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Abstract
This paper proposes a hybrid multi-step wind speed prediction model based on combination of singular spectrum analysis

(SSA), variational mode decomposition (VMD) and support vector machine (SVM) and was applied for sustainable

renewable energy application. In the proposed SSA–VMD–SVM model, the SSA was applied to eliminate the noise and to

approximate the signal with trend information; VMD was applied to decompose and to extract the features of input time

series wind speed data into a number of sub-layers; and the SVM model with various kernel functions was adopted to

predict the wind speed from each of the sub-layers, and the parameters of SVM were fine-tuned by differential evolutionary

algorithm. To investigate the effectiveness of the proposed model, various prediction models are considered for com-

parative study, and it is demonstrated that the proposed model outperforms with better prediction accuracy.

Keywords Singular spectrum analysis (SSA) � Variational mode decomposition (VMD) � Support vector machine (SVM) �
Multi-step wind speed prediction � Renewable energy � Sustainable systems

1 Introduction

The energy crisis is one of the major problems faced by our

country, and the availability of fossil fuels will no longer

exist in the future due to the growth of population and

massive development of industrialization. The pollution-

free renewable energy which is available abundantly on

earth is wind energy, but the large-scale integration of wind

turbines with grid is always a challenging task because of

the nonlinear and uncertain nature of wind speed. This non-

stationary wind speed imposes many challenges on power

system such as fluctuation in frequency, power quality

disturbances, uncertainty in the generated power, and load

scheduling. These issues can be handled effectively with

prior wind speed prediction, which ensures the stability of

the power to be synchronized with grids. The wind speed

prediction can be made as per the requirements; a-day-

ahead prediction helps proper scheduling of wind forms to

achieve optimal operating cost and planning for unit

commitment, and the generation control can be made easy

with 6-h-ahead prediction; load dispatch and load

scheduling can be made easy with obtained results of

30-min- to 6-h-ahead prediction; few-seconds to 30-min-

ahead prediction can be utilized for control of frequency,

voltage regulation and turbine action, respectively. The

existing few wind speed prediction methodologies were

made under the detailed review as follows (Alencar et al.

2018; Shao et al. 2016; Khodayar et al. 2017; Gendeel

et al. 2018; Luo et al. 2018; Haiqiang et al. 2017; Zhang

et al. 2018; Jawad et al. 2018; Shi et al. 2018; Karakuş

et al. 2017; Kaur et al. 2016; Chang et al. 2016; van der

Walt and Botha 2016; Singh et al. 2016; Giannitrapani

et al. 2016; Hu et al. 2015; Mao et al. 2016; Ren et al.

2014, 2016).

Alencar et al. (2018) proposed a hybrid forecasting

model for multi-step wind forecasting with the combina-

tion of seasonal autoregressive integrated moving average

(SARIMA) and neural networks. Initially, forecasting

carried out for the determined explanatory variables, and

then the actual forecasting of entire series has been carried

out by the combination of the predicted forecasted series
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data and past history of data. The proposed model out-

performs the other forecasting methods under comparative

study. Based on the estimated frequency spectral compo-

nents, a short term wind speed forecasting model was

presented by Shao et al. (2016). The combined model of

wavelet transformation (WT) and AdaBoost technique has

been proposed to analyze the wind speed distribution for

different seasons based on their scalogram percentage of

energy distribution. The effectiveness of the proposed

model was demonstrated with a case study. For ultra-short-

term and short-term wind speed forecasting, a deep neural

networks model with stacked autoencoder (SAE) and

stacked denoising autoencoder (SDAE) is discussed by

Khodayar (2017). The uncertainties in wind speed data are

taken care by the SAE and SDAE; the experimental studies

demonstrated better accuracy of the predicted results than

other conventional neural network forecasting models.

Gendeel et al. (2018) discussed about a hybrid prediction

model with the combination of VMD and neural networks.

The original wind speed data was decomposed into various

intrinsic components, and the neural network was

employed to present corresponding sub-models for each

IMFs. The experimental results were made under the

comparative study of other prediction models including

NN with wavelet decomposition and empirical mode

decomposition and demonstrated that the proposed model

outperforms with better accuracy. To handle large data set

of wind speed prediction models, Luo et al. (2018) pre-

sented a hybrid model of stacked extreme learning machine

(SELM) and deep neural networks with generalized cor-

rentropy measure. The proposed model achieved a better

computing performance and enhanced accuracy than any

other models considered under comparison. Haiqiang et al.

(2017) proposed a spatial and temporal correlation model

for ultra-short-term wind speed prediction. The samples are

grouped with similar correlation coefficient, and the rep-

resentative time series of this group is modeled by

autoregressive moving average (ARMA) model. Those

which are not grouped under class are modeled by artificial

neural networks. With meteorological data, the spatial

correlation between the predicted and target farm has been

investigated. Wind speed prediction model based on Lor-

enz disturbance and IPSO-BP neural network was pre-

sented by Zhang et al. (2018). The weights of

backpropagation neural network are fine-tuned by the IPSO

algorithm. The prediction results of the back propagation

neural network model were improved by applied Lorenz

disturbance.

Jawad et al. (2018) presented a short- and medium-term

wind speed prediction based on a genetic algorithm-based

nonlinear autoregressive neural network (GA–NARX–NN)

model. The effective prediction accuracy of the proposed

model has been demonstrated by numerical simulations. A

wavelet neural network (WNN)-based multi-objective

interval prediction model has been proposed by Shi et al.

