
Soft Computing (2020) 24:10043–10073
https://doi.org/10.1007/s00500-019-04519-w

METHODOLOGIES AND APPL ICAT ION

Fuzzy linear programming problems: models and solutions

Reza Ghanbari1 · Khatere Ghorbani-Moghadam2 · Nezam Mahdavi-Amiri2 · Bernard De Baets3

Published online: 12 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review
fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy param-
eters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then,
we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most
methods used for solving such problems are based on ranking functions, α-cuts, using duality results or penalty functions.
In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have
also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems
approximately.

Keywords Fuzzy linear programming · Duality · Ranking function · Fuzzy number · Fully fuzzy system

1 Introduction

A linear programming model may represent a real-world
situation involving a number of parameters whose values
are assigned by experts. However, experts and decision
makers frequently do not know the precise values of the
parameters. Also, in most optimization problems, there are
parameters with imprecise values (see Buckley and Jowers
2008; Wan and Li 2014, 2015; Wan and Dong 2015; Wan
et al. 2015, 2017a, b, 2018; Xu et al. 2016). Linear pro-
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gramming problems with imprecise decision variables or
parameters play major roles in several applications in var-
ious areas such as mathematical modeling (see Tanaka et al.
1973; Zimmermann 1983), manufacturing and production
(see Hsu and Wang 2001; Kara et al. 2009), agricultural
economics (Lai and Hwang 1992; Leung 1988), network
location (Darzentas 1987), banking andfinance (Hillier 2010;
Lai and Hwang 1994; Leon et al. 2002), resource alloca-
tion (Abboud et al. 1998; Lai and Li 1999), environment
management (Li et al. 2010), supply chain management
(Bilgen 2010; Chen and Tzeng 2000), inventory manage-
ment (Mondal and Maiti 2003; Roy and Maiti 1997, 1998),
media selection (Wiedey and Zimmermann 1978), trade bal-
ance (Chanas and Kolodziejczyk 1982), management of the
reservoir watershed (Chang et al. 1997), dimension design
(Chen and Lin 2001), transportation management (Chanas
and Kuchta 1996, 1998; Liu and Kao 2004), product mix
(Karakas et al. 2010), game theory (see Bector et al. 2004;
Vijay et al. 2007), engineering and economics (Buckley et al.
2002), graph theory (Cornelis et al. 2004) andmanufacturing
(Mahdavi et al. 2011). Also, more applications of fuzziness
in different fields can be seen in Baykasoglu and Gocken
(2012), Ebrahimnejad and Tavana (2014b) and Sakawa et al.
(2001).
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Consider a linear programming problem as follows:

(LP)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min cT x,

s.t.

Ax ≤,=,≥ b,

x ≥ 0,

where c ∈ R
n , A ∈ R

m×n , x ∈ R
n and b ∈ R

m . In a fuzzy
linear programmingproblem (FLPP), variables or parameters
are considered to be fuzzy numbers. Here, we investigate
various types of fuzzy linear programming problems based
on the models and the solutions methods. We divide fuzzy
linear programming problem into three groups according to
their models. In the first group, the variables of (LP) are
considered to be fuzzy numbers, naming it as FVLPP. In the
second group, parameters of (LP) are considered as fuzzy
numbers, denoted by FNLPP. In the third group, variables
and parameters are considered to be fuzzy numbers, named
as FFLPP.

We review some methods for solving different types of
FLPPs. We classify various models of FLPP and their solu-
tion methods. In Sect. 2, we review the FVLPPs and its
corresponding dual. In Sect. 3, we survey the FNLPPs (fuzzy
numbers in the objective function or constraint definitions)
and their associated duality results. In Sect. 4, we discuss the
FFLPPs. In Sect. 5, we survey some heuristic methods for
solving fuzzy linear programming problems.

Next, we give some basic fuzzy notations and definitions.

Definition 1 (Buckley and Jowers 2008) (Fuzzy sets) If X is
a collection of objects denoted generically by x , then a fuzzy
set A in X is defined to be a set of ordered pairs,

A = {(x, μA(x)) | x ∈ X}.

Remark 1 We assume that X is the real line R.

