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Abstract
The purpose of this paper is to present some basic theories of an initial value problem of fuzzy fractional differential equations
involving the Caputo-fuzzy-type concept of fractional derivative in the case of the order α ∈ (1, 2). The existence and
uniqueness results of the solution for the given problem are presented. Finally, some examples are given to illustrate our main
results.
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1 Introduction

During the past decades, the theory of fuzzy analysis and
fuzzy differential equations has attracted a large number of
mathematicians, and the study of this field has become one
of the most important topics in the uncertain theory and
uncertain differential equations. This is due to the intensive
development in the theory of fuzzy analysis as well as its
applications in many fields of dynamical systems influenced
by uncertain factors raised by impreciseness, vagueness, and
incomplete information. For the fundamental results and the
recent development in the theory of fuzzy differential equa-
tions, the readers can refer to the papers (Ahmad et al. 2013;
Allahviranloo et al. 2012b; Gasilov et al. 2014; Gomes and
Barros 2015; Khastan et al. 2014a; Stefanini and Bede 2009;
Stefanini 2010; Bede et al. 2007; Bede and Gal 2005; Bede
and Stefanini 2013; Chalco-Cano et al. 2013) and references
cited therein. In recent years, the interest in the investigation
of fuzzy differential equations of non-integer order lies in
the fact that these theories provide a strong tool in describing
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uncertainty that appears in many fields of dynamical systems
influenced by impreciseness vagueness and in exhibiting
nonstandard dynamical behaviors with a long memory or
with hereditary effects. With this advantage, the fractional
order models of fuzzy differential equations become more
practical than the classical integer-order models, so the field
of fractional fuzzy differential equations has attracted the
attention of several researchers. Therewas a notable develop-
ment in the fundamental theories of fuzzy fractional calculus
and fuzzy fractional differential equations such as the study
of fuzzy fractional differential equations in the sense of
Riemann–Liouville fractional differentiability based on clas-
sical Hukuhara difference; see for instance the papers by
Agarwal et al. (2010), inArshad andLupulescu (2011),Khas-
tan et al. (2014b) and Allahviranloo et al. (2012a). Particular
attention has been given to the fundamental results in the-
ory of fuzzy-type fractional calculus based on the concepts
of generalized Hukuhara derivative of fuzzy functions, and
to the studies of the qualitative theories of fuzzy fractional
differential equations and partial fuzzy differential equations
with Caputo fractional derivative concept; see for instance
the papers by Allahviranloo et al. (2014), An et al. (2017a, b,
2019), Fard and Salehi (2014), Hoa (2015a, 2018), Hoa
et al. (2017, 2018, 2019), Hoa and Ho (2019), Long (2018),
Long et al. (2017a, b), Lupulescu (2015), Mazandarani and
Najariyan (2014), Noeiaghdam et al. (2019), Prakash et al.
(2015), Salahshour et al. (2012), Son (2018), Son and Thao
(2019) and the references therein. Very recently, the methods
for solving the exact and numerical solutions of fuzzy frac-
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tional differential equations are proposed by Mazandarani
andKamyad (2013) with amodified fractional Euler method,
Hoa (2015b); Hoa et al. (2017) with the modified fractional
Euler method and the modified Adams–Bashforth–Moulton
method, Ahmadian et al. (2017a, b) with the methods based
on operational matrix of shifted Chebyshev polynomials
and the spectral tau, Allahviranloo et al. (2012c) with the
method of fuzzy Laplace transforms. Meanwhile, based
on the generalized Hukuhara difference, Allahviranloo and
Ghanbari (2020) also proposed a new concept of fuzzy frac-
tional derivative the so-called ABC generalized Hukuhara
fractional derivative. Moreover, the authors presented the
existence of the unique solution and the numerical method to
solve the solution for fuzzy fractional differential equations
with ABC fractional derivative.

To the best of our knowledge,most problems studied in the
previous works involve only concepts of a fractional deriva-
tive with non-integer order α ∈ (0, 1), and there are only a
few remarkableworkswhich provide the basic theories of ini-
tial value problems of fuzzy fractional differential equations
in the case of a fractional derivative with non-integer α ∈
(1, 2). Recently, with the concept of fuzzy fractional deriva-
tive in the sense of Caputo–Hadamard, which differs from
the Riemann–Liouville and Caputo fractional derivatives in
the sense that the kernel of the integral in its definitions
contains the logarithmic function of arbitrary exponent, in
An et al., preprint the authors presented the existence and
uniqueness of solutions of the fuzzy fractional differential
equations of non-integer α ∈ (1, 2) by using the Schauder
fixed point theorem. Moreover, by employing the reproduc-
ing kernel Hilbert space method, in Hasan et al. (2017) the
authors proposed amethod to solve the approximate solutions
of the fuzzy fractional differential equations of non-integer
α ∈ (1, 2) with the concept of Caputo fractional derivative.
By continuing the above works, in this paper we introduce
a new class of the initial value problem of fuzzy fractional
differential equations with the concept of Caputo fractional
derivative in the case of non-integer order α ∈ (1, 2) as fol-
lows:

CDα
a+x(t) = f (t, x, CDα−1

a+ x(t)),

x(a) = x0, x ′(a) = x ′
0, t ∈ [a, b], (1.1)

where a ≤ t ≤ b, x0 and x ′
0 are the given fuzzy sets, CDα

a+
is the fuzzy Caputo fractional generalized Hukuhara deriva-
tive in the case of α ∈ (1, 2), f : [a, b] × E × E → E
is a fuzzy function. The goal of this paper is to introduce
the mathematical foundations for studies of fuzzy fractional
derivative with non-integer order α ∈ (1, 2) in the sense of
generalized Hukuhara difference, and to show the existence
and uniqueness results of solution for the problem (1.1). To
be more precise, the main contributions in this paper are

as follows: (i) in Sect. 2, we discuss some important and
interesting results of Riemann–Liouville and Caputo frac-
tional derivative in the fuzzy setting in the case of the order
α ∈ (1, 2); (ii) by employing the Krasnoselskii–Krein-type
condition and the method of successive approximations, in
Sect. 3 we will show the existence and uniqueness of the
solution for a general form of the fuzzy fractional integral
equations in the case of α ∈ (1, 2), and these results are used
to investigate the existence and uniqueness of the solution
for the problem (1.1); (iii) in Sect. 4, we propose a standard
framework to obtain a formula of the solution for (1.1), which
plays an important role in investigating the qualitative the-
ories of (1.1). Moreover, the Banach fixed point theorem is
also employed to prove the existence of a unique solution of
problem (1.1). Finally, some examples are given to illustrate
our main results.

2 Preliminaries

Let E be the class of fuzzy numbers, i.e., normal, convex,
upper semicontinuous and compactly supported fuzzy sub-
sets of the real numbers. For r ∈ (0, 1], denote [x]r = {u ∈
R | x(u) ≥ r} and [x]0 = {u ∈ R | x(u) > 0}.Then it is well-
known that the r−level set of x, [x]r := [x(r), x(r)], is a
bounded closed interval, for any r ∈ [0, 1]. For x1, x2 ∈ E ,
and λ ∈ R, the sum x1 + x2 and the product λ · x1 are defined
by [x1+x2]r = [x1]r +[x2]r , [λ ·x1]r = λ[x1]r ,∀r ∈ [0, 1],
where [x1]r +[x2]r means the usual addition of two intervals
of R and λ[x1]r means the usual product between a scalar
and a real interval number. For x ∈ E , we define the diam-
eter of the r -level set of x as d ([x]r ) = x(r) − x(r). Let
x1, x2 ∈ E . If there exists x3 ∈ E such that x1 = x2 + x3,
then x3 is called the Hukuhara difference of x1 and x2 and it
is denoted by x1 � x2. We note that x1 � x2 	= x1 + (−1)x2.

Remark 2.1 Let λ1, λ2 ∈ R
+ and x ∈ E . If λ1 > λ2, then

λ1x � λ2x = (λ1 − λ2)x .

The generalized Hukuhara difference of two fuzzy numbers
x1, x2 ∈ E (gH-difference for short) is defined as follows:

x1 �gH x2 = x3 ⇔
⎧
⎨

⎩

(i) x1 = x2 + x3,

or (ii) x2 = x1 + (−1)x3.
(2.1)

Remark 2.2 Based on the definition of the diameter of the
r−level set of x ∈ E, from (2.1), we also have the assertion
as follows: the condition of the existence of x1 �gH x2 in
the case (i) is d([x1]r ) ≥ d([x1]r ), and the condition of the
existence of x1�gH x2 in the case (ii) is d([x1]r ) ≤ d([x1]r ).
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Remark 2.3 (An et al., preprint) Setting A = (x1 �gH

x2) �gH x3, where x1, x2, x3 ∈ E . According to the defi-
nition of (2.1) one has

– If d([x1]r ) ≥ d([x2]r ) and d([x1 � x2]r ) ≥ d([x3]r ) for
all r ∈ [0, 1], then A = (x1 � x2) � x3.

