.00028 (         | 0.00037 |         | 0.00032 ( | 0.00042 |
| σ5            | 0.00032    | 0.00042    | 0.00032 | $0.00032 \ 0.00042 \ 0.00032 \ 0.00027 \ 0.00032 \ 0.00040 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00032 | 0.00040   | 00045           | 0.00029 (       | 0.00044          | 0.00020           | $0.00044 \ 0.00020 \ 0.00024 \ 0.00026 \ 0.00045 \ 0.00040 \ 0.00030 \ 0.00032 \ 0.00041 \ 0.00037$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00026 | 0.00045 | 0.00040 | 0:00030   | 0.00032 (         | 0.00041 |         | 0.00036 ( | 0.00046 |
| $\sigma_6$    |            | 0.00055    | 0.00042 | $0.00041 \ 0.00055 \ 0.00042 \ 0.00036 \ 0.00040 \ 0.00052 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00040 | 0.00052 ( | 0.00058 (       | 00058 0.00038 ( | 0.00057          | 0.00025           | $0.00057 \ 0.00025 \ 0.00031 \ 0.00035 \ 0.00060 \ 0.00051 \ 0.00039 \ 0.00041 \ 0.00054 \ 0.00048$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00035 | 0.00060 | 0.00051 | 0.00039 ( | 0.00041 (         | 0.00054 | 0.00048 | 0.00047   | 0.00061 |
| $\sigma_7$    |            | 0.00061    | 0.00046 | $0.00045 \ 0.00061 \ 0.00046 \ 0.00040 \ 0.00045 \ 0.00058 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00045 | 0.00058   | 00064           | 0.00042 (       | 0.00063          | 0.00028           | $0.00063  0.00028  0.00034  0.00058  0.00066  0.00056  0.00043  0.00060  0.00053 \\ 0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00051  0.00$ | 0.00038 | 0.00066 | 0.00056 | 0.00043 ( | 0.00045 (         | 09000.0 |         | 0.00052 ( | 0.00067 |
| $\sigma_8$    |            | 0.00040    | 0.00031 | 0.00030  0.00040  0.00031  0.00027  0.00029  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00        | 0.00029 | 0.00038   | 00042           | 0.00028 (       | 0.00042          | 0.00018           | $0.00018 \ \ 0.00023 \ \ 0.00025 \ \ 0.00044 \ \ 0.00037 \ \ 0.00028 \ \ 0.00030 \ \ 0.00039 \ \ 0.00035$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00025 | 0.00044 | 0.00037 | 0.00028 ( | 0:00030           | 0.00039 |         | 0.00034 ( | 0.00045 |
| $\sigma_9$    | 0.00044    | 0.00060    | 0.00045 | $0.00044 \ 0.00060 \ 0.00045 \ 0.00039 \ 0.00044 \ 0.00057 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00044 | 0.00057 ( | 0.00063 (       | 00063 0.00042 ( | 0.00062          | 0.00027           | 0.00062 0.00027 0.00034 0.00038 0.00065 0.00055 0.00042 0.00044 0.00058 0.00052 0.00051 0.00066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00038 | 0.00065 | 0.00055 | 0.00042 ( | 0.00044 (         | 0.00058 | 0.00052 | 0.00051 ( | ).00066 |
| $\sigma_{10}$ | 0.00020    | 0.00026    | 0.00020 | $\sigma_{10}  0.00020  0.00026  0.00020  0.00017  0.00020  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.00025  0.000$ | 0.00020 | 0.00025 ( | 00028           | 0.00018 (       | 0.00027          | 0.00012           | $0.00027 \ 0.00012 \ 0.00015 \ 0.00016 \ 0.00028 \ 0.00025 \ 0.00019 \ 0.00020 \ 0.00026 \ 0.00023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00016 | 0.00028 | 0.00025 | 0.00019   | 0.00020           | 0.00026 |         | 0.00022 ( | 0.00029 |
| $\sigma_{11}$ | 0.00024    | 0.00033    | 0.00025 | $\sigma_{11}  0.00024  0.00033  0.00025  0.00021  0.00024  0.00031  0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00024 | 0.00031   | 00034           | 0.00023 (       | 0.00034          | 0.00015           | $0.00034 \ 0.00015 \ 0.00018 \ 0.00020 \ 0.00035 \ 0.00030 \ 0.00023 \ 0.00032 \ 0.00032 \ 0.00028$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00020 | 0.00035 | 0.00030 | 0.00023   | 0.00024 (         | 0.00032 |         | 0.00028 ( | 0.00036 |
| $\sigma_{12}$ | 0.00027    | 0.00037    | 0.00028 | $\sigma_{12}  0.00027  0.00037  0.00028  0.00024  0.00026  0.00035  0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00026 | 0.00035 ( | 0.00038 (       | 00038 0.00025 0 | 0.00038          | 0.00016           | 0.00038 0.00016 0.00020 0.00023 0.00039 0.00034 0.00025 0.00027 0.00036 0.00032 0.00031 0.00040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00023 | 0.00039 | 0.00034 | 0.00025 ( | 0.00027           | 0.00036 | 0.00032 | 0.00031 ( | 0.00040 |
| $\sigma_{13}$ | 0.00046    | 0.00063    | 0.00048 | $\sigma_{13} \ 0.00046 \ 0.00063 \ 0.00048 \ 0.00041 \ 0.00045 \ 0.00060 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00045 | 0.00060   | 0.00066 0.00044 |                 | 0.00065          | 0.00028           | $0.00065 \ 0.00028 \ 0.00035 \ 0.00068 \ 0.00068 \ 0.00058 \ 0.00044 \ 0.00046 \ 0.00061 \ 0.00055$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00039 | 0.00068 | 0.00058 | 0.00044 ( | 0.00046 (         | 0.00061 |         | 0.00053 ( | 0.00069 |
| $\sigma_{14}$ | 0.00040    | 0.00054    | 0.00041 | $\sigma_{14}  0.00040  0.00054  0.00041  0.00035  0.00040  0.00051  0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00040 | 0.00051   | 0.00056 0.00037 |                 | 0.00055          | 0.00025           | 0.00055  0.00025  0.00030  0.00034  0.00058  0.00050  0.00038  0.00040  0.00052  0.00047  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00047  0.00052  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00055  0.00054  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00     | 0.00034 | 0.00058 | 0.00050 | 0.00038 ( | 0.00040           | 0.00052 |         | 0.00045   | 0.00059 |
| $\sigma_{15}$ | 0.00030    | 0.00041    | 0.00031 | $\sigma_{15} \ 0.00030 \ 0.00041 \ 0.00031 \ 0.00027 \ 0.00030 \ 0.00039 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00030 | 0.00039 ( | 0.00043 (       | 00043 0.00028 0 | 0.00042          | 0.00019           | 0.00042 0.00019 0.00023 0.00025 0.00044 0.00038 0.00028 0.00030 0.00040 0.00035 0.00034 0.00045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00025 | 0.00044 | 0.00038 | 0.00028 ( | 0:00030           | 0.00040 | 0.00035 | 0.00034 ( | 0.00045 |
| $\sigma_{16}$ | 0.00032    | 0.00043    | 0.00033 | $\sigma_{16} \ 0.00032 \ 0.00043 \ 0.00033 \ 0.00028 \ 0.00032 \ 0.00041 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00032 | 0.00041 ( | 00045           | 0.00030         | 0.00044          | 0.00020           | $0.00044  0.00020  0.00024  0.00027  0.00046  0.00040  0.00030  0.00032  0.00042  0.00037 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00027 | 0.00046 | 0.00040 | 0.00030   | 0.00032           | 0.00042 | 0.00037 | 0.00036   | 0.00047 |
| $\sigma_{17}$ | 0.00042    | 0.00057    | 0.00043 | $\sigma_{17} \ 0.00042 \ 0.00057 \ 0.00043 \ 0.00037 \ 0.00041 \ 0.00054 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00041 | 0.00054 ( | 0.00060 0.00039 |                 | 0.00058          | 0.00026           | 0.00058  0.00026  0.00032  0.00036  0.00061  0.00052  0.00040  0.00042  0.00055  0.00049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00036 | 0.00061 | 0.00052 | 0.00040   | 0.00042 (         | 0.00055 |         | 0.00048 ( | 0.00063 |
| $\sigma_{18}$ | 0.00037    | 0.00051    | 0.00038 | $\sigma_{18}  0.00037  0.00051  0.00038  0.00033  0.00037  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.00048  0.000$ | 0.00037 | 0.00048   | 0.00053 0.00035 | 0.00035         | 0.00052          | 0.00023           | $0.00052 \ 0.00023 \ 0.00028 \ 0.00032 \ 0.00055 \ 0.00047 \ 0.00035 \ 0.00037 \ 0.00049 \ 0.00044 \ 0.00043$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00032 | 0.00055 | 0.00047 | 0.00035 ( | 0.00037           | 0.00049 | 0.00044 | 0.00043 ( | 0.00056 |
| $\sigma_{19}$ | 0.00036    | 0.00049    | 0.00037 | $\sigma_{19}  0.00036  0.00049  0.00037  0.00032  0.00036  0.00047  0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00036 | 0.00047   | 00052           | 0.00034 (       | 0.00051          | 0.00022           | $0.00051 \ 0.00022 \ 0.00028 \ 0.00031 \ 0.00053 \ 0.00045 \ 0.00034 \ 0.00036 \ 0.00048 \ 0.00043$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00031 | 0.00053 | 0.00045 | 0.00034 ( | 0.00036 (         | 0.00048 |         | 0.00042 ( | 0.00054 |
| $\sigma_{20}$ | 0.00047    | 0.00064    | 0.00049 | $\sigma_{20}  0.00047  0.00064  0.00049  0.00042  0.00046  0.00061  0.00067  0.00045$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00046 | 0.00061   | 0.00067 (       | 0.00045         | 0.00066          | 0.00029           | 0.00066  0.00029  0.00036  0.00040  0.00069  0.00059  0.00045  0.00047  0.00063  0.00056  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00054  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00055  0.00     | 0.00040 | 0.00069 | 0.00059 | 0.00045 ( | 0.00047           | 0.00063 | 0.00056 | 0.00054 ( | 0.00071 |
|               |            |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |           |                 |                 |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |         |           |                   |         |         |           |         |

