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Abstract
The conventional set operations of fuzzy sets are based on the membership functions using the max and min functions. In
this paper, we shall consider the set operations of fuzzy sets based on the concepts of gradual sets and gradual elements.
When the fuzzy sets can be formulated as consisting of gradual elements like the usual set consisting of usual elements, the
intersection and union of fuzzy sets can be defined as the same way as the intersection and union of usual sets. In this case,
the set operations of fuzzy sets will be similar to the set operations of crisp sets.
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1 Introduction

Let A be a (crisp) subset of a universal setU . The concept of
element in A is well known by writing x ∈ A. Suppose that
Ã is a fuzzy subset of U . The main focus of this paper is to
consider the elements of fuzzy set Ã. The gradual element
will play the role to be the element of Ã.

The concepts of gradual elements and gradual sets based
on a universal set U were introduced by Dubois and Prade
(2008) and Fortin et al. (2008), which were inspired by
Goetschel (1997) andHerencia andLamata (1999). Thegrad-
ual element is a function from (0, 1] into U , and the gradual
set is a set-valued function from (0, 1] into the hyperspace
that consists of all subsets of U . When the universal set U
is taken to be R, the gradual element is also called gradual
numbers. Boukezzoula et al. (2014) used gradual numbers
to define the so-called gradual intervals in which the end-
points are assumed to be gradual numbers. More motivated
argument can also refer to Dubois and Prade (2012).

LetU be a universal set.We denote byP(U ) the collection
of all subsets of U . Dubois and Prade (2008) considered
the gradual set G defined by an assignment function AG :
(0, 1] → P(U ) that does not consider the assignment at 0,
where the assignment function AG is a set-valued function.
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The gradual set G with assignment function AG can induce
a fuzzy set FG with membership function given by

ξFG (x) = sup
α∈(0,1]

α · χAG (α)(x), (1)

where χAG (α) is a characteristic function given by

χAG (α)(x) =
{
1 if x ∈ AG(α)

0 otherwise.

Sanchez et al. (2012) considered the fuzzy concept A
defined by an ordered pair (�A, ρA), where �A = {1 =
α1, α2, . . . , αm = 0} is a finite subset of the unit interval
[0, 1] satisfying α1 > α2 > · · · > αm and ρA is a set-
valued function ρA : �A → P(U ) defined on the finite set
�A. In this paper, we shall consider the set-valued function
G : I → P(U ) from I into P(U ), where I is any subset
of [0, 1]. This set-valued function G will also be called as
a gradual set (or an extended gradual set). The set-valued
function G will extend the set-valued function AG .

• InDubois andPrade (2008), letG1 andG2 be two gradual
sets. The intersection and union ofG1 andG2 are defined
by the assignment functions

AG1∪G2(α) = AG1(α) ∪ AG2(α)

and AG1∩G2(α) = AG1(α) ∩ AG2(α).

The gradual sets G1 ∪ G2 and G1 ∩ G2 can induce two
fuzzy sets FG1∪G2 and FG1∩G2 with membership func-
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880 H.-C. Wu

tions ξFG1∪G2
and ξFG1∩G2

according to (1), respectively.
Dubois and Prade (2008) also claim that

ξFG1∪G2
(x) = max

{
ξFG1

(x), ξFG2
(x)

}

and

ξFG1∩G2
(x) = min

{
ξFG1

(x), ξFG2
(x)

}
.

• In Sanchez et al. (2012), let A and B be two fuzzy
concepts with (�A, ρA) and (�B, ρB). The new fuzzy
concepts A ∧ B and A ∨ B are defined by

�A∧B = �A∨B = �A ∪ �B

and

ρA∧B(α) = ρA(α) ∩ ρB(α)

and ρA∨B(α) = ρA(α) ∪ ρB(α),

which are similar to the approach of Dubois and Prade
(2008) by regarding the fuzzy concept A∧ B as the inter-
section and the fuzzy concept A ∨ B as the union.

In this paper, we are not going to consider the intersection
and union of gradual sets as the case of Dubois and Prade
(2008) and Sanchez et al. (2012) presented above. We shall
study the intersection and union of fuzzy sets based on the
concepts of gradual sets and gradual elements, which will be
explained in the next paragraph.

Let A be a subset ofU . The element x in A is simply writ-
ten as x ∈ A. Now we assume that Ã is a fuzzy subset of U .
The purpose is to consider the elements of Ã. In other words,
we need to define a quantity x̂ such that we can reasonably
write x̂ ∈ Ã. Under some suitable settings, we shall see that
the element x̂ in Ã is also a gradual element. In this case, the
intersection and union of fuzzy sets can be defined using their
elements as in the usual sense of intersection and union of
crisp sets. For example, let A and B be two (crisp) subsets of
U . Then, the intersection A∩B and union A∪B are given by

A ∩ B = {x : x ∈ A and x ∈ B}
and A ∪ B = {x : x ∈ A or x ∈ B}.

Suppose now that Ã and B̃ are two fuzzy subsets ofU . Then,
we shall try to explain the intersection Ã ∩ B̃ given by

Ã ∩ B̃ = {x̂ : x̂ ∈ Ã and x̂ ∈ B̃}, (2)

where the form of x̂ and the meanings of x̂ ∈ Ã and x̂ ∈ B̃
will be studied in this paper. We shall also try to investigate
the union

Ã ∪ B̃ = {x̂ : x̂ ∈ Ã or x̂ ∈ B̃}, (3)

The relationshipwith the conventional intersection and union
using the aggregation functions will also be established.

Let Ã and B̃ be two fuzzy subsets of U with membership
functions ξ Ã and ξB̃ , respectively. The usual intersection and
union of Ã and B̃ are defined using themin andmax functions
as follows:

ξ Ã∩B̃(x) = min
{
ξ Ã(x), ξB̃(x)

}
and ξ Ã∪B̃(x) = max

{
ξ Ã(x), ξB̃(x)

}
. (4)

The generalization for considering t-norm and t-conorm can
refer to Dubois and Prade (1985) and Weber (1983). On the
other hand, Tan et al. (1993) proposed a different generaliza-
tion for intersection and union of fuzzy sets. The alternative
definitions for the intersection and union of fuzzy sets are also
widely discussed in the literature by referring toYager (1980,
1991). Klement (1982) considered the axiomatic approach
for operations on fuzzy sets. More detailed properties can
refer to the monographs (Dubois and Prade (1988) and Klir
and Yuan (1995)).

The definitions of intersection and union defined in (4) are
based on the membership functions. In this paper, we shall
study the intersection and union given in (2) and (3), respec-
tively, which are similar to the usual sense of intersection and
union of crisp sets. The advantage for considering the inter-
section and union in the sense of (2) and (3) is that the fuzzy
sets can be formulated as consisting of gradual elements,
which will be studied in this paper. In order to claim the
consistency for considering gradual elements in fuzzy sets,
a more general decomposition theorem will be established,
where the basic properties for decomposition theorem can
refer to Fullér and Keresztfalvi (1990), Negoita and Ralescu
(1975), Nguyen (1978), Ralescu (1992) and Wu (2010).

In Sect. 2, we present a generalized decomposition theo-
remwhichwill be useful for further discussion. In Sect. 3, we
present the concepts of gradual elements and gradual sets and
study the relationships with fuzzy sets. In Sect. 4, we study
the complement set of fuzzy set using the gradual elements
and investigate the relationship with the usual definition of
complement set using the membership functions. In Sect. 5,
we study the intersection and union of fuzzy sets using the
concept of gradual elements. In Sect. 6, the associativity of
intersection and union is also thoroughly studied.

2 Non-normal fuzzy sets

Let Ã be a fuzzy subset of a universal setU withmembership
function denoted by ξ Ã. For α ∈ (0, 1], the α-level set of Ã
is denoted and defined by
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Ãα = {
x ∈ U : ξ Ã(x) ≥ α

}
. (5)

We also define

Ãα+ = {
x ∈ U : ξ Ã(x) > α

}
.

The support of a fuzzy set Ã is the crisp set defined by

Ã0+ = {x ∈ U : ξ Ã(x) > 0}.

The definition of 0-level set is an important issue in fuzzy
sets theory. If the universal setU is endowed with a topology
τ , then the 0-level set Ã0 can be defined as the closure of the
support of Ã, i.e.,

Ã0 = cl
(
Ã0+

)
. (6)

IfU is not endowedwith a topological structure, then the intu-
itive way for defining the 0-level set is to follow the equality
(5) for α = 0. In this case, the 0-level set of Ã is the whole
universal set U . This kind of 0-level set seems not so use-
ful. Therefore, we always endow a topological structure to
the universal set U when the 0-level set should be seriously
considered.