Definition 2 (Buckley and Jowers 2008) (Support) If A is a
fuzzy set, then its support, denoted by suppA, is defined to
be

suppA = {x ∈ X | μA(x) > 0}.

Definition 3 (Buckley and Jowers 2008) (α-cut) The α-cut
of fuzzy set A is denoted by Aα and is defined to be

Aα = {x ∈ X | μA(x) ≥ α},

where α ∈ (0, 1].
Definition 4 (Buckley and Jowers 2008) (Core) The core of
a fuzzy set is the set of points x in X with μA(x) = 1.

Definition 5 (Nguyen and Walker 2000) A fuzzy number is
a fuzzy quantity Ã satisfying the following conditions:

1. μ Ã(x) = 1, for exactly one x = r and 0 < μ Ã(x) < 1,
for x �= r .

2. supp Ã is bounded.
3. The α-cuts of Ã are closed intervals.

Remark 2 We denote the set of all fuzzy numbers by F(R).

Definition 6 (Ranking function) An effective approach for
ordering the elements of F(R) is to define a ranking function,
which maps each fuzzy number into the real line, R: F(R)→
R (see Zimmermann 2001 for more details).

2 Fuzzy linear programming problems with
fuzzy variables

We first discuss some applications of fuzzy variable linear
programming problems. Baykasoglu andGocken (2012) pre-
sented an algorithmbasedon the constrained fuzzy arithmetic
concept to solve fuzzy transportation problems where the
decision variables (transportation quantities) are considered
as fuzzy numbers. Chanas and Kolodziejczyk (1984) stud-
ied a network problem where the flow is a real number and
the fuzzy arc capacities have upper and lower bounds with a
satisfaction function.

Consider the FVLPP as

(FVLPP)

⎧
⎪⎪⎨

⎪⎪⎩

max (min) z̃ ≈ cT x̃
s.t.
Ax̃“ �,≈, 	,′′ b̃,
x̃ 	 0̃,

where b̃ ∈ F(Rm), A ∈ R
m×n and c ∈ R

n are given and
x̃ ∈ F(Rn) is to be determined. In this model, the coefficient
matrix, A, is crisp, but the decision vector x̃ is composed of
fuzzy numbers.

One convenient approach for solving FVLPPs is based on
the concept of comparison of fuzzy numbers by use of a rank-
ing function (see Mahdavi-Amiri and Nasseri 2006, 2007;
Mahdavi-Amiri et al. 2009; Serenko and Dohan 2011; Wang
and Kerre 2001). Ranking functions have been proposed to
suit the requirements of the problems under consideration by
Campos and Verdegay (1989).

Here, we intend to review some methods for solving
FVLPPs using ranking functions on trapezoidal fuzzy num-
bers. Mahdavi-Amiri and Nasseri (2007) used a linear
ranking function to order trapezoidal fuzzy numbers. A lin-
ear ranking function on trapezoidal fuzzy numbers is defined
as

R(ã) = CLaL + CUaU + Cαα + Cββ, (1)
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where ã = (aL , aU , α, β) ∈ F(R) and CL , CU , Cα, Cβ

are constants, at least one of which is nonzero. They used a
special version of the above linear ranking function proposed
by Yager (see Fortemps and Roubens 1996; Yager 1981) as
follows:

R(ã) = (aU + aL)

2
+ 1

4
(β − α). (2)

The above expression is easily obtained from (1) by setting
CU = 1

2 ,CL = 1
2 ,Cα = 1

4 and Cβ = 1
4 . The authors

in Mahdavi-Amiri and Nasseri (2007) considered the lin-
ear programming problem with trapezoidal fuzzy variables
as

⎧
⎪⎪⎨

⎪⎪⎩

min z̃ =R cT x̃
s.t.
Ax̃ ≤R b̃,
x̃ ≥R 0̃ = (0, 0, 0, 0),

(3)

where =R , ≤R and ≥R , receptively, mean equality and
inequalities with respect to the ranking function (2).