(2018) for short-term wind speed prediction. The predic-

tion intervals were directly constructed by the generated

Pareto optimal solutions. The coevolutionary algorithms

were employed to fine-tune the weights of the proposed

WNN wind prediction model. Karakus et al. (2017) pre-

sented a novel polynomial autoregressive model for 1-day-

ahead wind speed and power prediction with improved

accuracy. Further the adaptive neuro-fuzzy inference sys-

tem (ANFIS) has been employed to carry out comparative

study with the performance of PAR model, and the pro-

posed model outperforms all other prediction models.

Artificial neural network-based short-term wind speed

prediction model proposed by Kaur et al. (2016). Various

ANN predictions models were developed, and their pre-

diction accuracy was validated by MSE as performance

metric. Chang et al. (2016) discussed about new hybrid

wind forecasting model based on autoregressive integrated

moving average (ARIMA) and radial basis function neural

network (RBFNN). The hybrid model possesses a classic

and nonlinear prediction model for linear and nonlinear

components of the original wind speed data, respectively.

The simulation results demonstrated that the proposed

model was found to be a suitable model for wind speed

prediction with better accuracy. van der Walt and Botha

(2016) made a comparative study on regression algorithms

for wind speed prediction. The regression models under the

study included support vector regression, ordinary least

squares and Bayesian ridge regression models, and the

results depicted that the SVM regression showed improved

performance over other two regression models. Singh et al.

(2016) presented a neural network model for wind speed

prediction for both Indian and UK power plant with better

prediction accuracy. A-day-ahead wind prediction model

was proposed by Giannitrapani et al. (2016), where

stochastic optimization models were presented to obtain

optimal solution. The least square SVM regression model

was developed by Hu et al. (2015) for short-term wind

speed forecasting with heteroscedasticity and stochastic

gradient descent algorithm to solve the model. Mao et al.

(2016) discussed on short-term wind speed wind speed

prediction based on SVMs and backpropagation (BP)

prediction algorithm. With better error correction method,

the proposed methodology demonstrates significant

improvement in prediction accuracy. Ren et al. (2016)

presented EMD–SVM-based wind forecasting methodol-

ogy, where the original wind speed series is decomposed in

various IMFs. The proposed model outperforms several

models in the literature. The comparative study made by

Ren et al. (2014) on EMD, EEMD, CEEMD and CEEMD

with adaptive noise (CEEMDAN). It was suggested that

the performance of SVR significantly improved by EMD
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and marginally by ANN and further CEEMDAN–SVR

among the EMD-based hybrid methods.

Considering the reviews made from the existing litera-

ture, it is observed that the following works were imple-

mented—improvement in computational convergence of

SVM based on its nature of transforming the quadratic

problem into linear equations, improvement in the robust-

ness and accuracy of short-term and very short term wind

speed prediction strategies, developed ensemble algorithms

and intelligent search algorithms, decomposing data with

multi-decomposition models. The proposed wind speed

prediction strategy employed SSA–VMD–SVM model

where the data are pre-processed by employing SSA and

sample entropy such that the trend information is extracted

from original wind speed series, VMD is employed for

further decomposition of the sub-series as EMD associated

with limitations of its recursive nature; finally, the opti-

mized SVM predictor is presented with various effective

kernel functions for effective prediction. The proposed

wind prediction model outperforms the existing literature,

and it is more robust with highly optimized system

parameters.

2 The SSA–VMD–SVM model

2.1 The framework of the proposed SSA–VMD–
SVM model

The framework of the proposed SSA–VMD–SVM model

can be summarized as follows:

1. The main idea of SSA is to decompose the original

wind speed time series data into various independent

components and noise, and the unpredictability of the

each sub-series is evaluated by sample entropy con-

cept, detailed in Sect. 2.2.

2. The high entropy sub-series are further decomposed

into number of sub-layers by the adopted VMD

technique, detailed in Sect. 2.3.

3. The SVM models are designed with various kernel

functions to predict the wind speed data with the

provided sub-layer data series, and the forecasted sub-

layer data series is reconstructed to present multi-step

forecasting sub-series, detailed in Sect. 2.4.

4. The differential evolution algorithm is adopted for fine-

tuning SVM parameters, detailed in Sect. 2.5.

5. The forecasted sub-series are combined with original

wind speed sub-series to present a multi-step forecast-

ing sub-series and the wavelet filter adopted to deny the

extra frequency components of the combined series,

detailed in Sect. 2.6.

6. The experimental verification of the proposed model

with case studies is detailed in Sect. 3.

7. To evaluate the performance of the designed models,

various predictions models from the existing literature

are considered for comparison, detailed in Sect. 3.3.

2.2 Singular spectrum analysis

Singular spectrum analysis is a nonparametric spectral

extraction algorithm widely used in time series analysis. It

decomposes the input time series into periodic and quasi-

periodic components, and thus the noise can be reduced.

The four stages of SSA algorithm include the embedding

stage, decomposition stage, grouping and averaging stage.

The working steps of the algorithm described as follows

(Hassani 2010):

Stage 1: Embedding

In this step, the original wind speed data X ¼ ðx1; x2; . . .xNÞ
are shifted to multi-dimensional vector space Y ¼
ðy1; y2. . .yLÞ with dimension L, where 1\L\N. The ele-

ments of L-lagged vector can be defined as:

yi ¼ xi; xiþ1; . . .xiþL�1½ �T

where i ¼ 1; 2; . . .K and K ¼ N � Lþ 1 is the number of

L-lagged vectors.