– If d([x1]r ) ≥ d([x2]r ) and d([x1 � x2]r ) ≤ d([x3]r ) for
all r ∈ [0, 1], then A = (−1)[x3 � (x1 � x2)].

– If d([x1]r ) ≤ d([x2]r ) and d([(−1)(x2 � x1)]r ) ≥
d([x3]r ) for all r ∈ [0, 1], then A = (−1)(x2 � x1)� x3.

– If d([x1]r ) ≤ d([x2]r ) and d([(−1)(x2 � x1)]r ) ≤
d([x3]r ) for all r ∈ [0, 1], then A = (−1)x3 � (x2 � x1).

Definition 2.1 Let x : [a, b] → E , then x is said to be
d-increasing (d-decreasing) on [a, b] if the function t �→
d ([x(t)]r ) is nondecreasing (nonincreasing) on [a, b]. If x
is d-increasing or d-decreasing on [a, b], then we say that x
is d-monotone on [a, b].

Definition 2.2 The distance D0[x1, x2] between two fuzzy
numbers is defined as

D0[x1, x2] = sup
0≤r≤1

H([x1]r , [x2]r ), ∀x1, x2 ∈ E,

where H([x1]r , [x2]r ) = max{|x1(r) − x1(r)|, |x1(r) −
x1(r)|} is the Hausdorff distance between [x1]r and [x2]r .

Definition 2.3 Bede and Stefanini (2013) Let x : (a, b) →
E and t ∈ (a, b). The fuzzy function u is said to be general-
ized Hukuhara differentiable (gH-differentiable) of the first
order at t , if there exists an element x ′(t) ∈ E such that

x ′(t) = lim
h→0

x(t + h) �gH x(t)

h
. (2.2)

Definition 2.4 Stefanini and Bede (2009) Let x : (a, b) →
E . We say that x is gH-differentiable of the second order at t
whenever the function x is gH-differentiable of the first order
at t provided that gH-differentiable type has no change, then
there exists x ′′(t) ∈ E such that

x ′′(t) = lim
h→0

x ′(t + h) �gH x ′(t)
h

.

Denote by C([a, b], E) the set of all continuous fuzzy func-
tions, C1([a, b], E) the set of all continuously differentiable
fuzzy functions, AC([a, b], E) the set of all absolutely con-
tinuous fuzzy functions and AC1([a, b], E) the set of all
absolutely continuously differentiable fuzzy functions on the
interval [a, b] with values in E . Let L([a, b], E) be the set
of all fuzzy functions x : [a, b] → E such that the functions
t �→ D0[x(t), 0̂] belong to L[a, b].

Theorem 2.1 If x ∈ AC1([a, b], E), then x is gH-
differentiable of the second order on [a, b] and x ′′ ∈
L([a, b], E). Moreover, if x and x ′ are d−monotone on
[a, b], then for all t ∈ [a, b]

(
x(t) �gH x(a)

)�gH (t − a)x ′(a) =
t∫

a

s∫

a

x ′′(s)ds. (2.3)

Proof If x ∈ AC1([a, b], E) is such that [x(t)]r =
[x(r , t), x(r , t)], then it follows that x ′(r , t), x ′(r , t) are
absolutely continuous (see Lupulescu 2015-Proposition 4).
So, x ′′(r , t) and x ′′(r , t) exist on [a, b] for every r ∈ [0, 1],
and x ′′(r , t), x ′′(r , t) ∈ L[a, b]. Hence, it implies that x ′′ ∈
L([a, b], E). If x ∈ AC1([a, b], E) and x ′ ∈ AC([a, b], E)

are d−monotone on [a, b], then for every r ∈ [0, 1] one has
t∫

a

s∫

a

x ′′(s)ds =
t∫

a

(x ′(s) �gH x ′(a))ds. (2.4)

In addition, since d([x ′(t)]r ) − d([x ′(a)]r ) has a constant
sign on [a, b], we have
t∫

a

(x ′(s) �gH x ′(a))ds =
t∫

a

x ′(s)ds �gH

t∫

a

x ′(a)ds

= (x(t) �gH x(a)
)�gH (t − a)x ′(a). (2.5)

Therefore, by (2.4) and (2.5), we get (2.3). �

For a given fuzzy function x ∈ L([a, b], E), the Riemann–
Liouville fractional integral of order α > 0 of the fuzzy
function x is defined by (see Agarwal et al. 2010)

(�α
a+x)(t) = 1

�(α)

t∫

a

(t − s)α−1x(s)ds, t > a,

where�(α) is the well-knownGamma function. In Hoa et al.
(2018), the concept of the fuzzy Caputo fractional derivative
in the case of β ∈ (0, 1) is given by the following definition.

Definition 2.5 Hoa et al. (2018) Let x ∈ AC([a, b], E) and
β ∈ (0, 1). The fuzzy Caputo fractional derivative in the case
of β ∈ (0, 1) is defined

CDβ

a+x(t) = 1

�(1 − β)

t∫

a

(t − s)−βx ′(s)ds, t ∈ (a, b].

Remark 2.4 If x, y ∈ L([a, b], E) and α, β > 0, then it is
obvious that:
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(i) �α
a+�β

a+x(t) = �α+β

a+ x(t), for t ∈ [a, b];
(ii) �α

a+(x + y)(t) = �α
a+x(t) + �α

a+ y(t), for t ∈ [a, b].

Definition 2.6 Let x : (a, b) → E . Then, the fuzzy
Riemann–Liouville generalized Hukuhara fractional deriva-
tive (or Riemann–Liouville gH -fractional derivative) of
order α ∈ (1, 2) of x is defined

(
RLDα

a+x
)

(t) :=
(
�2−α
a+ x

)′′
(t),

if x ′′
2−α(t) exists on (a, b), where

x2−α(t) :=
(
�2−α
a+ x

)
(t)

= 1

�(2 − α)

t∫

a

(t − s)1−αx(s)ds, t > a.

Theorem 2.2 Let x ∈ L([a, b], E), then for 0 < α ≤ β one
has that:

(
RLDα

a+�β

a+x
)

(t) =
(
�(β−α)

a+ x
)

(t), t ∈ (a, b].

Note that
(
�(β−α)

a+ x
)

(t) = x(t) if α = β.

Proof With the same manner as in the proof of Proposition
2.1 inAn et al., preprint, then byDirichlet formula, the known
formula for the Beta function, and setting u = (τ −s)/(t−s)
one gets

(
RLDα

a+�β

a+x
)

(t)

= 1

�(2 − α)�(β)

⎛

⎝

t∫

a

(t − s)1−α

⎛

⎝

s∫

a

(s − τ)β−1x(τ )dτ

⎞

⎠ ds

⎞

⎠

′′

= 1

�(2 − α)�(β)

⎛

⎝

t∫

a

(t − s)1+β−αx(s)ds

1∫

0

(1 − u)2−α−1uβ−1du

⎞

⎠

′′

= B(2 − α, β)

�(2 − α)�(β)

⎛

⎝

t∫

a

(t − s)1+β−αx(s)ds

⎞

⎠

′′

. (2.6)

By using Leibniz’s rule for differentiation under the integral
sign, we have that

⎛

⎝

t∫

a

(t − s)β−α−1x(s)ds

⎞

⎠

′′

=
(
(1 + β − α)

t∫

a

(t − s)β−αx(s)ds
)′

= (1 + β − α)(β − α)

t∫

a

(t − s)β−α−1x(s)ds.

It follows from B(2 − α, β) = �(2−α)�(β)
�(2−α+β)

and (2.6) that

(
RLDα

a+�β

a+x
)

(t) = 1

�(β − α)

t∫

a

(t − s)β−α−1x(s)ds

=
(
�(β−α)

a+ x
)

(t).

�

Definition 2.7 Let x ∈ L([a, b], E) be a fuzzy function such
that RLDα

a+x exists on (a, b), where α ∈ (1, 2). The fuzzy
Caputo fractional derivative of orderα ∈ (1, 2)of x is defined

(
CDα

a+x
)

(t)

:= RLDα
a+
[
(x(t) �gH x(a)) �gH (t − a)x ′(a)

]
.

Lemma 2.1 If x ∈ AC1([a, b], E) is a d−monotone fuzzy
function and α ∈ (1, 2), then

CDα
a+x(t) = (�2−α

a+ x ′′)(t)

= 1

�(2 − α)

t∫

a

(t − s)1−αx ′′(s)ds, t ∈ (a, b].

Proof The proof of this assertion is similar to the proof of
Theorem 1 in Hoa et al. (2018). �

Theorem 2.3 If x ∈ AC1([a, b], E) is such that x and x ′ are
d−monotone on [a, b], then
(
�α
a+CDα

a+x
)
(t)

= (x(t) �gH x(a)) �gH (t − a)x ′(a), t ∈ (a, b].
(2.7)

Proof By Remark 2.4-(ii), Theorem 2.1 and Lemma 2.1, we
have that
(
�α
a+CDα

a+x
)
(t) =

(
�α
a+ (�2−α

a+ x ′′)
)
(t)
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= (�2
a+x ′′)(t)

= (x(t) �gH x(a)) �gH (t − a)x ′(a).

