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Abstract
This paper aims to percolate energy management of microgrid systems by minimizing the generation cost of the same.

Energy management of microgrid refers to the optimal sizing and scheduling of the distributed energy resources to reduce

the generation cost and pollutant emission. A recently developed crow search algorithm (CSA) is implemented to execute

the optimization. The proposed CSA imitates the crows’ memory and tactics of hiding and chasing their food. Six

renewable integrated microgrid test systems and a total of eighteen different cases are considered for this study. Various

practical complexities such as valve point loading effect, combined economic–emission dispatch using price penalty factor

method, modeling of the renewable energy sources and energy storage systems are taken into consideration for energy

management of the microgrid systems. Results obtained are then compared to a number of different soft computing

techniques such as genetic algorithm and particle swarm optimization and the likes to justify the effectiveness of the

proposed algorithm. A statistical analysis, viz. Wilcoxon signed-rank test, is performed to prove the superiority of the

proposed approach over the various other optimization techniques used in the paper.

Keywords Combined economic–emission dispatch � Penalty factor � Microgrid � Grey wolf optimization �
Teaching–learning-based optimization � Sine cosine algorithm � Crow search algorithm

1 Introduction

1.1 General overview

At a power generating station, the load demand is not

sufficed by a single generating entity. Rather, a conglom-

erate of such entities fulfills the total demand. Moreover, to

produce the same amount of power, each unit is incurred

with its own cost function (price bid). Economic load

dispatch (ELD) works on the fact that not all generating

units incur the same amount of cost to suffice the same

amount of load, rather some are relatively more costly than

others for equal amount of production. So aptly allocating a

certain share of the entire demand could actually lower the

fuel cost. The total load demand is distributed among

various generators, which in turn affects the estimation,

invoicing, unit commitment and numerous related func-

tions (Sihna 2019). The total generation of power has to

comply with the total current demand. To address this, the

ELD could be further categorized into two variations

depending upon the nature of load demand. The constant

load, classical static economic load dispatch (SELD),

ignores practical constraints because every load-consuming

area does not have a constant all-day load demand char-

acteristics, but its nature depends upon the prevalent cli-

matic factors, location and attributes of job undertaken by

the inhabitants (Yalcinoz and Short 1997; Dhillon et al.

1993). In opposition to this, a dynamic economic load

dispatch (DELD) efficiently handles the practical con-

straint (Wang and Shahidehpour 1994). In DELD, we

forecast the demand for the upcoming hours and accord-

ingly distribute the load among different generation to

optimize the production.

Energy management strategy (EMS) of microgrids falls

in DELD category of cost minimization but is more com-

plicated than SELD. To begin with, microgrid can be

imagined as a collection of distributed energy resources
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(DERs) and loads within a confined geographical area.

DERs include fossil-fueled generators, various renewable

energy sources (RES) depending upon the availability of

the microgrid location, microturbines, fuel cells and energy

storage systems (ESS) such as battery and flywheel

(Hatziargyriou 2013). It is because of the individual

modeling and constraints associated with these DERs that

economic dispatch of microgrid becomes a complex and

cumbersome process for power engineers. Microgrid

basically operates in two modes: either islanded or utility

connected (Luu 2014). Figure 1a, b depicts the two dif-

ferent working modes of a microgrid system. It is quite

obvious that the utility-connected mode is more reliable

and efficient as the microgrid can sell/buy power from the

utility depending upon the surplus/deficit production of

power from its DERs. Also, utility-connected microgrid

can rely on the grid in case one of its DER fails, thus

preventing from an unwanted and major shutdown of the

network.

1.2 Literature review

The last decade has witnessed a lot of research in the

microgrid energy management area. Matrix real-coded GA

(MRCGA) and imperialist competitive algorithm (ICA)

were used by authors in Chen et al. (2011) and Kasaei

(2018) to minimize the generation cost of a grid-connected

microgrid, wherein various cases were studied to analyze

the capability of algorithms in handling tight operating

ranges of DERs, variable loads and fluctuating electricity

Fig. 1 a Architecture of an

islanded microgrid.

b Architecture of grid-

connected microgrid (Fan et al.

2018)
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price. Cuckoo search algorithm (CuSA) yielded better

results than PSO and DE when both SELD and DELD were

performed by Basu and Chowdhury (2013). An islanded

microgrid system was considered for DELD which con-

sisted of two wind turbines (WTs) to be separately modeled

based on wind speed. The authors performed pareto-opti-

mal front-based economic–emission dispatch on a utility-

connected microgrid system using adaptive modified PSO

(AMPSO) in Moghaddam et al. (2011) and GAMS in Fan

et al. (2018). Optimization results were reported giving

maximum weightage to economic and emission dispatch

separately, and thereafter a compromised solution empha-

sizing both the objectives with approximately equal

weightage was studied where the proposed algorithms

outperformed other optimized techniques studied. Trivedi

et al. (2018) used interior search algorithm (ISA) to per-

form ELD and price-penalty-based combined economic–

emission dispatch (CEED) on an islanded microgrid pow-

ered by three fossil-fueled generators, a PV and a wind

system. These results were again outperformed by modified

harmony search algorithm (MHSA) implemented by Elat-

tar (2018) for the same microgrid system. But the major

drawback in these two articles was that the formulation of

different types of price penalty factors was not done.

Neither any valid reason was mentioned about which type

of price penalty factor was chosen to perform CEED. This

demerit was attended by Dey et al. (2019) where the var-

ious price penalty factors were formulated and calculated

and the least (min–max) penalty factor was chosen to

perform CEED. Further, whale optimization algorithm

(WOA) provided better-quality solutions than other opti-

mization techniques used to evaluate CEED. The Lahon

and Gupta (2018) proposed an energy management system

for the coalition forming microgrids and utility. In the

proposed framework, conditional value at risk, a measure

to lessen the danger faced by the aggregator due to power

transaction fluctuations was also considered. Lahon and

Gupta (2018) proposed energy management framework

that minimizes the operating cost of coalition microgrids

incorporating worst-case net transaction mechanism. GA

and improved GA (IGA) were used by authors in Yong and

Tao (2007) and Ganjefar and Tofighi (2011) to minimize

the dynamic cost of a 10-unit system with and without

wind power, respectively. Sequential quadratic program-

ming (SQP) was used by Wibowo et al. (2017) to minimize

the generation cost of a grid-connected microgrid powered

by a diesel generator, a battery, a microturbine and a PV

system.

Optimal scheduling of the energy storage system was

done in Bahmani-Firouzi and Azizipanah-Abarghooee

(2014) by considering its lifetime, total per day cost, fixed

cost and maintenance cost, thereafter minimizing the gen-

eration cost of a grid-connected microgrid using improved

bat algorithm (IBA). In recent years, authors have used

quasi-oppositional swine influenza model-based optimiza-

tion (QOSIMBO) in Sharma et al. (2018) and grey wolf

optimization (GWO) in Sharma et al. (2016) for the same

test system to yield better and superior results compared to

IBA. 2 m point estimation method was used by authors in

Sharma et al. (2018) for the uncertainty modeling of the

RES and electricity market prices, and then WOA was

implemented to minimize the microgrid cost. Mixed inte-

ger linear programming (MILP) was used by authors in

Koltsaklis et al. (2018) to minimize the generation cost of a

grid-connected microgrid system. The generation cost was

influenced by the transaction price of the grid, annual

investment cost of the DERs, capital recovery factor and

penalized allowable limit of pollutants emission from fos-

sil-fueled DERs. Artificial fish swarm algorithm (AFSA)

was used in Kumar and Saravanan (2019) to minimize the

generation cost of a microgrid system. Two scenarios were

considered with different load demands and RES genera-

tion, and the generation cost was influenced by the penal-

ized price of load shedding.

1.3 Motivation

Researchers are highly fascinated with soft computing

techniques primarily because they are not restricted by

complexity of system models, which has made them apply

these techniques to power system optimization problems.