Y ¼

x1 x2 � � � xK
x2 x3 � � � xKþ1

� � � � � � � � � � � �
xL xLþ1 � � � xN

2
664

3
775 ð1Þ

Stage 2: Singular value decomposition

In this step, the matrix Y is decomposed into n components,

where n ¼ rankðYÞ. Assuming the L� Llag covariance

matrix S ¼ YYT , the eigenvalues of S can be determined in

descending order represented as, k1; k2; . . .kn, and their

corresponding orthonormal system is represented as

u1; u2; . . .; ud . Now, the SVD of the matrix Y is represented

as follows:

Y ¼ Y1 þ Y2 þ � � � þ Yn ð2Þ

where Yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kiuivTi

p
, i ¼ 1; 2; . . .; n and n ¼ minðL;KÞ,

vi ¼ XTui=
ffiffiffiffi
ki

p
represents the principal component of the

L-trajectory matrix Y , the set {
ffiffiffiffi
ki

p
} is the spectrum of

matrix Y , and ðki; ui; viÞ is the eigentriples of the matrix

YYT in descending order of ki.
Stage 2: Reconstruction

Grouping:

The trend components m out of n eigentriplets are selected

in this step, denote I ¼ fI1; I2; . . .Img and

Yl ¼ Yl1 þ Yl2 þ � � � þ Ylr, where Yl represents the original

New SVM kernel soft computing models for wind speed prediction in renewable energy applications 11443

123

RETRACTED A
RTIC

LE



component of the wind speed data Y and remaining com-

ponents ðn� mÞ eigentriples are corresponding to noise.

Averaging:

Based on Hankelization procedure, renovate the matrix

group Yl ¼ Yl1 þ Yl2 þ � � � þ Ylr into a time series group

fXl1;Xl2; . . .Xlmg. The reconstructed wind speed time series

can be denoted as follows:

X ¼ HðYl1Þ þ HðYl2Þ þ � � � þ HðYlmÞ þ HðeÞ
¼ Xl1 þ Xl2 þ � � � þ Xlm þ HðeÞ ð3Þ

It can be rewritten as X ¼ Xtrend þ Xnoise, where Xtrend ¼
Xl1 þ Xl2 þ � � � þ Xlm and Xnoise ¼ HðeÞ.

2.3 Sample entropy

The thermodynamic concept employed to explain the

degree of disorder of thermodynamic system is entropy. It

was proposed by Richman and Moorman (2000) and has

wide range of application in statistical fields (Tsai et al.

2012) and health monitoring (Widodo et al. 2011). The

modified form of entropy is sample entropy with advan-

tages such as data length independence and trouble-free

implementation.

For the time series data x ¼ fxð1Þ; xð2Þ. . .xðNÞg of

length N, the run length m and tolerance window r, the

sample entropy is applied as follows:

Step 1: Reconstruct the considered time series data into

matrix form,

X ¼ fXmð1Þ;Xmð2Þ; . . .XmðN � mþ 1Þg; ð4Þ

Where; XmðiÞ ¼ fxðiÞ; xðiþ 1Þ; . . .xðiþ m
� 1Þg for 1� i�N � mþ 1: ð5Þ

Step 2: The distance of XmðiÞ, XmðjÞ and d½XmðiÞ;XmðjÞ� is

defined as the absolute difference between their scalar

components.

d½XðiÞ;XðjÞ� ¼ max
k¼0�m�1

xðiþ kÞ � xðjþ kÞj j ð6Þ

Step 3: For the defined xmðjÞ, the number of elements in the

collection fjjd½XmðiÞ;XmðjÞ�\r; j 6¼ i; 1� j�N � mg is

represented as count number Ci.

The ratio of NmðiÞ to total distance is defined as:

Cm
i ðrÞ ¼

Ci

N � mþ 1
ð7Þ

Step 4: Evaluate the average Cm
i ðrÞ for all i, the probability

matching of two sequence for m points denoted as:

CmðrÞ ¼ 1

N � m

XN�m

i¼1

Bm
i ðrÞ ð8Þ

Step 5: For m = m ? 1, repeat the steps (1–4) and calcu-

late Cmþ1ðrÞ.

Step 6: The sample entropy of x is theoretically defined as:

Sample Entropyðm; rÞ ¼ lim
N!1

� ln
Cmþ1ðrÞ
CmðrÞ

� �� �
ð9Þ

For definite time series length, the entropy is estimated

as:

Sample Entropy ðN;m; rÞ ¼ � ln
Cmþ1ðrÞ
CmðrÞ

� �

The parameters of entropy are tuned based on Pincus

(2001), in this paper r ¼ 0:1 times the standard deviation

of the wind speed time series and m ¼ 1.

2.4 Variational mode decomposition (VMD)

Dragomiretskiy and Zosso (2014) proposed a new state-of-

the-art decomposition algorithm called the variational

mode decomposition (VMD). In VMD, the original time

series data xðtÞ are decomposed into discrete number of

modes ukðtÞ with sparsity properties; each mode looks for

the central frequency xk of limited bandwidth BðukðtÞÞ by

applying Hilbert transform of the associated signal such

that the reconstruction of all modes reproduces the original

time series signal. For the considered time series xðtÞ, it is

decomposed into various predefined number of modes

ukðtÞ, for k ¼ 1; 2; . . .K, where K is number of modes.

ukðtÞ ¼ AkðtÞ cosð/kðtÞÞ ð10Þ

where AkðtÞ is a nonnegative envelope, /kðtÞ is a non-

decreasing phase function, and the instantaneous frequency

that varies lower than /kðtÞ is xkðtÞ ¼ /
0

kðtÞ. The algo-

rithmic steps followed to decompose the input time series

signal into its various modes around a central frequency

with limited bandwidth as follows:

Step 1: The analytical signal uk;AðtÞ for each mode ukðtÞ,
which has unilateral spectrum of nonnegative frequencies,

is determined through Hilbert transform,

HukðtÞ ¼
1

p
p:v

Z

R

ukðvÞ
t � v

dv ð11Þ

uk;AðtÞ ¼ ukðtÞ þ jHukðtÞAke
j/kðtÞ ð12Þ

Step 2: For each mode ukðtÞ, the frequency spectrum is

shifted its base band by the following equation:

uk;MðtÞ ¼ uk;AðtÞe�jxkt ð13Þ
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Step 3: For the above signals,L2-norm of the gradient is

estimated, and the bandwidth of the demodulated signal is

expressed as:

BðuðkÞÞ ¼ ot dðtÞ þ j

pt

� �
� ukðtÞ

� �
e�jxkt

				
				

2

2

ð14Þ

The variational problem is expressed as,

min
uk ;xk

XK
k¼1

ot dðtÞ þ j

pt

� �
� ukðtÞ

� �
e�jxkt

				
				

2

2

( )

subject to
XK
k¼1

uk ¼ xðtÞ
ð15Þ

where dðtÞ is the Dirac distribution.

The solution for the above variational problem is

obtained by introducing Lagrangian multipliers kðtÞ which

convert the problem into dual unconstrained problem and a

quadratic penalty term a which retains the reconstruction

accuracy.

Lðfukg; fxkg; kÞ :

¼ a
X
k

ot dðtÞ þ j

pt

� �
� ukðtÞ

� �
e�jxkt

				
				

2

2

þ xðtÞk

�
X
k

ukðtÞ
					

2

2

þ kðtÞ; xðtÞ �
X
k

ukðtÞ
* + ð16Þ

Equation (15) is solved by obtaining saddle point of (16)

by alternate direction method of multipliers.

2.5 Support vector machine

The statistical learning algorithm is developed to map the

input data into high-dimensional future space via kernel

functions. The nonlinear mapping eliminates the overfitting

issues in the case of small data sets. So it is widely applied

in pattern recognition, optimal control, regression and other

fields. The basic concept of SVM regression model is

explained as follows (Müller et al. 1997; Mukherjee et al.

1997).

For given input data set fðx1; y1Þ; ðx2; y2Þ. . .ðxi; yiÞgNi¼1,

where xiðxi 2 <dÞ is the input vector of the first i training

samples, xi ¼ x1
i ; x

2
i ; . . .; x

d
i


 �T
and yi 2 < is the corre-

sponding output data. The linear regression function f ðxÞ ¼PD
i¼1 wi/iðxÞ þ b is established in high-dimensional future

space, where /iðxÞf gDi¼1 are the features; b and fwigDi¼1 are

the coefficients estimated by minimizing the function,

RðwÞ ¼ 1

N

XN
i¼1

f ðxiÞ � yij je þ c wk kk k2 ð17Þ

f ðx; a; a�Þj je¼
f ðxÞ � yj j � e for f ðxi � yiÞj j 	 e

0 otherwise

�
ð18Þ

where c is the regularization constant and f ðx; a; a�Þj je is

the cost function.

The minimizing function is expressed as f x; a; a�ð Þ

¼
XN
i¼1

ðai � a�i Þkðxi; xjÞ þ b; ð19Þ

aia�i ¼ 0, ai; a�i 	 0 i ¼ 1; 2; . . .;N and kðxi; xjÞ ¼
/ðxiÞ:/ðxjÞ represents the kernel function.

The coefficients of aia�i determined by maximizing the

following expression:

Rða�; aÞ ¼ �e
XN
i¼1

ða�i þ aiÞ þ
X

yiða�i � aiÞ

� 1

2

XN
i;j¼1

ða�i þ aiÞ � ða�i � aiÞkðxi; xjÞSubjected to

XN

i¼1
ða�i � aiÞ ¼ 0; 0� ai; a

�
i �C

ð20Þ

The parameters C and e is to be optimally decided in

following sections.

The following kernel functions are adopted in this paper

for wind speed prediction:

1. Gaussian function:

kðxi; xjÞ ¼ exp �
xi � xj
		 		2

2r2

 !
ð21Þ

2. Bessel function:

kðxi; xjÞ ¼ �Basselnnuþ1ðr xi � xj
�� ��2Þ ð22Þ

3. Pearson VII universal kernel (PUK) function:

kðxi; xjÞ ¼ 1= 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
		 		

q 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=xÞ � 1=r

q� �2
" #x

ð23Þ

4. ANOVA radial basis function

kðxi; xjÞ ¼
Xn
k¼1

expð�rðxki � xkj Þ
2Þ

 !d

ð24Þ

5. Linear spline function in one dimension
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kðxi; xjÞ ¼ 1 þ xixjminðxi þ xjÞ �
xi þ xj

2
minðx; xiÞ2
 �

þ xi þ xj
3

minðx; xiÞ3
 �

ð25Þ

2.6 Differential evolution algorithm

The performance of SVM greatly influenced by its

parameters configuration, kernel functions, and kernel

parameter settings. Because of these limitations, there are

only limited existing studies on wind prediction models

using SVM or all the existing studies are limited to par-

ticular few general kernel functions. In this paper, differ-

ential evolution algorithm is employed to fine-tune the

SVM parameters and kernel parameters and their fore-

casting accuracies are investigated (Fig. 1).

