Soft Computing (2020) 24:5987-5997
https://doi.org/10.1007/s00500-019-04551-w

FOCUS O‘)

Check for
updates

An efficient virtual CPU scheduling in cloud computing

Joonhyouk Jang' - Jinman Jung? . Jiman Hong3

Published online: 27 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

In cloud computing, fine-grained virtual CPU scheduling techniques are essential in hiding physical resources from running
applications and mitigating the decrease in performance upon virtualization. However, evaluating and predicting the behaviors
of virtual processors is getting harder because of the diverse QoS requirements of cloud applications. In this paper, we propose
a novel virtual CPU scheduling scheme to provide a high I/O performance for cloud applications. We present an evaluation
function that evaluates the task characteristics of virtual machines by observing the amount of resource consumption of
each virtual processor. Based on the evaluation function, the proposed scheduling scheme controls the priorities of virtual
machines adaptively for fair distribution in handling I/O requests. Because our scheme evaluates both CPU-intensiveness and
I/O-intensiveness of virtual machines, it provides high performance in terms of responsiveness even for various types of tasks.
We implemented and experimented the proposed scheme on a virtual machine monitor. The experimental results showed that

the proposed scheme increases the responsiveness and I/O bandwidth of virtual machines.

Keywords 1/0 virtualization - Virtual machine scheduler - Performance

1 Introduction

Due to the increasing number of applications on cloud sys-
tem and their varying purposes and characteristics, demands
for virtualization techniques are increasing. Many existing
cloud systems consolidate their servers using virtualiza-
tion techniques to enable different applications in sharing
server resources efficiently (Jain and Paul 2013; Moreno-
Vozmediano et al. 2012; Beloglazov and Buyya 2010).

Communicated by B. B. Gupta.

Joonhyouk Jang and Jinman Jung have contributed equally.

This paper is an extension version of the conference paper: A Virtual
CPU Scheduling Model for I/O Performance in Paravirtualized
Environments, J. Jung, J. Park, S. Kim, M. Heo, J. Hong, In
Proceeding of the International Conference on Research in Adaptive
and Convergent Systems, pp. 20-23. ACM.

< Jiman Hong
jiman@ssu.ac.kr

Joonhyouk Jang
jhjang@useed.co.kr
I USEED Inc., Siheung-si, Korea
Hannam University, Daejeon, Korea

Soongsil University, Seoul, Korea

The virtualization technique integrates multiple physical
resources into a logical resource or separates a physical
resource into multiple logical resources to increase resource
efficiency. In a virtual machine monitor (VMM)), a virtualiza-
tion layer virtualizes physical resources to operate multiple
systems on a single machine. Examples of VMMs include
Hyper-V (Velte and Velte 2010), VirtualBox (Watson 2008),
Xen (Barham et al. 2003), and KVM (Kivity et al. 2007).

A VMM manages virtual machines just as an operating
system does process. As an operating system provides pro-
cesses with abstracted physical resources, a VMM provides
virtual machines with virtualized processors, memory, and
I/O. A virtual machine operating in a physical machine is
provided a virtual processor instead of a physical proces-
sor. While an operating system selects a process to consume
CPU resources in each scheduling decision, a VMM selects
a virtual processor to consume CPU resources based on the
VMM’s own scheduling policy.

Xen hypervisor, one of the most well-known VMMs, uses
the credit scheduler for a fair scheduling of virtual machines.
Credit scheduler works based on the credit, which represents
CPU resources. Because applications with various require-
ments run on a physical machine, a VMM should efficiently
virtualize physical resources and fairly allocate resource

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04551-w&domain=pdf
http://orcid.org/0000-0002-8386-2567

5988

J.Jang et al.

shares to achieve a high performance, reliability, and fair-
ness.

However, credit scheduler cannot make ensure high fair-
ness and predictable performance in terms of I/O because its
main purpose is providing each virtual machine a fair share of
CPU resources; however, boosting, which is applied to credit
scheduler to improve the responsiveness of virtual processors
for I/O events, is not efficient enough in supporting 1/O vir-
tualization.

In the case of boosting, if a virtual processor is idle,
which means that the virtual processor rarely consume CPU
resources and has a pending I/O event, the virtual processor
will be boosted by temporally acquiring the highest schedul-
ing priority. Because a virtual processor with the highest
priority preempts virtual processors with lower priorities,
the responsiveness of virtual machines is increased. How-
ever, boosting is not well suited in certain cases (Ongaro
et al. 2008), where it cannot benefit virtual processors with
CPU-intensive or mixed workloads because they continu-
ously consume credits and have a number of runnable tasks.
When CPU-intensive and I/O-intensive virtual machines are
running together on a VMM, fairness in processing 1/O
events cannot be achieved. In addition, if most of the vir-
tual machines run latency-sensitive applications that provide
network-based services, the virtual processors of the virtual
machines are fairly boosted, but this situation leads to per-
formance degradation as boosting fundamentally disturbs the
scheduling priority of virtual processors.

As described earlier, the credit scheduler has clear draw-
backs with respect to I/O virtualization (Iosup et al. 2011;
Cherkasova and Gardner 2005; Nagarajan et al. 2007). To
improve the I/O performance of credit scheduler, various
scheduling policies have been proposed based on priority
modification or time slice modification of a virtual processor.
For example, the highest priority is assigned to the privi-
leged virtual machine that is in charge of I/O virtualization
or adjusting the amount of time slice of the boosted virtual
processors (Ding et al. 2014). Further, some studies focused
on the virtual I/O in a VMM by optimizing event chan-
nels or minimizing context switching overhead between the
receiver of an I/O request and the privileged virtual machine
(Xi et al. 2011; Williams et al. 2012). However, most of the
existing solutions to this problem assume that each virtual
machine is either latency-sensitive or not. A virtual machine
that runs both CPU-intensive and I/O-sensitive applications
can exist, but such workloads are out of the sight of these
studies. A virtual machine with mixed workloads may be
latency-sensitive similar to I[/O-bound virtual machines, but
it is rarely boosted because its CPU-intensive applications
aggressively consume CPU resources.