They established the dual of (3) to be

⎧
⎪⎪⎨

⎪⎪⎩

max ũ =R yT b̃
s.t.
yA ≤ c,
y ≤ 0,

and deduced the usual duality results. The results followed
as natural extensions of duality results for linear program-
ming problems with crisp data (such as weak duality, strong
duality, fundamental theorem of duality and complemen-
tary slackness); see Bazaraa et al. (2009). Then, a dual
simplex algorithm (Mahdavi-Amiri and Nasseri 2007) and
a primal simplex algorithm (Mahdavi-Amiri et al. 2009)
were developed for solving fuzzy linear programming prob-
lems. Mahdavi-Amiri et al. (2009) considered FVLPP as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ =R cT x̃
s.t.
Ax̃ =R b̃,
x̃ ≥R 0̃,

(4)

where b̃ ∈ F(Rm), A ∈ R
m×n, c ∈ R

n and x̃ ∈
F(Rn). They showed that a fuzzy vector x̃ ∈ F(Rn) is a
fuzzy feasible solution for (4), if x̃ satisfies the constraints
Ax̃ =R b̃ and x̃ ≥R 0̃. They defined that a fuzzy feasi-
ble solution x̃∗ is a fuzzy optimal solution for (4), if for
every fuzzy feasible solution x̃ for (4), we have cT x̃∗ ≥R

cT x̃ . Then, they described a fuzzy basic solution as fol-
lows.

Assume the coefficient matrix A is [B, N ], where B is
a non-singular matrix. Let y j be the solution to By = a j ,
∀ j = 1, . . . , n. Then,

{
x̃B = (x̃B1 , . . . , x̃Bm )T =R B−1b̃ =R ỹ◦,
x̃N =R 0̃,

is a solution of Ax̃ =R b̃. They called x̃ , accordingly parti-
tioned as (x̃ TB , x̃ TN )T , a fuzzy basic solution corresponding
to the basis B. Next, they used a primal simplex method for
solving (4). It should be noted that originally (Maleki et al.
2000) defined their model as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min z̃ =R bT ỹ
s.t.
Aỹ ≥R c̃,
ỹ ≥R 0̃.

(5)

Then, they defined an auxiliary model corresponding to (5),
not realizing it being the dual of (5), as:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ =R c̃T x
s.t.
Ax ≤ b,
x ≥ 0.

Next, to arrive at a solution of (5) with fuzzy variables,
they made use of the solution of the auxiliary problem. The
later results by Mahdavi-Amiri and Nasseri (2007) estab-
lished that the auxiliary problem is indeed the dual of (5),
leading to both primal and dual simplex algorithms (see
Mahdavi-Amiri and Nasseri 2007; Mahdavi-Amiri et al.
2009).

Ebrahimnejad and Tavana (2014a) proposed a method for
solving fuzzy linear programming problems in which the
coefficients of the objective function and the values of the
right-hand side were represented by symmetric trapezoidal
fuzzy numbers, while the components of the coefficient
matrix were represented by real numbers. They converted the
fuzzy linear programming problem into an equivalent crisp
linear programming problem and solved the crisp problem
with the standard primal simplex method. They showed that
the proposed method was simpler and computationally more
efficient than two competing FLP methods commonly used
in the literature.

Next, we turn to FVLP problems, with both the cost
coefficient vector (c) and variables being fuzzy numbers.
Ganesan and Veermani (2006) used symmetric trapezoidal
fuzzy numbers in their model. They denoted a symmetric
trapezoidal fuzzy number by ã = [a1, a2, h, h]. They defined
a fuzzy linear programming problem with trapezoidal sym-
metric variables as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x̃ j

s.t.
n∑

j=1
ai j x̃ j � b̃i , i = 1, 2, . . . ,m◦,

n∑

j=1
ai j x̃ j 	 b̃i , i = m◦ + 1, . . . ,m,

x̃ j 	 0̃, j = 1, 2, . . . , n,

(6)

where ai j ∈ R, c̃ j , x̃ j and b̃i ∈ F(R). Then, they defined
x̃ 	 0̃, if there exist a ≥ 0 and h ≥ 0 such that
x̃ 	 [−a, a, h, h]. They also defined any vector x̃ =
(x̃1, . . . , x̃n), where x̃i ∈ F(R), satisfying the constraints
and nonnegativity restrictions of (6) to be a feasible solu-
tion. They also obtained interesting results about improving
a basic feasible solution which in turn lead to a solu-
tion of (6) without converting it to a crisp linear program,
developing a concept of fuzzy basic solution, establish-
ing some results about basic solutions and characterizing
unbounded solutions. Nasseri et al. (2010) followed the work
of Ganesan and Veermani and introduced the dual of a lin-
ear programming problem with symmetric trapezoidal fuzzy
numbers. They defined the fuzzy linear programming prob-
lem as