2.6.1 Initialization

DE is a population-based evolutionary algorithm and works

with population of solutions rather than single solution. DE

has G generations of P populations and possesses NP

solution vectors; each of individual represents the solution

for the concern optimization strategy.

PðGÞ ¼ XG
i ¼ xj;i; i ¼ 1; 2; . . .NP; j ¼ 1; 2; . . .;D; G

¼ 1; 2; . . .;Gmax

ð26Þ

The population is initialized with random values within

the given boundary limits.

xG¼0
j;i ¼ xmin

j þ randj½0; 1�:ðxmax
j � xmin

j Þ 8 i

2 ½1;NP�; 8 j 2 ½1;D�; ð27Þ

where randj½0; 1� represents the randomly initialized values

from 0 to 1 (Fig. 2).

2.6.2 Mutation

The mutant vector VGþ1
i ¼ ðVGþ1

i;1 ;VGþ1
i;2 ; . . .;VGþ1

i;D Þ is

determined for each individual of the population at gen-

eration G using the following expression:

v
ðGþ1Þ
i;j ¼ xGi;r3

þ F � ðxGi;r1
� xGi;r2

Þ ð28Þ

where i 2 ½1;NP�; j 2 ½1;D�; r1; r2; r3 2 ½1;D�; are ran-

domly selected but r1 6¼ r2 6¼ r3 6¼ i, k ¼ ðintðrandi½0; 1� �

Fig. 1 The framework of the SSA–VMD–SVM model
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Dþ 1Þ; and CRð¼ 0:9Þ 2 ½0; 1�, Fð¼ 0:5Þ 2 ½0; 1�. The

mutually different vectors r1; r2; r3 are randomly chosen

population vectors, and they differ from running index i(for

each vector) (Fig. 3)

2.6.3 Crossover

Unlike other evolutionary algorithms, DE has special

population recombination scheme, and the population of

next generation PGþ1 is obtained from current population

P. The trail vector UGþ1
i ¼ ðUGþ1

i;1 ;UGþ1
i;2 ; . . .;UGþ1

i;D Þ for

each mutant vector is generated as follows:

u
ðGþ1Þ
i;j ¼

xGi;r3
þ F � ðxGi;r1

� xGi;r2
Þ; if rand½0; 1�\CR _ j ¼ k

x
ðGÞ
i;j otherwise

(

ð29Þ

For each randomly chosen index k for each vector in the

interval, j 2 ½1; 2. . .D� to make sure that at least one vector

parameter of individual trail vector originates from the

mutated vector (Fig. 3).

2.6.4 Selection

The decision of the vector UGþ1
i to be member of future

population is carried out in this step. The vector is compared

with its corresponding population vector of generation by the

following equation, and decision is made for the member of

future population comprising the next generation.

XGþ1
i ¼ UGþ1

i if f ðUGþ1
i \f ðXG

i ÞÞ
XG
i otherwise

�
ð30Þ

3 Experimental setup

In this paper, the real-time wind speed data are gathered

from Suzlon Energy Limited, Coimbatore, for 1 year. To

evaluate the prediction accuracy of the proposed

Fig. 2 Algorithm of VMD
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prediction methodology, three sets of 1 h average wind

speed data series are used as the experiment data. Each

set has 1000 data samples: 1–700 samples are used for

training, and remaining 300 samples are used for testing.

Three sets of 1-h average wind speed input series are

shown in Fig. 4.

Fig. 3 Differential evolution
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3.1 Data preprocessing

To improve the prediction accuracy, the preprocessing of

original wind speed series is important. To approximate the

real-time data within the range of 0–1, the min–max nor-

malization technique is employed. The real-time data are

transformed into normalized data by the following

equation.

Normalized input; I
0

i ¼
Ii � Imin

Imax � Imin

� �
I
0

max � Iimin

 �

þ I
0

min

ð31Þ

where Ii is original input data, Imin is the minimum input

value, Imax is the maximum input value, I
0
max is the maxi-

mum target value, and I
0
min is the minimum target value.

3.2 Performance evaluation

3.2.1 Error evaluation

The forecasting accuracy of the proposed model is inves-

tigated using three performance metrics including AE,

MAE, MSE, and MAPE, which are tabulated in Tables 1

and 2 for 30-min-ahead prediction and 60-min-ahead pre-

diction, respectively.

1. AE (absolute error)

The absolute error reflects the positive and negative

errors between original data and the predicted data.

AE ¼ 1

N

XN
t¼1

ðY 0

t � YtÞ ð32Þ

2. MAE (mean absolute error)

The mean absolute error reflects the level of error

between the original data and the predicted data.

MAE ¼ 1

N

XN
t¼1

Y
0

t � Yt
�� �� ð33Þ

3. MSE (mean square error)

The average prediction errors can be predicted by

employing MSE, which is the mean of prediction error

squares.

MSE ¼ 1

N

XN
t¼1

ðY 0

t � YtÞ
2 ð34Þ

Fig. 4 Three sets of 1-h

averaged wind speed series
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4. MAPE (mean absolute percentage error)

The measure of prediction accuracy is demonstrated

by employing MAPE, the common methodology

employed in statistics.

MAPE ¼ 100

N

XN
t¼1

ðY 0

t � YtÞ=Y
0

t

�� �� ð35Þ

5. DA (direct accuracy)

The direct prediction accuracy of the forecasted

series is demonstrated by DA and expressed as follows:

DA ¼ 1

N

XN

i¼1
wi; wi ¼

0; otherwise

1; if ðYtþ1 � Y
0

t ÞðY
0

tþ1 � Y
0

t Þ[ 0

�

ð36Þ

where N is the number of data samples, Y
0
t is actual

data, and Yt is the predicted output.