(2.8)

�


3 Fuzzy integral fractional equations

In this section of paper, we shall consider a general form of
the fuzzy fractional integral equation (FFIE) with the form:
for α ∈ (1, 2),

x(t) �gH g(t)

= 1

�(α)

t∫

0

(t − s)α−1 f (s, x(s), CDα−1
0+ x(s))ds, (3.1)

where CDα−1
0+ x is the Caputo-type generalized Hukuhara

derivative of the fuzzy function x(t) given as in Defini-
tion 2.5, g ∈ C1([0, b], E) satisfies D0[g(t), 0̂] ≤ N1 and
D0[CDα−1

0+ g(t), 0̂] ≤ N2 on [0, b], f : [0, b]× E × E → E

is continuous fuzzy function, D0[ f (t, x, y), 0̂] ≤ M on D:

D=
{
(t, x, y) : 0 ≤ t ≤ b, D0[x, 0̂] ≤ ρ1, D0[y, 0̂] ≤ ρ2

}
,

for ρ1, ρ2 > 0 are real numbers. We say that a continuous
fuzzy function x : I → E is a solution to FFIE (3.1) if it
satisfies Eq. (3.1). In the below theorem, the result of the
uniqueness of solution to (3.1) is presented. Recently, the
Krasnoselskii–Krein, Nagumo-type uniqueness results and
successive approximations have been extended to the fuzzy
fractional differential equations in the case pf fractional order
α ∈ (0, 1) (see Allahviranloo et al. 2014, 2012a). In this
section, the uniqueness of the solution for the fuzzy frac-
tional integral equation of non-integer order α ∈ (1, 2) is
proved. We are going to utilize the ideas presented in Yoruk
et al. (2013); Bhaskar et al. (2009); Lakshmikantham and
Leela (2009) to extend Krasnoselskii–Krein-type results to
the problem (3.1), and these results will be used to investi-
gate the existence of the unique solution of the problem (1.1)
in the next section. Suppose that f satisfies the following
Krasnoselskii–Krein-type conditions on D :

(C1) D0[ f (t, x1, y1), f (t, x2, y2)] ≤
�(α)

[
K + q(α − 1)

]

2t1−q(α−1)[
D0[x1, x2] + D0[y1, y2]

]
, t 	= 0, where K > 0 and

q ∈ (0, 1),

(C2) D0[ f (t, x1, y1), f (t, x2, y2)] ≤ L
[
Dq
0 [x1, x2]

+ tq(α−1)Dq
0 [y1, y2]

]
, K (1 − q) < 1 + q(α − 1),

and L > 0 is a constant.

Set x0(t) = g(t). We shall now state our main result.

Theorem 3.1 Assume that the fuzzy function f in (3.1) satis-
fies the Krasnoselskii–Krein-type conditions (C1) and (C2).
Then, the following successive approximation given by

xn+1(t) �gH x0(t)

= 1

�(α)

t∫

0

(t − s)α−1 f (s, xn(s),
CDα−1

0+ xn(s))ds, (3.2)

converges uniformly to the unique solution x(t) of (3.1), on
[0, T ], where

T = min

⎧
⎨

⎩
b,

(
(ρ1 − N1)�(α + 1)

M

) 1
α

,
ρ2 − N2

M

⎫
⎬

⎭
.

Proof Let x(t) and x̃(t) be any two solutions of (3.1) on
[0, T ] such that x(0) = x̃(0). Set w1(t) = D0[x(t), x̃(t)]
andw2(t) = D0[CDα−1

0+ x(t), CDα−1
0+ x̃(t))].Weobserve that

w1(0) = 0 and w2(0) = 0. Using (3.1) and condition (C2),
we have

w1(t) = D0[x(t), x̃(t)]

≤ L

�(α)

t∫

0

(t − s)α−1
[
w

q
1 (s) + sq(α−1)w

q
2 (s)

]
ds

≤ Ltα−1

�(α)

t∫

0

[
w

q
1 (s) + sq(α−1)w

q
2 (s)

]
ds.

By Theorem 2.2, Definition 2.7 and (3.1), we have for t ∈
[0, T ]

CDα−1
0+

(
x(t) �gH g(t)

) =
t∫

0

f (s, x(s), C Dα−1
0+ x(s))ds.

Based on Theorem 1 in Lupulescu (2015), we get the fol-
lowing estimate

w2(t) ≤
t∫

0

D0

[

f (s, x(s), C Dα−1
0+ x(s)),

f (s, x̃(s), C Dα−1
0+ x̃(s))

]

ds

≤ L

t∫

0

[
w

q
1 (s) + sq(α−1)w

q
2 (s)

]
ds.

Define P(t) =
t∫

0

[
w

q
1 (s) + sq(α−1)w

q
2 (s)

]
ds, clearly P(0) =

0. In addition, by the above estimate, we get w1(t) ≤
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Ltα−1

�(α)
P(t) and w2(t) ≤ LP(t). Then,

dP(t)

dt
=
[
w

q
1 (t) + tq(α−1)w

q
2 (t)

]

≤ tq(α−1)Lq
(

1

�q(α)
+ 1

)

Pq(t). (3.3)

Since P(t) > 0 for t > 0, on multiplying (3.3) by (1 −
q)P−q(t) on both sides and integrating, we get for t > 0,

P(t) ≤ Ct

(
q

1 − q
α

)

+1

,

where C :=
(

Lq(1−q)

(
1

�q(α)
+1

)

/(1−q+qα)

)1/(1−q)

.

This leads to the following new estimate on w1(t), for
t ∈ [0, T ],

w1(t) ≤ LC

�(α)
t

α

1 − q . (3.4)

Define the function Q(t) = t−K max{w1(t), w2(t)} for t ∈
(0, T ] and Q(0) = 0.Then, we have the following two cases:

if max{w1(t), w2(t)} = w1(t), then we have

0 ≤ Q(t) ≤ LC

�(α)
t

α

1 − q
− K

.

if max{w1(t), w2(t)} = w2(t), then we have

0 ≤ Q(t) ≤ LCt

αq + (1 − q)(1 − K )

1 − q .

By using the assumption K (1−q) < 1+q(α − 1), we have
that the exponents of t in the above inequalities are positive.
In either case, we have limt→0+Q(t) = 0. Therefore, if we
define Q(0) = 0, the function Q(t) is continuous in [0, T ].
To prove uniqueness, we need to show that Q(t) ≡ 0 which
in turn yields w1(t) ≡ 0 and w2(t) ≡ 0. If it is not true, let
0 < Q(t) < m = max[0,T ] Q(t) = Q(t1).

If max{w1(t), w2(t)} = w1(t1), then from (C1) we get

m = Q(t1) = t−K
1 w1(t1)

≤ t−K
1

�(α)

t1∫

0

(t1 − s)α−1D0[ f (s, x(s),

C Dα−1
0+ x(s)), f (s, x̃2(s),

C Dα−1
0+ x̃(s))]ds

≤ [K + q(α − 1)]t−K
1

2

t1∫

0

(t1 − s)α−1 [w1(s) + w2(s)]
s1−q(α−1)

ds

= [K + q(α − 1)]t−K+α−1
1

t1∫

0

sK−1+q(α−1)Q(s)ds

< mt (α−1)(q+1)
1 ≤ m,

which is a contradiction.
On the other hand, if max{w1(t), w2(t)} = w2(t1), then

we can show that m = Q(t1) = t−K
1 w2(t1) < m, which

is a contradiction. This implies Q(t) ≡ 0 and hence the
uniqueness of the solution is established.

We shall now show that the successive approximations
{xn+1(t)}, n = 0, 1, 2, . . . , given by (3.2) are well defined
and continuous, uniformly bounded and equicontinuous on
[0, T ]. In view of (3.2) and from the conditions of the fuzzy
function g(t), we have

D0[xn+1(t), 0̂] ≤ N1

+ 1

�(α)

t∫

0

(t−s)α−1D0

[
f (s, xn(s),

C Dα−1
0+ xn(s)), 0̂

]
ds,

and

D0[C Dα−1
0+ xn+1(t), 0̂]

≤ N2 +
t∫

0

D0

[
f (s, xn(s),

C Dα−1
0+ xn(s)), 0̂

]
ds.

Then, it yields

D0[xn+1(t), 0̂] ≤ N1 + Mtα

�(α + 1)
≤ ρ1 and

D0[C Dα−1
0+ xn+1(t), 0̂] ≤ N2 + Mt ≤ ρ2.

This shows, by induction, that the family {xn+1(t)} is well
defined and uniformly bounded on [0, T ]. Further, it may be
verified that {xn+1(t)} is equicontinuous families of functions
on [0, T ]. Hence, by Arzela–Ascoli theorem, there exists
subsequence {xnk } such that {xnk } converges uniformly on
[0, T ]. In addition, if limn→∞ sup D0[xn+1(t), xn(t)] → 0,
then (3.2) implies that the limit of any such subsequence
is the unique solution x(t) of (3.1). Therefore, for proving
Theorem, we have to show that:

v1(t) = lim
n→∞ sup D0[xn+1(t), xn(t)] ≡ 0, (3.5)

and

v2(t) = lim
n→∞ sup D0[C Dα−1

0+ xn+1(t),
C Dα−1

0+ xn(t)] ≡ 0.