In this paper, we propose a novel virtual machine sched-
uler based on a loan and redeem system. For the purpose
of explicitly control boosting, two types of representation of

@ Springer

CPU resources are presented. The under credit of a virtual
processor is periodically recharged according to its propor-
tional share of the virtual processor, and itis consumed during
non-boosted execution. The boost credit of the virtual pro-
cessor is periodically recharged according to its credit rating,
and it is consumed during boosted execution. The character-
istics of the applications running on the virtual processor are
reflected in the credit rating. The credit rating of each vir-
tual processor is decided by how often it is boosted and how
long the processor runs by boosting; the behavior of a virtual
processor in boosted execution reflects the characteristics of
the applications running on it. In addition, after a virtual pro-
cessor consumes all of its boost credits, it has to repay the
loan before receiving further boost credits. The repayment
is proportional to the remaining under credit of the virtual
processor, which means that less active virtual processors
will have another chance to be boosted earlier than more
active virtual processors.

To avoid the burden of distinguishing and tracking tasks
on a virtual processor, we infer the task characteristics from
their resource consumption patterns. Therefore, the pro-
posed scheme uses a graded approach to reflect the dynamic
behavior of a virtual machine instead of simply classify-
ing I/O-intensive and CPU-intensive virtual machines. By
changing the amount of boost credit to be given to a vir-
tual processor with respect to its behavior, the chances of
boosting are fairly distributed among virtual processors with
different types of workloads.

The proposed scheme was implemented and evaluated in
Xen hypervisor 4.6, and the results were compared with those
of credit scheduler and a scheduler with aggressive boosting.
The network response time, network bandwidth, and CPU
utilization were evaluated experimentally. The experimental
results demonstrate that the proposed scheme achieves a high
I/O performance using credit scheduler with a low overhead
in CPU utilization.

The rest of this paper is organized as follows. In Sect. 2,
related works are introduced. In Sect. 3, a model of the virtual
machine scheduler will be introduced. In Sect. 4, we describe
the proposed scheme. In Sect. 5, the experimental results are
discussed. Our conclusions are presented in Sect. 6.

2 Related works
2.1 Cloud computing

Cloud computing offers many benefits such as scalability,
efficiency, on-demand services although there are security
and privacy challenges to overcome (Zkik et al. 2017). It
provides services to the customers at the lowest cost in their
service level agreement between the cloud service provider
and the cloud customer (Ratten 2015).

An efficient virtual CPU scheduling in cloud computing

5989

The low cost is due to the successful use of multilayer
virtualization enabling dynamic elastic resource-sharing
between different services (Hassan et al. 2019). The vir-
tualization also enables cloud servers to provide a number
of services simultaneously to cope with the different cus-
tomer’s demands (Manasrah et al. 2019). The scheduling in
the virtualization plays a key role in the performance of cloud
computing and user experience of the entire cloud service
(Sadashiv and Kumar 2018).

Many investigations have been performed on improving
the I/O performance of virtual machines on a VMM. In
Chen et al. (2010), the overhead of the performance of a
virtualized I/O on a VMM is analyzed and it is shown that
the performance of latency-sensitive applications depends
on the scheduling latency and I/O model of the VMM. In
Cherkasova and Gardner (2005), a model to estimate the
resource usage of applications in a virtualized environment
is proposed.

The authors in Gordon et al. (2012) and Zeng et al. (2015)
deal with optimization of I/O model in a VMM. In Gordon
et al. (2012), the authors achieved high I /O performance by
reducing context switching between a guest and host domain
that are occurred by interrupts during I/O processes. XCol-
10pts presented in Zeng et al. (2015) focuses on the load
balancing problem in assigning VCPU to PCPU and optimiz-
ing the virtualized I/O process for small packets to preventing
premature preemptions.

2.2 1/0 performance for virtual scheduling

Studies have been conducted to improve I/O performance by
controlling the time slice of a latency-sensitive domain (Ding
et al. 2014; Xu et al. 2012). Ding et al. (2014) proposed
a dynamic time slice for credit scheduler in Xen hypervi-
sor. They reported an increase in scheduling latency with
an increase in the number of virtual processors. Because
credit scheduler provides a fixed time slice regardless of
the scheduling priority, the scheduling latency and I/O per-
formance decrease in proportion to the number of virtual
processors. Dynamic time slicing adjusts the amount of time
slice depending on the number of virtual processors to ensure
a predictable performance, regardless of the number of vir-
tual processors. Xu et al. (2012) proposed a scheme to reduce
the time slice of latency-sensitive domains; in addition, the
scheme can run latency-sensitive domains much frequently
than CPU-sensitive domains.

In addition to adjusting the time slice of virtual proces-
sors, some studies focused on controlling the priority of
virtual processors to improve the I/O performance of virtual
machines. Kim et al. (2008) proposed defining a priority that
is higher than the boost priority to decrease the scheduling
delay, while many virtual processors are executed with the
boost priority at the same time. Yang et al. (2014) estimated

the delay time in scheduling using a queueing theory and
increased the priority of a virtual processor that is supposed
to have long scheduling delays.