3.2.2 Pearson test

The prediction accuracy of the proposed models further is

evaluated by Pearson test. Scientist Karl Pearson presented

the Pearson test for statistical analysis. According to the

test, if the Pearson correlation coefficient is equal to 1, then

Table 1 Performance metric of 30-min-ahead prediction multi-step for Experiments 1, 2 and 3

30-Min-ahead prediction

Experiment 1 Experiment 2 Experiment 3

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3

SSA–VMD–Gaussian–SVM

AE (m/s) 0.1123 0.1632 0.1651 0.0228 0.0631 0.1012 0.0131 0.0219 0.0792

MAE (m/s) 0.6543 0.7958 0.8136 0.4257 0.5321 0.6781 0.3271 0.4103 0.6035

MSE (m/s) 0.6725 0.8231 0.9158 0.3145 0.5324 0.6138 0.2732 0.4938 0.6136

MAPE (%) 11.246 13.034 15.925 13.586 14.825 17.036 10.482 12.372 15.260

DA-value 0.6911 0.6591 0.6260 0.6422 0.6240 0.6002 0.6521 0.6261 0.5921

SSA–VMD–Bessel–SVM

AE (m/s) 0.1053 0.1268 0.1325 0.0195 0.0326 0.0672 0.0136 0.0145 0.0439

MAE (m/s) 0.4321 0.6138 0.7628 0.2384 0.2456 0.4891 0.2567 0.3486 0.4529

MSE (m/s) 0.5012 0.6389 0.7031 0.2348 0.4016 0.5124 0.1524 0.2364 0.5017

MAPE (%) 10.726 12.972 14.638 11.364 13.256 15.795 9.3788 10.948 12.348

DA-value 0.8100 0.7502 0.7342 0.8002 0.7549 0.7511 0.8281 0.8003 0.7789

SSA–VMDPUK–SVM

AE (m/s) 0.1069 0.1136 0.1193 0.0102 0.0421 0.0500 0.0127 0.0239 0.0354

MAE (m/s) 0.4325 0.5698 0.6951 0.2069 0.2698 0.4126 0.1698 0.3026 0.3526

MSE (m/s) 0.3725 0.4492 0.6423 0.2369 0.3936 0.4200 0.1139 0.2692 0.4236

MAPE (%) 10.785 11.361 12.368 9.3658 10.378 11.023 9.1486 10.006 10.180

DA-value 0.8133 0.8017 0.7992 0.8200 0.8041 0.7892 0.8512 0.8200 0.8172

SSA–VMD–ANOVA radial basis function–SVM

AE (m/s) 0.1036 0.1211 0.1291 0.0065 0.0269 0.0561 0.0139 0.0165 0.0320

MAE (m/s) 0.4567 0.6358 0.7236 0.2145 0.3014 0.4698 0.2321 0.3216 0.4036

MSE (m/s) 0.5326 0.5698 0.7003 0.2648 0.4129 0.5016 0.1269 0.3215 0.4698

MAPE (%) 10.368 10.968 11.348 10.136 11.096 12.364 9.4586 10.016 10.749

DA-value 0.7720 0.7421 0.6921 0.7020 0.7311 0.7405 0.8503 0.8481 0.8224

SSA–VMD–linear spline function–SVM

AE (m/s) 0.1042 0.1322 0.1413 0.0165 0.0416 0.0723 0.0111 0.0190 0.0524

MAE (m/s) 0.5427 0.7512 0.8612 0.2521 0.3381 0.5391 0.2431 0.3463 0.5344

MSE (m/s) 0.5205 0.6581 0.8523 0.2569 0.4314 0.5531 0.1931 0.3532 0.5826

MAPE (%) 10.689 11.035 12.239 10.359 12.364 13.245 9.3645 10.369 11.360

DA-value 0.7690 0.7532 0.7288 0.6069 0.6044 0.6981 0.8241 0.8015 0.7821
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there exists a linear relationship between the actual and

predicted outputs. And if the correlation coefficient is equal

to 0, there exists no relationship between the actual and

predicted outputs. For the given model of predictor with

the actual data Y
0
t and predicted data Yt, the Pearson cor-

relation coefficient can be expressed as follows:

P ¼
PT

t¼1 ðY
0

t � Y
0

mÞðYt � YmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 ðY

0
t � Y

0
mÞ

2 �
PT

t¼1 ðYt � YmÞ2
 �r ð37Þ

where Y
0
m and Ym are the means of actual and predicted

data, respectively.

3.3 Analysis made with the predicted outputs

The real-time wind speed data for 1 year are gathered from

Suzlon Energy Limited, Coimbatore, and is averaged into

three series: the individual series are utilized for Experi-

ment 1, Experiment 2 and Experiment 3, respectively. The

initial step of the proposed prediction model is to decom-

pose the original wind speed input series and to extract the

trend information with removal of noise by employing

SSA. The unpredictability of each decomposed component

is estimated by employing sample entropy. The sub-series

of having most unpredictable data are further allowed for

decomposition in VMD, and the modes obtained for

Experiment 1 are shown in Fig. 5. Differential

Table 2 Performance metric of 60-min-ahead prediction multi-step for Experiment 1, 2 and 3