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ ≈ c̃T x̃
s.t.
Ax̃ � b̃,
x̃ 	 0̃,

(7)

where b̃ ∈ F(Rm), c̃ ∈ F(Rn) and A ∈ F(Rm×n) are given
and x̃ ∈ F(Rn) is to be determined. They defined the dual
of problem (7) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min ũ ≈ w̃T b̃
s.t.
w̃T A 	 c̃T ,

w̃ 	 0̃.

Then, they proved some results such as weak duality, strong
duality, fundamental theorem and complementary slackness,
quite similar to the ones given byMahdavi-Amiri andNasseri
(2007). Finally, they solved (7) based on the given dual-
ity results. Recently, Ebrahimnejad et al. (2010), based on
the results established by Ganesan and Veermani (2006),
proposed a new approach to solve a kind of bounded lin-
ear programming problems involving symmetric trapezoidal
fuzzy numbers without converting them to crisp linear pro-
gramming problems. This approach is useful for situations
in which some or all fuzzy variables are restricted to lie
within lower and upper bounds. Also, Ebrahimnejad et al.
(2011) proposed a bounded fuzzy primal simplex algorithm

startingwith a primal feasible basis andmoved toward attain-
ing primal optimality while maintaining primal feasibility
throughout. The algorithm is useful for sensitivity analysis
using primal simplex tableaus.

Nasseri and Mahdavi-Amiri (2009) extended the results
of Ganesan and Veermani (2006). They proved the optimal-
ity theorem and then defined the dual problem of FVLPP
with symmetric fuzzy numbers. Furthermore, they gave some
duality results as a natural extension of duality results for lin-
ear programming problems with crisp data.

Xiaozhong (1997) considered a particular kind of FVLPP.
He denoted a triangular fuzzy number by ũ = (u, u, ū)�,
where u − u and u + u, respectively, represent the lower and
upper limits of the support of ũ with mode u. He defined
ũ � ṽ as follows:

ũ � ṽ ⇔ u ≤ v, u − u ≤ v − v, u + ū ≤ v + v̄, (8)

where u = (u, u, ū) and v = (v, v, v̄). Using this defini-
tion, he defined the problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ ≈ cT x̃
s.t.
Ax̃ � b̃,
x̃ 	 0̃.

(9)

Assuming t̃i as a triangular fuzzy number (fixed by the
decision maker) giving allowable maximum violation in the
accomplishment of the i-th constraint, (9) turns to

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ ≈ cT x̃
s.t.
Ax̃ � b̃ + t̃(1 − α),

x̃ 	 0̃, α ∈ [0, 1].
The above problem was then changed into the following two
problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min |c| x
s.t.
|A| x ≥ Ax∗ − (b − b) − (t − t)(1 − α),

x ≤ x∗,
x ≥ 0,

(10)

and
⎧
⎪⎪⎨

⎪⎪⎩

max |c| x̄
s.t.
|A| x̄ ≤ −Ax∗ − (b + b̄) + (t + t̄)(1 − α),

x̄ ≥ 0̄,

(11)

where A = (ai j )m×n , |A| = (|ai j |)m×n , c = (ck j )l×n and
|c| = (|ck j |)l×n , i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l.
Problems (10) and (11) are then solved by a simplex method.
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To apply the theories and methods of linear programming,
see Dantzing 1998; Katchian 1980.

Alizadeh Sigarpich et al. (2011) discussed degeneracy
of fuzzy linear programming problem using the notions of
strong and weak degeneracy and provided techniques for
prevention of cycling in fuzzy degenerate problems. One
technique was to apply “fuzzy perturbation,” and the other
was a “lexicographic rule,” applied in a fuzzy environment.