Their vibrant results of techniques like genetic algorithm

(GA), particle swarm optimization (PSO) and differential

evolution (DE) over numerous benchmark functions have

resulted in the application of these algorithms for solving

energy management operations of microgrids such as

minimization of generation and transmission costs and load

scheduling. Nevertheless, GA, PSO and DE have their own

list of disadvantages too. The crucial demerit of GA lies in

its slow rate of convergence. This is precisely due to the

uncontrolled mutation stage in GA where a random number

is added to any parameter of a member from a whole lot or

population. DE suffers from unstable convergence and

easily drops down to regional optimum. Likewise, PSO

also drops down to regional optimum and has untimely

convergence. In addition to that, multiplicity of population

is not enough in PSO. Also, some time is consumed in

tuning the control parameters present in all of the afore-

mentioned optimization techniques.

Crow search algorithm (CSA) is a recently developed

optimization technique which imitates the memory-based

sly nature of the crows to hide their food from other crows
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and also steal food from others. Few of the noticeable

advantages of CSA are explained below:

1. Minimum number of pivotal equations-

Unlike GA, DE, GWO, WOA, symbiotic organisms

search (SOS) which have many stages and equations to

go through the entire optimization process, CSA has

only one such equation which makes the algorithm not

only easy to be coded and executed but also consumes

less computational time to attain the stopping criteria

yielding a prominent and better-quality solution.

Algorithms like sine cosine algorithm (SCA), JAYA

and PSO also have very less number of pivotal equations

like CSA, but these algorithms have their own demerits.

JAYA has no dedicated control over the search space,

whereas SCA is less consistent, yielding a different

value for the fitness function every time due to higher

number of random numbers. This reduces the robustness

of SCA. PSO suffers from getting trapped in local min-

ima. All of these three algorithms are prone to premature

convergence.

2. Minimum number of tuning parameters and random

numbers

GA, DE and PSO have many parameters to be tuned and

checked to obtain a better result. GWO, WOA, SOS, TLBO

and DE have many stages, and every stage employs some

random numbers to be multiplied with the string of decision

(control) variables (or a particle of the population as we may

say it). The presence of these tuning parameters and random

numbers makes the optimization process cumbersome, redu-

ces the consistency-cum-robustness of the algorithms and

indulges in consuming a huge amount of computational time

to attain the best value of fitness function, satisfying all the

pre-assigned limits and constraints of every element of the

particle. CSA on the other hand has only two tuning param-

eters: flight length (fl) and awareness probability (AP). AP can

be formulated to gradually decrease its value (linearly/expo-

nentially) from 1 to 0 throughout the iterations to maintain a

smooth transition between intensification and diversification.

We are only left with ‘fl’ to tune with, the value of which

conducts the search for optimal values globally or locally.

3. Capacity to handle large-dimensional problems in less

amount of computational time

A microgrid consists of many DERs whose prime con-

cern is to satisfy the load demand through a given period of

time. Now, these DERs have their own set of constraints to

be abided by while sizing them to obtain the optimum

value of the fitness function.

Let us suppose a microgrid has D DERs and a 24-h

period is studied. A particle of the population will contain

D times 24 elements and is represented as:

Pi ¼ P1
i;DER1;P

2
i;DER1; . . .P

24
i;DER1;P

1
i;DER2;P

2
i;DER2; . . .

h

P24
i;DER2. . .P

1
i;DERD;P

2
i;DERD; . . .P

24
i;DERD

i
;

i ¼ 1; 2; . . .Pop Size

ð1Þ

And if D = 10 (as in microgrid test system 4 discussed

in Sect. 4) the population size (Pop_Size) is say 80, then

the population matrix becomes

i.e., (10*24*80 = 19,200) elements to be optimally sized

together to obtain a best value of the fitness function in

every iteration. It is also to be noted that each of this DERs

has its own set of constraints, such as operating limits, on/

off time, charging/discharging limits and state of charge (if

the DER is a battery) to be maintained at the end of every

iteration.

So, if an algorithm has multiple stages and equations (as

discussed in the previous point), it is very much time-

consuming process for a particle of the population to pass

through all those stages, thereafter satisfying their own

assigned constraints. This significant and critical disad-

vantage is avoided by CSA.

4 Memory-based algorithm

CSA is a memory-based optimization technique like

PSO. This means after every iteration, CSA compares the

solution obtained in the current iteration with that of the

P ¼

P1
1;DER1;P

2
1;DER1; . . .P

24
1;DER1;P

1
1;DER2;P

2
1;DER2; . . .P

24
1;DER2. . .P

1
1;DER10;P

2
1;DER10; . . .P

24
1;DER10

P1
2;DER1;P

2
2;DER1; . . .P

24
2;DER1;P

1
2;DER2;P

2
2;DER2; . . .P

24
2;DER2. . .P

1
2;DER10;P

2
2;DER10; . . .P

24
2;DER10

P1
3;DER1;P

2
3;DER1; . . .P

24
3;DER1;P

1
3;DER2;P

2
3;DER2; . . .P

24
3;DER2. . .P

1
3;DER10;P

2
3;DER10; . . .P

24
3;DER10

. . .. . .. . .

. . .. . .. . .

P1
80;DER1;P

2
80;DER1; . . .P

24
80;DER1;P

1
80;DER2;P

2
80;DER2; . . .P

24
80;DER2. . .P

1
80;DER10;P

2
80;DER10; . . .P

24
80;DER10

2
66666666664

3
77777777775

ð2Þ
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previous iteration and memorizes the best solution between

them. Further, the algorithm updates its particles with the

best position found for itself and the best position ever

found of the population. Thereafter, these best positions are

used to proceed with successive iterations. This crucial

nature of CSA enables the algorithm to attain a superior

and prominent quality solution compared to many algo-

rithms mentioned above.

1.4 Contribution

This paper employs the proposed CSA to perform EMS on

six different microgrid test systems (total of 18 different

cases) as mentioned in Table 2. Also, nine more algorithms

are studied on the same test systems and a comparative

analysis among the results obtained using all of these

algorithms is presented. Furthermore, a statistical analysis

is also carried out to prove the significance of the proposed

approach.

1.5 Organization of the paper

Section 2 of this paper formulates the objective function.

The superior optimization technique, CSA, is discussed in

detail, and the rest of the optimization techniques which are

studied to provide a comparative analysis are concisely

mentioned in Sect. 3. Various combinations of the micro-

grid test systems are studied, and the results are reported in

Sect. 4. The paper concludes in Sect. 5.

2 Objective function formulation

2.1 Economic load dispatch

The economic load dispatch (ELD) problem speculates the

objective of sharing the load of a power system among the

various generation units in such a way as to minimize the

fuel costs of the conventional generators, satisfying the

various constraints and fulfilling the load demand of the

system. The standard ELD equation for a grid-connected

microgrid powered with FFG numbers of fossil-fueled

generators, RES numbers of renewable energy sources and

ESS numbers of energy storage devices can be expressed

as:

FðPDERÞ ¼
X24

t¼1

XESS

b¼1

XRES

r¼1

XFFG

g¼1

ug � Pt
g

� �2

þvg � Pt
g

� �
þwg

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cost function of conventional FFG

þ cRES � Pt
RES

� �
þ cESS � Pt

ESS

� �
þ cgrid

� Pt
grid

� �

ð3Þ

where P is the power output of the DER. ug, vg and wg are

the cost coefficients of the gth fossil-fueled generator.

cRES; cESS and cgrid are the cost coefficients of RES, ESS

and electricity market price, respectively. F(PDER) is in $/

h.

2.2 Valve point loading effect

Valve point loading effect (VPE) is a natural attribute of a

thermal turbine. The turbine of a generator has several

governing valves to control the flow rate of steam into the

turbine. The fuel cost curve of the generator is shown in

Fig. 2. With the inclusion of VPE, fuel cost curve becomes

nonlinear (non-smooth and non-convex) and non-differ-

entiable and contains multiple minima. In this paper, for

practical operation of generators, the VPE is considered as

a result of which the objective function is the superposition

of quadratic and sinusoidal functions. Incorporating VPE in

the fuel cost function of the generating units, the cost

function of the conventional generators in Eq. (3) will be

replaced with the expression
P24

t¼1

PFFG
g¼1 fug � Pt

g

� �2

þ

vg � Pt
g

� �
þ wg þ dg sin hg Pt

g;min � Pt
g

� �			
			g. The rest of

Eq. (3) remains unaltered. d and h are the VPE parameters

of the gth generating unit.