Little work has been done to provide an efficient solution
for virtual machine scheduling with the mixed workloads,
which are increasingly common. In the studies cited above, it
was assumed that a virtual machine is either latency-sensitive
or not, but not both. However, Kim et al. (2009) and Bai et al.
(2010) suggested that a virtual machine can have composite
workloads because multiple tasks can run simultaneously. In
Kim et al. (2009), authors proposed that a domain can report
the priority of a running task or a blocked task to a VMM.
Because a blocked task has higher priority than an unblocked
task in an operating system, a domain that has blocked tasks
is preferably scheduled. In spite of the improvement in I/O
performance due to task awareness, it is complicated and
requires quite a large overhead for a VMM to be aware of
the tasks running in guest operating systems, including inter-
domain communications. However, we propose that a high
I/O performance can be achieved by optimizing a virtual
machine scheduler without additional overheads.

Our scheduler differs from these approaches in several
fundamental ways. First. Our scheduler enables VM to adjust
the boost frequency according to reflect the dynamic behav-
ior of a virtual machine. Previous studies use a method of
defining new priorities that is higher than the boost priority
or controlling time slice. Second, we focus on the I/O per-
formance of a virtual machine that runs both CPU-intensive
and I/O-sensitive applications, which are increasingly com-
mon. However, most of the existing solutions to this problem
assume that each virtual machine is either latency-sensitive
or not. Finally, our scheduler uses an efficient solution with-
out inter-domain communications.

3 Xen hypervisor

In this section, we present an overview of the Xen hypervisor.
With respect to I/O performance, its I/O virtualization and
scheduling algorithm features are described.

3.1 Isolated driver domain

The Isolated Driver Domain (IDD) model is used for vir-
tualizing I/O interrupts in Xen hypervisor (Barham et al.
2003). Xen’s paravirtualization includes a privileged virtual
machine, domain0Q, which is in charge of I/O virtualization.
Other untrusted virtual machines do not have direct per-
missions to get access to H/W resources. Untrusted virtual
machines, userdomains, process their I/O requests through
domain0 instead of processing the requests directly.

A userdomain does not have real device drivers in
this model. Instead, they use front-end drivers. Through

@ Springer

5990

J.Jang et al.

I/O Ring, which is a shared memory among domains, the
front-end driver delivers I/O requests from userdomains to
domainQ’s back-end driver. Afterward, the back-end driver
delivers the I/O requests to the real device driver. In the oppo-
site direction, when an I/O request is finished, back-end driver
receives an I/O interrupt. Then it generates a virtual interrupt
for the front-end driver of the associated virtual machine.
When the virtual interrupt is delivered to the front-end driver,
an event handler of the I/O event is operated.

Although a system can be protected from device driver
faults in this driver model, the propagation of I/O events
described above is not instantly processed. To process an
I/0 request when it is passed from a front-end driver in a
userdomain, the domain(Q’s back-end driver should wait
until domain0 is scheduled by the virtual machine sched-
uler. In addition, the front-end driver receives the front-end
driver’s response only when the associated virtual machine is
scheduled. Because domain0 does not have a higher priority
than other virtual machines, scheduling latencies in process-
ing I/O requests increase as the number of virtual machines
in a VMM increases. In addition, scheduling latencies also
increase in number as the number of boosts in a VMM
increases; this is because the priority of a boosted virtual
processor is higher than that of domain0 in credit sched-
uler; domain0 is more frequently preempted by a boosted
virtual processor in this case. Thus, the I/O performance of a
Xen VMM is highly dependent on the scheduling policy and
number of scheduling entities.

3.2 Credit scheduler

The Xen hypervisor includes RTDS (Real Time Deferrable
Server), ARINC 653, credit, and credit2 schedulers. RTDS is
a softreal-time scheduler for multicore environments, and the
ARINC 653 scheduler is hard real-time for single core envi-
ronments. Credit and credit2 scheduler, on which our work
is focused, is a general-purpose, proportional share system.

Credit scheduler operates based on a credit system. In a
given time period, credits are given to all virtual machines
residing in a VMM and each virtual machine consumes its
credits while it is running. In the default configuration, the
credits of a running virtual processor are reduced by 10 over
every millisecond. In each time slice (30 ms is the default
slice), credit scheduler determines the amount of credit that
each virtual machine can be given using two parameters,
weight and cap. The weight of a virtual machine refers to
the proportional share of a physical processor that a virtual
machine can be assigned. cap represents the upper bound of
the utilization of a physical processor for a virtual machine,
which is represented as a percentage.

A physical processor has a local run queue of virtual pro-
cessors. In a run queue, runnable virtual processors are sorted
by their scheduling priorities, which are BOOST, UNDER,

@ Springer

and OVER (in the given order). In a run queue, when a virtual
processor has to be inserted in, itis inserted at the end of other
virtual processors of equal priority and in every scheduling
decision, credit scheduler picks a virtual processor to run in
a round-robin fashion. A virtual processor is assigned a pri-
ority of UNDER If its credit is positive. On the other hand, a
virtual processor is assigned a priority of OVER if its credit
is negative. If a virtual processor has UNDER priority, it
implies that the virtual processor did not fully consume its
physical processor share. In contrast, a virtual processor of
OVER priority implies that CPU resource consumption of the
virtual processor exceeds the amount allocated by scheduler.

In addition, if the credits of a virtual processor exceed a
pre-defined threshold value or the virtual processor has no
runnable tasks, the priority of the virtual processor becomes
IDLE and the virtual processor is removed from the run
queue after discarding all its credits. An idle virtual processor
should receive an I/O event to be awakened. I/O-bound virtual
processors are more likely to be idle because they consume
less credit. As aresult, virtual processors with CPU-intensive
workloads are allocated more CPU resources than idle vir-
tual processors that are less CPU-intensive, thus resulting in
an inefficient use of CPU resources.