In many real-life problems, one has to base decision on
information which is both fuzzily imprecise and probabilisti-
cally uncertain. Modeling and problem-solving issues relate
to situations where randomness and fuzziness co-occur in
a linear programming framework. So, fuzzy stochastic lin-
ear programming is an attempt to fulfill this need; see other
works for solvingFVLPproblems (Aliev et al. 2007;Buckley
and Jowers 2008; Luhandjula 2006; Nasseri 2008; Pandian
and Jayalakshmi 2010; Stanciulescu et al. 2003; Tanaka et al.
2000; Tsakiris and Spiliotis 2004).

See the summary of Sect. 2 in Table 1.

3 Fuzzy linear programming problems with
fuzzy parameters

We first point out some application of fuzzy linear pro-
gramming problems with fuzzy parameters. Liu and Kao
(2004) investigated network flow problems with arc lengths
of the network being fuzzy numbers. Kumar andKaur (2011)
used fuzzy linear programming problems for maximal flow.
Hernades et al. (2007) proposed an algorithm, based on
the classical Ford–Fulkerson algorithm, to solve the fuzzy
maximal flow problem. The algorithm used a technique of
incremental graph representing all the parameters as fuzzy
numbers; for more applications, see Chanas (1983), Ramik
and Rimanek (1985), Rommelfanger (2004), Rommelfanger
(2006), Xu et al. (2002), and Zadeh (1965).

Next, we review some fuzzy linear programming prob-
lems with fuzzy parameters and also discuss fuzzy relational
equations. A fuzzy number linear programming problem
(FNLPP) is

(FNLPP)

⎧
⎪⎪⎨

⎪⎪⎩

max (min) z̃ ≈ c̃T x
s.t.
Ãx“ �, ≈, 	′′ b̃,
x 	 0,

where Ã ∈ F(Rm×n), c̃ ∈ F(Rn), b̃ ∈ F(Rm) and x ∈ R
n

is to be found. Here A, b and c are composed of fuzzy num-
bers, but the decision variable is crisp. Maleki et al. (2000)
explored the use of comparison of fuzzy trapezoidal num-
bers and introduced an effective method for solving these
problems based on a ranking function. They worked on the
FNLPP model defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x j

s.t.
n∑

j=1
ãi j x j � b̃i , i = 1, 2, . . . ,m◦,

n∑

j=1
ãi j x j 	 b̃i , i = m◦ + 1, . . . ,m,

x j ≥ 0, j = 1, 2, . . . , n,

(12)

where ãi j = (aLi j , a
U
i j , αi j , βi j ), b̃i = (bLi , bUi , αi , βi ) and

c̃ j = (cLj , c
U
j , α j , β j ), i = 1, . . . ,m, j = 1, . . . , n, are

trapezoidal fuzzy numbers. They defined x to be a feasible
solution for (12), if it satisfies the constraints in (12) based
on the considered ranking function. Also, x0 is an optimal
feasible solution for (12), if c̃T x0 ≥ c̃T x for all feasible solu-
tions x . They also showed that problem (12) using a ranking
function could be reduced to a problem in the classical form
as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z ≈
n∑

j=1
c j x j ,

s.t.
n∑

j=1
ai j x j ≤ bi , , i = 1, 2, . . . ,m◦,

n∑

j=1
ai j x j ≥ bi , i = m◦ + 1, . . . ,m

x j ≥ 0, j = 1, 2, . . . , n,

where the bi and ai j are crisp values obtained by use of
a ranking function on b̃i and ãi j , respectively. Then, they
defined optimality conditions for (12) by using linear rank-
ing function as in the usual discussion of the classical linear
programming problem.

Mahdavi-Amiri andNasseri (2006) explored some duality
properties of FNLPP (weak duality, strong duality, comple-
mentary slackness; see Buckley and Feuring (2000). They
established the dual of fuzzy number linear programming
primal problems as

⎧
⎪⎪⎨

⎪⎪⎩

min wT b̃
s.t.
Ãw � c̃,
w ≥ 0.