**Table 5** Variance–covariance matrix for t = 2

|               | σı      | $\sigma_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ3      | $\sigma_4$ | σ5      | σ6      | <i>σ</i> 7 0 | σ8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>σ</u> θ | σ10 6   | σ11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ12 0   | σ13     | σ14 0   | σ15     | σ16     | σ17     | σ18     | σ <sub>19</sub> ο | σ20     |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|---------|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|-------------------|---------|
| $\sigma_1$    | 0.00010 | $\sigma_1$ 0.00010 0.00009 0.00013 0.00012 0.00013 0.00016 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00013 | 0.00012    | 0.00013 | 0.00016 |              | 00019 0.00011 0.00016 0.00024 0.00015 0.00010 0.00011 0.00012 0.00016 0.00014 0.00019 0.00015 0.00021 0.00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00016    | 0.00024 | 0.00015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00010 | 0.00011 | 0.00012 | 0.00016 | 0.00014 | 0.00019 | 0.00015 | 0.00021 (         | 0.00016 |
| $\sigma_2$    | 0.0000  | 0.00009 0.00007 0.00011 0.00010 0.00011 0.00013 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00011 | 0.00010    | 0.00011 | 0.00013 |              | 00016 0.00010 0.00013 0.00020 0.00012 0.00008 0.00009 0.00010 0.00013 0.00012 0.00012 0.00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00013    | 0.00020 | 0.00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.00008 | 0.0000  | 0.00010 | 0.00013 | 0.00012 | 0.00016 | 0.00012 | 0.00018 (         | 0.00014 |
| $\sigma_3$    |         | 0.00013 0.00011 0.00018 0.00016 0.00017 0.00020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00018 | 0.00016    | 0.00017 | 0.00020 | 00024        | 0.00015 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020    | 0.00031 | 0.00020  0.00031  0.00019  0.00013  0.00014  0.00016  0.00020  0.00018  0.00024  0.00019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00013 | 0.00014 | 0.00016 | 0.00020 | 0.00018 | 0.00024 |         | 0.00027 (         | 0.00021 |
| $\sigma_4$    |         | 0.00012 0.00010 0.00016 0.00015 0.00015 0.00019 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00016 | 0.00015    | 0.00015 | 0.00019 | 0.00022      | 00022 0.00014 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00018    | 0.00028 | $0.00018 \ \ 0.00018 \ \ 0.00018 \ \ 0.00013 \ \ 0.00013 \ \ 0.00015 \ \ 0.00018 \ \ 0.00017 \ \ 0.00022 \ \ 0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00012 | 0.00013 | 0.00015 | 0.00018 | 0.00017 | 0.00022 | 0.00018 | 0.00025 0.00019   | 0.00019 |
| $\sigma_5$    |         | 0.00013 0.00011 0.00017 0.00015 0.00016 0.00020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00017 | 0.00015    | 0.00016 | 0.00020 | 0.00023      | 00023 0.00014 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00019    | 0.00030 | $0.00019 \ \ 0.00030 \ \ 0.00013 \ \ 0.00013 \ \ 0.00013 \ \ 0.00015 \ \ 0.00019 \ \ 0.00017 \ \ 0.00023 \ \ 0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00013 | 0.00013 | 0.00015 | 0.00019 | 0.00017 | 0.00023 | 0.00018 | 0.00026 0.00020   | 0.00020 |
| $\sigma_6$    |         | $0.00016 \ 0.00013 \ 0.00020 \ 0.00019 \ 0.00020 \ 0.00026 \ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00020 | 0.00019    | 0.00020 | 0.00026 |              | 00030 0.00018 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00025    | 0.00037 | $0.00025 \ 0.00037 \ 0.00024 \ 0.00016 \ 0.00017 \ 0.00019 \ 0.00025 \ 0.00022 \ 0.00030 \ 0.00024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00016 | 0.00017 | 0.00019 | 0.00025 | 0.00022 | 0.00030 | 0.00024 | 0.00035 (         | 0.00026 |
| $\sigma_7$    |         | $0.00019 \ 0.00016 \ 0.00024 \ 0.00022 \ 0.00023 \ 0.00030 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00024 | 0.00022    | 0.00023 | 0.00030 | 0.00034      | 00034 0.00021 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00029    | 0.00043 | 0.00029 0.00043 0.00027 0.00019 0.00020 0.00022 0.00028 0.00026 0.00034 0.00027 0.00039 0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00019 | 0.00020 | 0.00022 | 0.00028 | 0.00026 | 0.00034 | 0.00027 | 0.00039 (         | 0:00030 |
| $\sigma_8$    |         | 0.00011 0.00010 0.00015 0.00014 0.00014 0.00018 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00015 | 0.00014    | 0.00014 | 0.00018 | 0.00021      | 00021 0.00013 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00017    | 0.00027 | 0.00017 0.00027 0.00017 0.00011 0.00012 0.00014 0.00017 0.00016 0.00021 0.00017 0.00024 0.00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00011 | 0.00012 | 0.00014 | 0.00017 | 0.00016 | 0.00021 | 0.00017 | 0.00024 (         | 0.00018 |
| $\sigma_9$    |         | 0.00016 0.00013 0.00020 0.00018 0.00019 0.00025 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00020 | 0.00018    | 0.00019 | 0.00025 | 0.00029      | 00029 0.00017 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00024    | 0.00036 | $0.00024 \ 0.00036 \ 0.00023 \ 0.00016 \ 0.00017 \ 0.00019 \ 0.00024 \ 0.00022 \ 0.00029 \ 0.00023 \ 0.00033$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00016 | 0.00017 | 0.00019 | 0.00024 | 0.00022 | 0.00029 | 0.00023 |                   | 0.00025 |
| $\sigma_{10}$ | 0.00024 | $\sigma_{10}  0.00024  0.00020  0.00031  0.00028  0.00030  0.00037  0.00037  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.000$                                                                                                                                                                                                             | 0.00031 | 0.00028    | 0.00030 | 0.00037 | 0.00043      | 00043 0.00027 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00036    | 0.00056 | 0.00036  0.00036  0.00035  0.00024  0.00025  0.00029  0.00036  0.00033  0.00044  0.00035  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00038  0.00 | 0.00024 | 0.00025 | 0.00029 | 0.00036 | 0.00033 | 0.00044 | 0.00035 | 0.00050           | 0.00038 |
| $\sigma_{11}$ | 0.00015 | $\sigma_{11}  0.00015  0.00012  0.00019  0.00018  0.00019  0.00024  0.00024  0.00024  0.00024  0.00024  0.00018  0.00019  0.00024  0.00024  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.00018  0.000$                                                                                                                                                                                                             | 0.00019 | 0.00018    | 0.00019 | 0.00024 | 0.00027      | 00027 0.00017 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00023    | 0.00035 | 0.00023 0.00035 0.00022 0.00015 0.00016 0.00018 0.00023 0.00021 0.00027 0.00022 0.00032 0.00024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00015 | 0.00016 | 0.00018 | 0.00023 | 0.00021 | 0.00027 | 0.00022 | 0.00032 (         | 0.00024 |
| $\sigma_{12}$ | 0.00010 | 0.00010 0.00008 0.00013 0.00012 0.00013 0.00016 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00013 | 0.00012    | 0.00013 | 0.00016 | 0.00019      | 00019 0.00011 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00016    | 0.00024 | $0.00016 \ 0.00024 \ 0.00015 \ 0.00010 \ 0.00011 \ 0.00012 \ 0.00016 \ 0.00014 \ 0.00019 \ 0.00015 \ 0.00022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00010 | 0.00011 | 0.00012 | 0.00016 | 0.00014 | 0.00019 | 0.00015 | 0.00022 (         | 0.00016 |
| $\sigma_{13}$ | 0.00011 | $\sigma_{13} \ 0.00011 \ 0.00009 \ 0.00014 \ 0.00013 \ 0.00013 \ 0.00017 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00014 | 0.00013    | 0.00013 | 0.00017 | 0.00020      | 00020 0.00012 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00017    | 0.00025 | 0.00017 0.00025 0.00016 0.00011 0.00011 0.00013 0.00016 0.00015 0.00020 0.00016 0.00023 0.00017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00011 | 0.00011 | 0.00013 | 0.00016 | 0.00015 | 0.00020 | 0.00016 | 0.00023 (         | 0.00017 |
| $\sigma_{14}$ | 0.00012 | $\sigma_{14} \ 0.00012 \ 0.00010 \ 0.00016 \ 0.00015 \ 0.00015 \ 0.00019 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00016 | 0.00015    | 0.00015 | 0.00019 | 0.00022      | 00022 0.00014 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00019    | 0.00029 | 0.00019 0.00029 0.00018 0.00012 0.00013 0.00015 0.00019 0.00017 0.00022 0.00018 0.00025 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00012 | 0.00013 | 0.00015 | 0.00019 | 0.00017 | 0.00022 | 0.00018 | 0.00025 (         | 0.00020 |
| $\sigma_{15}$ | 0.00016 | $\sigma_{15} \ 0.00016 \ 0.00013 \ 0.00020 \ 0.00018 \ 0.00019 \ 0.00025 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00020 | 0.00018    | 0.00019 | 0.00025 | 0.00028      | .00028  0.00017  0.00024  0.00036  0.00016  0.00016  0.00019  0.00024  0.00021  0.00028  0.00023  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.00033  0.000 | 0.00024    | 0.00036 | 0.00023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00016 | 0.00016 | 0.00019 | 0.00024 | 0.00021 | 0.00028 | 0.00023 | 0.00033 (         | 0.00025 |
| $\sigma_{16}$ | 0.00014 | $\sigma_{16} \ 0.00014 \ 0.00012 \ 0.00018 \ 0.00017 \ 0.00017 \ 0.00022 \ 0.00022 \ 0.00017 \ 0.00022 \ 0.00022 \ 0.00017 \ 0.00022 \ 0.00022 \ 0.00017 \ 0.00022 \ 0.00022 \ 0.00017 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.00022 \ 0.000$ | 0.00018 | 0.00017    | 0.00017 | 0.00022 | 0.00026      | 00026 0.00016 0.00022 0.00033 0.00021 0.00014 0.00015 0.00017 0.00021 0.00019 0.00026 0.00020 0.00029 0.00022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00022    | 0.00033 | 0.00021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00014 | 0.00015 | 0.00017 | 0.00021 | 0.00019 | 0.00026 | 0.00020 | 0.00029 (         | 0.00022 |
| $\sigma_{17}$ | 0.00019 | $\sigma_{17} \ 0.00019 \ 0.00016 \ 0.00024 \ 0.00022 \ 0.00023 \ 0.00030 \ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00024 | 0.00022    | 0.00023 | 0.00030 |              | 00034 0.00021 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00029    | 0.00044 | 0.00029 0.00044 0.00027 0.00019 0.00020 0.00022 0.00028 0.00026 0.00034 0.00027 0.00039 0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00019 | 0.00020 | 0.00022 | 0.00028 | 0.00026 | 0.00034 | 0.00027 | 0.00039 (         | 0:00030 |
| $\sigma_{18}$ | 0.00015 | $\sigma_{18}  0.00015  0.00012  0.00019  0.00018  0.00018  0.00024  0.00024  0.00024  0.00024  0.00024  0.00018  0.00024  0.00024  0.00018  0.00024  0.00024  0.00018  0.00018  0.00024  0.00024  0.00018  0.00018  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.00024  0.000$                                                                                                                                                                                                             | 0.00019 | 0.00018    | 0.00018 | 0.00024 | 0.00027      | .00027 0.00017 0.00023 0.00035 0.00022 0.00015 0.00016 0.00018 0.00023 0.00020 0.00027 0.00022 0.00032 0.00024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00023    | 0.00035 | 0.00022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00015 | 0.00016 | 0.00018 | 0.00023 | 0.00020 | 0.00027 | 0.00022 | 0.00032 (         | 0.00024 |
| $\sigma_{19}$ | 0.00021 | $\sigma_{19}  0.00021  0.00018  0.00027  0.00025  0.00026  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.00035  0.000$                                                                                                                                                                                                             | 0.00027 | 0.00025    | 0.00026 | 0.00035 | 0.00039      | 00039 $0.00024$ $0.00033$ $0.00050$ $0.00032$ $0.00022$ $0.00023$ $0.00025$ $0.00033$ $0.00029$ $0.00039$ $0.00032$ $0.000346$ $0.00034$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00033    | 0.00050 | 0.00032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.00022 | 0.00023 | 0.00025 | 0.00033 | 0.00029 | 0.00039 | 0.00032 | 0.00046 (         | 0.00034 |
| $\sigma_{20}$ | 0.00016 | $\sigma_{20}  0.00016  0.00014  0.00021  0.00019  0.00020  0.00026  0.00030  0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00021 | 0.00019    | 0.00020 | 0.00026 | 0.00030      | 0.00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00025    | 0.00038 | $0.00025 \ 0.00038 \ 0.00024 \ 0.00016 \ 0.00017 \ 0.00020 \ 0.00025 \ 0.00022 \ 0.00030 \ 0.00024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00016 | 0.00017 | 0.00020 | 0.00025 | 0.00022 | 0.00030 | 0.00024 | 0.00034 (         | 0.00026 |
|               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |            |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |         |         |         |         |         |                   |         |

| З          |
|------------|
|            |
| for t      |
| matrix 1   |
| covariance |
| Variance⊣  |
| Table 6    |