60-Min-ahead prediction

Experiment 1 Experiment 2 Experiment 3

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3

SSA–VMD–Gaussian–SVM

AE (m/s) - 0.019 0.0089 0.0594 - 0.036 - 0.009 0.0169 0.0647 0.0880 0.0986

MAE (m/s) 1.0235 1.3245 1.5694 0.6423 0.7364 0.9034 0.4692 0.6531 0.8036

MSE (m/s) 1.9356 2.9601 4.3636 0.4296 0.6197 0.8659 0.7690 0.9489 1.9648

MAPE (%) 13.266 14.398 16.352 12.490 14.035 15.472 10.993 11.236 13.096

DA-value 0.6225 0.6019 0.5960 0.7422 0.6740 0.6002 0.7021 0.6261 0.6021

SSA–VMD–Bessel–SVM

AE (m/s) 0.0012 0.0052 0.0329 0.0041 0.0072 0.0103 0.0572 0.0621 0.0700

MAE (m/s) 1.0662 1.1135 1.2036 0.4698 0.5319 0.7035 0.2369 0.4012 0.6820

MSE (m/s) 1.0834 1.5143 3.0360 0.3064 0.4096 0.6520 0.5310 0.7653 0.9682

MAPE (%) 10.693 12.038 13.628 10.068 12.927 12.483 10.045 10.965 11.002

DA-value 0.7431 0.7390 0.7209 0.7924 0.7549 0.7234 0.8214 0.8001 0.7391

SSA–VMD–PUK–SVM

AE (m/s) 0.0019 0.0022 0.0030 0.0029 0.0065 0.0083 0.0479 0.0524 0.0516

MAE (m/s) 0.0864 1.0100 1.1195 0.3067 0.4522 0.5641 0.1990 0.2547 0.4439

MSE (m/s) 1.2100 1.3584 2.7793 0.2017 0.3281 0.4996 0.4761 0.5983 0.7632

MAPE (%) 9.9034 11.673 12.116 9.7042 11.128 11.348 8.9084 9.0910 9.9261

DA-value 0.8302 0.8151 0.8003 0.8205 0.8125 0.8002 0.8215 0.8210 0.8011

SSA–VMD–ANOVA radial basis function–SVM

AE (m/s) 0.0020 0.0027 0.0032 0.0035 0.0068 0.0099 0.0460 0.0501 0.0602

MAE (m/s) 1.0926 1.1038 1.2615 0.3810 0.4064 0.6827 0.2018 0.4569 0.5191

MSE (m/s) 1.2609 1.3926 2.9610 0.2390 0.3612 0.5237 0.6192 0.7015 0.8973

MAPE (%) 10.074 11.794 12.981 11.067 11.927 12.001 8.1034 9.7854 10.136

DA-value 0.8022 0.8012 0.8006 0.8066 0.8054 0.8011 8.0002 7.9906 0.7845

SSA–VMD–linear spline function–SVM

AE (m/s) 0.0023 0.0037 0.0040 - 0.009 0.0081 0.0136 0.0793 0.0808 0.0832

MAE (m/s) 1.1480 1.2745 1.3505 0.5236 0.6409 0.8007 0.3610 0.4096 0.7320

MSE (m/s) 1.9005 2.0364 3.9162 0.3368 0.4203 0.7682 0.6923 0.8450 1.0362

MAPE (%) 12.003 13.471 15.036 11.285 13.620 14.238 10.109 11.362 12.420

DA-value 0.7022 0.6721 0.6524 0.6911 0.7512 0.7322 0.8000 0.7534 0.7112
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evolutionary algorithm employed to fine-tune the SVM

parameters and kernel function parameters in order to

improve the prediction accuracy. The obtained sub-sub-

series are reconstructed in VMD and allowed for multi-step

sub-series framework, and the extra frequency components

are denied by wavelet filter. SVM predictor with various

kernel functions process the multi-step sub-series, the

resulted predicted output allowed for various performance

metrics and reported in Tables 1 and 2 and Figs. 6, 7, 8 and

9.

The following analysis is made based on Figs. 6, 7, 8, 9

and Tables 1, 2, 3:

1. The prediction accuracy for the proposed models are in

order for all the experiments which indicates that the

proposed models can be used for accurate wind speed

prediction and the obtained results depend on the

employed models of specified kernel function.

2. It is observed from Tables 1 and 2 that the values of

DA decrease for steps and the values of performance

indices increase, respectively.

3. Among the proposed individual models, the Gaussian–

SVM model exhibits poor performance than the other

models under the study. The MAPE of SSA–VMD–

Gaussian–SVM is reported to be 15.925%, 17.036%,

15.260% for Experiments 1, 2 and 3, respectively, of

30-min-ahead prediction and 16.35%, 15.472%,

13.096%, respectively, for 60-min-ahead prediction.

4. The SSA–VMD–PUK–SVM model outperforms the

other models except for Experiment 1 of 30-min-ahead

prediction, the reported MAPE for PUK–SVM model

is 12.368%, 11.023%, 10.180%, respectively, for

Experiments 1, 2 and 3, respectively, of 30-min-ahead

prediction and 12.116%, 11.348%, 9.9261% for

60-min-ahead prediction, respectively; in the case of

Experiment 1 of 30-min-ahead prediction, ANOVA

radial basis function reported better performance with

MAPE value of 11.348% whereas 12.368% for PUK

function.

5. The SSA–VMD–Bessel SVM model outperforms the

SSA–VMD–Gaussian–SVM, and the reported MAPE

is 14.638%, 15.795%, 12.348% for 30-min-ahead

prediction and 13.628%, 12.483% and 11.002%

obtained for 60-min-ahead prediction.