2.3 Emission dispatch

The combustion of fossil fuels by the conventional gener-

ators releases some harmful toxic gases such as CO2 and

SOx in the atmosphere which should also be taken care of.

The emission dispatch minimizes the release of these

harmful gases in the atmosphere. The emission dispatch

Fig. 2 Fuel cost curve of a generator with and without VPE
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function is also a convex polynomial like the ELD and can

be written as

EðPFFGÞ ¼
X24

t¼1

XFFG

g¼1

xg � Pt
g

� �2

þyg � Pt
g

� �
þ zg

� �
ð4Þ

where xg, yg and zg are the emission coefficients of the gth

generation unit. The unit of E(P) is kg/h.

2.4 Combined economic–emission dispatch

As discussed above, it can be seen that the economic load

dispatch and emission dispatch are two different objectives.

The former deals with the minimization of the fuel costs of

the conventional generators, and the latter minimizes the

emission of harmful and toxic pollutants in the atmosphere.

Hence, it is necessary to arrive at a compromised solution

which can attain both minimized fuel cost emitting least

amount of pollutants in the atmosphere. This is done by

formulating a combined economic–emission dispatch

(CEED) problem by combining Eqs. (3) and (4) with the

help of a parameter called ‘Price Penalty factor.’ Mathe-

matically, the price penalty factor or simply penalty factor

is a multiplication factor associated with each of the

emission coefficients which transforms two differently

aimed single-objective function to a CEED problem.

Needless to say, the lower the value of the penalty factor,

the lesser the value of the CEED problem. The various

types of penalty factors are formulated in Table 1 (Dey

et al. 2019).

The combined economic–emission dispatch problem

can thus be mathematically formed by including the

expression
P24

t¼1

PFFG
g¼1 fug � Pt

g

� �2

þvg � Pt
g

� �
þ wggþ




hg � fxg � Pt
g

� �2

þyg � Pt
g

� �
þ zgg� in Eq. (3) in place of

the cost function of the conventional fossil-fueled

generators.

where hg is the penalty factor of the gth generating unit.

The unit of hg is $/kg. The cost functions of the remaining

DERs of Eq. (1) remain unchanged.

2.5 Formulation of the cost component of RES

Furthermore, both the fuel costs and the pollutants emis-

sion can be reduced by the inclusion of available renewable

resources for the generation of power. The renewable

energy resources are clean sources of energy which neither

incur any fuel cost nor do emit harmful toxic gases in the

atmosphere. Although these renewable energy sources do

include some installation cost, depreciation cost, lifetime

degradation cost and operation and maintenance cost, the

cost component of RES can be calculated as below (Trivedi

et al. 2018):

cRES ¼ cDC þ GE ð5Þ

where GE is the operation and maintenance cost of the RES

used. The depreciation cost of the DGs which is a function

of the depreciation cost per kilowatt hour (DC), the max-

imum power output of the DG (Pmax), the hourly output of

the DG and its capacity factor cf can be accounted as:

cDC ¼ DC

Pmax
r � 8760 � cf

� Pr ð6Þ

DC is further dependent on the installation cost (IC), rate of

interest ‘k’ and the life span ‘l’ of the DG sources as shown

in (6):

DC ¼ IC � kð1 þ kÞl

ð1 þ kÞl � 1
ð7Þ

2.6 Modeling of RES

• Wind Turbine The power output of wind generator

depends on the available wind speed vi,t and the

parameters of the WT wind power conversion curve, as

shown in Fig. 3. The speed at which the turbine starts to

rotate and generate power is called the cut-in wind

speed vcut-in. As the wind speed rises above vcut-in, the

electrical power output rises rapidly and at rated wind

speed vrated, the power output reaches the limit that the

generator is capable of. Beyond vrated, forces on the

turbine structure continue to rise and at some extreme

wind speed, called the cutout wind speed vcutout, there is

a risk of damage to the rotor. Consequently, a braking

system is employed to bring the rotor to standstill. We

Table 1 Penalty factor calculation (Dey et al. 2019)

Penalty factor types Penalty factor formula

Max–min

hi;max�min

� �
uiP

2
i;maxþviPi;maxþwi

xiP
2
i;min

þyiPi;minþzi

Max–max

hi;max�max

� �
uiP

2
i;maxþviPi;maxþwi

xiP
2
i;max

þyiPi;maxþzi

Min–min

hi;min�min

� �
uiP

2
i;min

þviPi;minþwi

xiP
2
i;min

þyiPi;minþzi

Min–Max

hi;min�max

� �
uiP

2
i;min

þviPi;minþwi

xiP
2
i;max

þyiPi;maxþzi

Average

hi;avg
� �

hi;max�minþhi;max�maxþhi;min�minþhi;min�max

4

Common

hi;com
� �

hi;avg

number of generators
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therefore employ the piecewise linear approximation of

the wind power curve as follows (Chen et al. 2011)

Pt
wt;i ¼ Pmax

wt;i �

0 v\vcut�in
v� vcut�in

vr � vcut�in

vcut�in � v\vr

Pmax
wt;i vr � v\vcut�out

0 v� vcut�out

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
ð8Þ

• PV System The output power of each PV module

depends on the amount of solar irradiance, the ambient

temperature and the characteristics of the module itself.

The available PV power output at actual cell temper-

ature Tt C and insolation GC can be modeled as (Chen

et al. 2011)

PPV
i;t ¼ PSTC GC

GSTC
1 � 0:0045 TC

t � TSTC
� �� �

ð9Þ

where PSTC denotes the output at standard test condi-

tions of 298 K (TSTC) and insolation 1000 W/m2

(GSTC).

2.7 Equality and inequality constraints

The above objective function is subject to constraints such

as:

i.

Generation constraints The power generated by the

conventional generators, the RES as well as the grid

must lie between a maximum and minimum limit.

Mathematically,

Pg;min �Pt
g �Pg;max; 8 g 2 FFG

Pr;min �Pt
r �Pr;max ; 8 r 2 RES

Pb;min �Pt
b �Pb;max ; 8 b 2 ESS

Pgrid;min �Pt
grid �Pgrid;max

ð10Þ

ii.

Energy storage system constraints

Et
b ¼ Et�1

b � Pt
b � g ð11Þ

Eb;min �Et
b �Eb;max ð12Þ

where Eb denotes the energy stored in the bth battery and g
is the efficiency of the battery.

iii. Power supply–demand balance constraint The power

generated at any instant of time by all the conven-

tional generators, the RES and transaction with the

grid (if available) should satisfy the total desired load

of the system. This can be mathematically stated as:

Pt
Load Demand ¼ Pt

FFG þ Pt
ESS þ Pt

RES þ Pt
grid ð13Þ

3 Optimization techniques used

3.1 Crow search algorithm

The family of crow (corvids) are the most intelligent and

clever species in the avian kingdom. Evidence of slyness of

crows is manifold. Owing to these characteristics of the

bird, Askarzadeh developed an optimization algorithm in

2016 and named it as crow search algorithm (CSA)

(Askarzadeh 2016). Crows possess the habit of observing

and follow other birds in order to determine their food

storage locations and take their food in their absence.

Moreover, if the crow does steal food from another bird, it

becomes extra cautious and keeps shifting its own hiding

place to avoid becoming a victim of robbery in the future.

Not only this, it also uses its own knowledge to prevent its

food from the robbers. The CSA is based on these behav-

iors of a crow.

Let us suppose that there is a d-dimensional environ-

ment including N number of crows. The position of ith

crow during iteration ‘iter’ is denoted by a vector Xi;iterði 2
1; 2. . .N; iter 2 1; 2; . . .itermaxÞ where Xi;iter ¼

X
i;iter
1 ;Xi;iter

2 ; . . .;Xi;iter
d

h i
and itermax is the maximum num-

ber of iterations. Now, every crow memorizes its hiding

place. For iteration ‘iter,’ the hiding place of crow i is

denoted by mi;iter and is the current best position of crow i.