| l ~               | σı    | $\sigma_2$ | ó <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_4$ | σ5      | α6 (      | σ7              | σ8             | σ9              | σ <sub>10</sub> σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ11 0                                                                                     | σ12     | σ <sub>13</sub> (       | σ14     | σ15     | σ <sub>16</sub> 6 | σ17 0                                                       | σ <sub>18</sub> | σ19             | σ20     |
|-------------------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------|-----------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|-------------------------|---------|---------|-------------------|-------------------------------------------------------------|-----------------|-----------------|---------|
| 0.0               | 0012  | 0.00019    | $\sigma_1$ 0.00012 0.00019 0.00026 0.00014 0.00017 0.00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00014    | 0.00017 | 0.00008   | 0.00018         | .00018 0.00019 | 0.00026         | 0.00026 0.00019 0.00011 0.00014 0.00014 0.00016 0.00011 0.00019 0.00017 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00011                                                                                   | 0.00014 | 0.00014                 | 0.00016 | 0.00011 | 0.00011 (         | 0.00019 (                                                   | 0.00017         | 0.00011         | 0.00016 |
| 0.0               | 0019  | 0.00034    | 0.00019 0.00034 0.00046 0.00025 0.00030 0.00013 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00025    | 0.00030 | 0.00013 ( | 0.00032         | 0.00032        | 0.00046         | .00032  0.00032  0.00046  0.00033  0.00020  0.00024  0.00029  0.00019  0.00019  0.00033  0.00030  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.00020  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.000 | 0.00020                                                                                   | 0.00023 | 0.00024                 | 0.00029 | 0.00019 | 0.00019 (         | 0.00033 (                                                   | 0:00030         | 0.00020         | 0.00027 |
| 0.0               | 0026  | 0.0004     | 0.00026  0.00046  0.00064  0.00035  0.00042  0.00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00035    | 0.00042 | 0.00018 ( | 0.00044         | 0.00043        | 0.00064         | $0.00046 \ 0.00027 \ 0.00031 \ 0.00033 \ 0.00040 \ 0.00025 \ 0.00026 \ 0.00045 \ 0.00042$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00027 (                                                                                 | 0.00031 | 0.00033                 | 0.00040 | 0.00025 | 0.00026 (         | 0.00045 (                                                   |                 | 0.00027         | 0.00037 |
| 0.0               | 0014  | 1 0.00025  | 0.00014 0.00025 0.00035 0.00019 0.00023 0.00010 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00019    | 0.00023 | 0.00010   | .00024          | 0.00024        | 0.00035         | $0.00025 \ 0.00015 \ 0.00017 \ 0.00018 \ 0.00022 \ 0.00014 \ 0.00014 \ 0.00025 \ 0.00023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00015 (                                                                                 | 0.00017 | 0.00018                 | 0.00022 | 0.00014 | 0.00014 (         | 0.00025 (                                                   |                 | 0.00015         | 0.00020 |
| 0.0               | 0017  | 7 0.00030  | $0.00017 \ 0.00030 \ 0.00042 \ 0.00023 \ 0.00028 \ 0.00012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00023    | 0.00028 | 0.00012 ( | 0.00029         | 0.00028        | 0.00042         | $0.00030 \ 0.00018 \ 0.00021 \ 0.00022 \ 0.00026 \ 0.00017 \ 0.00030 \ 0.00038$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00018 (                                                                                 | 0.00021 | 0.00022                 | 0.00026 | 0.00017 | 0.00017 (         | 0:00030                                                     |                 | 0.00018         | 0.00025 |
| 0.0               | 9000  | 3 0.00013  | 0.00008 0.00013 0.00018 0.00010 0.00012 0.00005 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00010    | 0.00012 | 0.00005 ( | .00013          | 0.00013        | 0.00018         | $0.00018 \ 0.00013 \ 0.00008 \ 0.00009 \ 0.00010 \ 0.00011 \ 0.00007 \ 0.00003 \ 0.00013 \ 0.00012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00008 (                                                                                 | 0.0000  | 0.00010                 | 0.00011 | 0.00007 | 0.00008 (         | 0.00013 (                                                   | 0.00012         | 0.00008         | 0.00011 |
| 0.0               | 00018 | 3 0.00032  | 0.00018  0.00032  0.00044  0.00024  0.00029  0.00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00024    | 0.00029 | 0.00013 ( | 0:00030         | .00030 0.00030 | 0.00044         | $0.00044 \ 0.00032 \ 0.00019 \ 0.00022 \ 0.00023 \ 0.00027 \ 0.00018 \ 0.00018 \ 0.00031 \ 0.00029$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00019                                                                                   | 0.00022 | 0.00023                 | 0.00027 | 0.00018 | 0.00018 (         | 0.00031 (                                                   |                 | 0.00019         | 0.00026 |
| 0                 | 00015 | 0.00032    | $0.00019 \ \ 0.00032 \ \ 0.00043 \ \ 0.00024 \ \ 0.00028 \ \ 0.00013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00024    | 0.00028 |           | 0.00030         | 0.00030        | 0.00042         | 0.00031 0.00019 0.00022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00019                                                                                   | 0.00022 | 0.00023 0.00027 0.00018 | 0.00027 | 0.00018 | 0.00018 0.00031   |                                                             | 0.00028         | 0.00018         | 0.00026 |
| Ö.                | 00026 | 0.00046    | $0.00026 \ 0.00046 \ 0.00064 \ 0.00035 \ 0.00042 \ 0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00035    | 0.00042 | 0.00018 ( | D.00044         | 0.00042        | 0.00063         | $0.00063 \ 0.00045 \ 0.00027 \ 0.00031 \ 0.00033 \ 0.00039 \ 0.00025 \ 0.00026 \ 0.00044 \ 0.00042$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00027                                                                                   | 0.00031 | 0.00033                 | 0.00039 | 0.00025 | 0.00026 (         | 0.00044 (                                                   | 0.00042         | 0.00026 0.00037 | 0.00037 |
| $\sigma_{10} 0.0$ | 00015 | 0.00032    | 0.00019 0.00033 0.00046 0.00025 0.00030 0.00013 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00025    | 0.00030 | 0.00013 ( | .00032          | 0.00031        | 0.00045         | $0.00045 \ 0.00033 \ 0.00020 \ 0.00024 \ 0.00028 \ 0.00018 \ 0.00019 \ 0.00032 \ 0.00030 \ 0.00019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00020 (                                                                                 | 0.00023 | 0.00024                 | 0.00028 | 0.00018 | 0.00019           | 0.00032 (                                                   | 0:00030         | 0.00019         | 0.00027 |
| õ                 | 00011 | 0.00020    | $\sigma_{11}  0.00011  0.00020  0.00027  0.00015  0.00018  0.00008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00015    | 0.00018 |           | 0.00019         | 0.00019        | 0.00027         | $0.00020 \ 0.00012 \ 0.00014 \ 0.00014 \ 0.00017 \ 0.00011 \ 0.00011 \ 0.00019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00012 (                                                                                 | 0.00014 | 0.00014                 | 0.00017 | 0.00011 | 0.00011 (         | 0.00019 (                                                   | 0.00018         | 0.00012         | 0.00016 |
| 0.0               | 0014  | 1 0.0002   | $\sigma_{12}  0.00014  0.00023  0.00031  0.00017  0.00021  0.00009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00017    | 0.00021 | 0.00000   | 0.00022         | .00022 0.00022 | 0.00031         | $0.00023 \ 0.00014 \ 0.00016 \ 0.00017 \ 0.00020 \ 0.00013 \ 0.00013 \ 0.00022 \ 0.00021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00014 (                                                                                 | 0.00016 | 0.00017                 | 0.00020 | 0.00013 | 0.00013 (         | 0.00022 (                                                   | 0.00021         | 0.00013         | 0.00019 |
| 0.0               | 0014  | 1 0.00024  | $\sigma_{13} \ 0.00014 \ 0.00024 \ 0.00033 \ 0.00018 \ 0.00022 \ 0.00010 \ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00018    | 0.00022 | 0.00010   | .00023          | 0.00023        | 0.00033         | $0.00024 \ 0.00014 \ 0.00017 \ 0.00017 \ 0.00021 \ 0.00013 \ 0.00014 \ 0.00024 \ 0.00022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00014 (                                                                                 | 0.00017 | 0.00017                 | 0.00021 | 0.00013 | 0.00014 (         | 0.00024 (                                                   | 0.00022         | 0.00014         | 0.00020 |
| 0.0               | 0016  | 0.00029    | $\sigma_{14}  0.00016  0.00029  0.00040  0.00022  0.00026  0.00011  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00022    | 0.00026 | 0.00011 ( | .00027          | 0.00027        | 0.00039 0.00028 | 0.00028 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.00017 \ 0.00020 \ 0.00021 \ 0.00025 \ 0.00016 \ 0.00016 \ 0.00028 \ 0.00026 \ 0.00017$ | 0.00020 | 0.00021                 | 0.00025 | 0.00016 | 0.00016 (         | 0.00028 (                                                   | 0.00026         |                 | 0.00023 |
| 0.0               | 00011 | 0.00019    | $\sigma_{15} \hspace{0.2cm} 0.00011 \hspace{0.2cm} 0.00019 \hspace{0.2cm} 0.00025 \hspace{0.2cm} 0.00014 \hspace{0.2cm} 0.00017 \hspace{0.2cm} 0.00007 \hspace{0.2cm} 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00014    | 0.00017 | 0.00007   | .00018          | 0.00018        | 0.00025         | $0.00025 \ 0.00018 \ 0.00011 \ 0.00013 \ 0.00013 \ 0.00016 \ 0.00010 \ 0.00011 \ 0.00018 \ 0.00017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00011 (                                                                                 | 0.00013 | 0.00013                 | 0.00016 | 0.00010 | 0.00011 (         | 0.00018 (                                                   |                 | 0.00011         | 0.00015 |
| 0.0               | 00011 | 0.00019    | $\sigma_{16} \hspace{0.2cm} 0.00011 \hspace{0.2cm} 0.00019 \hspace{0.2cm} 0.00026 \hspace{0.2cm} 0.00014 \hspace{0.2cm} 0.00017 \hspace{0.2cm} 0.00008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00014    | 0.00017 | 0.00008 ( | 0.00018         | 0.00018        | 0.00026         | $0.00026 \ 0.00019 \ 0.00011 \ 0.00013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00011 (                                                                                 | 0.00013 | D.00014                 | 0.00016 | 0.00011 | 0.00011 (         | $0.00014 \ 0.00016 \ 0.00011 \ 0.00011 \ 0.00018 \ 0.00017$ | 0.00017         | 0.00011         | 0.00015 |
| 0.0               | 0015  | 0.00030    | $\sigma_{17} \ 0.00019 \ 0.00033 \ 0.00045 \ 0.00025 \ 0.00030 \ 0.00013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00025    | 0.00030 | 0.00013 ( | 0.00031         | 0.00031        | 0.00044         | $0.00031 \ \ 0.00044 \ \ 0.00032 \ \ 0.00019 \ \ 0.00022 \ \ 0.00024 \ \ 0.00028 \ \ 0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00019 (                                                                                 | 0.00022 | 0.00024                 | 0.00028 | 0.00018 | 0.00018 (         | 0.00018 0.00032 0.00030                                     | 0:00030         | 0.00019         | 0.00026 |
| 0.0               | 0017  | 7 0.0003(  | $\sigma_{18}  0.00017  0.00030  0.00042  0.00023  0.00028  0.00012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00023    | 0.00028 |           | 0.00029 0.00028 | 0.00028        | 0.00042         | $0.00042 \ \ 0.00030 \ \ 0.00018 \ \ 0.00021 \ \ 0.00022 \ \ 0.00026 \ \ 0.00017 \ \ 0.00030 \ \ 0.00030 \ \ 0.00028$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00018 (                                                                                 | 0.00021 | 0.00022                 | 0.00026 | D.00017 | 0.00017           | 0:00030                                                     | 0.00028         | 0.00018         | 0.00025 |
| 0.0               | 00011 | 0.00020    | $\sigma_{19}  0.00011  0.00020  0.00027  0.00015  0.00018  0.00008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00015    | 0.00018 |           | 0.00019 0.00018 | 0.00018        | 0.00026         | $0.00026 \ 0.00019 \ 0.00012 \ 0.00013 \ 0.00014 \ 0.00017 \ 0.00011 \ 0.00011 \ 0.00019 \ 0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00012 (                                                                                 | 0.00013 | D.00014                 | 0.00017 | 0.00011 | 0.00011 (         | 0.00019                                                     |                 | 0.00011         | 0.00016 |
| 0.0               | 0016  | 0.0002     | $\sigma_{20}  0.00016  0.00027  0.00027  0.00026  0.00025  0.00026  0.00026  0.00027  0.00016  0.00019  0.00020  0.00015  0.00015  0.00026  0.00025  0.00025  0.00026  0.00025  0.00026  0.00025  0.00026  0.00025  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.00026  0.000$ | 0.00020    | 0.00025 | 0.00011 ( | 0.00026         | 0.00026        | 0.00037         | 0.00027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00016 (                                                                                 | 0.00019 | 0.00020                 | 0.00023 | 0.00015 | 0.00015 (         | 0.00026 (                                                   | 0.00025         | 0.00016         | 0.00022 |
|                   |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |         |           |                 |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |         |                         |         |         |                   |                                                             |                 |                 |         |

| Scenario       | Wealth minimization | Wealth maximization | Cumulative risk minimization | Cumulative risk maximization |
|----------------|---------------------|---------------------|------------------------------|------------------------------|
| W <sub>T</sub> | 12,854.60           | 14,034.92           | 13,341.66                    | 13,389                       |
| $Va_T$         | 0.00085             | 0.00078             | 0.00038                      | 0.001535                     |

 Table 7
 Extreme values of the terminal wealth and cumulative risk

#### **4 Numerical illustration**

The proposed models are illustrated through a real-world portfolio selection problem, the data for which is taken from Mehlawat (2016). For the convenience of the readers, the data are presented in Table 2. As given in Mehlawat (2016), we consider a problem with t = 3,  $W_1 = 10,000$  INR (Indian Rupee), and a set of 20 assets provided the wealth can be readjusted at the initiation of each period. The assets' return rates ( $\xi_{t,i}$ , t = 1, 2, 3;  $i = 1, 2, \ldots, 20$ ) are characterized by TrFNs. Furthermore,  $K_t$  is assumed as 5 and  $c_{t,i}$  is assumed as 0.3% for all the assets for each transaction (selling and buying). Also, r(t),  $l_{t,i}$ , and  $u_{t,i}$  are fixed as 8%, 10%, and 25% for all the three periods, respectively.

The possibilistic returns and variance–covariance matrices of the assets for the three periods are computed using Eqs. (1)-(3) and are presented in Tables 3, 4, 5, and 6, respectively.

The results from Tables 3, 4, 5, and 6 are used to build Model 2 to compute the extreme values of the terminal wealth and cumulative risk by first solving Model 2 as a single-objective minimization problem and then as a single-objective maximization problem subject to the same constraints. Corresponding to the obtained solutions, the other objectives' values are also computed. The results are presented in Table 7. These results offer bounds on the terminal wealth and cumulative risk, which are used to construct the membership, non-membership, and hesitation functions to build Models 4 and 5, as discussed in Sects. 3.4 and 3.5. Models 4 and 5 are then solved using the global solver in LINGO 11.0 for different combinations of  $\theta_W$  and  $\theta_{Va}$  (1 <  $\theta_W < 1.09, 0.25 < \theta_{Va} < 1$  for the optimistic scenario, and  $0.89 < \theta_W < 1$ ,  $1 < \theta_{Va} < 4.04$  for the pessimistic scenario). The obtained results are set down in Tables 8 and 9.

#### 4.1 Results and discussion

As seen from the results in Tables 8 and 9, we fix the value of  $\theta_W$  and vary the value of  $\theta_{Va}$  in both the optimistic and pessimistic scenarios to obtain different sets of results with different combinations of  $\theta_W$  and  $\theta_{Va}$ .

#### **Optimistic analysis**

In this scenario, the value of  $\theta_W$  varies from 1.01 to 1.08, while the value of  $\theta_{Va}$  varies from 0.9 to 0.3. Each set of results in Table 8 starts by attaining the maximum possi-

ble terminal wealth and minimum cumulative risk, which decrease as the value of  $\theta_{Va}$  decreases. A similar trend can be seen throughout the obtained results. The values of terminal wealth and cumulative risk progressively increase from one set of results to another as the value of  $\theta_W$  increases. This increase in  $\theta_W$  enables the model to attain maximum possible terminal wealth.

- The assets  $A_1$ ,  $A_4$ ,  $A_5$ ,  $A_8$ ,  $A_9$ ,  $A_{10}$ ,  $A_{11}$ ,  $A_{12}$ ,  $A_{15}$ , and  $A_{19}$  constitute the portfolio for t = 1 for different combinations of  $\theta_W$  and  $\theta_{Va}$ .
- The assets  $A_1$ ,  $A_2$ ,  $A_4$ ,  $A_5$ ,  $A_6$ ,  $A_8$ ,  $A_9$ ,  $A_{11}$ ,  $A_{12}$ ,  $A_{13}$ , and  $A_{16}$  are included in the portfolio for t = 2 for different combinations of  $\theta_W$  and  $\theta_{Va}$ . The assets  $A_1$  and  $A_8$ are included in the portfolio for all combinations of  $\theta_W$ and  $\theta_{Va}$ , with a constant maximum proportion of 25% of the capital invested in the asset  $A_1$ . The assets  $A_1$  and  $A_8$ offer better returns (subject to their associated risks) in comparison with other assets; therefore, they are included in the portfolio for all combinations of  $\theta_W$  and  $\theta_{Va}$  and, owing to the same reason, the asset  $A_1$  has been endowed with 25% of the capital.
- The assets  $A_1$ ,  $A_4$ ,  $A_6$ ,  $A_7$ ,  $A_8$ ,  $A_9$ ,  $A_{11}$ ,  $A_{15}$ , and  $A_{19}$  comprise the portfolio for t = 3 (should be process in math mode) for different combinations of  $\theta_W$  and  $\theta_{Va}$ , with asset  $A_{11}$  being included in the portfolio for all combinations of  $\theta_W$  and  $\theta_{Va}$  as the asset  $A_{11}$  offers better return (subject to its associated risks) in comparison with other assets.

Note that in accordance with the cardinality constraint, only five assets are included in the portfolio for each combination of  $\theta_W$  and  $\theta_{Va}$  in each period.