The range ofmembership function ξ Ã is denoted byR(ξ Ã)

that is a subset of [0, 1]. We see that the rangeR(ξ Ã) can be
a proper subset of [0, 1] with R(ξ Ã) 	= [0, 1]. Notice that if
α /∈ R(ξ Ã), we still can consider the α-level set Ãα . Since
R(ξ Ã) 	= [0, 1], it is possible that the α-level set Ãα can be
an empty set for some α ∈ [0, 1]. Therefore, when we study
the properties that deal with more than two fuzzy sets, we
cannot simply present the properties by saying that they hold
true for each α ∈ [0, 1], since some of the α-level sets can
be empty. In this case, we need to carefully treat the ranges
of membership functions.

Remark 2.1 Let Ã be a fuzzy set inU withmembership func-
tion ξ Ã. Define

α∗ = supR(ξ Ã) and α◦ = infR(ξ Ã).

Then, we have the following observations.

• For any 0 ≤ α < α∗, even though α /∈ R(ξ Ã), we have
Ãα 	= ∅. It is also obvious that Ãα = ∅ for α > α∗.

• If the maximum maxR(ξ Ã) exists, i.e., supR(ξ Ã) =
maxR(ξ Ã) (we can also say that the supremum ofR(ξ Ã)

is attained), then we have Ãα∗ 	= ∅. If maxR(ξ Ã) does
not exist, then Ãα∗ = ∅. For example, assume that

ξ Ã(x) =
{
1 − 1

x , if x ≥ 1
0, if x < 1.

It is clear to see that R(ξ Ã) = [0, 1). In this case, the
maximum maxR(ξ Ã) does not exist. However, we have
supR(ξ Ã) = 1 = α∗. In this case, the 1-level set Ãα∗ =
Ã1 = ∅, since α∗ = 1 /∈ R(ξ Ã).

• For any 0 ≤ α < α◦, even though α /∈ R(ξ Ã), we have
Ãα = Ãα◦ 	= ∅.

Proposition 2.2 Let Ã be a fuzzy set in U with membership
function ξ Ã. Define α∗ = supR(ξ Ã) and

IÃ =
{ [0, α∗), if the maximum maxR(ξ Ã) does not exist

[0, α∗], if the maximum maxR(ξ Ã) exists.

(7)

Then, Ãα 	= ∅ for all α ∈ I Ã and Ãα = ∅ for all α /∈ I Ã.
Moreover, we have R(ξ Ã) ⊆ I Ã and

Ã0+ =
⋃

{α∈I Ã:α>0}
Ãα =

⋃
{α∈R(ξ Ã):α>0}

Ãα (8)

Proof From Remark 2.1, we see that Ãα 	= ∅ for all α ∈ I Ã
and Ãα = ∅ for all α /∈ I Ã immediately. Moreover, for
proving the equality (8), assume that x ∈ Ã0+, i.e., α∗ ≡
ξ Ã(x) > 0. Then, x ∈ Ãα∗ . Since α∗ ∈ R(ξ Ã) ⊆ I Ã, we
have the inclusions

Ã0+ ⊆
⋃

{α∈R(ξ Ã):α>0}
Ãα and Ã0+ ⊆

⋃
{α∈I Ã:α>0}

Ãα.

For proving another direction of inclusions, we consider the
following cases.

• Given x ∈ Ãα for some 0 < α ∈ R(ξ Ã), we have
ξ Ã(x) ≥ α > 0, i.e., x ∈ Ã0+.

• Given x ∈ Ãα for some 0 < α ∈ I Ã, we have ξ Ã(x) ≥
α > 0, i.e., x ∈ Ã0+.

This proves the desired equalities. ��

The interval I Ã presented in Proposition 2.2 is also called
an interval range of Ã. We see that the interval range I Ã
contains the actual range R(ξ Ã). The role of interval range
I Ã can be used to say Ãα 	= ∅ for all α ∈ I Ã and Ãα = ∅ for
all α /∈ I Ã.

Example 2.3 The membership function of a trapezoidal-like
fuzzy number is given by
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ξ Ã(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.1 + 0.7 · (x − 1) if 1 ≤ x ≤ 1.5
0.2 + 0.7 · (x − 1) if 1.5 < x < 2
0.9 if 2 ≤ x ≤ 3
0.2 + 0.7 · (4 − x) if 3 < x < 3.5
0.1 + 0.7 · (4 − x) if 3.5 ≤ x ≤ 4
0 otherwise.

It is clear to see that

R(ξ Ã) = [0.1, 0.45] ∪ (0.55, 0.9] and α∗ = 0.9,

which also says that I Ã = [0, 0.9] 	= R(ξ Ã). We see that
0.5 /∈ R(ξ Ã). However, we still have the 0.45-level set Ã0.45.
In general, we see that Ãα 	= ∅ for all α ∈ I Ã = [0, 0.9] and
Ãα = ∅ for all α /∈ I Ã = [0, 0.9]. We also see that α◦ =
infR(ξ Ã) = 0.1. Although 0 ≤ α < 0.1 is not in R(ξ Ã),
it is clear to see that Ãα = Ã0.1. Therefore, the interval I Ã
plays an important role for considering the α-level sets. In
other words, the range R(ξ Ã) is not helpful for identifying
the α-level sets.

Recall that the fuzzy set Ã is normal if and only if there
exists x ∈ U such that ξ Ã(x) = 1. Suppose that Ã is a normal
fuzzy set inU . Then, thewell-known decomposition theorem
says that the membership function ξ Ã can be expressed as

ξ Ã(x) = sup
α∈[0,1]

α · χ Ãα
(x) = sup

α∈(0,1]
α · χ Ãα

(x), (9)

where χ Ãα
is the characteristic function of the α-level set Ãα

defined by

χ Ãα
(x) =

{
1 if x ∈ Ãα

0 if x /∈ Ãα,

which can refer to Fullér and Keresztfalvi (1990), Negoita
and Ralescu (1975), Nguyen (1978), Ralescu (1992) andWu
(2010). The following generalized decomposition theorem
based on the interval range I Ã given in (7) will be used for
studying the set operations of fuzzy sets in U .

Theorem 2.4 (Generalized Decomposition Theorem) Let Ã
be a fuzzy set in U. The membership function ξ Ã can be
expressed as

ξ Ã(x) = sup
α∈R(ξ Ã)

α · χ Ãα
(x) = max

α∈R(ξ Ã)
α · χ Ãα

(x)

= sup
α∈I Ã

α · χ Ãα
(x) = max

α∈I Ã
α · χ Ãα

(x), (10)

where IÃ is given in (7).

Proof Given any fixed x ∈ U , let α0 = ξ Ã(x) ∈ R(ξ Ã) ⊆
I Ã, i.e., α0 ∈ I Ã. Suppose that α0 = 0. If x ∈ Ãα 	= ∅ for
some α ∈ I Ã\{0}, then ξ Ã(x) ≥ α > 0, which contradicts

ξ Ã(x) = α0 = 0. Therefore, we consider the following two
cases.

• If x /∈ Ãα for all α ∈ I Ã, then χ Ãα
(x) = 0 for all α ∈ I Ã.

This says that the equalities in (10) are satisfied.
• If x ∈ Ã0 and x /∈ Ãα forα ∈ I Ã\{0}, thenα·χ Ãα

(x) = 0
for all α ∈ I Ã. This also says that the equalities in (10)
are satisfied.

The above two cases show the desired equalities for α0 = 0.
Now we assume α0 > 0. Then, x ∈ Ãα0 . In the sequel, we
assume α ∈ I Ã. For α > α0, if x ∈ Ãα , then ξ Ã(x) ≥
α > α0, which contradicts α0 = ξ Ã(x). Therefore, we have
x /∈ Ãα for α > α0. If α ≤ α0, then x ∈ Ãα0 ⊆ Ãα , which
says that x ∈ Ãα for α ≤ α0. Then, we obtain

sup
α∈I Ã

α · χ Ãα
(x)

= max

{
sup

{α∈I Ã:α≤α0}
α · χ Ãα

(x), sup
{α∈I Ã :α0<α}

α · χ Ãα
(x)

}

= max

{
sup

{α∈I Ã:α≤α0}
α, 0

}
= α0 = ξ Ã(x).