(13)

Then, they presented several duality results. Ebrahimnejad
(2011) considered the FNLPPs based onMahdavi-Amiri and
Nasseri’s (2006) work. He reviewed the results obtained in
Mahdavi-Amiri and Nasseri (2006) and gave some duality
results of FNLPP proposed by Mahdavi-Amiri and Nasseri
(2006) (weak duality property, strong duality, fundamen-
tal theorem of duality; see also Verdegay 1984). Next, the
author reviewed two existing methods (fuzzy primal sim-
plex of Mahdavi-Amiri et al. (2009) and fuzzy dual simplex
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Table 1 Summary of Sect. 2

Name of the authors Model of problem Method of solving

Mahdavi-Amiri and Nasseri (2007)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ cT x̃

s.t.

Ax̃ � b̃

x̃ 	 0̃.

They proposed a dual algorithm for solving the FVLPP
directly, making use of the primal simplex tableau

Mahdavi-Amiri et al. (2009)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ cT x̃

s.t.

Ax̃ ≈ b̃

x̃ 	 0̃.

They used a primal simplex method for solving FVLPP

Maleki (2002)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ bT ỹ

s.t.

Aỹ 	 c̃

ỹ 	 0̃.

They found the solution of the FVLPP by using the solution
of the auxiliary problem

Ebrahimnejad and Tavana (2014a)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ c̃T x̃

s.t.

Ax̃ � b̃

x̃ 	 0̃.

They converted the fuzzy linear programming problem into
an equivalent crisp linear programming one and solved the
crisp problem with the standard primal simplex method

Ganesan and Veermani (2006)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x̃ j

s.t.
n∑

j=1
ai j x̃ j � b̃i , i = 1, 2, . . . ,m◦,

n∑

j=1
ai j x̃ j 	 b̃i , i = m◦ + 1, . . . ,m,

x̃ j 	 0̃, j = 1, 2, . . . , n.

They obtained the results about improving a basic feasible
solution which in turn lead to a solution of the FVLPP
without converting it to a crisp linear programming
problem

Nasseri et al. (2010)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ c̃T x̃

s.t.

Ax̃ � b̃

x̃ 	 0̃.

They solved the FVLPP based on the given duality results

Ebrahimnejad et al. (2011)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x̃

s.t.

Ax̃ � b̃

l̃ � x̃ � ũ.

They proposed an approach that is useful for situations in
which some or all fuzzy variables are restricted to lie
within lower and upper bounds. In their approach, FVLPP
is not converted to a crisp linear programming problem

Nasseri and Mahdavi-Amiri (2009)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x̃

s.t.

Ax̃ � b̃

x̃ 	 0̃.

They proved the optimality theorem and defined the dual
problem of FVLPP with symmetric fuzzy numbers

Xiaozhong (1997)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max cx̃

s.t.

Ax̃ = b̃

x̃ 	 0̃.

The FVLPP was changed into two crisp problems, and then,
by using the solutions of these two problems, the solution
of FVLPP was found

Alizadeh Sigarpich et al. (2011)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈ cT x̃

s.t.

Ax̃ � b̃

x̃ ≥ 0̃, x̃ ∈ S.T , x̃ = (Cx̃,wx̃
),

b̃ = (Cb̃,wb̃
).

They defined fuzzy degeneracy in an fuzzy linear program;
then, the rules that were applied for the prevention of
cycling prevention were shown. One of the rules was
“fuzzy perturbation technique” which was used in fuzzy
linear program; another one was the “lexicographic rule”
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algorithm of Mahdavi-Amiri and Nasseri (2007)) for solv-
ing FNLPPs proposed by Mahdavi-Amiri et al. (2009) and
Nasseri and Ebrahimnejad (2010).

He also generalized the concept of sensitivity analysis in
FLNP problems by applying fuzzy simplex algorithm and
using general linear ranking functions on fuzzy numbers. The
purpose of sensitivity analysis was to determine changes in
the optimal solution of FNLPP resulting from changes in the
data. If the change affected the optimality of the basis, he
performed primal pivots to achieve optimality by use of the
fuzzy primal simplex method. Whenever the change turned
to infeasibility of the optimal basis, he performed dual pivots
to achieve feasibility by use of the fuzzy dual simplexmethod
(see also Ebrahimnejad and Tavana 2014a).