(3.6)
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For 0 ≤ t1 ≤ t2, consider the difference

|D0[xn+1(t1), xn(t1)] − D0[xn+1(t2), xn(t2)]|

≤ 1

�(α)

∣
∣
∣
∣

t1∫

0

(t1 − s)α−1F(s)ds −
t2∫

0

(t2 − s)α−1F(s)ds

∣
∣
∣
∣

≤ 2M

�(α)

∣
∣
∣
∣

t1∫

0

[(t1 − s)α−1 − (t2 − s)α−1]ds −
t2∫

t1

(t2 − s)α−1ds

∣
∣
∣
∣

≤ 4M

�(α + 1)
(t2 − t1)

α,

where F(s) = D0[ f (s, xn(s), CDα−1
0+ xn(s)), f (s, xn−1(s),

CDα−1
0+ xn−1(s))] ≤ 2M on D. This result proves the contin-

uous of v1(t) on [0, T ]. Also, it can be verified that v2(t) is
continuous on [0, T ]. Now, by using the condition (C2) and
(3.2), we get:

D0[xn+1(t), xn(t)]

≤ Ltα−1

t∫

0

(

Dq
0 [xn(s), xn−1(s)]

+ sq(α−1)Dq
0

[
CDα−1

0+ xn(s),
CDα−1

0+ xn−1(s)
])

ds.

For a fixed t ∈ [0, T ], there is a sequence of inte-
gers n1 < n2 < . . . and p1 < p2 < . . . such

that D0[xnk+1(t), xnk (t)] → v1(t) and D0

[
CDα−1

0+ xpk+1(s),

CDα−1
0+ xpk (s)

]
→ v2(t) as k → ∞. Setting v∗

1(t) =
limn=nk→∞D0[xn(t), xn−1(t)] and v∗

2(t) = limn=nk→∞
D0

[
CDα−1

0+ xn(t), CDα−1
0+ xn−1(t)

]
exist uniformly on [0, T ].

Therefore, we obtain the following result using the fact that
v∗
1(t) ≤ v1(t) and v∗

2(t) ≤ v2(t) :

v1(t) ≤ Ltα−1

t∫

0

[

(v∗
1(s))

q + sq(α−1)(v∗
2(s))

q
]

ds

≤ Ltα−1

t∫

0

[

(v1(s))
q + sq(α−1)(v2(s))

q
]

ds.

It yields:

t−1v1(t) → 0, t → 0+, t−1v2(t) → 0, t → 0+,

and, also, we infer that

t−K v1(t) → 0, t → 0+, t−K v2(t) → 0, t → 0+.

We can define, as before, Q∗(t) = t−K max{v1(t), v2(t)}.
We observe that Q∗(0) ≡ 0. We shall prove that Q∗(t) ≡ 0

for all t ∈ [0, T ] for demonstrating the convergence of
{xn+1(t)}. If Q∗(t) > 0 at any point in [0, T ], then there
exists a point t1 > 0 such that 0 < λ = Q∗(t1) =
max[0,T ] Q∗(t). Then, from the condition (C1), we have, as
before,

D0[xn+1(t1), xn(t1)]
t K

≤ t−K

�(α)

t1∫

0

(t1 − s)α−1D0

[

f (s, xn(s),
CDα−1

0+ xn(s)),

f (s, xn−1(s),
CDα−1

0+ xn−1(s))

]

ds

≤ t−K [K + q(α − 1)]
2

t1∫

0

(t1 − s)α−1

s1−q(α−1)

(

D0[xn(s), xn−1(s)] + D0[CDα−1
0+ xn(s),

CDα−1
0+ xn−1(s)]

)

ds.

Proceeding as before, we obtain

λ = Q∗(t1) = v1(t1)

t K
≤ t−K [K + q(α − 1)]

2�(α)
t1∫

0

(t1 − s)α−1

s1−q(α−1)

[
v1(s) + v2(s)

]
ds

< λ[K + q(α − 1)]t−K+q−1
1

sK−1+q(α−1)ds∫

0

≤ λ.

This contradiction proves Q∗(t) ≡ 0 for the casemax{v1(t1),
v2(t1)} = v1(t1).On the other hand, if max{v1(t1), v2(t1)} =
v2(t1) then from the condition (C1), again using an argu-
ment similar to the above, we can show that λ = Q∗(t1) =
t−K
1 v2(t1) < λ, which is again a contradiction. So Q∗(t) ≡
0. Therefore, the successive approximations given {xn+1(t)}
converge uniformly to the unique solution x(t) of (3.1) on
[0, T ]. �

Example 3.2 Let α ∈ (1, 2), β ≥ 0, t ∈ [0, 1], λ ∈ R\{0}
and x0 ∈ E . We consider the following fuzzy fractional inte-
gral equation

x(t) �gH (1 + tβ)x0

= λ

�(α)

t∫

0

(t − s)α−1x(s)ds, t ∈ [0, 1]. (3.7)

According to Theorem 3.1, we can easy to check that the
hypotheses of fuzzy functions g(t) := (1 + tβ)x0 and
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f (s, xn(s), CDα−1
0+ xn(s)) := λx are satisfied. Based on the

definition of generalized Hukuhara difference, we will solve
the problem (3.7) in the below two cases:

Case 1 If d([x(t)]r ) ≥ (1+ tβ)d([x0]r ) and λ > 0, for every
r ∈ [0, 1] and for all t ∈ [0, 1], then we observe that the
fuzzy function

x(t) =
[
Eα,1

(
λtα
)

+ �(β + 1)tβEα,β+1

(
λtα
)]

x0

is a unique solution of the problem (3.7). Indeed, based on
(3.7), making the substitution z = s/t and using the defini-
tion of Beta function, we get the right-hand side (RHS) of
the problem (3.7) as follows:

RHS-(3.7) = x0
λ

�(α)

t∫

0

(t − s)α−1
[
Eα,1

(
λsα
)

+ �(β + 1)sβEα,β+1

(
λsα
)]

ds

= x0

∞∑

k=0

λk+1

�(α)�(kα + 1)

t∫

0

(t − s)α−1skαds

+ x0

∞∑

k=0

�(β + 1)λk+1

�(α)�(kα + β + 1)

t∫

0

(t − s)α−1skα+βds

= x0

∞∑

k=0

[λtα]k+1

�((k + 1)α + 1)

+ x0�(β + 1)tβ
∞∑

k=0

[λtα]k+1

�((k + 1)α + β + 1)

= x0

∞∑

j=1

[λtα] j
�( jα + 1)

+ x0�(β + 1)tβ
∞∑

j=1

[λtα] j
�( jα + β + 1)

= x0
(
Eα,1(λt

α) − 1
)+ x0�(β + 1)tβ

(
Eα,β+1(λt

α)

− 1

�(β + 1)

)
. (3.8)

Because the values of
(
Eα,1(λtα) − 1

)
and �(β + 1)tβ

(
Eα,β+1(λtα) − 1

�(β + 1)

)
are positive-defined on [0, 1]

with the hypothesis λ > 0, it follows from the right-hand
side (RHS) of the problem (3.7) that

RHS-(3.7) = (Eα,1(λt
α) + �(β + 1)tβ

Eα,β+1(λt
α) − (1 + tβ)

)
x0.

On the other hand, because λ > 0, d([x(t)]r ) ≥ (1 +
tβ)d([x0]r ) and Remark 2.1, one also gets the left-hand side
(LHS) of the problem (3.7) as follows:

LHS-(3.7)

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(
t) 

an
d 

x 10
(t)

-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 1 The graphs of the exact solution (solid line) and the approximate
solution (line “*”) of the problem 3.2 in Case 1 with α = 1.75

=
[
Eα,1

(
λtα
)
+�(β+1)tβEα,β+1

(
λtα
)]

x0 � (1+tβ)x0

= RHS-(3.7).

It implies that x(t) is a unique solution of the problem (3.7).
Now, we shall use the successive approximations defined as
in Theorem 3.1 to construct the approximate solution and to
give an estimation for the error bound for the problem (3.7).
In this case, we recall the following approximate sequence
defined as in the proof of Theorem 3.1: for n = 1, 2, . . . ,

xn(t) � x0(t) = λ

�(α)

t∫

0

(t − s)α−1xn−1(s)ds, (3.9)

where α ∈ (1, 2), λ > 0, x0(t) = (1 + tβ)x0. Then, one has

x1(t) � (1 + tβ)x0 = λ

(
tα

�(α + 1)
+ �(β + 1)

tα+β

�(α + β + 1)

)

x0,

x2(t) � (1 + tβ)x0 = λ

(
tα

�(α + 1)
+ �(β + 1)

tα+β

�(α + β + 1)

)

x0

+ λ2
(

t2α

�(2α + 1)
+ �(β + 1)

t2α+β

�(2α + β + 1)

)

x0,

.