Since α0 ∈ I Ã, the above supremum is attained. It means that

ξ Ã(x) = max
α∈I Ã

α · χ Ãα
(x).

The above arguments are still valid when I Ã is replaced by
R(ξ Ã). Therefore,weobtain the desired equalities. This com-
pletes the proof. ��

3 Gradual elements and gradual sets

Let U be a universal set. Recall that P(U ) denotes the col-
lection of all subsets ofU , which is also called a power set or
hyperspace of U . By referring to Dubois and Prade (2008),
we propose the slightly different concepts of gradual set and
gradual element as follows:

Definition 3.1 Let I be a subset of [0, 1]. The gradual ele-
ment g inU is defined to be an assignment function g : I →
U from I into U . If U = R, then the gradual element is
also called a gradual number. The gradual set G in U (or
gradual subset ofU ) is defined to be an assignment function
G : I → P(U ) from I into P(U ) such that each G(α) is a
nonempty subset of U for α ∈ I .

Definition 3.2 Let I be a subset of [0, 1]. We say that the
gradual set G defined on I is nested if and only if G(α) ⊆
G(β) for α, β ∈ I with α > β.
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The gradual set is in fact a set-valued function from I
intoU . We remark that the gradual set defined in Dubois and
Prade (2008) considers the assignment functionG : (0, 1] →
P(U ) that does not consider the assignment at 0. In general,
the unit interval [0, 1] can be extended to consider as a lattice
and consider I to be a sub-lattice.

Let Ã be a fuzzy set in a topological space U with mem-
bership function ξ Ã, and let α∗ = supR(ξ Ã). By referring
to Proposition 2.2, we can induce a gradual set G Ã from Ã
by defining the assignment function as follows:

• Suppose that the maximum maxR(ξ Ã) does not exist.
Then, the assignment function G Ã : [0, α∗) → P(U ) is
defined on I ≡ [0, α∗) given by G Ã(α) = Ãα .

• Suppose that the maximum maxR(ξ Ã) exists. Then, the
assignment functionG Ã : [0, α∗] → P(U ) is defined on
I ≡ [0, α∗] given by G Ã(α) = Ãα .

Therefore, we see that

G Ã(α)

=

⎧⎪⎪⎨
⎪⎪⎩

Ãα for α ∈ [0, α∗), if the maximum maxR(ξ Ã)

does not exist
Ãα for α ∈ [0, α∗], if the maximum maxR(ξ Ã)

exists,

(11)

whereG Ã(0) = Ã0 is defined to be the closure of the support
of Ã.

On the other hand, given a gradual set G : I → P(U ),
we can induce a fuzzy set ÃG in U by using the form of
decomposition theorem. The membership function of ÃG is
then defined by

ξ ÃG(x) = sup
α∈I

α · χG(α)(x). (12)

Remark 3.3 Let ÃG be a fuzzy set inU induced by a gradual
set G : I → P(U ). Then, the interval range I ÃG of ÃG has
the form of (7). It is clear to see that

sup
x∈U

ξ ÃG(x) = supR(ξ ÃG) = sup I .

Let α∗ = sup I . Then, the domain I of gradual set G is
not necessarily an interval of the form [0, α∗] or [0, α∗). The
domain I can be the disjoint union ofmore than two intervals.
However, if the domain I of gradual set G happens to be an
interval of the form [0, α∗] or [0, α∗), then the interval range
I ÃG of ÃG is equal to I , i.e., I = I ÃG .

We also remark that if the gradual set is taken from the
sense ofDubois and Prade (2008), then the interval range I ÃG

of ÃG cannot be equal to the domain I , since the gradual set

proposed by Dubois and Prade (2008) does not consider the
assignment at 0.

Let � be an index set that can be an uncountable set. We
consider a family of gradual elements in U as {gλ : λ ∈ �}
that are defined on the same domain I ⊆ [0, 1]. This family
of gradual elements can induce a gradual setG in U defined
on I by

G(α) = {gλ(α) : λ ∈ �} for α ∈ I . (13)

Based on this gradual setG inU , we can also induce a fuzzy
set ÃG in U with membership function defined in (12). In
this case, we also say that the family {gλ : λ ∈ �} of gradual
elements induces the fuzzy set ÃG.

The gradual setG is a set-valued function defined on I ⊆
[0, 1] with function value G(α) that is a subset of U for
each α ∈ I . According to the topic of set-valued analysis,
the selector (or selection function) of G is a single-valued
function g : I → U defined on I by g(α) ∈ G(α). In this
case, we may write g ∈ G. It is clear to see that the selector
of gradual set G (i.e., set-valued function G) is a gradual
element inU . In some sense, we may say that the gradual set
consists of gradual elements, which is similar to say that the
(usual) set consists of (usual) elements.

Given a subset A of U , the concept of elements of A can
be realized in the usual sense by simply writing a ∈ A when
a is assumed to be an element of A. For the fuzzy subset Ã
of U , we plan to consider the concept of element of Ã by
also simply writing â ∈ Ã, where the definition of â will be
presented below.

Given a fuzzy set Ã in a topological space U , we can
induce a gradual setG Ã as given in (11). Therefore, we have
the selector â of G Ã given by â(α) ∈ G Ã(α) = Ãα for
α ∈ I . We also see that the selector â is a gradual element in
U . This gradual element â can be regarded as an element of
Ã by simply writing â ∈ Ã. The formal definition is given
below.

Definition 3.4 Let Ã be a fuzzy set in a topological spaceU .
We say that an element â is in Ã if and only if â is a gradual
element â : I Ã → U defined on I Ã satisfying â(α) ∈ Ãα for
each α ∈ I Ã, where I Ã is given in (7). In this case, we also
write â ∈ Ã.

The gradual element â in Definition 3.4 is defined on the
interval range I Ã of Ã. Since the interval range I Ã contains 0,
the gradual element â must have the assignment at 0. There-
fore, the gradual element proposed by Dubois and Prade
(2008) cannot be used in Definition 3.4, since the assign-
ment at 0 was not considered by Dubois and Prade (2008).

Example 3.5 Continued from Example 2.3, the α-level set of
Ã is given by
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Ãα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1.1, 3.9] if 0 ≤ α < 0.1
[1 + α, 4 − α] if 0.1 ≤ α ≤ 0.45
[1.45, 3.55] if 0.45 < α < 0.55
[0.9 + α, 4.1 − α] if 0.55 ≤ α ≤ 0.9
∅ if 0.9 < α ≤ 1

(14)

The element â ∈ Ã must satisfy â(α) ∈ Ãα for each α ∈
[0, 0.9]. For example, if we take

â1(α) =

⎧⎪⎪⎨
⎪⎪⎩

1.1 if 0 ≤ α < 0.1
1 + α if 0.1 ≤ α ≤ 0.45
1.45 if 0.45 < α < 0.55
0.9 + α if 0.55 ≤ α ≤ 0.9

or â2(α) =

⎧⎪⎪⎨
⎪⎪⎩

3.9 if 0 ≤ α < 0.1
4 − α if 0.1 ≤ α ≤ 0.45
3.55 if 0.45 < α < 0.55
4.1 − α if 0.55 ≤ α ≤ 0.9,

then â1, â2 ∈ Ã.

Since â ∈ Ã is a gradual element in U , this gradual ele-
ment â can also be regarded as a gradual set G given by
G(α) = {â(α)} that is a singleton set. According to (12), we
can induce a fuzzy set ÃG in U with membership function
given by

ξ ÃG(x) = sup
α∈(0,1]

α · χG(α)(x) = sup
α∈(0,1]

α · χ{â(α)}(x)

=

⎧⎪⎨
⎪⎩
0, if there is no α ∈ (0, 1]

satisfying â(α) = x
sup

{α∈(0,1]:â(α)=x}
α, otherwise.

Therefore, the formal definition of membership function of
element â ∈ Ã is proposed below.

Definition 3.6 Let Ã be a fuzzy set in a topological spaceU .
Given any â ∈ Ã, the membership function of â is defined
by

ξâ(x) =

⎧⎪⎨
⎪⎩
0, if there is no α ∈ (0, 1]

satisfying â(α) = x
sup

{α∈(0,1]:â(α)=x}
α, otherwise.

(15)

Example 3.7 Example 3.5 says that â1 ∈ Ã. Themembership
function of â1 can be obtained from (15). In particular, for
x = 1.2, the membership value of ξâ1(1.2) is given by

ξâ1(1.2) = sup
{α∈(0,1]:â1(α)=1.2}

α = 0.2.