Ebrahimnejad and Nasseri (2009) considered an FNLPP
as in Mahdavi-Amiri and Nasseri (2006), Mahdavi-Amiri
and Nasseri (2007) and Maleki et al. (2000):

⎧
⎪⎪⎨

⎪⎪⎩

min z̃ ≈ c̃T x
s.t.
Ãx 	 b̃
x ≥ 0,

(14)

where b̃ ∈ F(Rm), Ã = (ãi j )m×n ∈ F(Rm×n), c̃ ∈ F(Rn)

with components being trapezoidal fuzzy numbers, and x ∈
R
n . They defined dual of (14) as (13) (Mahdavi-Amiri and

Nasseri 2006) and used the complementary slackness result
to solve (14) without the need for a simplex tableau. They
explained complementary slackness for FNLPP as follows.

Let x̃∗ and w̃∗ be any feasible solution to an FNLPP and
its corresponding dual problem. Then, x∗ andw∗ are, respec-
tively, optimal if and only if

(c̃T − w∗T Ã)x � 0̃, w̃∗T ( Ãx∗ − b̃) � 0̃. (15)

They discussed condition (15) to be equivalent to (below, ãi

refers to the i-th row and ã j refers to the j-th column of Ã):

w∗T ã j ≺ c̃ j ⇒ x∗
j = 0 or x∗

j > 0

⇒ w∗T ã j ≺ c̃ j , j = 1, . . . , n,

ãi x∗ � b̃i

⇒ w∗
i = 0 or w∗

i > 0 ⇒ ãi x∗ = b̃i , i = 1, . . . ,m,

or equivalently,

w∗T R(ã j ) < R(c̃ j ) ⇒ x∗
j = 0

or x∗
j > 0 ⇒ w∗T R(ã j ) < R(c̃ j ), j = 1, . . . , n,

R(ãi )x∗ > R(b̃i ) ⇒ w∗
i = 0

or w∗
i > 0 ⇒ R(ãi )x∗ = R(b̃i ), i = 1, . . . ,m.

Letting ui = R(ãi )x−R(b̃i ) ≥ 0, i = 1, . . . ,m, as the slack
variables of the FNLPP and v j = R(c̃ j ) − wT R(ã j ) ≥ 0,
j = 1, 2, . . . , n, as the slack variables of the dual problem
DFNLPP, the complementary slackness conditions are writ-
ten as follows:

v∗
j x

∗
j = 0, j = 1, . . . , n,

w∗
i u

∗
i = 0, i = 1, . . . ,m.

(16)

Mahdavi-Amiri and Nasseri (2006, 2007) developed a fuzzy
dual simplex algorithm for fuzzy linear programming prob-
lems with fuzzy parameters. Ebrahimnejad and Nasseri
(2009) then used the complementary slackness results to
solve FNLPPs without the need for a simplex tableau.

Liu (2001) proposed a method for solving FNLPP based
on the satisfaction (or fulfillment) degree of the constraints.
He defined p(ã ≤ b̃) as follows.

If ã and b̃were interval numbers, denoted by ã = [aL , aU ]
and b̃ = [bL , bU ], then

p(ã ≤ b̃) = max(0, bU − aL) − max(0, bL − aU )

(aU − aL) + (bU − bL)
. (17)

Also, for two fuzzy numbers ã and b̃, Liu defined the fuzzy
satisfaction degree using the α-cut level as

lα = P(ã(α) ≤ b̃(α)).

It was shown that for two symmetric triangular fuzzy num-
bers ã and b̃, we have

lα =

⎧
⎪⎨

⎪⎩

0, 2l0 ≤ α ≤ 1, l0 ≤ 1
2 ,

2l0−α
2(1−α)

, 0 ≤ α ≤ min{2l0, 2(1 − l0)},
1 2(1 − l0)α ≤ 1, l0 ≥ 1

2 .