.

.

xn(t) � (1 + tβ)x0 = x0

n∑

j=1

λ j

�( jα + 1)
t jα

+ x0�(β + 1)
n∑

j=1

λ j

�( jα + β + 1)
t jα+β .

The result obtained by using the method of successive
approximations proposed in this case is shown in Fig. 1. The
errors between the analytical and approximate solutions are
listed in Tab. 1 with n = 10. In our numerical simulations,
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Table 1 Error of the exact and approximate solutions of the problem
3.2 in Case 1

t\α 1.25 1.5 1.75

0.2 1.15441E−06 3.43903E−11 0

0.4 2.83996E−05 1.64392E−08 2.9905E−12

0.6 0.000129527 2.9742E−07 2.157E−10

0.8 0.000356247 2.02812E−06 3.64391E−09

1 0.000763889 8.57375E−06 3.03005E−08

we use the parameters as follows: λ = 0.5;β = 0.5; x0 =
(−3, 0, 3).

Case 2 If d([x(t)]r ) ≤ (1+ tβ)d([x0]r ) and λ < 0, for every
r ∈ [0, 1] and for all t ∈ [0, 1], then we also recognize that

x(t) =
[
Eα,1

(
λtα
)

+ �(β + 1)tβEα,β+1

(
λtα
)]

x0

is a unique solution of the problem (3.7). With the same
manner as in Case 1, we also obtain

RHS-(3.7) = x0
(
Eα,1(λt

α) − 1
)

+ x0�(β + 1)tβ
(
Eα,β+1(λt

α) − 1

�(β + 1)

)
. (3.10)

Because thevalues of
(
Eα,1(λtα) − 1

)
and�(β+1)tβ

(
Eα,β+1

(λtα) − 1

�(β + 1)

)
are negative-defined on [0, 1] with the

hypothesis λ < 0, it yields that

RHS-(3.7) = (−1)
(
(1 + tβ) − Eα,1(λt

α)

+�(β + 1)tβEα,β+1(λt
α)
)
x0.

Otherwise, because λ < 0, d([x(t)]r ) ≤ (1 + tβ)d([x0]r )
and Remark 2.1, one also gets the left-hand side (LHS) of
the problem (3.7) as follows:

LHS-(3.7) = (−1)
[
(1 + tβ)x0 �

(
Eα,1

(
λtα
)

+�(β + 1)tβEα,β+1

(
λtα
))

x0
]

= RHS-(3.7).

It implies that x(t) is a unique solution of the problem (3.7).
In this case, we recall the following approximate sequence
defined as in the proof of Theorem 3.1: for n = 1, 2, . . . ,

(−1)(x0(t) � xn(t)) = λ

�(α)

t∫

0

(t − s)α−1xn−1(s)ds,

(3.11)

where α ∈ (1, 2), λ > 0, x0(t) = (1 + tβ)x0. We observe
that Eq. (3.11) is similar to

xn(t) = x0(t) � (−1)
λ

�(α)

t∫

0

(t − s)α−1xn−1(s)ds,

and it can be represented by the r−level sets as follows:

[xn(t)]r = [x0(t)]r � (−1)
λ

�(α)

t∫

0

(t − s)α−1[xn−1(s)]rds,

where r ∈ [0, 1]. Then, one has
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xn(r , t) = x0(r , t) + λ

�(α)

t∫

0

(t − s)α−1xn−1(r , s)ds

xn(r , t) = x0(r , t) + λ

�(α)

t∫

0

(t − s)α−1xn−1(r , s)ds,

where r ∈ [0, 1], n = 1, 2, . . . , λ < 0, x0(r , t) = (1 +
tβ)x0(r), x0(r , t) = (1 + tβ)x0(r). Similar to Case 1, we
also obtain

xn(r , t) = x0(r)
n∑

j=0

λ j

�( jα + 1)
t jα

+ x0(r)�(β + 1)
n∑

j=0

λ j

�( jα + β + 1)
t jα+β,

xn(r , t) = x0(r)
n∑

j=0

λ j

�( jα + 1)
t jα

+ x0(r)�(β + 1)
n∑

j=0

λ j

�( jα + β + 1)
t jα+β.

Hence, we deduce that

xn(t) = x0

n∑

j=0

λ j

�( jα + 1)
t jα

+ x0�(β + 1)
n∑

j=0

λ j

�( jα + β + 1)
t jα+β.

The result obtained by using the method of successive
approximations proposed in this case is shown in Fig. 2. The
errors between the analytical and approximate solutions are
listed in Table 2 with n = 10. In our numerical simulations,
we use the parameters as follows: λ = −0.5;β = 0; x0 =
(−3, 0, 3).
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Fig. 2 The graphs of the exact solution (solid line) and the approximate
solution (line “*”) of the problem 3.2 in Case 2 with α = 1.75

Table 2 Error of the exact and approximate solutions of the problem
3.2 in Case 2

t\α 1.25 1.5 1.75

0.2 1.29691E−06 5.38503E−11 0

0.4 2.52009E−05 2.16679E−08 4.71001E−12

0.6 9.96928E−05 3.49138E−07 3.1289E−10

0.8 0.000246235 2.16974E−06 4.94039E−09

1 0.000483352 8.47193E−06 3.86911E−08

4 Fuzzy fractional differential equations

In this section, for α ∈ (1, 2), we consider the following
initial-type problem:

CDα
a+ x(t)

= f (t, x(t), CDα−1
a+ x(t)), x(a) = x0, x ′(a) = x ′

0 t ∈ [a, b].
(4.1)

A function x : [a, b] → E is said to be a solution of (4.1)
if x is continuous, x(a) = x0, x ′(a) = x ′

0 and
CDα

a+x(t) =
f (t, x, CDα−1

a+ x(t)). Next, we denote byCα,F ([a, b], E) the
space of the fuzzy functions that are continuous Caputo
fractional differentiable of order α ∈ (1, 2) on [a, b]. The
following lemma shows the equivalence between a fuzzy
fractional differential equation and a fuzzy fractional inte-
gral equation.

Lemma 4.1 Let f : [a, b] × E × E → E such that t �→
f (t, u, v) belongs to C([a, b], E), for any u, v ∈ E . Then, a
d−monotone fuzzy function x ∈ Cα,F ([a, b], E) is a solution
of initial value problem (4.1) if and only if x satisfies the
integral equation

(x(t) �gH x(a)) �gH (t − a)x ′(a)

= 1

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds, t ∈ (a, b].

(4.2)

Proof First, we prove the necessity condition. Let x be a
solution of (4.1), then from (4.1) and Theorem 2.3 we have
that
(
�α
a+CDα

a+x
)

(t) = (x(t) �gH x(a)) �gH (t − a)x ′(a),

(4.3)

for t ∈ [a, b]. Since f (t, u, v) ∈ C([a, b],R) for any u, v ∈
R, and from (4.1), it follows that

(
�α
a+CDα

a+x
)

(t)

= �α
a+ f (t, x(t), CDα−1

a+ x(t))

= 1

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds. (4.4)

Consequently, combining (4.3) and (4.4) proves the neces-
sity condition. Now, we move to prove the sufficiency. Set
fα(t, u, v) := �α

a+ f (t, u, v). Because of the continuity of
the function f , the function t �→ fα(t, u, v) is continuous
on (a, b] and lim

t→a+ �α
a+ f (t, u, v) = 0. Then, x(a) = x0 and

x ′(a) = x ′
0. Acting on the two sides of (4.2) by the operator

RLDα
a+ and by Theorem 2.2, we obtain

RLDα
a+
[
(x(t) �gH x(a)) �gH x ′(a)(t − a)

]

= f (t, x(t), CDα−1
a+ x(t)).

The proof is complete. �

Based on Remark 2.3 and Eq. (4.2), we have the following
remark.

Remark 4.1 Based on the d−monotonic properties of solu-
tion to the fuzzy integral fractional equation (4.2), we have
the following four cases.

(i) If x ∈ C([a, b], E) is such that d([x(t)]r ) ≥ d([x(a)]r )
and d([x ′(t)]r ) ≥ d([x ′(a)]r ) for every r ∈ [0, 1], for
all t ∈ [a, b], then (4.2) can be written as

x(t) = x(a) + (t − a)x ′(a)

+ 1

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds.

(ii) If x ∈ C([a, b], E) is such that d([x(t)]r ) ≤ d([x(a)]r )
and d([x ′(t)]r ) ≥ d([x ′(a)]r ) for every r ∈ [0, 1], for
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all t ∈ [a, b], then (4.2) can be written as

x(t) = x(a) � (−1)

⎛

⎝(t − a)x ′(a)+ 1

�(α)

t∫

a

(t − s)α−1

f (s, x(s), CDα−1
a+ x(s))ds

)
.

(iii) If x ∈ C([a, b], E) is such that d([x(t)]r ) ≥ d([x(a)]r )
and d([x ′(t)]r ) ≤ d([x ′(a)]r ) for every r ∈ [0, 1], for
all t ∈ [a, b], then (4.2) can be written as

x(t) = x(a) + (t − a)x ′(a)

� (−1)

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds.