It can be seen from the results that the maximum terminal wealth is obtained for  $\theta_W = 1.08$  (case of maximum hesitation in terminal wealth) and  $\theta_{Va} = 0.9$ , viz. 14,027.45 with a minimum cumulative risk of 0.07%. The minimum terminal wealth is obtained for  $\theta_W = 1.01$  (case of minimum hesitation in terminal wealth) and  $\theta_{Va} = 0.3$ , viz. 13,472.49 with a minimum cumulative risk of 0.039%. Note that with the increase in the value of  $\theta_W$  that represents the increase in the degree of hesitation in terminal wealth, the value of the terminal wealth increases, i.e., within the obtained bounds on the value of  $\theta_W$  (1.01  $\leq \theta < 1.09$ ), the terminal wealth is consistently increasing. Consequently, there is an increase

| $(\theta_W, \theta_{Va})$ t | $A_1$    | $A_2$  | $A_4$       | $A_5$ | $A_6$ | $A_7$ | $A_8$  | A9 / | $A_{10}  A_{11}$ | $A_{12}$ |            | $A_{13}$ | $A_{15}$ | $A_{16}$ | $A_{19} Re(t)$ |         | $W_T$                                                                                                                                               | $Va_T$  | φ      | 1        | Э          | Computation<br>time (mm:ss) |
|-----------------------------|----------|--------|-------------|-------|-------|-------|--------|------|------------------|----------|------------|----------|----------|----------|----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|------------|-----------------------------|
| (1.01, 0.9) 1               | 1 0.25   | 0      | 0           | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11935 | 13,908.77 0.00048 0.88006 0.10688 0.01306 01:00                                                                                                     | 0.00048 | 0.8800 | 6 0.1068 | 8 0.01306  | 01:00                       |
| ()                          | 2 0.25   | 0.1    | 0.25        | 0     | 0     | 0     | 0.1675 | 0    | 0 0.2325         | 25 0     | 0          |          | 0        | 0        | 0              | 0.11870 |                                                                                                                                                     |         |        |          |            |                             |
| <b>G</b> J                  | 3 0.25   | 0      | 0.15        | 0     | 0.25  | 0     | 0.1    | 0    | 0 0.25           | 0        | 0          |          | 0        | 0        | 0              | 0.11073 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.8) 1               | 1 0.25   | 0      | 0           | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11935 | 13,835.84  0.00045  0.81072  0.16867  0.02061                                                                                                       | 0.00045 | 0.8107 | 2 0.1686 | 7 0.02061  | 01:10                       |
| C 1                         | 2 0.25   | 0.1962 | 0.25        | 0     | 0     | 0     | 0.2038 | 0    | 0 0.1            | 0        | 0          |          | 0        | 0        | 0              | 0.11630 |                                                                                                                                                     |         |        |          |            |                             |
| (J.)                        | 3 0.25   | 0      | 0.15        | 0     | 0.25  | 0     | 0      | 0    | 0 0.25           | 0        | 0          |          | 0.1      | 0        | 0              | 0.10729 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.7) 1               | 1 0.25   | 0      | 0.1         | 0     | 0     | 0     | 0      | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11841 | 0.11841  13, 771.62  0.00043  0.74966  0.22308  0.02726  01:15                                                                                      | 0.00043 | 0.7496 | 6 0.2230 | 8 0.02726  | 01:15                       |
| C1                          | 2 0.25   | 0.25   | 0.15        | 0     | 0     | 0     | 0.25   | 0    | 0 0              | 0        | 0.1        | .1       | 0        | 0        | 0              | 0.11310 |                                                                                                                                                     |         |        |          |            |                             |
| (T)                         | 3 0.25   | 0      | 0.1276      | 0     | 0.25  | 0     | 0      | 0    | 0 0.25           | 0        | 0          |          | 0.1224   | 0        | 0              | 0.10624 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.6) 1               | 1 0      | 0      | 0.25        | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11341 | 13,708.05  0.00041  0.68922  0.27693  0.03385  01:38                                                                                                | 0.00041 | 0.6892 | 2 0.2769 | 3 0.03385  | 01:38                       |
| ι I                         | 2 0.25   | 0.25   | 0.25        | 0     | 0     | 0     | 0.15   | 0    | 0 0              | 0        | 0          | 0.1      | 0        | 0        | 0              | 0.11349 |                                                                                                                                                     |         |        |          |            |                             |
| <i>a</i> )                  | 3 0.25   | 0      | 0.1         | 0     | 0.25  | 0     | 0      | 0    | 0 0.25           | 0        | 0          |          | 0.15     | 0        | 0              | 0.10569 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.5) 1               | 1 0      | 0      | 0.2193      | 0     | 0     | 0     | 0      | 0    | 0.25 0.25        | 0.1      | 0          |          | 0.1807   | 0        | 0              | 0.11164 | 13,639.52 0.00040 0.62407 0.33499 0.04094 01:37                                                                                                     | 0.00040 | 0.6240 | 7 0.3349 | 9 0.04094  | 01:37                       |
| (N                          | 2 0.25   | 0.25   | 0.2193      | 0     | 0     | 0     | 0.1807 | 0    | 0 0              | 0        | 0          | 0.1      | 0        | 0        | 0              | 0.11259 |                                                                                                                                                     |         |        |          |            |                             |
| <i>a</i> )                  | 3 0.25   | 0      | 0           | 0     | 0.25  | 0     | 0      | 0    | 0 0.25           | 0        | 0          |          | 0.15     | 0        | 0.1 (          | 0.10281 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.4) 1               | 1 0      | 0      | 0.15        | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0.25     | 25 0       |          | 0        | 0        | 0              | 0.10727 | 13,566.40  0.00039  0.55454  0.39694  0.04851                                                                                                       | 0.00039 | 0.5545 | 4 0.3969 | 4 0.04851  | 01:45                       |
| ι I                         | 2 0.25   | 0.25   | 0.1312      | 0     | 0     | 0     | 0.25   | 0    | 0 0              | 0        | 0          | 0.1188   | 0        | 0        | 0              | 0.11208 |                                                                                                                                                     |         |        |          |            |                             |
| (T)                         | 3 0.25   | 0      | 0           | 0     | 0.25  | 0     | 0      | 0    | 0 0.15           | 0        | 0          |          | 0.25     | 0        | 0.1 (          | 0.10174 |                                                                                                                                                     |         |        |          |            |                             |
| (1.01, 0.3) 1               | 1 0      | 0      | 0.15        | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0.25     | 25 0       |          | 0        | 0        | 0              | 0.10727 | $0.10727 \hspace{0.2cm} 13,472.49 \hspace{0.2cm} 0.00039 \hspace{0.2cm} 0.46526 \hspace{0.2cm} 0.47651 \hspace{0.2cm} 0.05824 \hspace{0.2cm} 02:30$ | 0.00039 | 0.4652 | 6 0.4765 | 1 0.05824  | 02:30                       |
| C N                         | 2 0.25   | 0.25   | 0           | 0     | 0     | 0     | 0.1541 | 0    | 0 0              | 0.2      | 0.2459 0.1 | 1.       | 0        | 0        | 0              | 0.10438 |                                                                                                                                                     |         |        |          |            |                             |
| (T)                         | 3 0.25   | 0      | 0           | 0     | 0.25  | 0     | 0      | 0    | 0 0.15           | 0        | 0          |          | 0.25     | 0        | 0.1            | 0.10174 |                                                                                                                                                     |         |        |          |            |                             |
| (1.02, 0.9) 1               | 1 0.25   | 0      | 0           | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.15        | 0        | 0          |          | 0.25     | 0        | 0              | 0.12081 | 13,957.69  0.00052  0.86290  0.11888  0.01822                                                                                                       | 0.00052 | 0.8625 | 0 0.1188 | 8 0.01822  | 00:17                       |
| (1                          | 2 0.25   | 0      | 0.25        | 0     | 0.1   | 0     | 0.25   | 0    | 0 0.15           | 0        | 0          |          | 0        | 0        | 0              | 0.11928 |                                                                                                                                                     |         |        |          |            |                             |
| <i>(</i> 1)                 | 3 0.1767 | 0      | 0.25        | 0     | 0.25  | 0     | 0.1733 | 0    | 0 0.15           | 0        | 0          |          | 0        | 0        | 0              | 0.11262 |                                                                                                                                                     |         |        |          |            |                             |
| (1.02, 0.8) 1               | 1 0.25   | 0      | 0           | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11935 | 13,905.93 0.00048 0.86028 0.10928 0.03043 00:29                                                                                                     | 0.00048 | 0.8602 | 8 0.1092 | 8 0.03043  | 00:29                       |
| ι I                         | 2 0.25   | 0.1    | 0.25        | 0     | 0     | 0     | 0.1842 | 0    | 0 0.2158         | 58 0     | 0          |          | 0        | 0        | 0              | 0.11857 |                                                                                                                                                     |         |        |          |            |                             |
| (T)                         | 3 0.25   | 0      | 0.15        | 0     | 0.25  | 0     | 0.1    | 0    | 0 0.25           | 0        | 0          |          | 0        | 0        | 0              | 0.11063 |                                                                                                                                                     |         |        |          |            |                             |
| (1.02, 0.7) 1               | 1 0.25   | 0      | 0           | 0     | 0     | 0     | 0.1    | 0    | 0.25 0.25        | 0        | 0          |          | 0.15     | 0        | 0              | 0.11935 | 13,856.14  0.00045  0.80635  0.15147  0.04218  00:59                                                                                                | 0.00045 | 0.8063 | 5 0.1514 | 17 0.04218 | 00:59                       |
| ι I                         | 2 0.25   | 0.1157 | 0.25        | 0     | 0     | 0     | 0.25   | 0    | 0 0.1343         | 43 0     | 0          |          | 0        | 0        | 0              | 0.11773 |                                                                                                                                                     |         |        |          |            |                             |
| c                           |          | c      | 1<br>7<br>0 | ¢     | 0     | 1     | ,      |      | 1                | ,        |            |          |          |          |                |         |                                                                                                                                                     |         |        |          |            |                             |

| $(\theta_W, \theta_{Va})$ t | $t$ $A_1$ | $A_2$  | $A_4$  | $A_5$ | $A_6$  | $A_7$ | $A_8$  | $A_9$ | $A_{10}  A_{11}$ |        | A 12   | A13 / | $A_{15}$ | $A_{16}$ | $A_{19}$ <i>H</i> | Re(t)   | $W_T V a_T$                                              | φ      | 2                                             | 3       | Computation<br>time (mm:ss) |
|-----------------------------|-----------|--------|--------|-------|--------|-------|--------|-------|------------------|--------|--------|-------|----------|----------|-------------------|---------|----------------------------------------------------------|--------|-----------------------------------------------|---------|-----------------------------|
| (1.02, 0.6) 1               | 1 0.25    | 0      | 0.1    | 0     | 0      | 0     | 0      | 0     | 0.25 0.25        | 25     | 0      | 0     | 0.15     | 0        | 0                 | 0.11841 | 13,803.42 0.00044 0.74925 0.19613 0.05462                | 0.7492 | 5 0.19613                                     | 0.05462 | 01:43                       |
|                             | 2 0.25    | 0.25   | 0.15   | 0     | 0      | 0     | 0.25   | 0     | 0 0.1            | _      | 0      | 0     | 0        | 0        | 0 0               | 0.11513 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.1245 | 0     | 0.25   | 0     | 0      | 0     | 0 0.25           | 25     | 0      | 0     | 0.1255   | 0        | 0 0               | 0.10678 |                                                          |        |                                               |         |                             |
| (1.02, 0.5) 1               | 1 0.1843  | 3 0    | 0.2157 | 0     | 0      | 0     | 0      | 0     | 0.25 0.25        | 25     | 0      | 0     | 0.1      | 0        | 0 0               | 0.11595 | 13,741.39 0.00042 0.68206 0.24869 0.06925 01:27          | 0.6820 | 5 0.24869                                     | 0.06925 | 01:27                       |
|                             | 2 0.25    | 0.25   | 0.2157 | 0     | 0      | 0     | 0.1843 | 0     | 0 0              |        | 0      | 0.1 ( | 0        | 0        | 0 0               | 0.11366 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.1    | 0     | 0.25   | 0     | 0      | 0     | 0 0.25           | 25     | 0      | 0     | 0.15     | 0        | 0 0               | 0.10569 |                                                          |        |                                               |         |                             |
| (1.02, 0.4) 1               | 1 0       | 0      | 0.25   | 0     | 0      | 0     | 0.15   | 0     | 0.25 0.25        | 25     | 0      | 0     | 0.1      | 0        | 0 0               | 0.11298 | 13,658.60 0.00041 0.59239 0.31883 0.08878 02:40          | 0.5923 | 0.31883                                       | 0.08878 | 02:40                       |
|                             | 2 0.25    | 0.25   | 0.15   | 0     | 0      | 0     | 0.25   | 0     | 0 0              |        | 0      | 0.1 ( | 0        | 0        | 0 0               | 0.11280 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0      | 0     | 0.25   | 0     | 0      | 0     | 0.0              | 0.25   | 0      | 0     | 0.15     | 0        | 0.1 0             | 0.10281 |                                                          |        |                                               |         |                             |
| (1.02, 0.3)                 | 1 0       | 0      | 0.15   | 0     | 0      | 0     | 0.1    | 0     | 0.25 0.25        |        | 0.25 ( | 0     | 0        | 0        | 0 0               | 0.10727 | 13,531.55  0.00039  0.45477  0.42647  0.11876  03.57     | 0.4547 | 7 0.42647                                     | 0.11876 | 03:57                       |
|                             | 2 0.25    | 0.25   | 0.1    | 0     | 0      | 0     | 0.25   | 0     | 0 0              |        | 0.15 ( | 0     | 0        | 0        | 0 0               | 0.10922 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0      | 0     | 0.25   | 0     | 0      | 0     | 0 0.15           | 15     | 0      | 0     | 0.25     | 0        | 0.1 0             | 0.10174 |                                                          |        |                                               |         |                             |
| (1.03, 0.9)                 | 1 0.25    | 0      | 0      | 0     | 0      | 0     | 0.15   | 0     | 0.25 0.1         | _      | 0      | 0     | 0.25     | 0        | 0 0               | 0.12110 | 13,981.29  0.00055  0.83409  0.14386  0.02205  00:18     | 0.8340 | ) 0.14386                                     | 0.02205 | 00:18                       |
|                             | 2 0.25    | 0      | 0.25   | 0     | 0.1    | 0     | 0.25   | 0     | 0 0.15           | 15     | 0      | 0     | 0        | 0        | 0 0               | 0.11928 |                                                          |        |                                               |         |                             |
|                             | 3 0.2374  | 4 0    | 0.25   | 0     | 0.1126 | 0     | 0.25   | 0     | 0 0.             | 0.15   | 0      | 0     | 0        | 0        | 0 0               | 0.11420 |                                                          |        |                                               |         |                             |
| (1.03, 0.8)                 | 1 0.25    | 0      | 0      | 0     | 0      | 0     | 0.1    | 0     | 0.25 0.          | 0.15   | 0      | 0     | 0.25     | 0        | 0 0               | 0.12081 | 13,941.69  0.00050  0.85579  0.10588  0.03833  00:37     | 0.8557 | ) 0.10588                                     | 0.03833 | 00:37                       |
|                             | 2 0.25    | 0      | 0.25   | 0.1   | 0      | 0     | 0.25   | 0     | 0 0.             | 0.15   | 0      | 0     | 0        | 0        | 0 0               | 0.11912 |                                                          |        |                                               |         |                             |
|                             | 3 0.2205  | 5 0    | 0.25   | 0     | 0.25   | 0     | 0.1295 | 0     | 0 0.             | 0.15   | 0      | 0     | 0        | 0        | 0 0               | 0.11149 |                                                          |        |                                               |         |                             |
| (1.03, 0.7)                 | 1 0.25    | 0      | 0      | 0     | 0      | 0     | 0.1    | 0     | 0.25 0.3         | 0.25   | 0      | 0     | 0.15     | 0        | 0 0               | 0.11935 | 13,901.96 0.00048 0.83268 0.11265 0.05467 00:51          | 0.8326 | 3 0.11265                                     | 0.05467 | 00:51                       |
|                             | 2 0.25    | 0.1    | 0.25   | 0     | 0      | 0     | 0.2075 | 0     | 0 0.             | 0.1925 | 0      | 0     | 0        | 0        | 0 0               | 0.11840 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.15   | 0     | 0.25   | 0     | 0.1    | 0     | 0.0              | 0.25   | 0      | 0     | 0        | 0        | 0 0               | 0.11049 |                                                          |        |                                               |         |                             |
| (1.03, 0.6)                 | 1 0.25    | 0      | 0      | 0     | 0      | 0     | 0.1    | 0     | 0.25 0.3         | 0.25   | 0      | 0     | 0.15     | 0        | 0 0               | 0.11935 | $13,857.76  0.00045  0.77707  0.15009  0.07284  01{:}13$ | 0.7770 | 7 0.15009                                     | 0.07284 | 01:13                       |
|                             | 2 0.25    | 0.1110 | 0.25   | 0     | 0      | 0     | 0.25   | 0     | 0 0.             | 0.1390 | 0      | 0     | 0        | 0        | 0 0               | 0.11783 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.15   | 0     | 0.25   | 0     | 0      | 0     | 0.0              | 0.25   | 0      | 0     | 0.1      | 0        | 0 0               | 0.10752 |                                                          |        |                                               |         |                             |
| (1.03, 0.5)                 | 1 0.25    | 0      | 0.125  | 0     | 0      | 0     | 0      | 0     | 0.25 0.25        | 25     | 0      | 0     | 0.125    | 0        | 0 0               | 0.11796 | 13802.44 0.00044                                         | 0.7074 | $0.00044 \ \ 0.70745 \ \ 0.19696 \ \ 0.09558$ | 0.09558 | 01:42                       |
|                             | 2 0.25    | 0.25   | 0.15   | 0     | 0      | 0     | 0.25   | 0     | 0 0.1            | _      | 0      | 0     | 0        | 0        | 0 0               | 0.11528 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.1355 | 0     | 0.25   | 0     | 0      | 0     | 0 0.25           | 25     | 0      | 0     | 0.1145   | 0        | 0 0               | 0.10700 |                                                          |        |                                               |         |                             |
| (1.03, 0.4)                 | 1 0.1     | 0      | 0.25   | 0     | 0      | 0     | 0      | 0     | 0.25 0.25        | 25     | 0      | 0     | 0.15     | 0        | 0 0               | 0.11484 | 13,725.72  0.00042  0.61092  0.26196  0.12712            | 0.6109 | 2 0.26196                                     | 0.12712 | 02:01                       |
|                             | 2 0.25    | 0.25   | 0.25   | 0     | 0      | 0     | 0.15   | 0     | 0 0              |        | 0      | 0.1 ( | 0        | 0        | 0 0               | 0.11349 |                                                          |        |                                               |         |                             |
|                             | 3 0.25    | 0      | 0.1    | 0     | 0.25   | 0     | 0      | 0     | 0 0.25           | 25     | 0      | 0     | 0.15     | 0        | 0 0               | 0.10569 |                                                          |        |                                               |         |                             |
| (1.03, 0.3)                 | 1 0       | 0      | 0.15   | 0     | 0      | 0     | 0.1    | 0     | 0.25 0.25        |        | 0.25 ( | 0     | 0        | 0        | 0 0               | 0.10727 | 13,584.81  0.00040  0.43360  0.38134  0.18506  02:44     | 0.4336 | 0.38134                                       | 0.18506 | 02:44                       |
|                             | 2 0.25    | 0.25   | 0.15   | 0     | 0      | 0     | 0.25   | 0     | 0 0              |        | 0      | 0.1 ( | 0        | 0        | 0 0               | 0.11250 |                                                          |        |                                               |         |                             |
|                             | 3 0 25    | 0      | 0      |       | 0.75   | C     | 0      | C     | , U              | 0.25   | 0      | 0     | 0.15     |          | 0 1 0             | 0 10281 |                                                          |        |                                               |         |                             |