However, in this policy, I/O-bound virtual processors have
a less chance of running. Therefore, the boost mechanism
is applied to credit scheduler for the purpose of improving
the responsiveness of [/O-bound virtual processors. When an
idle virtual processor receives an event, it is awakened and its
priority is temporally changed to BOOST. Because BOOST
is the highest priority, the boosted virtual processors pre-
empt currently running virtual processors of a lower priority.
After the event is handled, the priority of the boosted virtual
processors returns to UNDER. In addition to the boost mech-
anism, credit scheduler uses another global parameter called
ratelimit, which is a specific time in which the virtual pro-
cessor is not preempted; ratelimit helps latency-sensitive
applications by preventing them from aggressively preempt-
ing each other.

4 Virtual machine scheduling based on task
characteristics

As described in Sect. 3, the boost mechanism is use-
ful in improving the I/O performance of virtual machines
for latency-sensitive applications but arbitrarily changing
virtual processor’s priorities disrupts the fundamental of
priority-based scheduling policy. To fairly assign the boost-
ing chances of a virtual processor, the behavior of virtual
machines with various task characteristics should be taken
into account.

In this section, we discuss the behavior of virtual machines
from the perspective of credit consumption and I/O fre-

An efficient virtual CPU scheduling in cloud computing

5991

quency. Based on the discussion, we design an evaluation
function for a virtual machine based on its task characteris-
tics. In addition, using the evaluation function, we propose a
novel boost mechanism for credit scheduler, which controls
the boost frequency.

4.1 Virtual machine behavior

The boost mechanism of credit scheduler divides the char-
acteristics of a virtual machine into two categories, CPU-
intensive and I/O-intensive. Only an I/O-intensive virtual
processor, which is the main topic of many studies (Iosup
et al. 2011; Cherkasova and Gardner 2005; Nagarajan et al.
2007), tends to be inactive and is boosted afterward.

For example, a virtual machine that runs network-based
applications sleeps most of the time. The virtual processor
of the virtual machine has tasks that check the incoming and
outcoming packets. The virtual processor is often blocked by
an I/O after running for relatively short times and is periodi-
cally awakened by the boost mechanism. As credit scheduler
assigns credits to every virtual processor in each scheduling
period and an I/O-intensive virtual processor does not con-
sume all its credits while it is running, the remaining credits
of the virtual processor are accumulated. When the credits
exceed a threshold or all the tasks of the virtual machine are
blocked, the machine becomes inactive and is removed from
the run queue.

In summary, when remaining credit of a virtual processor
increases by running I/O-intensive workloads or has no tasks
to run, it has high possibility to be inactive. In contrast, in a
CPU-intensive virtual processor, there exists a runnable task
most of the time. The virtual processor is much less likely
to be inactive when compared to I/O-intensive virtual pro-
cessors. Compared to the virtual processor of I/O-intensive
tasks, the virtual processor of CPU-intensive tasks consumes
credit steadily and is less likely to be blocked by I/O. Thus,
this processor is hardly boosted and cannot consume a fair
share of the CPU resources when compared to I/O-intensive
virtual processors in some cases.

However, even a CPU-intensive virtual processor can
work on I/O-intensive tasks. For example, if a virtual machine
runs CPU-intensive tasks and a few I/O-intensive tasks
simultaneously, its virtual processor rarely becomes inactive.
When an I/O-intensive task is running on a virtual processor,
afastresponse is required, but a steady credit consumption of
the virtual processor prevents it from being boosted. There-
fore, a virtual processor with composite workloads faces a
lack of fairness in I/O-event handling in the current credit
scheduler; the same problem was found in other research
studies (Chen et al. 2010; Xu et al. 2012; Qu et al. 2015).

As a simple solution to this problem, a scheme was pro-
posed to fairly boost virtual processors, regardless of their
activeness. However, this solution is not efficient because a

virtual machine of the boost priority cannot receive prefer-
ence in scheduling decisions if most of virtual processors in
the system are boosted.

The boost frequency should be controlled taking into con-
sideration the task characteristics of the virtual processor
to guarantee the fair and stable I/O performance for vir-
tual machines. Therefore, in this study, we propose a graded
boost mechanism that controls the boost frequency of virtual
processors depending on their behavior in order to improve
the I/0 performance of active virtual machines. First of all,
we categorize the task characteristics of virtual processors
according to their behavior as inactive, CPU-intensive, I/O-
intensive, and composite.

An inactive virtual processor is neither CPU-intensive nor
I/O-intensive. An inactive virtual processor has the least pos-
sibility of monopolizing CPU resources because in most
cases, it runs for a short time when it is boosted and then
yields the CPU resource. A CPU-intensive virtual processor
has the least need for boosting among the four categories.
Because a CPU-intensive virtual processor has the least num-
ber of I/O events, the effect of boosting a CPU-intensive
virtual processor on the I/O performance is not significant. An
I/O-intensive virtual processor is the main target of the boost
mechanism in credit scheduler. It requires frequent boosting
for a high I/O responsiveness. A composite virtual processor
is I/O-intensive as well as CPU-intensive. In spite of the bene-
fit of the boost mechanism being lesser for a composite virtual
processor when compared to an I/O-intensive virtual proces-
sor, the I/O responsiveness of the composite virtual processor
can be improved by the boost mechanism. However, a com-
posite virtual processor should be carefully boosted because
CPU resources can be monopolized when composite virtual
processors are boosted. Therefore, the frequency order is as
follows-inactive, I/O-intensive, CPU-intensive, and compos-
ite virtual processors.