Supposedly at iteration ‘iter’ crow ‘j’ wants to visit its

hiding place mj;iter. And in the same iteration, say crow ‘i’

plans to follow crow ‘j’. At this instant, two cases may

happen:

Case 1: Crow ‘j’ is totally unaware of the fact that it is

followed by crow ‘i’ and as a result crow ‘i’ will know the

hiding place of crow ‘j’.

Fig. 3 Flow of wind
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Case 2: Crow ‘j’ knows that it is being followed by crow

‘i’ and hence fools crow ‘i’ by diverting it to a different

random location within the search space.

These two cases can be mathematically represented with

a set of equations as:

Xi;iterþ1 ¼ Xi;iter þ randi � fli � ðmj;iter � Xi;iterÞ randj �APj

a random position otherwise

�

ð14Þ

where randi and randj are random numbers with uniform

distribution between 0 and 1 and fli is the flight length of

the ith crow. If ‘Case 1’ occurs, the updating of the

memory of crow ‘i’ will occur based on the formula below:

mi;iterþ1 ¼
Xi;iterþ1 if f ðXi;iterþ1Þ is better than f ðmi;iterÞ

mi;iter otherwise

(
ð15Þ

f(•) denotes the value of the fitness function.

The value of ‘fl’ decides the vicinity of search space.

Small values of ‘fl’ indicate local search, i.e., near and

around xi,iter. Larger values of ‘fl’ lead to global search far

away from xi,iter. AP means the awareness probability of

crow ‘j’. Since it is a probability, its value lies between 0

and 1, both inclusive. AP maintains the exploration and

exploitation of the crow search algorithm. Lower value of

AP means CSA searches near and around the local best

position where the current best solution is obtained. This

increases the exploitation capability of the algorithm. On

the other hand, larger values of AP make CSA expand the

vicinity of the search space to a global scale, thus

increasing the exploration capability of CSA. Proper

selection of AP and fl helps to maintain an appreciable

balance between exploration and exploitation, which is a

must quality of a metaheuristic algorithm. Figure 4 depicts

the flowchart of the proposed CSA.

3.2 Particle swarm optimization (PSO)

Particle swarm optimization or PSO as we all know is one

of the most popular and widely used metaheuristic soft

computing techniques in the field of optimization. Since it

was developed by Kennedy and Eberhart (2010), PSO has

been widely used by engineers and mathematicians for

optimization of both single- and multi-objective problems.

The PSO algorithm works on the social behavior of parti-

cles in the swarm. Therefore, it finds the global best

solution by simply adjusting the trajectory of each indi-

vidual toward its own best location and toward the best

particle of the entire swarm at each time step (generation).

The PSO method is becoming very popular due to its

simplicity of implementation and ability to quickly con-

verge to a reasonably good solution. Mathematically, PSO

is summed up using two governing equations, viz. the

velocity update equation and the position update equation,

which are represented in (10) and (11), respectively.

veliterþ1
i ¼ x � veliteri þ c1 � randðÞ � pbestiteri � xiteri

� �
þ c2

� randðÞ � gbestiter � xiteri

� �

ð16Þ

xiterþ1
i ¼ xiteri þ veliterþ1

i ð17Þ

x ¼ xmax � xmax � xminð Þ � iter

max iter
ð18Þ

Fig. 4 Flowchart of crow search algorithm
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where vel denotes the velocity of the particle ‘i’. x is the

inertia weight. c1 and c2 are the social and cognitive fac-

tors. x denotes the position of the particle i. pbest and gbest

are the position best of the ith particle and global best of

the population, respectively.

3.3 Genetic algorithm (GA)

Here, GA is used to determine the optimum magnitude of

DERs which are the control variables and appear within a

solution string in GA as shown in Eq. (1). Initially, a set of

solution strings are created randomly in such a manner so

that all the control variables have to be within their max-

imum and minimum limits as defined. Hence, in the ini-

tialization process of GA (Goldberg and Holland 1988), a

population vector consisting of several control variables is

generated. Then, the objective function is computed for

every individual of the population. A biased roulette wheel

is created from the values obtained after computing the

objective function for all the individuals of the current

population. Thereafter, the usual genetic operation such as

reproduction, crossover and mutation takes place. Two

individuals are randomly selected from the current popu-

lation for reproduction. Then, crossover takes place with a

probability close to one (here 0.8). Finally, mutation with a

specific probability (very low) completes one genetic cycle

and individuals of same population with improved char-

acters are created in the next generation. The objective

function is then again calculated for all the individuals of

the new generation and all the genetic operations are again

performed and the second generation of same population

size is produced. This procedure is repeated till the final

goal is achieved.

3.4 Differential evolution (DE)

Like GA, initialization is also done in the case of DE (Storn

1997) to prepare a population matrix of the control vari-

ables. Each population vector is nothing but the control

variables represented by a string such a way that all the

parameter values should lie within their maximum and

minimum value and abide by their self-assigned con-

straints. Here, each vector in a population becomes a target

vector. Each target vector is combined with a donor vector

and a random vector differential in order to produce the

DERs. These population vectors are created in a trial

vector. If the cost of the trial vector is less than the target

vector, the trial vector replaces the target in the next gen-

eration. The donor vector is selected in such a way so that

its cost is either less than or equal to the target vector.

Mutation in GA is generally performed by generating

random value utilizing a predefined probability density

function. In DE, the differential vector, where the con-

tributors are the target vectors, donor vector and two other

randomly selected vectors perform the mutation operation.

The objective function is calculated for all the individuals

of the new generation and all the operations are again

performed. This procedure is repeated till the final goal is

achieved.

3.5 JAYA algorithm

JAYA is a Sanskrit word meaning victory or success. The

algorithm has only one governing equation. In every iter-

ation, the algorithm tends to shift away from the worst

solution (or failure), hence getting close to the best solution

(or success/victory) as the termination criteria are attained.

The simple governing equation of the JAYA algorithm is

(Venkata Rao 2016):

Xupdated
p;q;r ¼ Xp;q;r þ c0 � ðXp;best;r � Xp;q;r

		 		Þ � c00 � ðXp;worst;r

� Xp;q;r

		 		Þ
ð19Þ

where p, q and r are whole numbers denoting number of

variables, particle of the population and current iteration,

respectively. c0 and c00 are random numbers lying between

0 and 1, both inclusive. The positive term in the equation

defines the tendency of shifting the solution toward the best

solution (success), and the negative term in the equation

depicts the tendency to shift the solution away from the

worst solution (failure).

3.6 Sine cosine algorithm (SCA)

The entire process of a stochastic population-based opti-

mization algorithm can be divided into two phases. The

first phase is the exploration phase where the random

solutions of the fitness function involve very high rate of

randomness to broaden the search space and locate the

promising region of a superior solution. On the other hand

in the second phase, also called the exploitation phase, the

degree of randomness decreases and slow and gradual

changes are implemented in the solutions to proceed

toward a better-quality solution.

The sine cosine algorithm (SCA) employs these two

stages in its governing equation which is (Mirjalili 2016):

Xiterþ1
d ¼

Xiter
d þ r1 � sinðr2Þ � r3 � Piter

d � Xiter
d

		 		; r4\0:5

Xiter
d þ r1 � cosðr2Þ � r3 � Piter

d � Xiter
d

		 		; r4 � 0:5

(

ð20Þ

where d is the dimension, X is the solution and P is the

position of solution from the destination point. The random

numbers r1, r2, r3 and r4 have their own significance. The
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direction of the next position, whether it lies in between

solution and destination or away from both, is governed by

r1, whereas r2 implies how lengthy should be the dis-

placement and should it be away from or toward the des-

tination. While r3 acts as a weightage factor for the

destination, the random number r4 switches between the

sine and cosine function.