| $(\theta_W, \theta_{Va})$ t | $A_1$    | $A_2$  | $A_4$  | $A_5$ | $A_6$ | $A_7$ | $A_8$  | $A_9$ | $A_{10}$ | $A_{11}$ | $A_{12}$ | $^{2}A_{13}$ | 3 A15  | $A_{16}$ | 6 A19  | Re(t)   | $W_T$                                           | $Va_T$  | φ       | 1        | З         | Computation<br>time (mm:ss) |
|-----------------------------|----------|--------|--------|-------|-------|-------|--------|-------|----------|----------|----------|--------------|--------|----------|--------|---------|-------------------------------------------------|---------|---------|----------|-----------|-----------------------------|
| (1.04, 0.9) 1               | 0.25     | 0      | 0      | 0     | 0     | 0     | 0.1970 | 0     | 0.2030   | 0        | 0        | 0            | 0.25   | 0        | 0.1    | 0.12247 | 13,995.06 0.00058 0.80386 0.17007 0.02607 00:26 | 0.00058 | 0.8038  | 5 0.1700 | 7 0.02607 | 00:26                       |
| . 4                         | 2 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11896 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11426 |                                                 |         |         |          |           |                             |
| (1.04, 0.8) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.15     | 0        | 0            | 0.25   | 0        | 0      | 0.12081 | 13,965.19 0.00053 0.82843 0.12597 0.04560 00:57 | 0.00053 | 0.8284  | 3 0.1259 | 7 0.04560 | 00:57                       |
| . 4                         | 2 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11928 |                                                 |         |         |          |           |                             |
|                             | 3 0.1424 | 0      | 0.2217 | 0     | 0.25  | 0     | 0.2359 | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11321 |                                                 |         |         |          |           |                             |
| (1.04, 0.7) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.1791   | 0        | 0            | 0.2209 | 06       | 0      | 0.00023 | 13,933.64 0.00050 0.83388 0.09989 0.06623 01:31 | 0.00050 | 0.83388 | 8660.0 8 | 9 0.06623 | 01:31                       |
| . 4                         | 2 0.25   | 0      | 0.25   | 0.1   | 0     | 0     | 0.2210 | 0     | 0        | 0.1790   | 0 (      | 0            | 0      | 0        | 0      | 0.11935 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.2210 | 0     | 0.25  | 0     | 0.1    | 0     | 0        | 0.1790   | 0 (      | 0            | 0      | 0        | 0      | 0.11105 |                                                 |         |         |          |           |                             |
| (1.04, 0.6) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.25     | 0        | 0            | 0.15   | 0        | 0      | 0.11935 | 13,896.02 0.00047 0.79148 0.11768 0.09084 03:29 | 0.00047 | 0.79148 | 3 0.1176 | 8 0.09084 | 03:29                       |
| . 4                         | 2 0.25   | 0.1    | 0.25   | 0     | 0     | 0     | 0.2425 | 0     | 0        | 0.1575   | 0        | 0            | 0      | 0        | 0      | 0.11813 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.15   | 0     | 0.25  | 0     | 0.1    | 0     | 0        | 0.25     | 0        | 0            | 0      | 0        | 0      | 0.11028 |                                                 |         |         |          |           |                             |
| (1.04, 0.5) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.25     | 0        | 0            | 0.15   | 0        | 0      | 0.11935 | 13,849.28 0.00045 0.72132 0.15728 0.12140 04:37 | 0.00045 | 0.72132 | 2 0.1572 | 8 0.12140 | 04:37                       |
| . 4                         | 2 0.25   | 0.1353 | 0.25   | 0     | 0     | 0     | 0.25   | 0     | 0        | 0.1147   | 0 /      | 0            | 0      | 0        | 0      | 0.11729 |                                                 |         |         |          |           |                             |
| 04                          | 3 0.25   | 0      | 0.15   | 0     | 0.25  | 0     | 0      | 0     | 0        | 0.25     | 0        | 0            | 0.1    | 0        | 0      | 0.10737 |                                                 |         |         |          |           |                             |
| (1.04, 0.4) 1               | 0.25     | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.25     | 0        | 0            | 0.15   | 0        | 0      | 0.11935 | 13,778.66 0.00043 0.61531 0.21711 0.16758       | 0.00043 | 0.6153  | 0.2171   | 1 0.16758 | 05:51                       |
| . 4                         | 2 0.25   | 0.25   | 0.15   | 0     | 0     | 0     | 0.25   | 0     | 0        | 0        | 0        | 0.1          | 0      | 0        | 0      | 0.11310 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.1091 | 0     | 0.25  | 0     | 0      | 0     | 0        | 0.25     | 0        | 0            | 0.1409 | 06       | 0      | 0.10588 |                                                 |         |         |          |           |                             |
| (1.04, 0.3) 1               | 0 1      | 0      | 0.1887 | 0     | 0     | 0     | 0.2113 | 0     | 0.25     | 0.25     | 0.1      | 0            | 0      | 0        | 0      | 0.11038 | 13,634.85 0.00040 0.39941 0.33895 0.26163 07:30 | 0.00040 | 0.3994  | 0.3389:  | 5 0.26163 | 07:30                       |
| . 4                         | 2 0.25   | 0.25   | 0.18   | 0     | 0     | 0     | 0.22   | 0     | 0        | 0        | 0        | 0.1          | 0      | 0        | 0      | 0.11347 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0      | 0     | 0.25  | 0     | 0      | 0     | 0        | 0.25     | 0        | 0            | 0.15   | 0        | 0.1    | 0.10281 |                                                 |         |         |          |           |                             |
| (1.05, 0.9) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1787 | 0     | 0.1      | 0        | 0        | 0            | 0.25   | 0        | 0.2213 | 0.12335 | 14,004.72 0.00061 0.76982 0.19959 0.03059 00:56 | 0.00061 | 0.76982 | 2 0.1995 | 0.03059   | 00:56                       |
| . 4                         | 2 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11885 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11426 |                                                 |         |         |          |           |                             |
| (1.05, 0.8) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1596 | 0     | 0.2404   | 0.1      | 0        | 0            | 0.25   | 0        | 0      | 0.12110 | 13,982.67  0.00055  0.80086  0.14621  0.05293   | 0.00055 | 0.8008  | 5 0.1462 | 1 0.05293 | 01:11                       |
| . 1                         | 2 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11934 |                                                 |         |         |          |           |                             |
|                             | 3 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11426 |                                                 |         |         |          |           |                             |
| (1.05, 0.7) 1               | 1 0.25   | 0      | 0      | 0     | 0     | 0     | 0.1    | 0     | 0.25     | 0.15     | 0        | 0            | 0.25   | 0        | 0      | 0.12081 | 13,957.33 0.00052 0.80287 0.11853 0.07860 02:36 | 0.00052 | 0.8028  | 7 0.1185 | 3 0.07860 | 02:36                       |
| . 4                         | 2 0.25   | 0      | 0.25   | 0     | 0.1   | 0     | 0.25   | 0     | 0        | 0.15     | 0        | 0            | 0      | 0        | 0      | 0.11928 |                                                 |         |         |          |           |                             |
|                             | 3 0.1791 | 0      | 0.25   | C     | 0 25  | C     | 0 1709 | C     | 0        | 0.15     | C        | 0            | 0      | 0        | 0      | 0 11750 |                                                 |         |         |          |           |                             |