4.2 CPU-intensiveness and I/0-intensiveness

In this section, we describe a method to evaluate task
characteristics using an additional credit and redeem mech-
anism. As shown in Fig. 1, the proposed scheme gives
in a virtual processor with pending I/O events additional
credits, named boost credits, before boosting the vir-
tual processor. For each virtual processor, under credit
and boost credit are managed separately. In contrast to
under credits that are consumed during normal (non-
boosted) execution, boost credit is deducted only when a
virtual processor is executed by a scheduling decision of the
boost mechanism. After a virtual processor has consumed all
of its boost credits, the virtual processor enters a deduction
phase.

In the deduction phase, boosting the virtual processor is
not allowed until it repays all the boost credits originally

@ Springer

5992

Fig.1 Loan/deduction period

loaned to it. In addition, in the deduction phase, a portion
of the under credit given to a virtual processor are paid to
deduct boost credit, which were given to the virtual proces-
sor on loan.

Based on the mechanism described above, the pattern of
credit consumption and deduction in a virtual processor is
evaluated to measure the characteristics of its tasks. If a
virtual processor consumes its boost credit quickly, itis con-
sidered CPU-intensive as well as I/O-intensive. If a virtual
processor deducts its boost credit quickly, it is considered
inactive. The proposed scheme evaluates the characteristics
of a virtual processor and adjusts the boost credit that can be
given to the virtual processor; therefore, the boost frequency
is controlled according the task characteristics.

We evaluate the CPU-intensiveness and I/O-intensiveness
of a virtual processor during the process described in
Sect. 4.2. The evaluation process is described below:

4.2.1 Notations

Table 1 shows the notations used in this section.
Assume that n virtual processors, V = {vy, vy,
exist in a system. For a virtual processor v;, time interval p;

J.Jang et al.
I/O event I/O event I/O event
(boosted) (boosted) (not boosted)
. — —
! time
boosting deduction boosting deduction
period p, period p,
Table 1 Notations
Notations Descriptions
n Number of virtual processors in the system
Set of virtual processors in the system
v; ith virtual processor in the system
Dj Jjth time interval from p;; to pj2
rj Jjth time interval from r;; to 7>
m Number of boosted executions during p
b A boosted execution during p;
l Number of normal executions during r;
R Sequence of normal executions during r;
T A normal execution during r;
chb(vi, pj) CPU-intensiveness of v; in p;
ib(vi, pj) 1/O-intensiveness of v; in p;
ap(vi, pj) Activeness of v; in p;
C(vi, pj) Amount of boost credit to be given to v; in p;
o Loan rate of v; in p;
m
bky — by
ch(vi, p) = Yy M ()
vy Un 'ty k=1
. m
ib(vi, pj) = ——— (2)
Pj2 — Pj1

and r; where p; is from pji to pj2, r; is from r;j; to rjz,
pj2=rj1.1In p;, v; is boosted m times: B = {by, by, ..., by }
where by runs from by to byo. In 7}, v; is normally executed
[times: R = {ry, r, ..., r;} where ry runs from rg to rys.

4.2.2 Evaluation of task characteristics

When an I/O event of a virtual processor is pending, the vir-
tual processoris given CREDIT _LIN E boost credit and
boosted. The boost credit is deducted during the boosted
running time but not during the normal running time. From
the time that the virtual processor is given boost credit,
the time until all the boost credit is consumed, p, and the
number of boosts for the virtual processor, n, are measured.
The CPU-intensiveness of the virtual processor is evaluated
using (1), and the I/O-intensiveness of the virtual processor
is evaluated using (2).

@ Springer

Here, c¢b indicates the boost credit consumed when the
virtual processor is boosted. It also represents the CPU-
intensiveness of the tasks while processing I/O events.
Therefore, c¢b is used to evaluate the CPU-intensiveness
of a virtual processor. Meanwhile, ib is the number of
boosts received by the virtual processor during p. Because
the number of boosts is equal to the number of I/O
events that are delayed, ib represents the number of I/O
events that occurred. Further, it represents that this virtual
processor is I/O-intensive. Therefore, ib is used to eval-
uate the I/O-intensiveness of the virtual processor during
p.

From (1) and (2), the characteristics of a virtual processor
are represented by multiples of ¢b and ib in (3).

An efficient virtual CPU scheduling in cloud computing

5993

ap(vi, pj) = cb(v;, pj) - ib(vi, pj)
_ i bia — b1 m
-om pj2 = Pj1 3
_ 2k=ibie —bu
Pj2 — Pj1

Here, ap represents the additional credits consumed by the
virtual processor per millisecond. A virtual processor with a
high ap means that the virtual processor is CPU-intensive
and also I/O-intensive.

4.3 Application

In this section, we describe the proposed credit and redeem
mechanism. The main idea of the proposed scheme is
adapting the boosting frequency according to the task char-
acteristics.

To adaptively control the boost frequency of a virtual pro-
cessor according to its task characteristics, the boost credit
given to a virtual processor is determined by ap in the pre-
vious period. As shown in Fig. 2, credit deduction starts
after a virtual processor consumes all the boost credits
it received. A virtual processor cannot be boosted until
the entire boost credit is deducted. These credits are

Fig.2 Flowchart of our
scheduler VM
Scheduled

deducted in terms of amount of runtime of the task after
it is scheduled normally. The remaining credits of CPU-
and I/O-intensive tasks are lower, and the deduction time
is longer than those of a task that is not CPU- and I/O-
intensive.