(iv) If x ∈ C([a, b], E) is such that d([x(t)]r ) ≤ d([x(a)]r )
and d([x ′(t)]r ) ≤ d([x ′(a)]r ) for every r ∈ [0, 1], for
all t ∈ [a, b], then (4.2) can be written as

x(t) = x(a) � (−1)

(

(t − a)x ′(a) � (−1)

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds

⎞

⎠ .

Example 4.1 Let α ∈ (1, 2), λ ∈ R\{0}. We consider the
following fractional integral equation:

(x(t) �gH x(0)) �gH tx ′(0)

= λ

�(α)

t∫

0

(t − s)α−1Eα,1(λs
α)(−1, 0, 1)ds, t ∈ (0, 1],

(4.5)

where x(0) = (1, 5, 10), x ′(0) = (1, 3, 5). Based on
Remark 4.1, we consider the following cases:

Case 1 If d([x(t)]r ) ≥ d([x(0)]r ) and d([x ′(t)]r ) ≥
d([x ′(0)]r ) for every r ∈ [0, 1], for all t ∈ (0, 1], then Eq.
(4.5) becomes

x(t) = (1, 5, 10) + (t, 3t, 5t)

+ λ

�(α)

t∫

0

(t − s)α−1Eα,1(λs
α)(−1, 0, 1)ds

= (1, 5, 10) + (t, 3t, 5t)

+ λ

�(α)

∞∑

k=0

t∫

0

(t − s)α−1 λksαk

�(αk + 1)
(−1, 0, 1)ds

= (1, 5, 10) + (t, 3t, 5t) + λtαEα,α+1(λt
α)(−1, 0, 1),

t
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Fig. 3 The graph of x(t) in Case 1
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Fig. 4 The graph of x ′(t) in Case 1

where we employ the change of variable z = s/t and the
definition of the Beta function. The graphs of x and x ′ are
shown in Figs. 3 and 4. In our numerical simulations, we use
the parameters as follows: α = 1.5, λ = 1.5.

Case 2 If d([x(t)]r ) ≤ d([x(0)]r ) and d([x ′(t)]r ) ≥
d([x ′(0)]r ) for every r ∈ [0, 1], for all t ∈ (0, 1], then by
proceeding similarly as in Case 1 Eq. (4.5) becomes

x(t) = (1, 5, 10) � (−1)
(
(t, 3t, 5t)

+ λ

�(α)

t∫

0

(t − s)α−1Eα,1(λs
α)(−1, 0, 1)ds

)

= (1, 5, 10) � (−1)
(
(t, 3t, 5t)

+ λtαEα,α+1(λt
α)(−1, 0, 1)

)
.
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Fig. 5 The graph of x(t) in Case 2
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Fig. 6 The graph of x ′(t) in Case 2

The graphs of x and x ′ are shown in Figs. 5 and 6. In our
numerical simulations, we use the parameters as follows:
α = 1.75 and λ = 1.5.

Case 3 If d([x(t)]r ) ≥ d([x(0)]r ) and d([x ′(t)]r ) ≤
d([x ′(0)]r ) for every r ∈ [0, 1], for all t ∈ (0, 1], then with
the same manner Eq. (4.5) becomes

x(t) = (1, 5, 10) + (t, 3t, 5t)

� (−1)
λ

�(α)

t∫

0

(t − s)α−1Eα,1(λs
α)(−1, 0, 1)ds

= (1, 5, 10) + (t, 3t, 5t) � (−1)λtα

Eα,α+1(λt
α)(−1, 0, 1).

t
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Fig. 7 The graph of x(t) in Case 3
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Fig. 8 The graph of x ′(t) in Case 3

The graphs of x and x ′ are shown in Figs. 7 and 8. In our
numerical simulations, we use the parameters as follows:
α = 1.5, λ = 0.5.

Case 4 If d([x(t)]r ) ≤ d([x(0)]r ) and d([x ′(t)]r ) ≤
d([x ′(0)]r ) for every r ∈ [0, 1], for all t ∈ (0, 1], then Eq.
(4.5) becomes

x(t) = (1, 5, 10) � (−1)(t, 3t, 5t)

+ λ

�(α)

t∫

0

(t − s)α−1Eα,1(λs
α)(−1, 0, 1)ds

= (1, 5, 10) � (−1)(t, 3t, 5t) + λtα

Eα,α+1(λt
α)(−1, 0, 1).
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Fig. 9 The graph of the solution x(t) in Case 4
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Fig. 10 The graph of x ′(t) in Case 4

The graphs of x and x ′ are shown in Figs. 9 and 10. In our
numerical simulations, we use the parameters as follows:
α = 1.5, λ = −1.

Remark 4.2 If we put g(t) = x(a)�gH (t−a)x ′(a), then one
has g′(t) = (−1)x ′(a) ∈ E . In addition, we can infer that
d([x ′(t)]r )−d([g′(t)]r )has a constant signon [a, b] for every
r ∈ [0, 1]. Therefore, based on Theorem 9 in Lupulescu
(2015), for α ∈ (1, 2) we have

CDα−1
a+

(
x(t) �gH g(t)

) = CDα−1
a+ x(t) �gH

CDα−1
a+ g(t),

and CDα−1
a+ g(t) = (−1)x ′(a)

�(3 − α)
(t − a)2−α.

We start with a presentation of the existence and uniqueness
of the solution to the problem (4.1). In the following, for a

chosen constant θ > 0, we consider the set Sθ of all continu-
ous functions for all t ≥ a such that D0[u(t), 0̂] exp(−θ t) <

∞. On Sθ we can define the following metric

Dθ (u, v) := sup
t≥a

D0[u(t), v(t)] exp(−θ t), (4.6)

where θ > 0 is chosen suitably later. In fact, for θ > 0 the
metric Dθ (u, v) is equivalent to the metric D0[·, ·]. Indeed,
we can see that that D0[u(t), v(t)] exp(−θ t) ≤ Dθ (u, v) ≤
D0[u(t), v(t)], for all u, v ∈ E. We observe that (Sθ , Dθ )

is a complete metric space with the distance (4.6) for any
θ > 0. By Sθ , we denote the set of all functions u ∈ Sθ such
that CDα−1

a+ u(t) exists as a continuous function on [a, b]. For
u, v ∈ Sθ , we consider the following metric:

Dθ (u, v) = Dθ (u, v) + Dθ

(
CDα−1

a+ u, CDα−1
a+ v

)
. (4.7)

Theorem 4.2 Let α ∈ (1, 2) and f : [a, b] × Sθ × Sθ →
E be continuous. Assume that there exist positive constants
M, 0 < γ < θ, L1, L2 such that supt∈[a,b] | f (t, 0, 0)| ≤
M exp(γ t) and

D0[ f (t, u1, v1), f (t, u2, v2)]
≤ L1D0[u1, u2] + L2D0[v1, v2],

for all u1, v1, u2, v2 ∈ Sθ . Then, the initial value problem
(4.1) has a unique solution x.

Proof To prove this theorem, we investigate the conditions of
the Banach fixed point principle. First, let g(t) := x(a)�gH

(t − a)x ′(a), t ∈ [a, b]. From Remark 4.2, we have g′(t) =
(−1)x ′(a) ∈ E . We define the operator P : Sθ → Sθ by

(Px) (t) �gH g(t)

= 1

�(α)

t∫

a

(t − s)α−1 f (s, x(s), CDα−1
a+ x(s))ds. (4.8)

In addition, from Remark 4.2 we observe that

CDα−1
a+ (Px) (t) �gH

(−1)x ′(a)

�(3 − α)
(t − a)2−α

=
t∫

a

f (s, x(s), CDα−1
a+ x(s))ds (4.9)

Since x ∈ C([a, b], E) and f satisfies the Lipschitz condi-
tion, we deduce that the function f is uniformly continuous
and bounded on [a, b].Therefore, there exists M f such that

D0

[
f
(
t, x(t), CDα−1

a+ x(t)
)

, 0̂
]

≤ M f . The proof of this
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theorem is divided into two steps. We first show that Pmaps
C([a, b], E) into C([a, b], E). Since for a ≤ t1 ≤ t2 ≤ b,

D0[(Px) (t1), (Px) (t2)]
≤ |t1 − t2|D0[x ′(a), 0̂]

+ 1

�(α)

t2∫

t1

(t2 − s)α−1D0[ f (s, x(s), CDα−1
a+ x(s)), 0̂]ds

+ 1

�(α)

t1∫

a

D0

[ (
(t1 − s)α−1 − (t2 − s)α−1) f (s, x(s),

CDα−1
a+ x(s)), 0̂

]
ds

≤ |t1 − t2|D0[x ′(a), 0̂] + M f

�(α + 1)
|t2 − t1|α

+ M f

�(α + 1)

(|tα2 − tα1 | − |t2 − t1|α
)

≤ |t1 − t2|D0[x ′(a), 0̂]
+ M f

�(α + 1)

(
(t2 − t1)