3.7 Grey wolf optimizer (GWO) and modified
GWO

Grey wolves’ hunt in packs. There exists a hierarchical

leadership among the wolves of the pack. The leader wolf

is called alpha. It may not be the strongest in the pack but

maintains dominance and is followed by all the other

members of the pack. The second ranked wolf is called

beta. Beta acts as an advisor to alpha in decision making,

maintains discipline in the pack and is most likely the

successor to take the position of alpha when alpha becomes

old or passes away. Omega is the third ranked wolf in the

hierarchy and is very submissive in nature. It often acts as a

scapegoat or babysitter for the pack. The rest of the wolves

are collectively termed as delta.

In mathematical modeling of GWO, three best solutions

are considered. The best solution is termed as alpha. Beta

and omega are the second and third best solutions. The rest

of the solutions are termed as delta. The mathematical

equations to express the hunting behavior of the wolves

and the position updating procedure are mentioned in

Mirjalili et al. (2014).

Considering the fact that the best solution (prey) may be

trapped among the delta wolves too, modified GWO

(MGWO) involves the participation of the delta wolves in

hunting procedure. A new family is generated by finding

the mean position of omega and delta wolves, and their

position is considered as the fourth best solution. There-

after, the position updating procedure is formulated as

explained in Khandelwal et al. (2018).

3.8 Whale optimization algorithm (WOA)

Whales hunt in a three-dimensional space, and hence their

hunting mechanism (exploitation phase) is a bit more rig-

orous and sophisticated compared to GWO. The foraging

behavior of whale is also called bubble-net feeding method.

Whale approaches its prey in two ways: the shrinking circle

path and the spiral-shaped path. It is to be noted that a

whale hunts its prey simultaneously in both the ways. To

model this simultaneous behavior, we assume that there is

a probability of 50% to choose between the shrinking

encircling mechanism and the spiral model to update the

position of whales during optimization as mentioned in

Mirjalili and Lewis (2016). The search for prey (explo-

ration phase) by the whales is mathematically similar to

that of GWO.

3.9 Teaching–learning-based optimization
(TLBO)

In a real-time classroom, the teacher tries to imbibe the

student with his knowledge. He does not focus on one pupil

only but tries to teach every student equally. However,

despite the best efforts of teacher, not all students learn the

same amount. Some excel more than others. This happens

because of personal merit of a student and the ability to

grasp quickly. The main difference between getting taught

from a teacher in a classroom than from a fellow student is

the interaction the students have with one another. Here

also, the personal grasping power of a student plays an

important role, but the probability of learning from a better

student is more than from a less sophisticated student.

Teaching–learning-based optimization (TLBO) algorithm

(Rao et al. 2011) also portrays this environment and could

be understood as follows:

The intelligence level of a student is ascertained by his

fitness value obtained from the fitness function. During the

first phase, it is assumed that the best student (with best

fitness value) will inherit the entire knowledge of the tea-

cher and will be at the same intelligence level as the tea-

cher himself (Teacher). Now, the job of the Teacher is to

impart knowledge to students in such a way so as to

increase the overall mean of all subjects in the class and to

increase the overall mean to a new level (Desired). Their

difference helps to modify the current level of each student.

Thereafter, two random students are chosen and their fit-

ness functions are compared. Depending upon this com-

parison in terms of fitness values and their difference, a

change in the current level of student is proposed again.

Hence, we come across a two-level modification to ensure

achievement of optimal result.

3.10 Symbiotic organisms search (SOS)

There exist three types of relationships between any two

organisms in an ecosystem as stated by Cheng and Prayogo

(2014). They are mutualism, commensalism and para-

sitism. The relation between a flower and a bee can be

termed as mutualism where both bees and flower are

benefitted from each other. Bees suck nectar from the

flower and in turn help the flower with pollination. Com-

mensalism is a relation between two organisms where one

of them is benefitted without providing any positive or

negative impact on the other one. Remora fish sticks itself

with the shark feeding on shark’s excreta which is an
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example of commensalism. Parasitism is that relation

between two organisms where one is benefitted harming

the other. The organism that is harmed is called the host,

whereas the organism that is benefitted in parasitism is

called the parasite. Deer ticks stick themselves to the body

of the deer sucking their blood and make the host prone to

harmful and fatal diseases.

In SOS, initially an ecosystem (population matrix) is

formed with a defined value of organisms (particles). All

the organisms maintain their self-assigned constraints, and

their fitness functions are evaluated. Thereafter, each of the

organisms pass through the aforementioned three relations

represented mathematically until the algorithm yields the

best value of the fitness function.

4 Results and discussion

4.1 Overview of the test systems

For the purpose of energy management evaluation, six

microgrid test systems are considered in this paper. An

overall description of all the test systems is displayed in

Table 2. The operating ranges, cost, emission and valve

point coefficients of the conventional generators of

microgrid test systems 1 and 2 are listed in Tables 3 and 4,

and the necessary parameters to model the RES for these

two systems are listed in Tables 5 and 6, respectively.

Figures 5, 6 and 7 show the load demand, wind speed and

PV outputs of microgrid test systems 1 and 2, respectively.

Table 7 contains the DG parameters of microgrid test

system 3. Figure 8 shows the RES output, load demands

and market price of electricity of microgrid test system 3.

The DG parameters of test system 4 and 5 are gathered

from Yong and Tao (2007), Ganjefar and Tofighi (2011)

and Wibowo et al. (2017). Microgrid test systems 3 and 5

are both grid-connected microgrid systems; the difference

being microgrid test system 3 does not include an ESS, and

the real-time electricity price varies with time, whereas

microgrid test system 5 is backed up by an ESS and the

electricity price is fixed throughout the day. Lastly, the

necessary data for performing ELD and CEED on micro-

grid test system 6 were collected from Trivedi et al. (2018).

The proposed crow search algorithm (CSA) was applied to

solve energy management problem for the microgrid test

systems along with nine other optimization algorithms

discussed in Sect. 3. The algorithms were coded in

MATLAB R2013a environment installed in a personal

computer having specifications of core i3 as processor with

a clock frequency of 2.53 GHz and a RAM of capacity 2

Gigabyte. For all optimization techniques, the population

size was varied altered in the range 60–80 with 500 itera-

tions for 20 repeated trials. For PSO, the values of wmax,

wmin, c1 and c2 are 0.9, 0.7, 2 and 2, respectively. The

mutation factor and crossover probability for DE were

considered as 0.7 and 0.25, respectively.

Table 2 Description of the microgrid test systems considered for energy management

Microgrid test

system

Mode of

operation

Number of PV

units

Number

of WT units

Number of

fossil-fueled generators

Valve point

loading effect

ED/

CEED

Cases

studied

1 Islanded 0 1 5 No Both 4

2 Islanded 1 1 5 Yes ED 4

3 Grid 1 1 1 No ED 3

4 Islanded 0 1 10 Yes ED 2

5 Grid 37 0 1 No ED 1

6 Islanded 1 1 3 No Both 4

Table 3 DG parameters of

microgrid test system 1
u ($/kW2) v ($/kW) w ($) Pmin (kW) Pmax (kW) x (kg/kW2) y (kg/kW) z (kg)

G1 0.005 3.51 44.4 100 400 0.01378 1.2489 173.37

G2 0.006 3.89 40.6 50 200 0.00767 0.8051 363.705

G3 0.004 2.78 66.9 50 300 0.0905 0.756 198.5

G4 0.0026 2.86 87.67 75 500 0.0127 1.1677 11.67

G5 0.003 2.45 105 150 600 0.01265 1.3552 22.983
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4.2 Comparative analysis

Various penalty factors were calculated as listed in

Table 1, and their values are displayed in Table 8. It can be

realized that min–max penalty factor is the least among all.