We also have

ξâ1(1.45) = sup
{α∈(0,1]:â1(α)=1.45}

α = sup[0.45, 0.55] = 0.55.

According to Definition 3.4, a fuzzy set Ã in U can be
regarded as a family consisting of elements (i.e., gradual ele-
ments) in Ã. Therefore, according to (13), this family Ã of
gradual elements can induce a gradual set G given by

G(α) =
{
â(α) : â ∈ Ã

}
for α ∈ I Ã, (16)

where I Ã is given in (7). According to (11), the fuzzy set Ã
can induce another gradual set G Ã given by G Ã(α) = Ãα

for α ∈ I Ã. On the other hand, according to (12), the gradual
set G in (16) can also induce another fuzzy set ÃG in U . In
order to claim the consistency of Definition 3.4, we need to
show G(α) = G Ã(α) for all α ∈ I Ã and ÃG = Ã, which
will be presented below.

Proposition 3.8 Let Ã be a fuzzy set in a topological space
U. Then, the following statements hold true.

(i) The gradual set G induced by the family Ã of gradual
elements satisfies

G(α) = Ãα = G Ã(α) for each α ∈ I Ã,

where IÃ is given in (7).
(ii) Let ÃG be a fuzzy set in U induced by the gradual set G

in part (i). Then, ÃG = Ã.

Proof Toprove part (i), according to (16),we see thatG(α) ⊆
Ãα for α ∈ I Ã. On the other hand, given any fixed α ∈ I Ã
and any x ∈ Ãα , we define a function â on I Ã by

â(β) =
{
x, if β = α

y for some y ∈ Ãβ, if β 	= α.

Then, it is clear to see that â ∈ Ã. This shows that â(α) = x ∈
G(α), i.e., Ãα ⊆ G(α). Therefore, we obtain G(α) = Ãα

for α ∈ I Ã.
To prove part (ii), from (12), the membership function of

ÃG is given by

ξ ÃG(x) = sup
α∈I Ã

α · χG(α)(x).

Using Theorem 2.4, the membership function of Ã can be
expressed as

ξ Ã(x) = sup
α∈I Ã

α · χ Ãα
(x).

Since G(α) = Ãα for each α ∈ I Ã by part (i), we obtain
ÃG = Ã by referring to their membership functions. This
completes the proof. ��
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Example 3.9 Continued from Example 3.5, using (16), we
can induce a gradual set G given by

G(α) =
{
â(α) : â ∈ Ã

}
for α ∈ [0, 0.9], where â(α) ∈ Ãα.

By referring to (14), it is clear to see that G(α) = Ãα for
α ∈ [0, 0.9], which verifies Proposition 3.8 and says that the
elements presented in Example 3.5 are well defined.

4 Complement set

Let Ã be a fuzzy set in U with membership function ξ Ã.
Recall that the complement of Ã is denoted by Ãc with mem-
bership function defined by

ξ Ãc (x) = 1 − ξ Ã(x).

The strong α-level set of Ã is denoted and defined by

Ãα+ = {
x ∈ U : ξ Ã(x) > α

}

forα ∈ [0, 1).We also recall that Ã0+ is the support of Ã. It is
clear that Ãα+ ⊆ Ãα for all α ∈ (0, 1]. Then, for α ∈ (0, 1],
the α-level set of Ãc is given by

Ãcα =
{
x ∈ U : ξ Ãc (x) ≥ α

}
=

{
x ∈ U : 1 − ξ Ã(x) ≥ α

}

=
{
x ∈ U : ξ Ã(x) ≤ 1 − α

}
= U\

{
x ∈ U : ξ Ã(x) > 1 − α

}

= U\ Ã(1−α)+ =
[
Ã(1−α)+

]c
. (17)

We need to remark that ( Ãα)c means the complement set of
the α-level set Ãα of Ã, which is different from the α-level
set Ãc

α of Ãc. Moreover, for α < β, since Ã and Ãc are fuzzy
sets in U , the nestedness says that

Ãβ+ ⊆ Ãβ ⊆ Ãα and Ãc
β+ ⊆ Ãc

β ⊆ Ãc
α,

which also says that

( Ãβ+)c ⊇ ( Ãβ)c ⊇ ( Ãα)c and Ãc
β+ ⊆ Ãc

β ⊆ Ãc
α. (18)

Next we shall define the complement of Ã based on the grad-
ual element.

Let Ã be a fuzzy set inU withmembership function ξ Ã and
interval range I Ã given in (7). Inspired by (17), we consider
the following family of gradual elements

A =
{
â : â(α) ∈

[
Ã(1−α)+

]c
for all α ∈ I Ã

}
.

According to (13), this family can induce a gradual set G†c

in U defined on I Ã by

G†c(α) = {
â(α) : â ∈ A}

=
{
â(α) : â(α) ∈

[
Ã(1−α)+

]c
for all α ∈ I Ã

}
.

(19)

According to (12), this gradual set G†c can also induce a
fuzzy set Ã†c with membership function given by

ξ Ã†c(x) = sup
α∈I Ã

α · χG†c(α)(x), (20)

where the fuzzy set Ã†c is defined to be a new type of com-
plement of Ã. We remark that the gradual element â in (19)
is defined on the interval range I Ã of Ã, which contains 0. In
other words, the gradual element â must have the assignment
at 0. Therefore, the gradual element proposed by Dubois and
Prade (2008) cannot be used in (19), since the assignment at
0 was not considered by Dubois and Prade (2008). Using the
assignment at 0 can define the complement of Ã.

We are going to claim Ã†c = Ãc, although Ã†c is based
on the gradual element and gradual set and Ãc is based on
the membership function.

Theorem 4.1 Let Ã be a fuzzy set in a topological space U.
Then, the gradual setG†c induced by the familyA of gradual
elements satisfies

G†c(α) =
[
Ã(1−α)+

]c = Ãc
α for each α ∈ I Ã.

Moreover, we have Ã†c = Ãc.

Proof According to (19), we see that G†c(α) ⊆ [ Ã(1−α)+]c
for α ∈ I Ã. On the other hand, given any fixed α ∈ I Ã and
any x ∈ [ Ã(1−α)+]c, we define a function â on I Ã by

â(β) =
{
x, if β = α

y for some y ∈ [ Ã(1−β)+]c, if β 	= α.

Then, it is clear to see that â ∈ A. This shows that â(α) = x ∈
G†c(α), i.e., [ Ã(1−α)+]c ⊆ G†c(α). Therefore, we obtain
G†c(α) = [ Ã(1−α)+]c for all α ∈ I Ã. Using (17), we obtain
the following equalities

G†c(α) =
[
Ã(1−α)+

]c = Ãc
α for each α ∈ I Ã.

On the other hand, according to Theorem 2.4, the mem-
bership function of Ãc is given by

ξ Ãc(x) = sup
α∈I Ã

α · χ Ãc
α
(x).
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By referring to themembership function (20), sinceG†c(α) =
Ãc

α , it follows that Ã
†c = Ãc. This completes the proof. ��

5 Intersection and union

Let Ã(1), . . . , Ã(n) be fuzzy sets in a topological space U ,
and let α∗

i = supR (
ξ Ã(i)

)
. From Proposition 2.2 and (7), we

see that Ã(i)
α 	= ∅ for α ∈ Ii , where Ii is given by

Ii =
{ [0, α∗

i ), if maxR(ξ Ã(i) ) does not exist
[0, α∗

i ], if maxR(ξ Ã(i) ) exists.
(21)

According to Definition 3.4, each âi ∈ Ã(i) is a gradual
element in U for i = 1, . . . , n. The gradual element âi :
Ii → U is defined on Ii satisfying âi (α) ∈ Ã(i)

α 	= ∅ for
each α ∈ Ii .

In the sequel, we assume that Ii ≡ I are all identical for
i = 1, . . . , n. Then, Ã(i)

α 	= ∅ for all α ∈ I and i = 1, . . . , n.
In particular, if we assume that the fuzzy sets Ã(1), . . . , Ã(n)

are normal, then I ≡ Ii = [0, 1] for all i = 1, . . . , n.
Let A1, . . . , An be (crisp) subsets of U . Recall that their

intersection is given by

A1 ∩ · · · ∩ An = {x ∈ U : x ∈ Ai for all i = 1, . . . , n} .

Inspired by the above form, we are going to consider the
intersection of Ã(1), . . . , Ã(n) using the gradual elements.
Now, we consider the following family

{
â : â ∈ Ã(i) for all i = 1, . . . , n

}

that consists of all common gradual elements from Ã(1),

. . . , Ã(n). Then, this family can induce a gradual set G∩ in
U defined on I by

G∩(α) =
{
â(α) : â ∈ Ã(i) for all i = 1, . . . , n

}
for α ∈ I .