| Table 8 continued           | ntinued  |       |        |        |        |       |        |      |          |          |          |            |          |          |          |         |                                                                   |
|-----------------------------|----------|-------|--------|--------|--------|-------|--------|------|----------|----------|----------|------------|----------|----------|----------|---------|-------------------------------------------------------------------|
| $(\theta_W, \theta_{Va})$ t | $t A_1$  | $A_2$ | $A_4$  | $A_5$  | $A_6$  | $A_7$ | $A_8$  | 49 i | $A_{10}$ | $A_{11}$ | $A_{12}$ | $A_{13}$ , | $A_{15}$ | $A_{16}$ | $A_{19}$ | Re(t)   | $W_T$ $Va_T$ $\rho$ $\tau$ $\omega$ Computation time (mm:ss)      |
| (1.05, 0.6) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.1    | 0    | 0.25     | 0.15     | 0        | 0          | 0.25     | 0        | 0        | 0.12081 | 0.12081 13,927.06 0.00049 0.79448 0.09626 0.10925 01:58           |
|                             | 2 0.25   | 0.1   | 0.25   | 0      | 0      | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11807 |                                                                   |
|                             | 3 0.2306 | 0     | 0.25   | 0      | 0.25   | 0     | 0.1194 | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11137 |                                                                   |
| (1.05, 0.5) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.1    | 0    | 0.25     | 0.1826   | 0        | 0          | 0.2174   | 0        | 0        | 0.12033 | 13,885.12 0.00047 0.72134 0.12692 0.15174 02.03                   |
|                             | 2 0.25   | 0.1   | 0.25   | 0      | 0      | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11807 |                                                                   |
|                             | 3 0.25   | 0     | 0.25   | 0      | 0.25   | 0     | 0      | 0    | 0        | 0.15     | 0        | 0          | .1       | 0        | 0        | 0.10849 |                                                                   |
| (1.05, 0.4) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.1    | 0    | 0.25     | 0.25     | 0        | 0          | .15      | 0        | 0        | 0.11935 | 13,825.72 0.00044 0.61085 0.17724 0.21191 03:12                   |
|                             | 2 0.25   | 0.25  | 0.2406 | 0      | 0      | 0     | 0.1594 | 0    | 0        | 0.1      | 0        | 0          | _        | 0        | 0        | 0.11548 |                                                                   |
|                             | 3 0.25   | 0     | 0.15   | 0      | 0.25   | 0     | 0      | 0    | 0        | 0.25     | 0        | 0          | .1       | 0        | 0        | 0.10729 |                                                                   |
| (1.05, 0.3) 1 0             | 0 1      | 0     | 0.1182 | 0      | 0      | 0     | 0.1318 | 0    | 0.25     | 0.25     | 0        | 0          | 0.25     | 0        | 0        | 0.11551 | 13,685.90 0.00041 0.35077 0.29570 0.35353 04:10                   |
|                             | 2 0.25   | 0.25  | 0.15   | 0      | 0      | 0     | 0.25   | 0    | 0        | 0        | 0        | 0.1 (      | _        | 0        | 0        | 0.11250 |                                                                   |
|                             | 3 0.25   | 0     | 0      | 0      | 0.25   | 0     | 0      | 0    | 0        | 0.25     | 0        | 0          | 0.15     | 0        | 0.1      | 0.10281 |                                                                   |
| (1.06, 0.9) 1 0.25          | 1 0.25   | 0     | 0      | 0.1059 | 0 (    | 0     | 0.25   | 0    | 0        | 0        | 0        | 0          | 0.25     | 0        | 0.1441   | 0.12289 | 0.12289  14,013.10  0.00064  0.73770  0.22744  0.03486  03:40     |
|                             | 2 0.25   | 0     | 0.25   | 0.1    | 0      | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11972 |                                                                   |
|                             | 3 0.25   | 0     | 0.25   | 0      | 0      | —     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11452 |                                                                   |
| (1.06, 0.8) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.2102 | 0    | 0.1898   | 0        | 0        | 0          | 0.25     | 0        | 0.1      | 0.12245 | 0.12245 13,995.90 0.00058 0.76551 0.17216 0.06233 02:52           |
|                             | 2 0.25   | 0     | 0.25   | 0      | 0.1    | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11904 |                                                                   |
|                             | 3 0.25   | 0     | 0.25   | 0      | 0.1    | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11426 |                                                                   |
| (1.06, 0.7) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.15   | 0    | 0.25     | 0.1      | 0        | 0          | 0.25     | 0        | 0        | 0.12110 | 0.12110 13,977.22 $0.00054$ $0.76882$ $0.13901$ $0.09217$ $03:37$ |
|                             | 2 0.25   | 0     | 0.25   | 0      | 0.1    | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11928 |                                                                   |
|                             | 3 0.1708 | 0     | 0.25   | 0      | 0.1792 | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11388 |                                                                   |
| (1.06, 0.6) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.1    | 0    | 0.25     | 0.15     | 0        | 0          | 0.25     | 0        | 0        | 0.12081 | 13,953.34 0.00051 0.75484 0.11483 0.13033 03:34                   |
| . •                         | 2 0.25   | 0     | 0.25   | 0      | 0.1    | 0     | 0.25   | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11928 |                                                                   |
|                             | 3 0.2058 | 0     | 0.25   | 0      | 0.25   | 0     | 0.1442 | 0    | 0        | 0.15     | 0        | 0          | _        | 0        | 0        | 0.11227 |                                                                   |
| (1.06, 0.5) 1 0.25          | 1 0.25   | 0     | 0      | 0      | 0      | 0     | 0.1    | 0    | 0.25     | 0.1748   | 0        | 0          | 0.2252   | 0        | 0        | 0.12044 | 0.12044 13,921.08 $0.00049$ $0.72169$ $0.09645$ $0.18186$ $02.59$ |
|                             | 2 0.25   | 0.1   | 0.25   | 0      | 0      | 0     | 0.2252 | 0    | 0        | 0.1748   | 0        | 0          | _        | 0        | 0        | 0.11826 |                                                                   |
|                             | 3 0.25   | 0     | 0.2252 | 0      | 0.25   | 0     | 0.1    | 0    | 0        | 0.1748   | 0        | 0          | _        | 0        | 0        | 0.11106 |                                                                   |

| $(\theta_W, \theta_{Va})$ | $t$ $A_1$ | $A_2$ | $A_4$  | $A_5$ . | $A_6$  | $A_7$  | $A_8$  | $A_9 \ A_{10}$ |          | $A_{11}$ | A12 / | $A_{13} A_{15}$ |      | $A_{16} A_{19}$ | Re(t)   | $W_T$                                                             | $Va_T$  | Ø       | 1       | З       | Computation<br>time (mm:ss) |
|---------------------------|-----------|-------|--------|---------|--------|--------|--------|----------------|----------|----------|-------|-----------------|------|-----------------|---------|-------------------------------------------------------------------|---------|---------|---------|---------|-----------------------------|
| (1.06, 0.4) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.1    | 0 0.           | 0.25 0.  | 0.25     | 0 0   | 0.15            | 0    | 0               | 0.11935 | 0.11935 13,867.37 0.00046 0.59040 0.14195 0.26765 02:43           | 0.00046 | 0.59040 | 0.14195 | 0.26765 | 02:43                       |
|                           | 2 0.25    | 0.1   | 0.25   | 0       | 0      | 0      | 0.2160 | 0 0            | 0        | 0.1840   | 0 0   | 0               | 0    | 0               | 0.11833 |                                                                   |         |         |         |         |                             |
|                           | 3 0.25    | 0     | 0.15   | 0       | 0.25   | 0      | 0      | 0 0            | 0        | 0.25     | 0 0   | 0.1             | 0    | 0               | 0.10779 |                                                                   |         |         |         |         |                             |
| (1.06, 0.3) 1 0.1866      | 1 0.1866  | 0     | 0.2134 | 0 1     | 0      | 0      | 0      | 0.0            | 0.25 0.  | 0.25     | 0 0   | 0.1             | 0    | 0               | 0.11600 | 0.11600  13.741.95  0.00042  0.28378  0.24821  0.46801  02:07     | 0.00042 | 0.28378 | 0.24821 | 0.46801 | 02:07                       |
|                           | 2 0.25    | 0.25  | 0.2134 | 0 1     | 0      | 0      | 0.1866 | 0 0            | 0        |          | 0 0   | 0.1 0           | 0    | 0               | 0.11365 |                                                                   |         |         |         |         |                             |
|                           | 3 0.25    | 0     | 0.1    | 0       | 0.25   | 0      | 0      | 0 0            | 0        | 0.25     | 0 0   | 0.15            | 0    | 0               | 0.10569 |                                                                   |         |         |         |         |                             |
| (1.07, 0.9) 1 0.25        | 1 0.25    | 0     | 0      | 0.1     | 0      | 0      | 0.2439 | 0 0            | 0        |          | 0 0   | 0.25            | 0    | 0.1561          |         | 0.12297  14,020.62  0.00067  0.70766  0.25349  0.03885  02:56     | 0.00067 | 0.70766 | 0.25349 | 0.03885 | 02:56                       |
|                           | 2 0.25    | 0     | 0.25   | 0.1     | 0      | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11969 |                                                                   |         |         |         |         |                             |
|                           | 3 0.1     | 0     | 0.25   | 0       | 0      | 0.25   | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11507 |                                                                   |         |         |         |         |                             |
| (1.07, 0.8) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.2007 | 0 0.           | 0.1993 0 |          | 0 0   | 0.25            | 0    | 0.1             | 0.12246 | $0.12246  14,006.88  0.00062  0.71332  0.21048  0.07620  03{:}11$ | 0.00062 | 0.71332 | 0.21048 | 0.07620 | 03:11                       |
|                           | 2 0.25    | 0     | 0.25   | 0       | 0.1    | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11898 |                                                                   |         |         |         |         |                             |
|                           | 3 0       | 0     | 0.25   | 0       | 0.1    | 0.25   | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11518 |                                                                   |         |         |         |         |                             |
| (1.07, 0.7) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.1811 | 0.0            | 0.2189 0 |          | 0 0   | 0.25            | 0    | 0.1             | 0.12248 | 0.12248 13,994.04 0.00057 0.72135 0.16755 0.11110 05:09           | 0.00057 | 0.72135 | 0.16755 | 0.11110 | 05:09                       |
|                           | 2 0.25    | 0     | 0.25   | 0       | 0.1    | 0      | 0.25   | 0 0            |          |          | 0 0   | 0               | 0    | 0               | 0.11886 |                                                                   |         |         |         |         |                             |
|                           | 3 0.25    | 0     | 0.25   | 0       | 0.1    | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11426 |                                                                   |         |         |         |         |                             |
| (1.07, 0.6) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.15   | 0.0            | 0.25 0.1 | -        | 0 0   | 0.25            | 0    | 0               | 0.12110 | 0.12110 13,976.99 0.00054 0.70382 0.13873 0.15745 04:59           | 0.00054 | 0.70382 | 0.13873 | 0.15745 | 04:59                       |
|                           | 2 0.25    | 0     | 0.25   | 0       | 0.1    | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11928 |                                                                   |         |         |         |         |                             |
|                           | 3 0.1669  | 0     | 0.25   | 0       | 0.1831 | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11386 |                                                                   |         |         |         |         |                             |
| (1.07, 0.5) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.1    | 0.0            | 0.25 0.  | 0.15     | 0 0   | 0.25            | 0    | 0               | 0.12081 | 0.12081 13,952.08 0.00051 0.66118 0.11367 0.22515 06:34           | 0.00051 | 0.66118 | 0.11367 | 0.22515 | 06:34                       |
|                           | 2 0.25    | 0     | 0.25   | 0       | 0.1    | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11928 |                                                                   |         |         |         |         |                             |
|                           | 3 0.2142  | 0     | 0.25   | 0       | 0.25   | 0      | 0.1358 | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11217 |                                                                   |         |         |         |         |                             |
| (1.07, 0.4) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.1    | 0.0            | 0.25 0.  | 0.25     | 0 0   | 0.15            | 0    | 0               | 0.11935 | 0.11935 13,910.58 0.00048 0.55672 0.10534 0.33793 07:05           | 0.00048 | 0.55672 | 0.10534 | 0.33793 | 07:05                       |
|                           | 2 0.25    | 0.1   | 0.25   | 0       | 0      | 0      | 0.1568 | 0 0            | 0        | 0.2432   | 0 0   | 0               | 0    | 0               | 0.11878 |                                                                   |         |         |         |         |                             |
|                           | 3 0.25    | 0     | 0.15   | 0       | 0.25   | 0      | 0.1    | 0 0            | 0        | 0.25     | 0 0   | 0               | 0    | 0               | 0.11079 |                                                                   |         |         |         |         |                             |
| (1.07, 0.3) 1 0.25        | 1 0.25    | 0     | 0.1    | 0       | 0      | 0      | 0      | 0.0            | 0.25 0.  | 0.25     | 0 0   | 0.15            | 0    | 0               | 0.11841 | 0.11841  13,801.74  0.00043  0.16871  0.19755  0.63374  08:22     | 0.00043 | 0.16871 | 0.19755 | 0.63374 | 08:22                       |
|                           | 2 0.25    | 0.25  | 0.15   | 0       | 0      | 0      | 0.25   | 0 0            | 0.1      | 1        | 0 0   | 0               | 0    | 0               | 0.11513 |                                                                   |         |         |         |         |                             |
|                           | 3 0.25    | 0     | 0.1178 | 0       | 0.25   | 0      | 0      | 0 0            | 0        | 0.25     | 0 0   | 0.1322          | 22 0 | 0               | 0.10665 |                                                                   |         |         |         |         |                             |
| (1.08, 0.9) 1 0.25        | 1 0.25    | 0     | 0      | 0       | 0      | 0      | 0.25   | 0.1 0          | 0        |          | 0 0   | 0.25            | 0    | 0.15            | 0.12325 | 0.12325  14,027.45  0.00070  0.67760  0.27956  0.04285  02:40     | 0.00070 | 0.67760 | 0.27956 | 0.04285 | 02:40                       |
|                           | 2 0.25    | 0     | 0.25   | 0       | 0      | 0      | 0.25   | $0.1 \ 0$      | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11999 |                                                                   |         |         |         |         |                             |
|                           | 3 0.1082  | 0     | 0.25   | 0       | 0      | 0.2418 | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11504 |                                                                   |         |         |         |         |                             |
| (1.08, 0.8) 1 0.25        | 1 0.25    | 0     | 0      | 0.1     | 0      | 0      | 0.25   | 0 0            | 0        |          | 0 0   | 0.25            | 0    | 0.1503          |         | 0.12292  14,019.24  0.00067  0.66186  0.24826  0.08988  03:42     | 0.00067 | 0.66186 | 0.24826 | 0.08988 | 03:42                       |
|                           | 2 0.25    | 0     | 0.25   | 0.1     | 0      | 0      | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11972 |                                                                   |         |         |         |         |                             |
|                           | 3 0.1267  | 0     | 0.25   | 0       | 0      | 0.2233 | 0.25   | 0 0            | 0        | 0.15     | 0 0   | 0               | 0    | 0               | 0.11497 |                                                                   |         |         |         |         |                             |
|                           |           |       |        |         |        |        |        |                |          |          |       |                 |      |                 |         |                                                                   |         |         |         |         |                             |