Furthermore, CEED was evaluated with and without RES

using the min–max penalty factor for microgrid test system

1. Table 9 enlists the generation cost when ELD and CEED

were performed using the ten optimization techniques with

and without RES. The effect of RES can be realized with

the decrease in the value of ELD and CEED. A 12% drop

in the values of ELD and CEED can be observed after the

Fig. 5 Load demand of microgrid test systems 1 and 2

Table 4 DG parameters of

microgrid test system 2
u ($/kW2) v ($/kW) w ($) Pmin (kW) Pmax (kW) d ($/h) h (rad kW-1)

G1 0.008 2 25 10 75 100 0.042

G2 0.003 1.8 60 20 125 140 0.040

G3 0.0012 2.1 100 30 175 160 0.038

G4 0.001 2 120 40 250 180 0.037

G5 0.0015 1.8 40 50 300 200 0.035

Table 5 Renewable energy sources’ parameters for microgrid test

system 2 (Lahon and Gupta 2018)

PV WT2

Acquisition cost ($/kW) 3500 1670

Interest rate (%) 20 20

Project lifetime (years) 20 20

Maintenance cost ($/kW) 1.40 0.0028

Capacity factor 0.272 0.347

Table 6 Wind energy

parameters for microgrid test

systems 1 and 2

Parameters WT1 WT2

vcut�in (m/s) 5 3

vcut�out (m/s) 15 25

vr (m/s) 10 14

Prated (kW) 300 300 Fig. 6 PV output of microgrid test system 2

Fig. 7 Wind speed for microgrid test systems 1 and 2
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inclusion of the RES in the system. The generation cost

(ELD) was found to be $117,436.5559 without RES which

dropped down to $103,469.3322 upon the inclusion of

RES. Similarly, the value of CEED was $137,062.8987

before wind turbine was incorporated to share which later

reduced to $120,219.0719 after the inclusion of wind tur-

bine. The proposed CSA yielded the least and profound

result for all the four cases studied for microgrid test sys-

tem 1 when compared to all the other optimization tech-

niques used. Table 10 highlights the hourly outputs of

various generators and the wind turbine when CEED was

evaluated including RES to achieve a minimum and best

cost of $120,219.0719. Figure 9 shows the convergence

characteristic curve for all the optimization techniques used

when CEED was evaluated including RES. It can be seen

that CSA converges pretty early with the minimum possi-

ble cost compared to all the other algorithms.

Table 11 displays the generation cost of the microgrid

test system 2 which was effected by valve point loading

considering RES like PV and wind. Various cases were

studied for this test system, namely without wind, without

PV and without RES. For all the cases, it can be seen from

Table 11 that CSA provided better results with the mini-

mum possible cost even though the cost function was a

non-smooth one. 9% savings in the cost function was

attained by CSA when the fitness function was evaluated

using both the RES as the generation cost dropped down to

$37,704.0429 from $41,650.8604. Table 12 highlights the

hourly outputs when the generation cost was calculated for

microgrid test system 2 with RES. Figures 10 and 11 show

the convergence characteristics when generation cost of

microgrid test system 2 was evaluated using ten opti-

mization techniques without and with RES, respectively.

The proposed crow search algorithm shows quick conver-

gence with better and superior quality results when com-

pared with the rest of the optimization techniques used.

Table 13 displays the minimum generation cost, for

grid-connected microgrid test system 3, obtained using

Fig. 8 Load demands, hourly outputs of RES and utility price for

microgrid test system 3

Table 8 Penalty factors ($/kg) calculated for microgrid test system 1

Types h1 h2 h3 h4 h5

Max–max 0.4925 0.7813 1.2730 0.1471 0.5748

Max–min 5.1968 5.1561 2.5018 2.7259 12.6998

Min–max 0.1001 0.1547 0.3007 0.0251 0.0840

Min–min 1.0569 1.0214 0.5910 0.4667 1.8560

Average 1.7116 1.7784 1.1666 0.8412 3.8036

Common 0.3423 0.3556 0.2333 0.1682 0.7607

Table 7 DG parameters for microgrid test system 3

u ($/kW2) v ($/kW) w ($) Pmin (kW) Pmax (kW)

DE 0.00104 0.0304 1.30 20 60

MT 0.00051 0.0397 0.40 10 30

FC 0.00024 0.0267 0.38 10 30

GRID – – – - 80 80

Table 9 Generation cost for

microgrid test system 1 ($)
Algorithms ELD without RES ELD with RES CEED without RES CEED with RES

GA 11,7624.7444 103,625.2777 137,164.3491 120,305.9871

PSO 117,437.3618 103,474.3922 137,081.6066 120,218.7259

DE 117,604.5094 103,600.8322 137,162.3173 120,293.9634

SCA 117,445.1701 103,477.1104 137,068.6468 120,224.3862

TLBO 117,449.9535 103,478.8230 137,090.4104 120,254.9188

GWO 117,437.4440 103,486.5133 137,065.0906 120,225.3156

MGWO 117,437.0158 103,482.1640 137,063.0927 120,221.5939

WOA 117,797.3479 103,732.5368 137,583.3914 120,600.9558

MWOA 117,667.9840 103,662.4691 137,386.8488 120,464.7106

CSA 117,436.5559 103,469.3322 137,062.8987 120,219.0719
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eight different soft computing techniques. Three different

cases, viz. normal loading, without PV and 5% overload-

ing, were studied for this test system. CSA minimized the

microgrid generation cost to a great extent for all the three

cases when compared with other optimization techniques

used. 21% to 25% savings in the generation cost was

realized when the proposed CSA minimized the value of

the fitness function to $225.7871 during normal conditions,

$272.9262 without the support of PV and $251.0270 when

the system was 5% overloaded. The dashed line in Fig. 12

represents the convergence curve of CSA to minimize the

fitness function in the normal condition. It is clearly evi-

dent that CSA converges early with much superior quality

result than most of the optimization tools used. Figures 13

and 14 depict the hourly scheduling of the DERs when the

generation cost was minimized using CSA for normal and

5% overloading condition, respectively. The active par-

ticipation of grid to buy and sell power to and from the

microgrid system is distinct from the figures. Also, the fuel

cell with the lowest cost coefficients is scheduled to its

maximum output for maximum hours. The rest of the load

is shared between DE and MT along with the grid based on

peak demand and high electricity price.

The proposed CSA outperformed PSO, TLBO, SCA and

other hybrid optimization tools found in the literature when

the non-smooth fuel cost function of microgrid test system

4 was evaluated with and without the support of wind

power. Table 14 lists the generation cost of the microgrid

system minimized with the aforementioned soft computing

Table 10 Hourly outputs for

microgrid test system 1 using

CSA (CEED with RES) (kW/h)

H G1 G2 G3 G4 G5 WT1

1 100.0000 50.0000 50.0000 214.0785 193.9215 192.0000

2 100.0000 50.6265 50.0000 317.282 268.0915 114.0000

3 120.8212 80.64993 50.0001 391.2002 321.3285 36.0000

4 115.6481 76.49311 50.0002 379.9726 312.8858 165.0000

5 126.7501 86.11833 50.0000 404.3498 330.7817 252.0000

6 144.5901 100.9769 50.0000 445.0157 359.4174 0.0000

7 400.0000 200.0000 168.4434 156.9742 164.5823 60.0000

8 130.0706 88.38241 50.0000 411.7781 333.7688 186.0000

9 228.6337 115.7447 50.0000 500.0000 455.6216 0.0000

10 246.2203 200.0000 259.1157 372.8108 203.8531 168.0000

11 400.0000 200.0000 218.9104 301.9348 169.1548 210.0000

12 400.0000 200.0000 300.0000 182.7065 187.2935 180.0000

13 357.6167 200.0000 189.836 500.0000 152.5473 0.0000

14 185.1167 177.0331 164.6676 174.716 350.4667 48.0000

15 178.3831 200.0000 193.8445 237.0617 282.7107 108.0000

16 122.5598 82.25551 50.0002 395.7092 324.4752 225.0000

17 132.0527 50.0000 50.0000 500.0000 427.9473 90.0000

18 144.5756 78.7051 50.0000 500.0000 334.7193 192.0000

19 175.4323 200.0000 300.0000 250.5812 275.9864 198.0000

20 161.9437 200.0000 300.0000 347.6994 320.3569 120.0000

21 149.2949 110.3747 52.4489 459.1237 368.7582 60.0000

22 205.6009 200.0000 166.0421 209.9409 198.4162 120.0000

23 100.0000 50.0000 50.0000 280.408 241.592 228.0000

24 100.0000 50.0000 50.0000 226.8795 203.1205 120.0000

Fig. 9 Convergence characteristics of microgrid test system 1 using

wind
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techniques and those available in the literature. CSA

brought down the generation cost to $1,014,996.2345

without wind and $979,585.5032 with wind, thus saving

1.5–2% than the predetermined cost. Figure 15 shows the

convergence curves when fitness function of test system 4

was minimized using PSO, TLBO, SCA and CSA. CSA

converged as early as 170–180 iterations with the best and

minimized generation cost compared to the rest of the three

optimization techniques. The hourly load sharing among

the 10 generators and wind turbine when the least cost was

obtained using CSA is shown in Fig. 16. Figure 17 shows

the cost comparative analysis when the generation cost of

Table 11 Generation cost for

microgrid test system 2 ($)
Algorithms VPE without RES VPE with PV VPE with WT2 VPE with RES