We can also define the union of Ã(1), . . . , Ã(n) using the
gradual elements. Recall that the union of (crisp) subsets
A1, . . . , An of U is given by

A1 ∪ · · · ∪ An = {x ∈ U : x ∈ Ai for some i = 1, . . . , n} .

Now, we consider the following family

{
â : â ∈ Ã(i) for some i = 1, . . . , n

}

that consists of all gradual elements taken from some
Ã(1), . . . , Ã(n). Then, this family can also induce a gradual
set G∪ in U defined on I by

G∪(α)

=
{
â(α) : â ∈ Ã(i) for some i = 1, . . . , n

}
for α ∈ I .

It is clear to see that

â(α) ∈ G∩(α) implies â(α) ∈ Ã(1)
α ∩ · · · ∩ Ã(n)

α for α ∈ I

(22)

and

â(α) ∈ G∪(α) implies â(α) ∈ Ã(1)
α ∪ · · · ∪ Ã(n)

α for α ∈ I .

(23)

Based on these twogradual setsG∩ andG∪, we can induce
two fuzzy sets Ã∩ and Ã∪ in U with membership functions
given by

ξ Ã∩(x) = sup
α∈I

α ·χG∩(α)(x) and ξ Ã∪(x) = sup
α∈I

α ·χG∪(α)(x).

(24)

In this case, we define the intersection and union of
Ã(1), . . . , Ã(n) as follows:

Ã(1) ∩ · · · ∩ Ã(n) = Ã∩ and Ã(1) ∪ · · · ∪ Ã(n) = Ã∪,

where the membership functions of Ã∩ and Ã∪ are given
in (24). This kind of intersection and union is based on the
concept of gradual elements in fuzzy sets. We remark that
the intersection and union of Ã(1), . . . , Ã(n) are based on the
interval ranges in (21) that contains 0. Therefore, the gradual
element proposed by Dubois and Prade (2008) cannot be
used in (21) to define the union and intersection, since the
assignment at 0 was not considered by Dubois and Prade
(2008).

Example 5.1 Let Ã(1) and Ã(2) be two normal fuzzy sets with
membership functions given by

ξ Ã(1) (x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 1 if 1 ≤ x ≤ 2
1 if 2 < x < 3
4 − x if 3 ≤ x ≤ 4
0 otherwise,

and ξ Ã(2) (x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 2 if 2 ≤ x ≤ 3
1 if 3 < x < 4
5 − x if 4 ≤ x ≤ 5
0 otherwise,

Then, the interval ranges of Ã(1) and Ã(2) are identical to
I = [0, 1]. We also see that the α-level sets of Ã(1) and Ã(2)

are bounded closed intervals given by

Ã(1)
α = [1 + α, 4 − α] and Ã(2)

α = [2 + α, 5 − α] .
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The gradual element â ∈ Ã(1) must satisfy â(α) ∈ Ã(1)
α for

each α ∈ [0, 1]. For example, if we take

â(1)
1 (α) = 1 + α or â(1)

2 (α) = 4 − α for α ∈ [0, 1],

then â(1)
1 , â(1)

2 ∈ Ã(1). Also, if we take

â(2)
1 (α) = 2 + α or â(2)

2 (α) = 5 − α for α ∈ [0, 1],

then â(2)
1 , â(2)

2 ∈ Ã(2). Now we consider two gradual sets
given by

G∩(α) =
{
â(α) : â in Ã(1) and â ∈ Ã(2)

}
for α ∈ [0, 1]

and

G∪(α) =
{
â(α) : â ∈ Ã(1) or â ∈ Ã(2)

}
for α ∈ [0, 1].

Then, it is clear to see that

{
â(1)
2 (α), â(2)

1 (α)
}

⊂ G∩(α) for α ∈ [0, 1]

and

{
â(1)
1 (α), â(1)

2 (α), â(2)
1 (α), â(2)

2 (α)
}

⊂ G∪(α) for α ∈ [0, 1].

In general, for α ∈ [0, 1], we have

G∩(α) =
{
â(α) : â ∈ Ã(1) and â ∈ Ã(2)

}

= {
â(α) : 1 + α ≤ â(α) ≤ 4 − α

and 2 + α ≤ â(α) ≤ 5 − α
}

= {
â(α) : 2 + α ≤ â(α) ≤ 4 − α

}
= [2 + α, 4 − α] = Ã(1)

α ∩ Ã(2)
α

and

G∪(α) =
{
â(α) : â ∈ Ã(1) or â ∈ Ã(2)

}

= {
â(α) : 1 + α ≤ â(α) ≤ 4 − α

or 2 + α ≤ â(α) ≤ 5 − α
}

= {
â(α) : 1 + α ≤ â(α) ≤ 5 − α

}
= [1 + α, 5 − α] = Ã(1)

α ∪ Ã(2)
α .

According to (24), the membership functions of Ã(1) ∩ Ã(2)

and Ã(1) ∪ Ã(2) are given by

ξ Ã(1)∩ Ã(2) (x) = sup
α∈[0,1]

α · χ[2+α,4−α](x) and ξ Ã(1)∪ Ã(2) (x)

= sup
α∈[0,1]

α · χ[1+α,5−α](x).

The α-level sets of Ã(1) ∩ Ã(2) and Ã(1) ∪ Ã(2) will be inves-
tigated in the subsequent discussion.

Proposition 5.2 Let Ã(1), . . . , Ã(n) be fuzzy sets in a topo-
logical space U such that Ii ≡ I for all i = 1, . . . , n. Then,
the following statements hold true.

(i) We have

G∪(α) = Ã(1)
α ∪ · · · ∪ Ã(n)

α for all α ∈ I

and

G∪(β) ⊆ G∪(α) for β > α.

(ii) Suppose that Ã(1)
α ∩ · · · ∩ Ã(n)

α 	= ∅ for all α ∈ I . Then,
we have

G∩(α) = Ã(1)
α ∩ · · · ∩ Ã(n)

α for all α ∈ I

and

G∩(β) ⊆ G∩(α) for β > α.

Proof To prove part (i), for α ∈ I , the inclusion

G∪(α) ⊆ Ã(1)
α ∪ · · · ∪ Ã(n)

α

follows from (23). Now, given any fixed α ∈ I and any
x ∈ Ã(1)

α ∪· · ·∪ Ã(n)
α , we have x ∈ Ã(i)

α for some i = 1, . . . , n.
Then, we define a function â on I by

â(β) =
{
x, if β = α

y for some y ∈ Ã(i)
β , if β 	= α.

Then, â ∈ Ã(i). Therefore, we obtain x = â(α) ∈ Ã(i)
α with

â ∈ Ã(i) for some i = 1, . . . , n. This says that x = â(α) ∈
G∪(α). Therefore, we obtain the inclusion

Ã(1)
α ∪ · · · ∪ Ã(n)

α ⊆ G∪(α),

for all α ∈ I . Using the nestedness of the α-level sets Ã(i)
α

for i = 1, . . . , n, it is clear to see that the gradual set G∪ is
also nested in the sense of G∪(β) ⊆ G∪(α) for β > α.

To prove part (ii), for α ∈ I , the inclusion

G∩(α) ⊆ Ã(1)
α ∩ · · · ∩ Ã(n)

α

follows from (22). Given any fixed α ∈ I and any x ∈ Ã(1)
α ∩

· · · ∩ Ã(n)
α 	= ∅, we have x ∈ Ã(i)

α for all i = 1, . . . , n. Then,
we define a function â on I by

â(β) =
{
x, if β = α

y for some y ∈ Ã(1)
β ∩ · · · ∩ Ã(n)

β 	= ∅, if β 	= α.
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Then, â ∈ Ã(i) for all i = 1, . . . , n. This says that x =
â(α) ∈ G∩(α). Therefore, we obtain the inclusion

Ã(1)
α ∩ · · · ∩ Ã(n)

α ⊆ G∩(α)

for all α ∈ I . This shows the desired equality. The nestedness
of the gradual setG∩ can be similarly realized, and the proof
is complete. ��
Remark 5.3 Sincewe assume that Ii ≡ I for all i = 1, . . . , n,
by referring to (21) and Remark 3.3, we see that the interval
ranges of membership functions Ã∩ and Ã∪ are given by

I Ã∩ = I Ã∪ = I .