Yo yap(i, pi-1)
ap(vi, pj-1)

Ci, pj) =a- “

A high ap of a task means that its characteristics are close
to being CPU-intensive as well as I/O-intensive. Because
these types of tasks can monopolize CPU resources by
frequent boosting, the boost frequency of a task with a
high ap is supposed to be low. Accordingly, the amount of
boost credit given to a virtual processor and which should be
deducted is inversely proportional to the cm in the previous
period.

A task with a high ap in the previous period is given lower
boost credit in the current period. In contrast, a task with a
low ap in the previous period is given higher boost credit
in the current period. Thus, the boost frequency of a vir-
tual processor can be adaptively controlled according to task
characteristics.

Run the VM

No
remained?
Yes (deduction phase) .
Repay boost credit | Yes (boosting phase)
with remaining credit Bo\()[it/}ng Heasigs i
l low priority
No (UNDER,
R Au'dv Update OVER)
P boost credit
l Yes
Perform
Evaluation function

I

Loan

boost credit

@ Springer

5994

4.4 Discussion

The proposed scheme applies the boost mechanism adap-
tively by taking into account the task characteristics in the
past and the current period. The past and current characteris-
tics of a task are integrated in ap. The current amount of the
boost credit of atask is determined by the past characteris-
tics of the task.

The deduction of a task starts after it is scheduled normally
because the current characteristics of a task can be reflected
in the boost mechanism. Despite the past characteristics of
a task being closer to composite, it can be boosted by fast
deduction if its current characteristics are closer to inactive.
In contrast, when the past characteristics of a task are closer
to inactive, the task is given a large number of boost credits;
it cannot receive more boost credits if its current character-
istics are closer to composite because its deduction is slow.

5 Experiments

This section presents the experimental environment and the
obtained results to evaluate the performance of the proposed
virtual machine scheduling scheme. To clearly show the
difference between the proposed scheme and the existing
scheduler, tests were conducted in an environment with mul-
tiple virtual machines performing CPU-intensive workloads,
resulting in relatively long scheduling delays.

5.1 Experimental environments

The experimental environments are shown in Table 2. The
server and client are physically separated to remove their
influence on performance measurements.

To evaluate the network response time of the proposed
scheme, we measured the network bandwidth and CPU uti-
lization of the previous credit scheduler and the proposed

Table 2 Experimental environments

Component Description

Server CPU Intel Celeron 847 (Dual core 1.1 GHz)
Memory DDR3 8 GB
Storage SSD 256 GB
Xen version Xen 4.6 (paravirtualization)
Host kernel 3.16
Guest kernel 3.13

Client CPU AMD G-T48E 1.4 GHz
Memory DDR3 2 GB
Operating system CentOS 5.7

Network Ethernet 100 Mbps

@ Springer

J.Jang et al.
Table 3 Domains for measuring I/O performance
Domain id Task Domain Description
Dom 0 Inactive 1 IDD
Dom 1-12 Composite 1 Test domain

Table 4 Utilities

Utility Usage

iperf Network bandwidth between server and client
xentop CPU utilization of domains

hping Network response between sever and client

stress CPU, I/O workload generation

Table 5 Average response time

Credit scheduler Proposed scheduler

Response time 37.2ms 23 ms

scheme with multiple domains executing both CPU-intensive
and I/O-intensive tasks. In Table 3, all the domains except
domain(are always active and execute CPU-intensive tasks.
The number of virtual machines is set to 12 to extend the vir-
tual machine scheduling delay. The proposed scheme affects
I/O performance, regardless of disk I/O and network I/O
because it accelerates the processing of I/O events by reduc-
ing scheduling delay. Thus, only network I/O is measured in
our experiments. Four utilities, iperf, hping, xentop, and
stress are used to measure the network I/O performance
(Table 4).

5.2 1/0 performance

To evaluate the I/O performance of the proposed scheme,
the network response time, network bandwidth, and CPU
utilization of the credit scheduler and the proposed scheme
are measured. The CREDIT _LIN E and loan rate are set
to 1000 and 20%, respectively.

The average response time of the credit scheduler and the
proposed scheme is calculated to be 37.2 ms and 23 ms,
respectively, which indicates an improvement of 39% in the
network response time with the proposed scheduler as shown
in Table 5. The cumulative distribution function of the net-
work response time is shown in Fig. 3. When the previous
scheme was employed, the response time of 35% of the data
was less than 10 ms, while that of 41% and 58% of the data
was less than 20 ms and 10 ms, respectively. Meanwhile, the
response time of 70% of the data was less than 20 ms with
the proposed scheme.

An efficient virtual CPU scheduling in cloud computing

5995

1.2 4

1 {
0.8 -
0.6 w Previous
0.4 Proposed
0.2+

]
0
0 50 100 150

Response time

Fig.3 TCP/IP response of the proposed scheme

Bandwidth(Mbits/sec)
— - N N w w B
o] w o w o w o

wn

=}

Proposed

Previous

Fig.4 TCP/IP bandwidth of the proposed scheme

Figure 4 shows the network bandwidths when the credit
and the proposed scheduler were used. The average net-
work bandwidth of the credit scheduler was 30.9 Mbps,
while that of the proposed scheme was 34.1 Mbps, which
indicates that the network bandwidth increased by 10%
with the proposed scheme. From Figs. 3 and 4, it can be
inferred that the proposed scheme resulted in a better per-
formance than the credit scheduler in terms of response
time and bandwidth by reducing scheduling delay. Domains
containing both CPU-intensive tasks and I/O-intensive tasks
run concurrently in a virtual environment; in the previous
scheduling scheme, the latency-sensitiveness of domains
is ignored because they intensively consume their cred-
its. However, with the proposed scheme, the domains
have a fair chance of being boosted according to their
individual I/O-intensiveness. The difference results in a
performance gap between the previous scheme and the pro-
posed scheme in the execution environment, as shown in
Figs. 3 and 4.