|                             | 1.         | 74<br>74  | $A_5$    | $A_6$       | $A_7$  | $A_8$  | $A_9  A$ | $A_{10}$ / | $A_{11}$ | $A_{12} \ A_{12}$ | A13 A15 A | $A_{16}  A_{19}$ | Re(t)     | $W_T$     | $Va_T$              | d       | τ                                               | Computation<br>time (mm:ss)      |
|-----------------------------|------------|-----------|----------|-------------|--------|--------|----------|------------|----------|-------------------|-----------|------------------|-----------|-----------|---------------------|---------|-------------------------------------------------|----------------------------------|
|                             | 0.25       | 0 0       | 0        | 0           | 0      | 0.2456 | 0        | 0.1544 (   | 0        | 0 0               | 0.25 0    | 0.1              | 0.12242   | 14,009.75 | 0.00063             | 0.63801 | 14,009.75 0.00063 0.63801 0.21766 0.14432 03:45 | 03:45                            |
|                             | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0 0       | 0 0              | 0.11925   |           |                     |         |                                                 |                                  |
| ŝ                           | 0          | 0 0.25    | 5 0      | 0.1         | 0.25   | 0.25   | 0 0      |            | 0.15     | 0 0               | 0 (       | 0 0              | 0.11518   |           |                     |         |                                                 |                                  |
| (1.08, 0.6) 1 0.25          | 0.25       | 0 0       | 0        | 0           | 0      | 0.25   | 0        | 0.1420 (   | 0        | 0 0               | 0.25 0    | 0.1080           | 0 0.12248 |           | 0.00059             | 0.61428 | 13,999.16 0.00059 0.61428 0.18067 0.20505 03:58 | 03:58                            |
| 5                           | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0         | 0 0              | 0.11928   |           |                     |         |                                                 |                                  |
| ŝ                           | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0 0       | 0 0              | 0.11426   |           |                     |         |                                                 |                                  |
| (1.08, 0.5) 1               | 0.25       | 0 0       | 0        | 0           | 0      | 0.1748 | 0        | 0.2252 0   | 0.1      | 0 0               | 0.25 0    | 0 0              | 0.12108   |           | 0.00055             | 0.55746 | 13,983.63 0.00055 0.55746 0.14847 0.29407 05:17 | 05:17                            |
| 5                           | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0         | 0 0              | 0.11943   |           |                     |         |                                                 |                                  |
| ŝ                           | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0 0       | 0                | 0.11426   |           |                     |         |                                                 |                                  |
| (1.08, 0.4) 1 0.25          | 0.25       | 0 0       | 0        | 0           | 0      | 0.1    | 0        | 0.25 (     | 0.15     | 0 0               | 0.25 0    | 0 0              | 0.12081   |           | 0.00051             | 0.42551 | 13,955.03 0.00051 0.42551 0.11639 0.45810 06:19 | 06:19                            |
| 5                           | 0.25       | 0 0.25    | 5 0      | 0.1         | 0      | 0.25   | 0 0      |            | 0.15     | 0 0               | 0 0       | 0 (              | 0.11928   |           |                     |         |                                                 |                                  |
| ŝ                           | 0.1945     | 0 0.25    | 5 0      | 0.25        | 0      | 0.1555 | 0 0      |            | 0.15     | 0 0               | 0 0       | 0 (              | 0.11240   |           |                     |         |                                                 |                                  |
| (1.08, 0.3) 1 0.25          |            | 0 0       | 0        | 0           | 0      | 0.1    | 0.25 0   |            | 0        | 0 0               | 0.15 0    | 0 0.25           | 0.12403   |           | 13,931.58 0.00050 0 |         | 0.40746 0.59254 07:08                           | 07:08                            |
| 5                           | 0.25       | 0 0.2:    | 5 0      | 0           | 0      | 0.1477 | 0 0      |            | 0.25     | 0 0               | 0         | 0.1023 0         | 0.11858   |           |                     |         |                                                 |                                  |
| ŝ                           | 0          | 0 0       | 0        | 0           | 0.25   | 0.25   | 0.2296 0 |            | 0.1208   | 0 0               | 0         | 0 0.1496         | 6 0.10804 |           |                     |         |                                                 |                                  |
|                             | ts for the | bessim    | listic s | scenar      |        |        |          |            |          | ,<br>,            |           |                  |           |           |                     |         |                                                 |                                  |
| $(\theta_W, \ \theta_{Va})$ |            | $t = A_1$ | $A_2$    | $^{2}A_{4}$ | $A_6$  | $A_8$  | $A_{10}$ | $A_{11}$   | $A_{15}$ | $A_{19}$          | Re(t)     | $W_T$            | $Va_T$    | φ         | 1                   | Э       | Average comput                                  | Average computation time (mm:ss) |
| (0.99–0.90, 1.1–1.4)        | 1-1.4)     | 1 0.25    | 0        | 0           | 0      | 0.25   | 0.1055   | 0          | 0.25     | 0.1445            | 0.12274   | 14,002.41        | 0.00060   | 0.80954   | 0.16293             | 0.02754 | 00:37                                           |                                  |
|                             |            | 2 0.25    | 0        | 0.25        | 5 0.1  | 0.25   | 0        | 0.15       | 0        | 0                 | 0.11928   |                  |           |           |                     |         |                                                 |                                  |
|                             |            | 3 0.25    | 0        | 0.25        | 5 0.1  | 0.25   | 0        | 0.15       | 0        | 0                 | 0.11426   |                  |           |           |                     |         |                                                 |                                  |
| (0.99 - 0.90, 1.5 - 4)      | 5-4)       | 1 0.25    | 0        | 0           | 0      | 0.1    | 0.25     | 0.15       | 0.25     | 0                 | 0.12081   | 13,924.28        | 0.00049   | 0.90626   | 0                   | 0.09374 | 00:41                                           |                                  |
|                             |            | 2 0.25    | 0.0      | 1 0.25      | 5 0    | 0.25   | 0        | 0.15       | 0        | 0                 | 0.11807   |                  |           |           |                     |         |                                                 |                                  |
|                             |            | 3 0.25    | 0        | 0.25        | 5 0.25 | 25 0.1 | 0        | 0.15       | 0        | 0                 | 0.11115   |                  |           |           |                     |         |                                                 |                                  |

00:38

0

 $0.12081 \quad 13,924.28 \quad 0.00049 \quad 0.90626 \quad 0.09374$ 

0.11807 0.11115

0 0 0

0.15 0.25 0 0 0.15 0.15

0.25 0 0 0.25 0.1

0 0 0.25 0.25

0

-3 5

(1, 1)

0.1

0.25

0.1 0 0.250.25 0.25 (decrease) in the degree of non-membership and hesitation (membership).

#### Pessimistic analysis

In this scenario, the value of  $\theta_W$  varies from 0.99 to 0.90 while the value of  $\theta_{Va}$  varies from 1.1 to 4. The values of terminal wealth and cumulative risk are constant for  $\theta_W = 0.99$  to 0.90 and  $\theta_{Va} = 1.1$  to 1.4, viz. 14002.41 and 0.06%, respectively. Also, for  $\theta_W = 0.99$  to 0.90 and  $\theta_{Va} = 1.5$  to 4, the terminal wealth and cumulative risk are constant, viz. 13924.28 and 0.049%, respectively.

- The capital is allocated to the assets  $A_1$ ,  $A_8$ ,  $A_{10}$ ,  $A_{11}$ ,  $A_{15}$ , and  $A_{19}$  for t = 1 for different combinations of  $\theta_W$  and  $\theta_{Va}$ , with a constant maximum proportion of 25% of the capital invested in the assets  $A_1$  and  $A_{15}$  for all combinations of  $\theta_W$  and  $\theta_{Va}$ .
- The assets  $A_1$ ,  $A_2$ ,  $A_4$ ,  $A_6$ ,  $A_8$ , and  $A_{11}$  are included in the portfolio for t = 2 for different combinations of  $\theta_W$  and  $\theta_{Va}$ . The assets  $A_1$ ,  $A_8$ , and  $A_{11}$  are included in the portfolio for all combinations of  $\theta_W$  and  $\theta_{Va}$ , with a constant maximum proportion of 25% of the capital invested in the assets  $A_1$  and  $A_8$ .
- The assets  $A_1$ ,  $A_4$ ,  $A_6$ ,  $A_8$ , and  $A_{11}$  constitute the portfolio for t = 3 for all combinations of  $\theta_W$  and  $\theta_{Va}$ , with a constant maximum proportion of 25% of the capital invested in the asset  $A_1$ .

The assets  $A_1$ ,  $A_8$ , and  $A_{15}$  are endowed with the maximum allowable proportion of 25% of the capital as they offer better returns (subject to their associated risks) in comparison with other assets. Owing to this reason, the asset  $A_1$  has been included in the portfolio for all the periods.

It is clear from the results that the maximum terminal wealth is obtained for  $\theta_W = 0.99$  to 0.90 and  $\theta_{Va} = 1.1$  to 1.4, viz. 14002.41 with a cumulative risk of 0.06%. The minimum terminal wealth is obtained for  $\theta_W = 0.99$  to 0.90 and  $\theta_{Va} = 1.5$  to 4, viz. 13924.28 with a cumulative risk of 0.049%. Note that with the increase in the value of  $\theta_{Va}$ , that represents the increase in the degree of hesitation in cumulative risk, the value of the terminal wealth decreases as a tight upper bound on the terminal wealth and a tight lower bound on the cumulative risk force the terminal wealth to decrease in contrast to the optimistic scenario. Therefore, within the bounds on the value of  $\theta_{Va}$  (1.1  $\leq \theta_{Va} \leq 4$ ), the terminal wealth decreases.

For the convenience of the readers, the terminal wealth and cumulative risk for both the optimistic and pessimistic scenarios are graphically represented in Figs. 3 and 4. A pictorial representation of the terminal wealth against the cumulative risk for both the optimistic and pessimistic scenarios is also presented in Figs. 5 and 6, respectively.

#### 4.2 Comparative analysis

The proposed model is compared with the following research works for a stronger validation:

1. **Comparison with** Zhang et al. (2012): For the purpose of comparison of our proposed approach with Zhang et al. (2012), we operate their numerical data set on our optimistic and pessimistic IFMPPS models. Keeping in mind the coherency of numerical comparison, we drop the cardinality constraint from our model, as only a three-asset MPPS problem is considered in Zhang et al. (2012). Furthermore, there are no bounds on the capital allocated to an asset. We operate with the numerical data set of example 1 from Zhang et al. (2012), which is a two-period (t = 2) portfolio problem with trapezoidal fuzzy returns. The extreme values of the terminal wealth and cumulative risk obtained using Model 2 are presented in Table 10.

The membership, non-membership, and hesitation functions for the terminal wealth and cumulative risk are constructed using these extreme values in order to build Models 4 and 5. Both the models are then solved using the global solver in LINGO 11.0, and the obtained results are set down in Tables 11 and 12.

The maximum terminal wealth obtained using our approach on the data set of Zhang et al. (2012) is 13,725.21 and 13,708.54 with cumulative risks of 26.59% and 26.29% for the optimistic and pessimistic scenarios, respectively. However, the maximum terminal wealth in Zhang et al. (2012) is 12900.25. Though semivariance has been used as a risk measure in Zhang et al. (2012), for the purpose of comparison with the proposed approach, we have calculated the variance with respect to the results in Zhang et al. (2012), which is 15.41%. The terminal wealth obtained using our approach is better, and also, in accordance with the portfolio return-risk principle (higher returns are obtained at the cost of higher risks), has a slightly higher cumulative risk. Clearly, our proposed approach, in addition to providing a variety of results, also provides better results. This fact serves as a testament to justify our proposed approach.

2. Comparison with Mehlawat (2016): As mentioned earlier, the numerical illustration in Sect. 4 is implemented using the numerical data of Mehlawat (2016). The maximum terminal wealth obtained using our approach is 14027.45 and 14002.41 with cumulative risks of 0.07% and 0.06% in the optimistic and pessimistic scenarios, respectively. However, the maximum terminal wealth in Mehlawat (2016) is 14000 and 14081 with a risk of 8.27% and 9.57% obtained using models M-I and M-II, respectively. The terminal wealth of 14081 in Mehlawat (2016) is greater than the terminal wealth obtained using our



Fig. 3 Terminal wealth and cumulative risk for the optimistic scenario



14050 14000 13950 **Terminal Wealth** 13900 13850 13800 13750 13700 13650  $\theta_W$ -1.03 1.01 - 1.02  $\theta_W$  $\theta_W$ 1.04 13600 13550 13500 13450 0.035% 0.040% 0.045%  $0.050\% \hspace{0.1cm} 0.035\% \hspace{0.1cm} 0.040\% \hspace{0.1cm} 0.045\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.040\% \hspace{0.1cm} 0.045\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.060\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.060\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.060\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.060\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.060\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.05\% \hspace{0.1cm} 0.055\% \hspace{0.1cm} 0.05\% \hspace{0.05\%} 0.0$ **Cumulative risk** 14050 14000 13950 **Terminal Wealth** 13900 13850 13800 13750 13700 13650  $\theta_{\rm M}$ -1.05-1.08- $\theta_{W}$  $\theta_{14}$ -1.06 -1.07 13600 13550 13500 13450 0.050% 0.060% 0.040% 0.040% 0.050% 0.060% 0.070% 0.045% 0.055% 0.065% 0.075% 0.040% 0.050% 0.060% Cumulative risk

Fig. 5 Terminal wealth versus cumulative risk for all values of  $\theta_W$  and  $\theta_{Va}$  for the optimistic scenario

approach. This can be owing to the fact that our approach is an IFMPPS approach with hesitation incorporated into it. This hesitation, out of its own natural tendency, can lead to unexpected gains/losses. But when we bring the cumulative risk into the picture along with the terminal wealth, our approach offers much lesser cumulative risk when compared to Mehlawat (2016). (Note that in Mehlawat (2016), the portfolio risk has been incorpo-



**Fig. 6** Terminal wealth versus cumulative risk for all values of  $\theta_W$  and  $\theta_{Va}$  for the pessimistic scenario

rated using the entropy measure.) In addition to this, our approach offers a variety of results that are superior to the results in Mehlawat (2016) in an overall viewpoint. These facts collectively justify our proposed approach.

For the convenience of the readers, the comparison results of our proposed approach with the above research works are summarized in Table 13.

## **5** Conclusions

This study proposed an IFMPPS model bounded by several realistic constraints such as complete capital utilization, no short selling, fixed transaction costs, and bounds on the desired returns of each period. To introduce a certain degree of diversification in the proposed model, a cardinality constraint and bounds on the minimal and maximal fraction of the capital allocated to an asset were incorporated into the model. These constraints efficiently mimic the market conditions and investors' preferences and make the proposed model significantly more realistic.