α + (tα2 − tα1 )
)
,

the last inequality converges to 0 as t2 → t1, which yields
that the operatorP is a continuous function. Besides, for each
t ∈ [a, b] and p > 0 fixed, from Lipschitz condition we have

D0[(Px)(t), 0̂]
≤ D0[x0, 0̂] + D0[x ′(a), 0̂](b − a)

+ 1

�(α)

t∫

a

(t − s)α−1D0[ f (s, 0, 0), 0̂]ds

+ L

�(α)

t∫

a

(t − s)α−1
(
D0[x(s), 0̂] + D0[CDα−1

a+ x(s), 0̂]
)
ds

≤ D0[x0, 0̂] + D0[x ′(a), 0̂](b − a) + M(t − a)α

�(α + 1)
exp(γ t)

+ L

�(α)

t∫

a

(t − s)α−1
(
D0[x(s), 0̂] + D0[CDα−1

a+ x(s), 0̂]
)
ds,

where L = max{L1, L2}. Furthermore, we obtain

D0[CDα−1
a+ (Px) (t), 0̂] ≤ D0[x ′(a), 0̂]

�(3 − α)
(t − a)2−α

+
t∫

a

D0[ f (s, x(s), CDα−1
a+ x(s)), 0̂]ds

≤ D0[x ′(a), 0̂]
�(3 − α)

(t − a)2−α + M exp(γ t)

γ

+ L

t∫

a

(
D0[x(s), 0̂] + D0[CDα−1

a+ x(s), 0̂]
)
ds.

Therefore, we get

Dθ

(
Px, 0̂

)

= sup
t≥a

{
D0[(Px)(t), 0̂] exp(−θ t)

}

+ sup
t≥a

{
D0[CDα−1

a+ (Px)(t), 0̂] exp(−θ t)
}

≤
(
D0[x0, 0̂] + (b − a)D0[x ′(a), 0̂]

+M(b − a)α

�(α + 1)
exp((γ − θ)t)

)

+
(

(b − a)2−α

�(3 − α)
D0[x ′(a), 0̂] + M

γ
exp((γ − θ)t

)

+ LDθ (x, 0)

(
(b − a)α

�(α + 1)
+ (b − a)

)

.

Since x ∈ Sθ , there exists K > 0 such that Dθ (x, 0) ≤ K <

∞ for all t ∈ [a, b]. Hence, for t ∈ [a, b] we conclude that
Dθ (Px, 0) < ∞, and thus Px ∈ Sθ . For the next step, we
prove that the operator P is a contraction map with respect
to metric Dθ . For x, y ∈ Sθ , we have that

Dθ (Px,Py)

≤ L

�(α)
sup

t∈[a,b]

⎧
⎨

⎩

t∫

a

1

(t − s)1−α
(D0[x(s), y(s)]

+D0[CDα−1
a+ x(s), CDα−1

a+ y(s)]
)
dse−θ t

}

≤ L

�(α)

(
Dθ (x, y) + Dθ

(
CDα−1

a+ x, CDα−1
a+ y

))

sup
t∈[a,b]

⎧
⎨

⎩

t∫

a

(t − s)α−1eθ(s−t)ds

⎫
⎬

⎭

≤ L

θα

(
Dθ (x, y) + Dθ

(
CDα−1

a+ x, CDα−1
a+ y

))
. (4.10)

On the other hand, for t ∈ [a, b] we get

Dθ

(
CDα−1

a+ Px, CDα−1
a+ Py

)

≤ L
(
Dθ (x, y) + Dθ

(
CDα−1

a+ x, CDα−1
a+ y

))

sup
t∈[a,b]

⎧
⎨

⎩

t∫

a

eθ(s−t)ds

⎫
⎬

⎭

≤ sup
t∈[a,b]

{
L (1 − exp(θ(a − t)))

θ

}

(
Dθ (x, y) + Dθ

(
CDα−1

a+ x, CDα−1
a+ y

))
. (4.11)
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From (4.10) and (4.11), we obtain

Dθ (Px,Py) = Dθ (Px,Py) + Dθ

(
CDα−1

a+ Px, CDα−1
a+ Py

)

≤ LDθ (x, y)

(
1

θα
+ 1 − e−θ(b−a)

θ

)

≤ LDθ (x, y)

(
1

θα
+ 1 − e−θb

θ

)

.

In the last inequality, we can choose a value for θ > γ big
enough such that P is a contraction. Indeed, using that

lim
θ→∞

(
1

θα
+ 1 − e−θb

θ

)

= 0

for α ∈ (1, 2). Therefore, we can choose θ > γ and θ > L

such that L

(
1

θα
+ 1 − e−θb

θ

)

< 1, and P is a contraction

on Sθ . Thanks to the Banach fixed point theorem, we obtain
the existence of a unique fixed point for P and the unique
fixed of P is in the space Sθ with distanceDθ that is a unique
solution of the problem (4.1). �

The existence and uniqueness theorem for the initial value
problem (4.1) can be obtained by using themethod of succes-
sive approximations as in Theorem 3.1. If we work directly
with the successive approximations (4.12) in the next corol-
lary, we can prove that the iterations converge and that the
initial value problem (4.1) has a unique solution on the inter-
val [a, b] under only assumption L(t − a)α < �(1 + α).

Corollary 4.1 Let f : [a, b] × E × E → E is a continuous
function. Assume that there exists a positive constant L such
that for every u, v, z, w ∈ E, D0[ f (t, u, v), f (t, z, w)] ≤
L(D0[u, z]+D0[v,w]), t ∈ (a, b]. Then, the following suc-
cessive approximations given by x0(t) = x(a) �gH (t −
a)x ′(a) and for n = 1, 2, . . .

xn(t) �gH x0(t) = 1

�(α)

t∫

a

(t − s)α−1 f (s, xn−1(s),

CDα−1
a+ xn−1(s))ds, t ∈ (a, b]. (4.12)

converge uniformly to a unique solution of the problem (4.1)
on some intervals [a, b∗] for some b∗ ∈ (a, b].

Example 4.3 Let α ∈ (1, 2), λ ∈ R\{0}, t > a ≥ 0. We con-
sider the linear Caputo fractional fuzzy differential equation
as follows:

C Dα
a+x(t)

= λx(t) + h(t), x(a) = x0, x ′(a) = ξ0 t ∈ (a, b].
(4.13)

We observe that f (t, u) := λu + h satisfies the assump-
tions of Theorem 4.2. To get an explicit solution formula of
(4.13), we apply the method of successive approximations.
By employing Corollary 4.3, we consider the following, for
n = 1, 2, . . . ,

(xn(t) �gH x(a)) �gH (t − a)x ′(a)

= 1

�(α)

t∫

a

(t − s)α−1(λxn−1(s) + h(s))ds, t ∈ [a, b],

(4.14)

where x0(t) := x(a)�gH (t−a)x ′(a). In this example, based
on Remark 4.1 we will find the exact solution of (4.13) in the
following cases:

Case 1 We assume that λ > 0, the solution of the problem
(4.13), x , is d−increasing, and x ′ is also d−increasing on
(a, b]. Then, by Remark 4.1 the successive approximation
(4.14) becomes

xn(t) = x0(t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(s)

+ h(s))ds, t ∈ (a, b], (4.15)

for n = 1, 2, . . . , where x0(t) = x(a) + (t − a)x ′(a). It is
well-known that (4.15) can be represented with the r−level
sets as follows:

[xn(t)]r = [x0(t)]r + 1

�(α)

t∫

a

(t − s)α−1(λ[xn−1(s)]r

+ [h(s)]r )ds, (4.16)

where r ∈ [0, 1], t ∈ (a, b].Then, because x isd−increasing,
then we have [x ′(a)]r = [x ′(r , a), x ′(r , a)], and this yields
that⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xn(r , t) = x0(r , t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(r , s) + h(r , s))ds, t ∈ (a, b],

xn(r , t) = x0(r , t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(r , s) + h(r , s))ds, t ∈ (a, b],
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where x0(r , t) = x(r , a) + (t − a)x ′(r , a) and x0(r , t) =
x(r , a) + (t − a)x ′(r , a).
- Now, for n = 1, one gets

x1(r , t) = x(r , a)

[

1 + λ(t − a)α

�(α + 1)

]

+ x ′(r , a)(t − a)

[

1 + λ(t − a)α� (2)

� (α + 2)

]

+ (�α
a+h)(r , t).

For n = 2, one also obtains that

x2(r , t) = x(r , a)

[

1 + λ(t − a)α

�(α + 1)
+ λ2(t − a)2α

�(2α + 1)

]

+ (�α
a+h)(r , t) + λ(�2α

a+h)(r , t)

+ x ′(r , a)(t − a)

[

1+λ(t − a)α

� (α+2)
+λ2(t − a)2α

� (2α+2)

]

.