Figures 5, 6 and 7 show the CPU utilization of 12 domains
with the credit scheduler, the proposed scheme, and credit
scheduler with unconditional boosting, respectively. In the
case of unconditional boosting, the scheduler boosts a virtual
processor with pending I/O events, regardless of its priority
and credits. In our experiments, it is observed that the average
CPU utilization of the unconditional boosting scheduler is the
lowest; however, in Fig. 7, significantly unstable results could
be observed. This scheme can yield high responsiveness with
low CPU utilization for some of the domains. However, the
lack of fairness in this scheme causes a critical CPU monop-
olization problem. In contrast, the average CPU utilization

100

CPU usage(%)
S D (o]
=] L= o

N
o
I

o

5 X H L A D 9 O D O
NP AN
O ® bo"(\ 6°& bo"(\ 6°& boé‘ boé‘ boé‘

Fig.5 CPU utilization of the credit scheduler

100
80
60

40

20III
0

CPU usage(%)

100
80
X
T 60
2
= 40
=}
[~}
0 — —
PR OISO

Fig.7 CPU utilization of unconditional boosting

of the 12 domains was similar and stable in the proposed
and previous schemes. This means that the proposed scheme
does not hinder CPU resource management and results in
a higher I/O performance when compared to the previous
scheme by minimizing the negative effects caused by CPU
monopolization.

5.3 Boost frequency

In addition to measuring the I/O performance of virtual
machines, we measured the boost frequency of two domains
executing different workloads using the proposed scheme.
Relatively, the first domain is CPU-intensive and the second
is I/O-intensive, but they execute identical I/O jobs. As the
proposed scheme controls boost credit to control the boost
frequency of domains, the value of CREDIT_LINE can
represent boost frequency. In this experiment, boost credit

@ Springer

5996

J.Jang et al.

Table 6 Boost frequency of the proposed scheme

Task Stress args. DomU credit_boost cm
I/O-intensive -i1-t60 4 600
CPU-intensive -c1-i1-t60 4 375 9.2

and cm are measured in different task environments using
stress. The experimental setup and results are presented in 6.

In Table 6, it is shown that the domains with same /O
jobs and different CPU-intensiveness and I/O-intensiveness
have different boost credit and ap values. A low CPU-
intensiveness results in a low ap, which means boost credit
consumption per millisecond and a high boost credit, which
represents the boost credit that a task can rent. In contrast,
a high ap results in a low boost credit. Unlike the previous
scheduling scheme, which does not consider task character-
istics within domains, the proposed scheme fairly distributes
I/O resources among domains with various workloads and
even a CPU-intensive domain can perform I/O tasks with
sufficiently low latency because the proposed scheme man-
ages the boost frequencies of multiple domains according to
the characteristics of tasks executed in each domain.

6 Conclusion

We presented a novel virtual CPU scheduler to improve the
1/0O performance of a virtual machine scheduler for cloud sys-
tems. In order to fairly assign the boosting chances of a virtual
machines, we use a proportionally differentiated approach to
adopt the boosting frequency according to the task charac-
teristics. Our scheduler analyzes the task characteristics of a
virtual machine and gives it boost credits which is consumed
while boosted executions. It also controls the deduction time
of boost credits in consideration of a virtual machine’s behav-
ior. The proposed scheme was implemented and evaluated in
Xen hypervisor. We measured the I/O performance and CPU
share of virtual machines using the proposed scheme and the
existing virtual machine schedulers. The experimental results
show that the proposed scheme can achieve up to 39% less
response time compared to an existing scheme.

A next step in continuing the work is to study a dynamic
solution for large-scale cloud system that often have a large
number of virtual machines. As part of future work, we
plan to analyze the effect of parameters and further study
on additional dynamic adaptation techniques in a large-scale
environment.

Acknowledgements This research was supported by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-2016R1D1A3B
03931258). The authors certify that they have no affiliations with or
involvement in any organization or entity with any financial interest or

@ Springer

non-financial interest in the subject matter or materials discussed in this
manuscript.

Compliance with ethical standards

Conflict of interest No potential conflict of interest was reported by the
authors.

References

Bai Y, Xu C, Li Z (2010) Task-aware based co-scheduling for virtual
machine system. In: Proceedings of the 2010 ACM symposium on
applied computing, SAC 2010, Sierre, Switzerland, March 22-26,
2010. ACM, pp 181-188

Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer
R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In:
Proceedings of the nineteenth ACM symposium on operating sys-
tems principles, SOSP 2003, Bolton Landing, NY, USA, October
19-22, 2003. ACM, pp 164-177

Beloglazov A, Buyya R (2010) Energy efficient resource management
in virtualized cloud data centers. In: Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid
computing, CCGRID 2010, Washington, DC, USA, May 17-20,
2010. IEEE Computer Society, pp 826-831

Chen H, Jin H, Hu K, Yuan M (2010) Adaptive Audio-aware Scheduling
in Xen virtual environment. In: Proceedings of ACS/IEEE interna-
tional conference on computer systems and applications, AICCSA
2010, Tunisia, May 16-19, 2010. IEEE, pp 1-8

Cherkasova L, Gardner R (2005) Measuring CPU Overhead for I/0
processing in the Xen virtual machine monitor. In: Proceedings
of the 2005 USENIX annual technical conference, Anaheim, CA,
April 10-15, 2005, USENIX, pp 387-390

Ding X, Ma Z, Da X (2014) Dynamic time slice of credit scheduler, In:
Proceedings of IEEE international conference on information and
automation, ICIA 2014, Hailar, China, July 28-30, 2014. IEEE,
pp 654-659