GA 47,399.7164 47,783.5964 41,872.4346 41,705.7366

PSO 41,886.7300 42,133.9850 38,012.7069 38,087.6086

DE 47,248.2778 47,740.3770 41,689.4719 41,628.0833

SCA 42,508.1297 42,449.3850 38,011.7289 37,980.8981

TLBO 42,468.0241 42,685.3736 38,484.1919 38,369.9556

GWO 45,259.7774 44,874.5632 39,927.3332 40,543.7842

MGWO 44,133.8004 44,536.4826 39,905.9341 39,984.3456

WOA 47,731.1971 48,871.8012 43,389.8151 43,359.9863

MWOA 47,516.0669 47,602.1864 42,448.5524 42,239.2616

CSA 41,650.8604 41,646.8605 37,732.3824 37,704.0429

Table 12 Hourly outputs for

microgrid test system 2 using

CSA (VPE with RES) (kW/h)

H G1 G2 G3 G4 G5 PV WT2

1 63.2729 20.0000 30.0000 40.0000 50.0000 0 206.7271

2 35.8351 20.0000 30.0000 40.0000 50.0000 0 259.1649

3 64.7373 20.0000 30.0000 40.0000 50.0000 0 270.2627

4 40.0000 20.0000 30.0000 40.0000 139.7598 0 260.2402

5 10.1223 20.0000 30.0718 209.8147 139.7596 0 148.2315

6 29.9302 20.0000 30.0000 40.0000 229.5196 0 258.5502

7 32.5976 98.5398 30.0000 40.0000 229.5196 0.1051 195.2379

8 10.0000 94.9271 112.6732 124.9078 139.7599 0.3012 171.4308

9 73.1393 99.0953 113.1819 124.7277 138.7869 0.7923 140.2766

10 73.5559 124.3121 171.2293 105.9042 112.3609 1.0821 115.5554

11 35.3262 103.4763 30.0000 195.9673 231.9339 1.2457 122.0506

12 74.8314 98.7255 112.7415 209.9911 140.1700 1.6317 101.9089

13 63.3838 98.5401 112.6744 209.8173 139.7590 1.7214 78.1041

14 28.9416 20.0000 30.0000 209.9422 229.4530 1.6046 170.0586

15 25.8705 20.0000 30.0000 210.2951 229.2319 1.5470 137.0555

16 41.6343 20.0000 30.0000 209.8154 229.5199 1.0099 48.0205

17 37.5958 98.5398 30.0000 40.0000 229.5196 0.7501 121.5947

18 75.0000 125.0000 30.0000 40.0000 204.7222 0.5762 132.7016

19 11.5640 20.0000 30.0000 210.0324 229.3114 0.1130 152.9791

20 10.0000 93.7191 112.6734 124.9079 139.7598 0.0635 222.8763

21 10.0000 97.2606 112.6728 124.9080 139.7595 0 195.3991

22 10.0000 89.2444 30.0000 124.9079 139.7598 0 211.0879

23 62.1909 20.0000 30.0000 40.0000 139.7598 0 235.0493

24 13.0119 98.5398 30.0000 40.0000 50.0000 0 231.4483
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microgrid test system 4 was calculated with and without

wind support. It can be realized from the figure that 3.14%

savings in the generation cost was attained when the sub-

ject microgrid test system was incorporated with wind

power. Also, CSA diminished the generation costs to 0.4%

and 1.19% than the costs reported in Ganjefar and Tofighi

(2011) and Yong and Tao (2007) when microgrid test

system 4 was functioning without and with wind power,

respectively.

Figure 18 depicts the load sharing of the DERs included

in microgrid test system 5. The ESS charges itself during

the off-peak hours and maintains its state of charge. PV,

with the highest cost coefficient maintains a low profile,

Fig. 10 Convergence characteristics of microgrid test system 2

without RES

Fig. 11 Convergence characteristics of microgrid test system 2 using

wind and PV

Table 13 Generation cost for microgrid test system 3 ($)

Algorithms Normal Without PV 5% Overload

GA 252.3062 296.6136 277.8332

PSO 250.4731 296.5358 276.6178

DE 250.5026 296.5608 276.6178

GWO 298.5187 345.327 326.6882

MGWO 296.8825 343.7400 325.4600

WOA 296.6812 343.9049 326.8285

MWOA 295.9887 343.1282 325.5492

CSA 225.7871 272.9262 251.0270

Fig. 12 Convergence characteristics of microgrid test system 3 under

normal loading condition

Fig. 13 Hourly output of microgrid test system 3 under normal

loading condition using CSA
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whereas grid with the lowest cost coefficient delivers the

remaining load after DE and MT have contributed its share,

thus maintaining the supply–demand equation. A massive

33% savings in the generation cost was realized when CSA

was implemented to minimize the generation cost of

microgrid test system 5 by reducing the cost to $574.350

compared to that of $866.758 by SQP. The generation costs

achieved by PSO and proposed CSA for microgrid test

system 5 are listed in Table 15, and the percentage of

savings is shown in Fig. 19.

Table 16 highlights the generation costs when ELD was

performed on microgrid test system 6 using DE, SOS,

JAYA and proposed CSA. It can be seen that the proposed

CSA outperformed various algorithms in providing a better

and minimized cost in all the four scenarios studied for the

aforementioned test system. CSA brought down the gen-

eration cost to $166,792.8781 which saves 9% economy

compared to that of reported in the literature. Table 17 lists

the various price penalty factors evaluated for the test

system 6 as per Eq. (1). Min–Max penalty factor is the

Fig. 14 Hourly output of microgrid test system 3 with 5% overload-

ing condition using CSA

Table 14 Generation cost for microgrid test system 4 ($)

Algorithms VPE VPE with

Wind

Hybrid EP-SQP (Ganjefar and

Tofighi 2011)

1031746 –

Hybrid PSO-SQP (Ganjefar and

Tofighi 2011)

1027334 –

MDE (Ganjefar and Tofighi 2011) 1031614 –

IPSO (Ganjefar and Tofighi 2011) 1023807 –

IGA-NSPF (Ganjefar and Tofighi

2011)

1019145 –

GA(Yong and Tao 2007) – 997528

PSO 1,025,665.9723 985,875.3797

TLBO 1,024,624.6866 987,461.5342

SCA 1,023,303.5957 988,955.6750

CSA 1,014,996.2345 979,585.5032

Fig. 15 Convergence characteristics of microgrid test system 4 with

wind

Fig. 16 Hourly output of microgrid test system 4 with wind
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least among all and is used for further evaluation of CEED.

A 17% savings was realized when CEED was performed

using CSA in test system 6 considering both PV and wind

together. CSA minimized the generation cost to

$192,169.3625 which outperformed $232,053 obtained by

reduced gradient method (RGM) as reported in the litera-

ture, and this is shown in Table 18. Similarly, in all the

subsequent scenarios for this test system, CSA consistently

provided a superior result outperforming all the other soft

computing techniques reported. Tables 19 and 20 list the

various hourly outputs and hourly costs when CSA was

used to minimize the generation cost, while CEED was

evaluated with and without RES, respectively. Figure 20

shows the cost comparative analysis for various cases

studied of microgrid test system 6. It is clear from the

figure that the generation cost of the system was reduced

(up to 5.23%) when RES was incorporated compared to the

case without RES. One more benefit of involving RES is

that it reduces stress on the FFGs by sharing their loads,

thus improving their durability and longevity.