By proceeding inductively and taking n → ∞ one has that

x(r , t) = x(r , a)

∞∑

i=0

λi (t − a)iα

�(iα + 1)
+ x ′(r , a)(t − a)

∞∑

i=0

λi (t − a)iα

�(iα + 2)
+

t∫

a

∞∑

i=1

λi−1(t − s)iα−1

�(iα)
h(r , s)ds

= x(r , a)

∞∑

i=0

λi (t − a)iα

�(iα + 1)
+ x ′(r , a)(t − a)

∞∑

i=0

λi (t − a)iα

�(iα + 2)
+

t∫

a

∞∑

i=0

λi (t − s)iα+(α−1)

�(iα + α)
h(r , s)ds

= x(r , a)

∞∑

i=0

λi (t − a)iα

�(iα + 1)
+ x ′(r , a)(t − a)

∞∑

i=0

λi (t − a)iα

�(iα + 2)

+
t∫

a

(t − s)α−1
∞∑

i=0

λi (t − s)iα

�(iα + α)
h(r , s)ds.

Then, it follows from the definition of the Mittag–Leffler

function Eα,β(u) =
∞∑
i=0

ui

�(iα + β)
, α, β > 0 that the solu-

tion of the problem (4.13) is given by

x(r , t) = x(r , a)Eα,1
(
λ (t − a)α

)

+ x ′(r , a)(t − a)Eα,2
(
λ (t − a)α

)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(r , s)ds.

t
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Fig. 11 The graph of the solution x(t) given by (4.18)
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Fig. 12 The graph of x ′(t) in Case 1

With the same manner, we also obtain

x(r , t) = x(r , a)Eα,1
(
λ (t − a)α

)

+ x ′(r , a)(t − a)Eα,2
(
λ (t − a)α

)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(r , s)ds.

This yields the solution of (4.13) is as follows:

x(t) = x(a)Eα,1
(
λ (t−a)α

)+x ′(a)(t−a)Eα,2
(
λ (t − a)α

)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(s)ds. (4.17)
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In our numerical simulations, we consider the following
parameters: (a, b] = (0, 1], x(a) = (−3, 0, 3), x ′(a) =
(−3, 0, 3), α = 1.5, λ = 0.5, and the fuzzy function
h(t) = tβ(−1, 0, 1), where β = 0.5. Then, the formula
(4.17) becomes

x(t) = (−3, 0, 3)Eα,1(λt
α) + (−3t, 0, 3t)Eα,2(λt

α)

+ �(β + 1)tα+βEα,α+β+1(λt
α)(−1, 0, 1). (4.18)

The graphs of the solution x(t) given by (4.18) and of x ′(t)
are shown in Figs. 11 and 12.

Case 2 We assume that λ < 0, the solution of the problem
(4.13), x , is d−decreasing, and x ′ is also d−increasing on
(a, b]. Then, by Remark 4.1 the successive approximation
(4.14) becomes

xn(t) = x0(t) � (−1)

�(α)

t∫

a

(t − s)α−1(λxn−1(s)

+ h(s))ds, t ∈ (a, b], (4.19)

for n = 1, 2, . . . , where x0(t) = x(a) � (−1)(t − a)x ′(a).

Similar to Case 1, Eq. (4.19) can be represented with the
r−level sets as follows:

[xn(t)]r = [x0(t)]r � (−1)

�(α)

t∫

a

(t − s)α−1(λ[xn−1(s)]r

+ [h(s)]r )ds, t ∈ (a, b]. (4.20)

Because x is d−decreasing and λ < 0, we have [x ′(a)]r =
[x ′(r , a), x ′(r , a)] and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xn(r , t) = x0(r , t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(r , s) + h(r , s))ds, t ∈ (a, b],

xn(r , t) = x0(r , t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(r , s) + h(r , s))ds, t ∈ (a, b],

where x0(r , t) = x(r , a) + (t − a)x ′(r , a) and x0(r , t) =
x(r , a)+ (t −a)x ′(r , a). By proceeding similarly as in Case
1, as n → ∞ we also get

x(r , t) = x(r , a)Eα,1
(
λ (t − a)α

)

+ x ′(r , a)(t − a)Eα,2
(
λ (t − a)α

)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(r , s)ds,

x(r , t) = x(r , a)Eα,1
(
λ (t − a)α

)

+ x ′(r , a)(t − a)Eα,2
(
λ (t − a)α

)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(r , s)ds.

This yields the solution of (4.13) is as follows:

x(t) = x(a)Eα,1
(
λ (t − a)α

)

� (−1)x ′(a)(t − a)Eα,2
(
λ (t − a)α

)

� (−1)

t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(s)ds.

(4.21)

In our numerical simulations, we consider the following
parameters: (a, b] = (0, 1], x(a) = (1, 5, 10), x ′(a) =
(−1, 0, 1), α = 1.75, λ = −1, and the fuzzy function
h(t) = tβ(−1/2, 0, 1/2, where β = 2. Then, the formula
(4.21) becomes

x(t) = (1, 5, 10)Eα,1(λt
α) � (−1)(−t, 0, t)Eα,2(λt

α)

� (−1)�(β + 1)tα+βEα,α+β+1(λt
α)(−1/2, 0, 1/2).

(4.22)

The graphs of the solution x(t) given by (4.22) and of x ′(t)
are shown in Figs. 13 and 14.

Case 3 We assume that λ < 0, the solution of the problem
(4.13), x , is d−increasing, and x ′ is also d−decreasing on
(a, b]. Then, by Remark 4.1 the successive approximation
(4.14) becomes

xn(t) = x0(t) � (−1)

�(α)

t∫

a

(t − s)α−1(λxn−1(s)

+ h(s))ds, t ∈ [a, b], (4.23)

for n = 1, 2, . . . ,where x0(t) = x(a)+ (t −a)x ′(a). By the
same manner as the above two cases, the solution of (4.13)
in this case is given by
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Fig. 13 The graph of the solution x(t) given by (4.22)
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Fig. 14 The graph of x ′(t) in Case 2

x(t) = x(a)Eα,1
(
λ (t−a)α

)+x ′(a)(t−a)Eα,2
(
λ (t−a)α

)

� (−1)

t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(s)ds.

(4.24)

In our numerical simulations, we consider the follow-
ing parameters: (a, b] = (0, 1], x(a) = (1, 5, 10), x ′(a) =
(1, 5, 10), α = 1.75, λ = −1, and the fuzzy function
h(t) = tβ(−1/2, 0, 1/2), where β = 2. Then, the formula
(4.24) becomes

x(t) = (1, 5, 10)Eα,1(λt
α) + (t, 5t, 10t)Eα,2(λt

α)

� (−1)�(β + 1)tα+βEα,α+β+1(λt
α)(−1/2, 0, 1/2).

(4.25)
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Fig. 15 The graph of the solution x(t) given by (4.25)
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Fig. 16 The graph of x ′(t) in Case 3

The graphs of the solution x(t) given by (4.25) and of x ′(t)
are shown in Figs. 15 and 16.

Case 4 We assume that λ > 0, the solution of the problem
(4.13), x , is d−decreasing, and x ′ is also d−decreasing on
(a, b]. Then, by Remark 4.1 the successive approximation
(4.14) becomes

xn(t) = x0(t) + 1

�(α)

t∫

a

(t − s)α−1(λxn−1(s)

+ h(s))ds, t ∈ (a, b], (4.26)

for n = 1, 2, . . . , where x0(t) = x(a) � (−1)(t − a)x ′(a).
Similarly, we also get the solution of (4.13) in this case as
follows:
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Fig. 17 The graph of the solution x(t) given by (4.29)
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Fig. 18 The graph of x ′(t) in Case 4

x(t) = x(a)Eα,1
(
λ (t − a)α

)

� (−1)x ′(a)(t − a)Eα,2
(
λ (t − a)α

)
(4.27)

+
t∫

a

(t − s)α−1Eα,α

(
λ (t − s)α

)
h(s)ds. (4.28)

In our numerical simulations, we consider the follow-
ing parameters: (a, b] = (0, 1], x(a) = (1, 5, 10), x ′(a) =
(1, 5, 10), α = 1.75, λ = 0.75, and the fuzzy function
h(t) = tβ(−1/2, 0, 1/2), where β = 2. Then, the formula
(4.27) becomes

x(t) = (1, 5, 10)Eα,1(λt
α) � (−1)(t, 5t, 10t)Eα,2(λt

α)

+ �(β + 1)tα+βEα,α+β+1(λt
α)(−1/2, 0, 1/2).

(4.29)

The graphs of the solution x(t) given by (4.29) and of x ′(t)
are shown in Figs. 17 and 18.

5 Conclusions

The study of the fundamental theories and applications
of fuzzy fractional integral equations and fuzzy differen-
tial equations with the concepts of the fractional derivative
have increased over the years, and during the last decade, a
large number of investigators have presented interesting and
important results in these new fields. In this paper, we pro-
pose a standard framework to investigate the existence and
uniqueness of the solution for a general form of fractional
integral equations and an initial value problem of fractional
differential equations in the fuzzy environment with the non-
integer order α ∈ (1, 2). Also, we proposed a formula of the
solution for the problem (1.1) in the general case and in the
linear case, which plays an essential role in investigating the
qualitative theories of the problem (1.1) in future.
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