Using Proposition 2.2, we have Ã∩
α 	= ∅ for all α ∈ I and

Ã∩
α = ∅ for all α /∈ I . We also have Ã∪

α 	= ∅ for all α ∈ I
and Ã∪

α = ∅ for all α /∈ I .

Now we want to study the α-level sets of Ã(1) ∩· · ·∩ Ã(n)

and Ã(1) ∪· · ·∪ Ã(n). Let Ã be a fuzzy set inU with I Ã given
in (7). Given any α ∈ I Ã with α > 0 and any increasing
convergent sequence {αm}∞m=1 in I Ã with αm > 0 for all m
and αm ↑ α, the basic property of fuzzy set says that

∞⋂
m=1

Ãαm = Ãα, (25)

which will be used for the subsequent discussion. We need
two useful lemmas.

Lemma 5.4 (Royden 1968) Let U be a topological space,
and let K be a compact subset of U. Let f be a real-valued
function defined on U. If f is upper semi-continuous, then f
assumes its maximum on a compact subset of U; that is, the
supremum is attained in the following sense

sup
x∈K

f (x) = max
x∈K f (x).

Lemma 5.5 Let S be a subset of (0, 1]. Let Ã and B̃ be two
fuzzy sets in a universal set U with membership functions ξ Ã
and ξB̃ , respectively, satisfying Ãα = B̃α for all α ∈ S.

(i) Suppose thatR(ξ Ã)\{0} ⊆ S andR(ξB̃)\{0} ⊆ S. Then,
ξ Ã(x) = 0 if and only if ξB̃(x) = 0, i.e., ξ Ã(x) > 0 if
and only if ξB̃(x) > 0.

(ii) We consider the following set

U S = {
x ∈ U : ξ Ã(x), ξB̃(x) ∈ S and ξ Ã(x) > 0, ξB̃(x) > 0

}
.

Then, ξ Ã(x) = ξB̃(x) for any x ∈ US. Moreover, if
R(ξ Ã)\{0} ⊆ S and R(ξB̃)\{0} ⊆ S, then

U S = {
x ∈ U : ξ Ã(x) > 0

} = {
x ∈ U : ξB̃(x) > 0

}
(26)

and ξ Ã = ξB̃ withR(ξ Ã) = R(ξB̃).

Proof To prove part (i), if ξ Ã(x) = 0, then x /∈ Ãα for all
α > 0, which implies x /∈ B̃α for all α ∈ R(ξB̃)\{0} ⊆ S,
since Ãα = B̃α for all α ∈ S. From Theorem 2.4, we have

ξB̃(x) = sup
α∈R(ξB̃ )

α · χB̃α
(x) = sup

R(ξB̃ )\{0}
α · χB̃α

(x) = 0.

We can similarly prove that ξB̃(x) = 0 implies ξ Ã(x) = 0.
To prove part (ii), for x ∈ US , let 0 < α = ξ Ã(x) and

0 < β = ξB̃(x) with α, β ∈ S, i.e., x ∈ Ãα and x ∈ B̃β . We
consider the following two cases.

• For x ∈ Ãα , since Ãα = B̃α , i.e., x ∈ B̃α , we have
ξB̃(x) ≥ α, i.e., β ≥ α.

• For x ∈ B̃β , since Ãβ = B̃β , i.e., x ∈ Ãβ , we also have
ξ Ã(x) ≥ β, i.e., α ≥ β.

Therefore, we obtain α = β. This shows that ξ Ã(x) = ξB̃(x)
for any x ∈ US . Using part (i), we can obtain (26) and con-
clude that ξ Ã = ξB̃ with R(ξ Ã) = R(ξB̃). This completes
the proof. ��

We say that two fuzzy sets Ã and B̃ in U are identical,
written by Ã = B̃, if and only if ξ Ã = ξB̃ , i.e., ξ Ã(x) = ξB̃(x)
for all x ∈ U .

Theorem 5.6 Let Ã(1), . . . , Ã(n) be fuzzy sets in a topological
space U such that Ii ≡ I for all i = 1, . . . , n, that Ã(1)

α ∩
· · · ∩ Ã(n)

α 	= ∅ for all α ∈ I and that the maximum max I
exists. Then, the α-level set of Ã∩ = Ã(1)∩· · ·∩ Ã(n) is given
by

Ã∩
α =

(
Ã(1) ∩ · · · ∩ Ã(n)

)
α

= {x ∈ U : ξ Ã∩(x) ≥ α}
= G∩(α) = Ã(1)

α ∩ · · · ∩ Ã(n)
α (27)

for every α ∈ I with α > 0, and

Ã∩
0+ =

(
Ã(1) ∩ · · · ∩ Ã(n)

)
0+ =

⋃
{α∈I :α>0}

(
Ã(1) ∩ · · · ∩ Ã(n)

)
α

=
⋃

{α∈I :α>0}
G∩(α) =

⋃
{α∈I :α>0}

Ã(1)
α ∩ · · · ∩ Ã(n)

α . (28)

Proof Given any α ∈ I with α > 0 and any increasing
convergent sequence {αm}∞m=1 in I with αm > 0 for all m
and αm ↑ α, using (25), we have
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∞⋂
m=1

(
Ã(1)

αm ∩ · · · ∩ Ã(n)
αm

)
=

( ∞⋂
m=1

Ã(1)
αm

)
∩ · · · ∩

( ∞⋂
m=1

Ã(n)
αm

)

= Ã(1)
α ∩ · · · ∩ Ã(n)

α . (29)

From part (ii) of Proposition 5.2, we see that (29) is satisfied
if and only if the following equality is satisfied

∞⋂
m=1

G∩(αm) = G∩(α). (30)

We also have

G∩(β) ⊆ G∩(α) for α, β ∈ I with β > α. (31)

Given any fixed x ∈ U , we define the following set

Fρ = {
α ∈ I : ξ Ã∩(x) = α · χG∩(α)(x) ≥ ρ

}
.

Since Ii ≡ I for all i = 1, . . . , n, from Remark 5.3 and
(21), it follows that I Ã∩ = I is an interval. Since we assume
that the maximum max I exists, Proposition 2.2 says that
I Ã∩ = I = [0, α∗] for some α∗ ∈ (0, 1]. We are going
to claim that the set Fρ is closed for each ρ ∈ R. Given
any ρ ∈ I with ρ > 0, for each α ∈ cl(Fρ), there exists a
sequence {αm}∞m=1 in Fρ such that αm → α. Therefore, we
have αm ∈ I with αm ≥ ρ > 0 and x ∈ G∩(αm) for all m,
which also says that α > 0, since

α = lim
m→∞ αm ≥ ρ > 0.

Therefore, there exists a subsequence {αmk }∞k=1 of {αm}∞m=1
such that αmk ↑ α or αmk ↓ α as k → ∞.

• Suppose that αmk ↓ α. Then, αmk ≥ α for all k. This says
that x ∈ G∩(αmk ) ⊆ G∩(α) by (31).

• Suppose that αmk ↑ α. Since αmk ∈ Fρ for each k, it
follows that α ∈ cl(Fρ). Since Fρ ⊆ I , i.e., cl(Fρ) ⊆
cl(I ) = I = [0, α∗], it says that α ∈ I . Since x ∈
G∩(αmk ) for all k, using (30), it follows that x ∈ G∩(α).

Therefore, we conclude that x ∈ G∩(α) for both cases. This
also says that α ·χG∩(α)(x) ≥ ρ, i.e., α ∈ Fρ . Therefore, we
obtain the inclusion cl(Fρ) ⊆ Fρ , which means that Fρ is
closed for each ρ ∈ I with ρ > 0. We are going to claim that
for any fixed x ∈ U , the function ηx (α) = α · χG∩(α)(x) is
upper semi-continuous on I . It is equivalent to show that the
set Fρ is closed for each ρ ∈ R. We have shown that Fρ is
closed for each ρ ∈ I with ρ > 0. If ρ /∈ I , then the empty
set Fρ = ∅ is closed. If ρ = 0, then Fρ = I = [0, α∗] is also
a closed set. This shows that the function ηx = α ·χG∩(α)(x)
is indeed upper semi-continuous on I .