4.3 Wilcoxon signed-rank test

Wilcoxon signed-rank test (Wilcoxon 1945) was used to

test one sample data set, received as the outcome of the

mentioned algorithm. It is a pairwise test done to find

substantial variances in the behavior of two diverse algo-

rithms. Any given algorithm maybe considered robust if is

able to prove its statistical worth. For this purpose, it has to

provide sufficient evidence against the null hypothesis. The

p value (probability value) which comes out to be less than

0.05 achieved by employing this test gives clear proof

against the proposed null hypothesis. The p values received

from this test for all the cases with their minimum,

Fig. 17 Cost comparative analysis of microgrid test system 4 with

and without wind support

Fig. 18 Hourly output of microgrid test system 5

Table 15 Generation cost for microgrid test system 5 ($)

Algorithms Minimum cost

SQP (Wibowo et al. 2017) 866.758

PSO 574.6761

CSA 574.350

Fig. 19 Cost comparative analysis of microgrid test system 5 using

the proposed CSA
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maximum, average values and standard deviation are listed

in Table 21. From this table, it was observed that the

p value in every case was much lower than the desired

value of 0.05, thereby establishing statistical significance

of results.

4.4 Robustness

Initialization of evolutionary algorithms is always done

randomly which is why multiple trial runs are needed to

arrive at a decision regarding robustness of the same. CSA

was evaluated for 20 trial runs for all cases. The number of

times it hit the minimum solution is shown in Table 21. It

can be seen that the lowest number of times it hit the

minimum solution was 17, whereas the highest number was

19. The average success rate came out to be 90% which is

highly appreciable.

5 Conclusion

Renewable integrated microgrid systems, operating in both

islanded and grid-connected modes, were considered in this

paper for solving energy management problems. Modeling

of the RES which are based on the day-ahead evaluation of

solar irradiance, wind speed, etc., was done to calculate the

Table 16 Generation cost

(ELD) for microgrid test system

6 ($)

Algorithms All sources with PV only With Wind only Without RES

RGM (Trivedi et al. 2018) 183,520 175,966 – 177,291

ACO (Trivedi et al. 2018) 173343 174879 – 176212

CSA* (Trivedi et al. 2018) 167,044 172,038 171,314 176,370

ISA (Trivedi et al. 2018) 167,012 172,008 171,274 176,320

DE 166,815.8024 171,853.1639 171,142.4342 176,226.8178

SOS 166,793.2985 171,809.8544 171,104.2563 176,166.5832

JAYA 166,794.9367 171,814.9342 171,107.1593 176,166.0276

CSA** 166,792.8781 171,809.5355 171,104.0247 176,165.7890

CSA* cuckoo search algorithm; CSA** crow search algorithm; – results not reported

Table 17 Penalty factors ($/kg) calculated for microgrid test system 6

Types h1 h2 h3

Max–max 56.1290 32.2496 14.6306

Max–min 215.3509 146.7455 162.2976

Min–max 25.1597 11.9948 4.6750

Min–min 96.530 54.5798 5.5334

Average 98.2924 61.3924 46.7841

Common 32.76 20.46 15.59

Table 18 Generation cost

(CEED) for microgrid test

system 6 ($)

Algorithms All sources With PV only With wind only Without RES

RGM (Trivedi et al. 2018) 232,053 234,198 – 240,780

ACO (Trivedi et al. 2018) 217,655 223,784 – 229,887

CSA* (Trivedi et al. 2018) 192,309 197,668 197,132 202,867

ISA (Trivedi et al. 2018) 192,250 197,601 197,093 202,799

DE 192,438.3157 197,895.5124 197,429.9647 203,244.7612

SOS 192,543.2341 197,832.4901 197,294.4772 202,868.7606

JAYA 192,254.6732 197,676.0104 197,131.9934 202,871.3677

CSA** 192,169.3625 197,590.3024 197,045.4757 202,782.7539

CSA* cuckoo search algorithm; CSA** crow search algorithm; – results not reported
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hourly support provided by them to share the loads with the

conventional generators. Incorporation of RES in micro-

grid systems does not only reduce the emission of harmful

pollutants released in atmosphere by the fossil-fueled

generators but also provides less stress on the generators by

reducing their load, thereafter increasing their durability

and longevity. Classical optimization techniques like

sequential quadratic programming, state-of-the-art evolu-

tionary algorithms like GA, DE, PSO and many recently

developed metaheuristic soft computing algorithms were

involved in this study. The proposed CSA outperformed all

the soft computing techniques in providing a least gener-

ation cost for 18 different scenarios of all the six test

systems which included both smooth and non-smooth and

non-convex cost functions. Statistical parameters such as

standard deviation and Wilcoxon signed-rank test prove the

superiority of the proposed CSA over the others in han-

dling complex-constrained smooth and non-smooth fuel

cost functions.

Table 19 Hourly outputs (kW) and hourly costs ($/h) for CEED using

CSA (all sources)

Hours G1 G2 G3 Hourly costs

1 48.3 40 50 7149.373

2 51.5 40 50 7199.6696

3 55.73 40 50 7275.1599

4 53.34 40 50 7231.2471

5 64.1312 43.64,877 50 7540.9343

6 66.3426 48.71,735 50 7719.3362

7 63.0043 41.06,575 50 7453.5663

8 47.26 40 50 7134.2899

9 66.4368 48.93318 50 7727.1378

10 67.7756 52.00178 53.00257 7917.1217

11 74.4699 67.34495 77.97518 9227.6826

12 77.1448 95.24162 55.31357 9465.9234

13 71.4866 60.50727 66.84614 8621.3576

14 68.7655 52.98217 55.96234 8046.0983

15 69.0402 54.90004 57.7198 8150.8676

16 65.1063 45.88368 50 7618.4608

17 63.8913 43.09875 50 7522.1295

18 68.9205 54.62588 57.27357 8128.4809

19 71.5447 60.64142 67.0639 8632.88

20 97.5558 67.57365 74.70051 9841.1835

21 75.1904 68.99644 80.66315 9379.4961

22 70.1836 57.52088 61.98548 8367.7789

23 64.4806 44.44944 50 7568.5024

24 54.42 40 50 7250.6852

Total cost 192169.3625

Table 20 Hourly outputs (kW) and hourly costs ($/h) for CEED using

CSA (without RES)

Hours G1 G2 G3 Hourly costs

1 49.2238 40 50.7762 7175.4381

2 52.2611 46.0151 51.7238 7361.7887

3 60.0096 40.8314 54.159 7475.268

4 55.025 51.687 53.288 7594.3826

5 62.1435 48.9904 53.8661 7717.8614

6 67.7054 50.9927 51.3019 7845.2671

7 66.9946 52.9247 55.0807 7974.955

8 65.2163 52.6479 62.1357 8106.683

9 72.425 51.5306 86.0445 8939.8877

10 61.8617 102.975 65.1632 9536.1556

11 65.9105 78.9483 95.1412 9846.5282

12 82.8675 57.5189 109.614 10,165.064

13 72.1964 97.642 70.1617 9846.5295

14 74.4256 73.8016 71.7728 9233.9433

15 58.2191 86.4539 55.327 8653.9938

16 54.2504 73.9653 51.7843 8106.683

17 54.7886 58.0668 57.1446 7845.2673

18 67.7765 66.5262 50.6973 8240.451

19 52.4165 83.6626 63.9208 8653.9941

20 76.0781 66.8355 97.0864 9846.5285

21 82.9845 62.6923 79.3232 9384.0293

22 59.8675 57.1514 72.9811 8376.2583

23 64.7903 45.1992 50.0105 7594.3725

24 53.8174 40.4927 50.6898 7261.4235

Total cost 202,782.7539

Fig. 20 Cost comparative analysis of microgrid test system 6 for

various scenarios
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