Gordon A, Amit N, Har’El N, Ben-Yehuda M, Landau A, Schuster A,
Tsafrir D (2012) ELI: bare-metal performance for I/O virtualiza-
tion. In Proceedings of the seventeenth international conference
on architectural support for programming languages and operat-
ing systems, ASPLOS XVII, London, England, UK, March 03-07,
2012. ACM, pp 411-422

Hassan HA, Kashkoush MS, Azab M, Sheta WM (2019) Impact of
using multi-levels of parallelism on HPC applications performance
hosted on Azure cloud computing. Int J High Perform Comput
Netw 13(3):251-260

Tosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema
D (2011) Performance analysis of cloud computing services for
many-tasks scientific computing. IEEE Trans Parallel Distrib Syst
22(6):931-948

Jain R, Paul S (2013) Network virtualization and software defined
networking for cloud computing: a survey. [IEEE Commun Mag
51(11):24-31

Kim D, Kim H, Jeon M, Seo E, Lee J (2008) Guest-aware priority-
based virtual machine scheduling for highly consolidated server.
In: Proceedings of European conference on parallel processing,
Euro-Par 2008, Las Palmas de Gran Canaria, Spain, August 25—
29, 2008. Springer, 2008, pp Canary Island, Spain, pp 285-294

Kim H, Lim H, Jeong J, Jo H, Lee J (2009) Task-aware virtual machine
scheduling for I/O performance. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments, VEE 2009, Washington, DC, USA, March 11-13,
2009. ACM, pp 101-110

An efficient virtual CPU scheduling in cloud computing

5997

Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) KVM: the
Linux virtual machine monitor. In: Proceedings of the linux sym-
posium, pp 225-230

Manasrah AM, Aldomi A, Gupta BB (2019) An optimized service
broker routing policy based on differential evolution algorithm
in fog/cloud environment. Cluster Comput 22(1):1639-1653

Moreno-Vozmediano RM, Montero RS, Llorente IM (2012) IaaS cloud
architecture: from virtualized datacenters to federated cloud infras-
tructures. Computer 45(12):65-72

Nagarajan AB, Mueller F, Engelmann C, Scott SL (2007) Proactive
fault tolerance for HPC with Xen virtualization. In: Proceedings of
the 21st annual international conference on supercomputing, ICS
2007, Seattle, Washington, DC, USA, June 17-21, 2007. ACM,
pp 23-32

Ongaro D, Cox AL, Rixner S (2008) Scheduling I/O in virtual machine
monitors. In: Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on virtual execution environments, VEE
2008, Seattle, WA, USA, March 05-07, 2008. ACM, pp 1-10

Qu H, Liu X, Xu H (2015) A workload-aware resources scheduling
method for virtual machine. Int J Grid Distrib Comput 8(1):247—
258

Ratten V (2015) Cloud computing technology innovation advances: a
set of research propositions. Int J Cloud Appl Comput (IICAC)
5(1):69-76

Sadashiv N, Kumar SM Dilip (2018) Broker-based resource manage-
ment in dynamic multi-cloud environment. Int J High Perform
Comput Netw 12(1):94-109

Velte A, Velte T (2010) Microsoft virtualization with hyper-V. McGraw-
Hill, New York

Watson J (2008) VirtualBox: bits and bytes masquerading as machines.
Linux J 166:2008

Williams D, Jamjoom H, Weatherspoon H (2012) The Xen-Blanket:
virtualize once, run everywhere. In: Proceedings of the 7th ACM
European conference on computer systems, EuroSys 2012, Bern,
Switzerland, April 10-13, 2012. ACM, pp 113-126

Xi S, Wilson J, Lu C, Gill C (2011) RT-Xen: towards real-time
hypervisor scheduling in xen. In: Proceedings of the ninth ACM
international conference on embedded software, EMSOFT 2011,
Taipei, Taiwan, October 09-14, 2011. ACM, pp 3948

Xu C, Gamage S, Rao PN, Kangarlou A, Kompella RR, Xu D
(2012) vSlicer: latency-aware virtual machine scheduling via
differentiated-frequency CPU slicing. In: Proceedings of the 21st
international symposium on high-performance parallel and dis-
tributed computing, HPDC 2012, Delft, The Netherlands, June
18-22,2012. ACM, pp 3-12

Yang C, Liu J, Huang K, Jiang F (2014) A method for managing green
power of a virtual machine cluster in cloud. Future Gen Comput
Syst 37:26-36

Zeng L, Wang Y, Feng D, Kent KB (2015) XCollOpts: a novel
improvement of network virtualizations in Xen for I/O-latency sen-
sitive applications on multicores. IEEE Trans Netw Serv Manag
12(2):163-175

Zkik K, Orhanou G, Hajji S (2017) Secure mobile multi cloud architec-
ture for authentication and data storage. Int J Cloud Appl Comput
(IJCAC) 7(2):62-76

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	An efficient virtual CPU scheduling in cloud computing
	Abstract
	1 Introduction
	2 Related works
	2.1 Cloud computing
	2.2 I/O performance for virtual scheduling

	3 Xen hypervisor
	3.1 Isolated driver domain
	3.2 Credit scheduler

	4 Virtual machine scheduling based on task characteristics
	4.1 Virtual machine behavior
	4.2 CPU-intensiveness and I/O-intensiveness
	4.2.1 Notations
	4.2.2 Evaluation of task characteristics

	4.3 Application
	4.4 Discussion

	5 Experiments
	5.1 Experimental environments
	5.2 I/O performance
	5.3 Boost frequency

	6 Conclusion
	Acknowledgements
	References