Since Ã∩
α 	= ∅ for all α ∈ I by Remark 5.3, given any

fixed 0 < α ∈ I , suppose that x ∈ Ã∩
α . Now we also assume

that x /∈ G∩(β) for all β ∈ I with α ≤ β. We want to
lead to a contradiction. Under this assumption, we see that
β ·χG∩(β)(x) < α for all β ∈ I . Since ηx (β) = β ·χG∩(β)(x)
is upper semi-continuous on the compact set I = [0, α∗], the
supremum of function ηx is achieved by Lemma 5.4. This
says that

ξ Ã∩(x) = sup
β∈I

ηx (β) = sup
β∈I

β · χG∩(β)(x)

= max
β∈I β · χG∩(β)(x) = β∗ · χG(β∗)(x) < α

for some β∗ ∈ I , which violates x ∈ Ã∩
α . Therefore, there

exists β0 ∈ I with β0 ≥ α such that x ∈ G∩(β0) ⊆ G∩(α)

by part (ii) of Proposition 5.2, which shows the inclusion
Ã∩

α ⊆ G∩(α). The following inclusion is obvious

G∩(α) ⊆
{
x ∈ R : sup

β∈I
β · χG∩(β)(x) ≥ α

}

= {x ∈ R : ξ Ã∩(x) ≥ α} = Ã∩
α .

Therefore, we obtain the desired equalities (27) and (28).
This completes the proof. ��

Example 5.7 Continued fromExample 5.1, Theorem5.6 says
that the α-level sets of Ã(1) ∩ Ã(2) are given by

(
Ã(1) ∩ Ã(2)

)
α

= G∩(α) = Ã(1)
α ∩ Ã(2)

α = [2 + α, 4 − α] .

Theorem 5.8 Let Ã(1), . . . , Ã(n) be fuzzy sets in a topological
space U such that Ii ≡ I for all i = 1, . . . , n and that the
maximummax I exists. Suppose that any one of the following
conditions is satisfied.

(a) For any fixed x ∈ U, the function ηx (α) = α ·χG∪(α)(x)
is upper semi-continuous on I .

(b) Given any α ∈ I with α > 0 and any increasing conver-
gent sequence {αm}∞m=1 in I with αm > 0 for all m and
αm ↑ α, the following inclusion is satisfied

∞⋂
m=1

(
Ã(1)

αm
∪ · · · ∪ Ã(n)

αm

)
⊆ Ã(1)

α ∪ · · · ∪ Ã(n)
α . (32)

(c) Given any increasing sequence {αm}∞m=1 in I with αm >

0 for all m, the following inclusion is satisfied

∞⋂
m=1

(
Ã(1)

αm ∪ · · · ∪ Ã(n)
αm

)
⊆

( ∞⋂
m=1

Ã(1)
αm

)
∪ · · · ∪

( ∞⋂
m=1

Ã(n)
αm

)
.

123



890 H.-C. Wu

Then, the α-level set of Ã∪ = Ã(1) ∪ · · · ∪ Ã(n) is given by

Ã∪
α =

(
Ã(1) ∪ · · · ∪ Ã(n)

)
α

= {x ∈ U : ξ Ã∪(x) ≥ α}
= G∪(α) = Ã(1)

α ∪ · · · ∪ Ã(n)
α (33)

for every α ∈ I with α > 0, and

Ã∪
0+ =

(
Ã(1) ∪ · · · ∪ Ã(n)

)
0+ =

⋃
{α∈I :α>0}

(
Ã(1) ∪ · · · ∪ Ã(n)

)
α

=
⋃

{α∈I :α>0}
G∪(α) =

⋃
{α∈I :α>0}

Ã(1)
α ∪ · · · ∪ Ã(n)

α . (34)

Proof Suppose that condition (a) is satisfied. Since Ã∪
α 	= ∅

for all α ∈ I by Remark 5.3, the arguments in the proof
of Theorem 5.6 are still valid to obtain the desired equalities
(33) and (34) by considering the upper semi-continuity of ηx .

Suppose that condition (b) is satisfied. From part (i) of
Proposition 5.2, we see that the inclusion (32) is satisfied if
and only if the following inclusion is satisfied

∞⋂
m=1

G∪(αm) ⊆ G∪(α). (35)

We also have G∪(β) ⊆ G∪(α) for α, β ∈ I . From the proof
of Theorem 5.6, when the equality (30) is replaced by the
following inclusion

∞⋂
m=1

G∪(αm) ⊆ G∪(α), (36)

the same results can still be obtained. Therefore, by changing
the role of (30) as (36) and using the arguments in the proof
of Theorem 5.6, we can also show that the function ηx (α) =
α·χG∪(α)(x) is upper semi-continuous on I . Therefore, using
condition (a), the desired results can be obtained.

Suppose that condition (c) is satisfied. Then, from (25), it
is clear to see that condition (b) is satisfied. Therefore, we
also have the desired results, and the proof is complete.

Example 5.9 Continued from Example 5.1, we are going to
apply Theorem 5.8 to obtain the α-level sets of Ã(1) ∪ Ã(2).
We shall check that the inclusion (32) in condition (b) will
be satisfied. For αm ↑ α, since Ã(1)

α ∪ Ã(2)
α = [1+ α, 5− α],

we need to claim the inclusion

∞⋂
m=1

[1 + αm, 5 − αm] ⊆ [1 + α, 5 − α] .

Given x satisfying 1+αm ≤ x ≤ 5−αm for allm = 1, 2, . . .,
by taking m → ∞, we obtain 1 + α ≤ x ≤ 5 − α, which

proves the desired inclusion. Therefore, Theorem 5.8 says
that

(
Ã(1) ∪ Ã(2)

)
α

= G∪(α) = Ã(1)
α ∪ Ã(2)

α = [1 + α, 5 − α] .

By referring to (32), we remark that the following inclu-
sion

( ∞⋂
m=1

Ã(1)
αm

)
∪ · · · ∪

( ∞⋂
m=1

Ã(n)
αm

)
⊆

∞⋂
m=1

(
Ã(1)

αm
∪ · · · ∪ Ã(n)

αm

)
.

is satisfied automatically, which is the reversed direction of
inclusion.

6 Associativity

Now we are going to study the associativity. Let Ã, B̃, C̃ be
fuzzy sets in a topological space U with the interval ranges
I Ã, IB̃ and IC , respectively. In order to claim the following
equalities

(
Ã ∪ B̃

)
∪ C̃ = Ã ∪

(
B̃ ∪ C̃

)
= Ã ∪ B̃ ∪ C̃,

some sufficient conditions are needed.

Proposition 6.1 Let Ã, B̃, C̃ be fuzzy sets in a topological
space U such that IÃ = IB̃ = IC ≡ I are all identical and
that the maximum max I exists. Suppose that any one of the
following conditions is satisfied.

• For any fixed x ∈ U, the functions η
(1)
x (α) = α ·

χ Ãα∪B̃α
(x) and η

(2)
x (α) = α ·χB̃α∪C̃α

(x) are upper semi-
continuous on I .

• Given any α ∈ I with α > 0 and any increasing conver-
gent sequence {αm}∞m=1 in I with αm > 0 for all m and
αm ↑ α, the following inclusions

∞⋂
m=1

(
Ãαm ∪ B̃αm

)
⊆ Ãα ∪ B̃α

and
∞⋂

m=1

(
B̃αm ∪ C̃αm

)
⊆ B̃α ∪ C̃α

are satisfied
• Given any increasing sequence {αm}∞m=1 in I with αm >

0 for all m, the following inclusions

∞⋂
m=1

(
Ãαm ∪ B̃αm

)
⊆

( ∞⋂
m=1

Ãαm

)
∪

( ∞⋂
m=1

B̃αm

)
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and

∞⋂
m=1

(
B̃αm ∪ C̃αm

)
⊆

( ∞⋂
m=1

B̃αm

)
∪

( ∞⋂
m=1

C̃αm

)

are satisfied. Then, we have

(
Ã ∪ B̃

)
∪ C̃ = Ã ∪

(
B̃ ∪ C̃

)
= Ã ∪ B̃ ∪ C̃ .

Proof Let D̃(1) = Ã ∪ B̃ and D̃(2) = B̃ ∪ C̃ . Considering
the function η

(1)
x and using Theorem 5.8, we have

D̃(1)
α = Ãα ∪ B̃α for all α ∈ I with α > 0. (37)

Similarly, considering the function η
(2)
x , we also have

D̃(2)
α = B̃α ∪ C̃α for all α ∈ I with α > 0. (38)

Let Ẽ (1) = D̃(1) ∪ C̃ and Ẽ (2) = Ã ∪ D̃(2). Then, the mem-
bership functions of Ẽ (1) and Ẽ (2) are given by

ξẼ (1) (x)

= sup
α∈I

α · χ
D̃(1)

α ∪C̃α
(x)(using (24) and part(i) of Proposition 5.2)

= sup
α∈I

α · χ
( Ãα∪B̃α)∪C̃α

(x)(using (37))

= sup
α∈I

α · χ Ãα∪B̃α∪C̃α
(x)

and

ξẼ (2) (x)

= sup
α∈I

α · χ
Ãα∪D̃(2)

α
(x) = sup

α∈I
α · χ Ãα∪(B̃α∪C̃α)

(x)(using (38))

= sup
α∈I

α · χ Ãα∪B̃α∪C̃α
(x).