6. Next to Bessel model, the SVM model with linear

spline kernel function exhibits a better performance

with MAPE of 12.239%, 13.245%, 11.360% for

30-min-ahead prediction and 15.036%, 14.238% and

12.420% for 60-min prediction, respectively.

7. The performance of SSA–VMD–ANOVA radial basis

function SVM has better performance to the linear

spline–SVM model with reported MAPE of 11.348%,

12.364%, 10.749% for 30-min prediction and

12.981%, 12.001%, 10.136% for 60-min-ahead pre-

diction, respectively.

Fig. 5 SSA and VMD results of

Experiment-1
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8. The other performance metrics such as AE, MAE,

MSE also follows the order of the above-discussed

evaluation and which is reported in Tables 1 and 2.

9. The experimental results suggested that the Pearson

VII universal kernel (PUK) function outperforms other

kernels for SVM regression applications, and the

performance order of the considered kernels next to

PUK function is ANOVA radial basis function, linear

spline kernel function, Bessel function and general

Gaussian function, respectively.

3.4 Comparison of performance of proposed
model with few existing literatures

To validate the effectiveness of the proposed prediction

models, the performance of the proposed model was

compared with general SVM predictor, neural network

predictors, hybrid VMD and neural network predictors,

hybrid VMD and SVM predictors. The performance eval-

uation of the comparative models is reported in Table 3,

and the estimated MAPE value for predicted results of the

considered models on wind speed data series-1 was

demonstrated for both 30-min-ahead and 60-min-ahead

prediction. Further, the prediction accuracy of the proposed

model was demonstrated by conducting DM test with all

considered models as reported in Table 4.

1. The prediction accuracy of individual models is worse

than the hybrid models, and the MAPE value of SVM

predictor of 32.25% is found to be better than that of

neural network predictor of 33.83%.

2. The MAPE value of hybrid VMD and SVM predictor

improved than hybrid VMD–NN predictor of 28.86%

and 29.86%, respectively, for 30-min-ahead prediction.

For 60-min-ahead prediction, the accuracy of SVM

Fig. 6 Step-1 prediction of

Experiment 1
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improved than NN predictor, but reported with near

values.

3. On employing SSA prior to the prediction block further

improved the prediction accuracy. The MAPE of SSA–

VMD–BPN is 25.95% for 30-min-ahead prediction and

24.37% for 60-min-ahead prediction, whereas 31.53%

and 30.57% for VMD–BPN on 30-min-ahead and

60-min-ahead prediction, respectively.

4. On comparing all the models under the study, the

proposed SSA–VMD–SSA predictors of all kernel

function outperformed, which implies that for very

short term and short-term wind speed prediction SVM

predictors perform better than the neural network

predictors.

5. If prediction time increases, the performance of neural

network predictor gets improved.

The accuracy of the proposed model is expressed in

terms of Pearson test results as follows:

1. The Pearson test reported with near acceptance value

for all proposed prediction models of SSA–VMD–

SVM with various kernel functions.

2. The SSA–VMD–SVM model with PUK kernel func-

tion reported higher accuracy in Pearson test result of

0.9394, which is almost near to 1.

3. From Table 5, it is inferred that higher predictability

was achieved for hybrid models rather than individual

SVM or NN model. On comparing the Pearson test

values, the prediction accuracy improved for SVM

models than for NN models. From Tables 4 and 5, it is

demonstrated that the proposed model outperforms the

other comparison models.

From the various performance evaluations of the pro-

posed prediction models, it is suggested that SSA–VMD–

Fig. 7 Step-2 prediction of

Experiment 1
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SVM model exhibits effective prediction for short-term

and very short term wind speed forecasting than any other

models considered under the study.

4 Conclusion

In this paper, SSA–VMD–SVM wind prediction model of

various kernel functions was presented and their perfor-

mance was analyzed with various performance evaluation

criteria. In this study, the original wind speed series real-

time data were gathered from Suzlon Energy Limited,

Coimbatore, and these data series was averaged into three

different input series and utilized for three experiments.

Initially, the original wind speed series has been decom-

posed into its trend component and noise by employing

SSA, and the unpredictability of the sub-series was deter-

mined by employing sample entropy. The sub-series fur-

ther decomposed into its various components by VMD,

where the each sub-sub-series has been utilized for SVM

predictors of various kernel functions. In this research,

various kernel functions were analyzed and presented an

effective kernel for SVM regression models. To improve

the prediction accuracy, the parameters of SVM predictors

were optimally tuned by differential evolution algorithm.

From the performance analysis made with the proposed

prediction models and the models under comparison, the

proposed SSA–VMD–SVM prediction models were

Fig. 8 Step-2 prediction of

Experiment 1
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Fig. 9 Performance analysis of

proposed wind speed prediction

model

Table 3 Comparison made with

different prediction models
Models Experiment 1 (30-min-ahead prediction)

MAPE (%)

Experiment 1 (60-min-ahead prediction)

MAPE (%)

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3

SVM 31.294 31.934 32.255 32.409 32.592 33.832

BPN 32.934 33.537 34.273 33.608 33.862 34.047

VMD–SVM 26.094 28.637 29.863 27.947 28.670 30.326

VMD–BPN 28.002 30.471 31.535 28.803 29.990 31.572

SSA–VMD–BPN 24.391 25.581 25.951 19.803 20.029 21.371

SSA–VMD–RBF 20.802 21.933 22.380 16.001 18.709 19.987
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reported with higher accuracy and suggested as the effec-

tive wind speed predictor.
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