The proposed IFMPPS model maximizes the membership functions while simultaneously minimizing the non-

Table 10 Extreme values of the terminal wealth and cumulative risk using numerical data set of example 1 from Zhang et al. (2012)

| Scenario       | Wealth minimization | Wealth maximization | Cumulative risk minimization | Cumulative risk maximization |
|----------------|---------------------|---------------------|------------------------------|------------------------------|
| W <sub>T</sub> | 12,636              | 13,933.80           | 12,636                       | 13,933.80                    |
| $Va_T$         | 0.13226             | 0.30535             | 0.11624                      | 0.30535                      |

Table 11 Results for the optimistic scenario using numerical data set of Zhang et al. (2012)

| $(\theta_W, \theta_{Va})$ | t | $A_1$  | $A_2$  | $A_3$  | Re(t)   | $W_T$    | $Va_T$  | ρ       | τ       | ω       | Computation time (mm:ss) |
|---------------------------|---|--------|--------|--------|---------|----------|---------|---------|---------|---------|--------------------------|
| (1.01, 0.9)               | 1 | 0.4575 | 0.5425 | 0      | 0.21532 | 13177.44 | 0.17798 | 0.35433 | 0.58281 | 0.06287 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08427 |          |         |         |         |         |                          |
| (1.01, 0.7)               | 1 | 0.2156 | 0.7844 | 0      | 0.18249 | 12838.56 | 0.13456 | 0.06505 | 0.84392 | 0.09103 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08573 |          |         |         |         |         |                          |
| (1.01–1.09, 0.5)          | 1 | 0.1236 | 0.8764 | 0      | 0.17    | 12636    | 0.11624 | 0       | 1       | 0       | 00:01                    |
|                           | 2 | 0.1238 | 0.6037 | 0.2725 | 0.08    |          |         |         |         |         |                          |
| (1.03, 0.9)               | 1 | 0.7253 | 0.2747 | 0      | 0.25166 | 13551.36 | 0.23566 | 0.24694 | 0.63146 | 0.12159 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08267 |          |         |         |         |         |                          |
| (1.03, 0.7)               | 1 | 0.4104 | 0.5896 | 0      | 0.20892 | 13111.45 | 0.16887 | 0.10490 | 0.63365 | 0.26145 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08456 |          |         |         |         |         |                          |
| (1.05, 0.9)               | 1 | 0.8501 | 0.1499 | 0      | 0.26860 | 13725.21 | 0.26599 | 0.05566 | 0.79186 | 0.15248 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08192 |          |         |         |         |         |                          |
| (1.05, 0.7)               | 1 | 0.5782 | 0.4218 | 0      | 0.23170 | 13346.07 | 0.20272 | 0.11311 | 0.45728 | 0.42961 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08355 |          |         |         |         |         |                          |
| (1.07–1.09, 0.9)          | 1 | 0.1236 | 0.8764 | 0      | 0.17    | 12636.34 | 0.11650 | 0       | 0.99974 | 0.00026 | 00:01                    |
|                           | 2 | 0      | 0.6503 | 0.3497 | 0.08    |          |         |         |         |         |                          |
| (1.07–1.09, 0.7)          | 1 | 0.5364 | 0.0887 | 0.3750 | 0.19715 | 12929.19 | 0.16171 | 0       | 0.77409 | 0.22591 | 00:02                    |
|                           | 2 | 0      | 0.8050 | 0.1950 | 0.08    |          |         |         |         |         |                          |

Table 12 Results for the pessimistic scenario using numerical data set of Zhang et al. (2012)

| $(\theta_W, \theta_{Va})$ | t | $A_1$  | $A_2$  | $A_3$  | Re(t)   | $W_T$    | $Va_T$  | ρ       | τ       | ω       | Computation time (mm:ss) |
|---------------------------|---|--------|--------|--------|---------|----------|---------|---------|---------|---------|--------------------------|
| (1, 1)                    | 1 | 0.5762 | 0.4238 | 0      | 0.23143 | 13343.28 | 0.20228 | 0.54498 | 0.45502 | 0       | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08356 |          |         |         |         |         |                          |
| (0.99, 1.1)               | 1 | 0.4267 | 0.5733 | 0      | 0.21114 | 13134.34 | 0.17199 | 0.38398 | 0.56983 | 0.04618 | 00:03                    |
|                           | 2 | 0      | 1      | 0      | 0.08446 |          |         |         |         |         |                          |
| (0.99, 1.5)               | 1 | 0.8381 | 0.1619 | 0      | 0.26697 | 13708.54 | 0.26298 | 0.22403 | 0.67657 | 0.09940 | 00:03                    |
|                           | 2 | 0      | 1      | 0      | 0.08199 |          |         |         |         |         |                          |
| (0.99, 2)                 | 1 | 0.4104 | 0.5896 | 0      | 0.20892 | 13111.45 | 0.16887 | 0.10490 | 0.63365 | 0.26145 | 00:05                    |
|                           | 2 | 0      | 1      | 0      | 0.08456 |          |         |         |         |         |                          |
| (0.99, 2.5)               | 1 | 0.1236 | 0.8764 | 0      | 0.17    | 12636.00 | 0.11624 | 0       | 1       | 0       | 00:04                    |
|                           | 2 | 0.1236 | 0.6037 | 0.2727 | 0.08    |          |         |         |         |         |                          |
| (0.97, 1.1)               | 1 | 0.1917 | 0.8083 | 0      | 0.17924 | 12801.57 | 0.13033 | 0.12757 | 0.81181 | 0.06061 | 00:01                    |
|                           | 2 | 0.0435 | 0.9565 | 0      | 0.08558 |          |         |         |         |         |                          |
| (0.97, 1.5)               | 1 | 0.5592 | 0.4408 | 0      | 0.22912 | 13319.56 | 0.19869 | 0.52671 | 0.22304 | 0.25025 | 00:02                    |
|                           | 2 | 0      | 1      | 0      | 0.08366 |          |         |         |         |         |                          |
| (0.97, 2–2.5)             | 1 | 0.1538 | 0.8462 | 0      | 0.17409 | 12739.68 | 0.12342 | 0.07989 | 0.88215 | 0.03796 | 00:02                    |
|                           | 2 | 0.1538 | 0.8462 | 0      | 0.08507 |          |         |         |         |         |                          |
| (0.95, 1.1)               | 1 | 0.2730 | 0.5461 | 0.1808 | 0.17635 | 12704.83 | 0.1278  | 0.05303 | 0.88550 | 0.06147 | 00:01                    |
|                           | 2 | 0      | 0.6165 | 0.3835 | 0.08    |          |         |         |         |         |                          |
| (0.95, 1.5)               | 1 | 0.5557 | 0      | 0.4443 | 0.19443 | 12899.79 | 0.16079 | 0.20326 | 0.56117 | 0.23557 | 00:01                    |
|                           | 2 | 0.1522 | 0.8478 | 0      | 0.08    |          |         |         |         |         |                          |
| (0.95–0.91, 2–2.5)        | 1 | 0.5762 | 0.4238 | 0      | 0.23143 | 13343.28 | 0.20229 | 0.54498 | 0       | 0.45502 | 00:01                    |
|                           | 2 | 0      | 1      | 0      | 0.08356 |          |         |         |         |         |                          |
| (0.93, 1.1)               | 1 | 0.3280 | 0.3199 | 0.3520 | 0.17064 | 12662.37 | 0.12786 | 0.02032 | 0.91821 | 0.06147 | 00:01                    |
|                           | 2 | 0.0000 | 0.8404 | 0.1596 | 0.08166 |          |         |         |         |         |                          |
| (0.93, 1.5)               | 1 | 0.4570 | 0      | 0.5430 | 0.17343 | 12684.99 | 0.13783 | 0.03775 | 0.84806 | 0.11419 | 00:02                    |
|                           | 2 | 0      | 1      | 0      | 0.08102 |          |         |         |         |         |                          |
| (0.91, 1.1)               | 1 | 0.3633 | 0.2143 | 0.4224 | 0.17    | 12638.78 | 0.12786 | 0.00215 | 0.93639 | 0.06147 | 00:01                    |
|                           | 2 | 0.1154 | 0.7217 | 0.1628 | 0.08023 |          |         |         |         |         |                          |
| (0.91, 1.5)               | 1 | 0.4408 | 0      | 0.5592 | 0.17    | 12640.07 | 0.13323 | 0.00313 | 0.90705 | 0.08982 | 00:01                    |
|                           | 2 | 0.1003 | 0.8997 | 0      | 0.08035 |          |         |         |         |         |                          |

Table 13 Summarized comparison results

| Approach            | Maximum<br>terminal wealth | Cumulative<br>risk (%) |
|---------------------|----------------------------|------------------------|
| Proposed            | 13,725.21                  | 26.59                  |
| Zhang et al. (2012) | 12,900.25                  | 15.41                  |
| Proposed            | 14,027.45                  | 0.07                   |
| Mehlawat (2016)     | 14,081                     | 9.57                   |

membership and hesitation functions of the terminal wealth and cumulative risk. The hesitation parameters  $\theta_W$  and  $\theta_{Va}$ provide the decision makers with exclusive control over the proposed model. The proposed IFMPPS model was further classified as an optimistic IFMPPS model and a pessimistic IFMPPS model for optimistic and pessimistic investors. Both the optimistic and the pessimistic IFMPPS models were solved using the global solver in LINGO 11.0 using MMA. Furthermore, the proposed approach was substantiated through a numerical illustration and comparative analysis with existing works in the literature. The proposed approach enables the decision makers to obtain the best results as per their preferences out of a variety of results obtained through different combinations of the hesitation parameters. The results obtained using our proposed approach are superior to those acquired using other approaches, thereby justifying our proposed approach. The proposed IFMPPS model is a simple and powerful approach that is computationally easier to solve and yields better results in comparison with existing works.

The proposed approach can further be extended using higher moments and other risk measures such as semivariance, VaR, CVaR, or entropy in a possibilistic as well as the credibilistic environment. Various evolutionary algorithms prevalent in the literature can be used to solve the extended models to shorten the computation time.

Acknowledgements We thank the Editor-in-Chief, the Managing Editor, and all the esteemed reviewers for helping us improve the presentation of the paper. The third author, Sanjay Yadav, is supported by the National Fellowship for Other Backward Classes (OBC) granted by University Grants Commission (UGC), New Delhi, India, vide Letter No. F./2016-17/NFO-2015-17-OBC-DEL-34358/(SA-III/Website). The fourth author, Arun Kumar, is supported by the Rajiv Gandhi National Fellowship for SC Candidates granted by University Grants Commission (UGC), New Delhi, India, vide Letter No. F1-17.1/2015-16/RGNF-2015-17-SC-DEL-8966/(SA-III/Website).

#### **Compliance with ethical standards**

**Conflict of interest** The authors declare that they have no conflict of interest.

# References

- Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610
- Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415
- Arqub OA, Mohammed AS, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302
- Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206
- Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
- Atanassov K, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349
- Bellman R, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci 17B:141–164
- Carlsson C, Fullér R (2001) On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst 122(2):315–326
- Chang TJ, Meade N, Beasley JE, Sharaiha YM (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res 27(13):1271–1302
- Chen G, Luo Z, Liao X, Yu X, Yang L (2011) Mean–variance–skewness fuzzy portfolio selection model based on intuitionistic fuzzy optimization. Procedia Eng 15:2062–2066
- Chen W, Li D, Lu S, Liu W (2019) Multi-period mean-semivariance portfolio optimization based on uncertain measure. Soft Comput 23(15):6231–6247
- Deng X, Pan X (2018) The research and comparison of multi-objective portfolio based on intuitionistic fuzzy optimization. Comput Ind Eng 124:411–421
- Fang Y, Lai KK, Wang SY (2006) Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur J Oper Res 175:879–893
- Guo S, Yu L, Li X, Kar S (2016) Fuzzy multi-period portfolio selection with different investment horizons. Eur J Oper Res 254(3):1026– 1035
- Gupta P, Mehlawat MK, Saxena A (2008) Asset portfolio optimization using fuzzy mathematical programming. Inf Sci 178:1734–1755

- Gupta P, Mittal G, Mehlawat MK (2013) Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insur Math Econ 52(2):190–203
- Gupta P, Mehlawat MK, Inuiguchi M, Chandra S (2014) Fuzzy portfolio optimization: advances in hybrid multi-criteria methodologies. Springer, Heidelberg
- Kar MB, Kar S, Guo S, Li X, Majumder S (2019) A new bi-objective fuzzy portfolio selection model and its solution through evolutionary algorithms. Soft Comput 23(12):4367–4381
- Katagiri H, Ishii H (1999) Fuzzy portfolio selection problem. In: IEEE SMC'99 Conference Proceedings, vol 3, pp 973–978
- Kocadağlı O, Keskin R (2015) A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Syst Appl 42(20):6898–6912
- Li T, Zhang W, Xu W (2015) A fuzzy portfolio selection model with background risk. Appl Math Comput 256:505–513
- Liagkouras K, Metaxiotis K (2018) Multi-period mean-variance fuzzy portfolio optimization model with transaction costs. Eng Appl Artif Intell 67:260–269
- Liu YJ, Zhang WG (2015) A multi-period fuzzy portfolio optimization model with minimum transaction lots. Eur J Oper Res 242(3):933– 941
- Liu YJ, Zhang WG, Xu WJ (2012) Fuzzy multi-period portfolio selection optimization models using multiple criteria. Automatica 48(12):3042–3053
- Liu YJ, Zhang WG, Zhao XJ (2018) Fuzzy multi-period portfolio selection model with discounted transaction costs. Soft Comput 22(1):177–193
- Markowitz H (1952) Portfolio selection. J Finance 7(1):77-91
- Mehlawat MK (2016) Credibilistic mean-entropy models for multiperiod portfolio selection with multi-choice aspiration levels. Inf Sci 345:9–26
- Mehlawat MK, Gupta P (2014) Fuzzy chance-constrained multiobjective portfolio selection model. IEEE Trans Fuzzy Syst 22(3):653– 671
- Mehlawat MK, Kumar A, Yadav S, Chen W (2018) Data envelopment analysis based fuzzy multi-objective portfolio selection model involving higher moments. Inf Sci 460–461:128–150
- Parra MA, Terol AB, Rodriguez MV (2001) A fuzzy goal programming approach to portfolio selection. Eur J Oper Res 133:287–297
- Sadjadi SJ, Seyedhosseini SM, Hassanlou K (2011) Fuzzy multi period portfolio selection with different rates for borrowing and lending. Appl Soft Comput 11(4):3821–3826
- Soleimani H, Golmakani HR, Salimi MH (2009) Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst Appl 36(3):5058–5063
- Wang B, Li Y, Watada J (2017) Multi-period portfolio selection with dynamic risk/expected-return level under fuzzy random uncertainty. Inf Sci 385:1–18
- Yue W, Wang Y, Xuan H (2019) Fuzzy multi-objective portfolio model based on semi-variance-semi-absolute deviation risk measures. Soft Comput 23(17):8159–8179
- Zadeh LA (1965) Fuzzy sets. Inf Control 8:338-353
- Zhang P (2019) Multiperiod mean absolute deviation uncertain portfolio selection with real constraints. Soft Comput 23(13):5081–5098
- Zhang WG, Liu YJ, Xu WJ (2012) A possibilistic mean-semivarianceentropy model for multi-period portfolio selection with transaction costs. Eur J Oper Res 222(2):341–349
- Zimmermann HJ (1978) Fuzzy programming and linear programming with multiple objective functions. Fuzzy Sets Syst 1:45–55

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.