Let Ẽ ≡ Ã∪ B̃∪C̃ . Using (24) and part (i) of Proposition 5.2,
we see that the membership function of Ẽ is given by

ξẼ (x) = sup
α∈I

α · χ Ãα∪B̃α∪C̃α
(x).

Therefore, we obtain Ẽ (1) = Ẽ (2) = Ẽ . This completes the
proof. ��
Example 6.2 Continued fromExample5.1, let Ã(3) be another
fuzzy set with membership function given by

ξ Ã(3) (x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 3 if 3 ≤ x ≤ 4
1 if 4 < x < 5
6 − x if 5 ≤ x ≤ 6
0 otherwise,

The α-level sets of Ã(3) are given by Ã(3)
α = [3 + α, 6 − α].

The second condition in Proposition 6.1 is satisfied, which

can be realized from the similar argument of Example 5.9.
Therefore, Proposition 6.1 says that

(
Ã(1) ∪ Ã(2)

)
∪ Ã(3) = Ã(1) ∪

(
Ã(2) ∪ Ã(3)

)

= Ã(1) ∪ Ã(2) ∪ Ã(3).

The membership function is given by

ξ Ã(1)∪ Ã(2)∪ Ã(3) (x) = sup
α∈[0,1]

α · χ[1+α,6−α](x).

For guaranteeing the following equalities

(
Ã ∩ B̃

)
∩ C̃ = Ã ∩

(
B̃ ∩ C̃

)
= Ã ∩ B̃ ∩ C̃,

we do not need any extra sufficient conditions.

Proposition 6.3 Let Ã, B̃, C̃ be fuzzy sets in a topological
space U such that IÃ = IB̃ = IC ≡ I are all identical, that
Ãα ∩ B̃α ∩C̃α 	= ∅ for all α ∈ I and that the maximummax I
exists. Then, we have

(
Ã ∩ B̃

)
∩ C̃ = Ã ∩

(
B̃ ∩ C̃

)
= Ã ∩ B̃ ∩ C̃ . (39)

Proof Let D̃(1) = Ã ∩ B̃ and D̃(2) = B̃ ∩ C̃ . Using Theo-
rem 5.6, we have

D̃(1)
α = Ãα ∩ B̃α and D̃(2)

α = B̃α ∩ C̃α for all α ∈ I with α > 0.

Let Ẽ (1) = D̃(1) ∩ C̃ and Ẽ (2) = Ã ∩ D̃(2). Then, the mem-
bership functions of Ẽ (1) and Ẽ (2) are given by

ξẼ (1) (x) = sup
α∈I

α · χ
D̃(1)

α ∩C̃α
(x) = sup

α∈I
α · χ

( Ãα∩B̃α)∩C̃α
(x)

= sup
α∈I

α · χ Ãα∩B̃α∩C̃α
(x)

and

ξẼ (2) (x) = sup
α∈I

α · χ
Ãα∩D̃(2)

α
(x) = sup

α∈I
α · χ Ãα∩(B̃α∩C̃α)

(x)

= sup
α∈I

α · χ Ãα∩B̃α∩C̃α
(x).

Let Ẽ ≡ Ã∩ B̃∩C̃ . Using (24) and part (ii) of Proposition 5.2,
we see that the membership function of Ẽ is given by

ξẼ (x) = sup
α∈I

α · χ Ãα∩B̃α∩C̃α
(x).

Therefore, we obtain Ẽ (1) = Ẽ (2) = Ẽ . This completes the
proof. ��
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Propositions 6.1 and 6.3 can be inductively extended by
considering the fuzzy sets Ã(1), . . . , Ã(n) in U . We also
remark that if Ã, B̃, C̃ are assumed to be normal fuzzy sets,
then

I Ã = IB̃ = IC = [0, 1] = I

and the maximum max I = 1 exists. In this case, the asso-
ciativity in (39) holds true. This also says that the sufficient
conditions in Proposition 6.3 are not so strong.

Now we want to consider the mixed set operations by
including the parentheses. For example, we consider the fol-
lowing expression

Ã ≡
((

Ã(1) ∩ Ã(2) ∩ Ã(3)
)

∪
(
Ã(4) ∩ Ã(5)

))

∩
(
Ã(6) ∪ Ã(7) ∪ Ã(8) ∪ Ã(9)

)
.

We also assume that Ii ≡ I are all identical for i = 1, . . . , 9.
Let B̃(1) ≡ Ã(1) ∩ Ã(2) ∩ Ã(3), B̃(2) ≡ Ã(4) ∩ Ã(5), B̃(3) ≡
Ã(6) ∪ Ã(7) ∪ Ã(8) ∪ Ã(9) and B̃(4) = B̃(1) ∪ B̃(2). Now we
perform the following operations.

• Using (24) and part (ii) of Proposition 5.2, the member-
ship function of B̃(1) is given by

ξB̃(1) (x) = sup
α∈I

α · χ
Ã(1)

α ∩ Ã(2)
α ∩ Ã(3)

α
(x).

Suppose that the conditions in Theorem 5.6 are satisfied.
Then,

B̃(1)
α = Ã(1)

α ∩ Ã(2)
α ∩ Ã(3)

α for all α ∈ I with α > 0.

• Using (24) and part (ii) of Proposition 5.2, the member-
ship function of B̃(2) is given by

ξB̃(2) (x) = sup
α∈I

α · χ
Ã(4)

α ∩ Ã(5)
α

(x).

Suppose that the conditions in Theorem 5.6 are satisfied.
Then,

B̃(2)
α = Ã(4)

α ∩ Ã(5)
α for all α ∈ I with α > 0.

• Using (24) andpart (i) of Proposition 5.2, themembership
function of B̃(3) is given by

ξB̃(3) (x) = sup
α∈I

α · χ
Ã(6)

α ∪ Ã(7)
α ∪ Ã8

α∪ Ã9
α
(x).

Suppose that the conditions in Theorem 5.8 are satisfied.
Then,

B̃(3)
α = Ã(6)

α ∪ Ã(7)
α ∪ Ã(8)

α ∪ Ã(9)
α for all α ∈ I with α > 0.

• Using (24) andpart (i) of Proposition 5.2, themembership
function of B̃(4) is given by

ξB̃(4) (x) = sup
α∈I

α · χ
B̃(1)

α ∪B̃(2)
α

(x).

Suppose that the conditions regarding B̃(1) and B̃(2) in
Theorem 5.8 are satisfied. Then,

B̃(4)
α = B̃(1)

α ∪ B̃(2)
α for all α ∈ I with α > 0.

• Finally, using (24) and part (ii) of Proposition 5.2, the
membership function of Ã is given by

ξ Ã(x) = sup
α∈I

α · χ
B̃(4)

α ∩B̃(5)
α

(x).

Suppose that the conditions regarding B̃(4) and B̃(5) in
Theorem 5.6 are satisfied. Then,

Ãα = B̃(4)
α ∩ B̃(5)

α for all α ∈ I with α > 0.

For α ∈ I with α > 0, we define

Gα ≡
((

Ã(1)
α ∩ Ã(2)

α ∩ Ã(3)
α

)
∪

(
Ã(4)

α ∩ Ã(5)
α

))

∩
(
Ã(6)

α ∪ Ã(7)
α ∪ Ã(8)

α ∪ Ã(9)
α

)
.

Then, the membership function of Ã is given by

ξ Ã(x) = sup
α∈I

α · χGα
(x).

Now we consider the following expression

Ã◦ ≡
((

Ã(1) ∩ Ã(2) ∩ Ã(3)
)

∪
(
Ã(4) ∩ Ã(5)

))

∩
(
Ã(6) ∪

(
Ã(7) ∪ Ã(8)

)
∪ Ã(9)

)
.

Then, Ã 	= Ã◦ in general. However, if the similar condi-
tions regarding Ã(6), Ã(7), Ã(8), Ã(9) in Proposition 6.1 are
satisfied, then Ã = Ã◦.
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