(18)

Liu then considered the following problem with imprecise
resources and technology coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

max (c1x1 + · · · + cnxn)
s.t.
ãi1x1 + ãi2x2 + · · · + ãinxn � b̃, i = 1, . . . ,m
x j ≥ 0, j = 1, . . . , n,

(19)

where the ãi j are fuzzy numbers, the ci are crisp coeffi-
cients of the objective function and the xi are crisp decision
variables. Now, following the idea of Bellman and Zadeh
(1970), the fuzzymembership function of the objective func-
tion under fuzzy constraints can be obtained by solving the
following two crisp linear programming problems at differ-
ent α-cut levels:
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(1) Extreme linear programming problem with loose con-
straints:
⎧
⎪⎪⎨

⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
aLi1αx1 + · · · + aLinαxn ≤ bUiα, i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

(20)

(2) Extreme linear programming problem with strict con-
straints:
⎧
⎪⎪⎨

⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
aUi1αx1 + · · · + aUinαxn ≤ bLiα, i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

(21)

The optimal solutions of (20) and (21) constitute the bounds
of the fuzzy objective value’s cut interval at level α because
of the fuzzy constraints. By using extension principle, the
left-hand side of constraint i can be aggregated to a fuzzy
value:

ãi (x) = ãi1x1 + · · · + ãinxn .

This involved the comparison of two fuzzy numbers, that is,

ãi (x) ≤ b̃i .

With the above considerations, Liu assigned to every con-
straint a minimal satisfaction level pi = P(ãi ≤ b̃i ),
obtaining the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
P(ãi1x1 + · · · + ãinxn ≤ b̃i ) ≥ pi
x j ≥ 0.

(22)

With different values of α, the decision maker can decide on
the preferred optimal solution and objective value between
the two extremes of problems (20) and (21). Every possible
value of the objective function corresponds to the optimal
objective value at a certain satisfaction degree of the con-
straints. Liu discussed how to get the preferred optimal
solution in the following three special cases.

Case 1. When the constraint coefficients are interval num-
bers, the desired solution can be obtained by solving the
following parametric linear programming problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
(1 − pi )(aLi1x1 + · · · + aLinxn) + pi (aUi1x1 + · · ·

+aUinxn) ≤ pibLi + (1 − pi )bUi ,

i = 1, . . . ,m
x j ≥ 0, j = 1, . . . , n.

Case 2.When the constraint coefficients are symmetric trian-
gular fuzzy numbers, Liu showed how to use the correspond-
ing interval satisfaction degrees liα at α-cut level to get the
solution by solving the following fuzzy chance-constrained
linear programming problem with interval numbers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
P(ãi1(α)x1 + · · · + Pãin(α)xn ≤ b̃i (α))

≥ liα, i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

The above problem was then transformed into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
(1 − liα)(aLi1x1 + · · · + aLinxn) + liα(aUi1x1 + · · · + aUinxn)

≤ liαb
L
iα + (1 − liα)bUiα,

i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

Liu proved that the optimal solution at different α-cut levels
was the same.

Case 3. When the constraint coefficients are ordinary trape-
zoidal fuzzy numbers, the fuzzy chance programming prob-
lem is into

⎧
⎪⎪⎨

⎪⎪⎩

max c1x1 + · · · + cnxn
s.t.
P(ãi1x1 + · · · + ãinxn − b̃i ≤ 0) ≥ pi ,
i = 1, . . . ,m, x j ≥ 0, j = 1, . . . , n.

Now, letting ãi1x1+ ãi2x2+· · ·+ ãi2x2+· · ·+ ãinxn = ãi =
(ai1(x), ai2(x), ai3(x), ai4(x)), b̃i = (bi1, bi2, bi3, bi4), we
have ãi (x) − b̃i = (ai1(x) − bi4, ai2(x) − bi3, ai3(x) −
bi2, ai4(x) − bi1). For given constraint satisfaction degrees,
the fuzzy linear programming with trapezoidal fuzzy num-
bers can be solved with a group of crisp parametric mathe-
matical programming problems. Liu (2001) only discussed
solution methods for three special cases. For the ordi-
nary fuzzy numbers, however, the fuzzy constrains with
given satisfaction degrees cannot be transformed into sym-
bolic inequalities. This type of a problem may be solved
approximately by random search methods like genetic algo-
rithm.

Ramik (2006) considered the fuzzy linear programming
problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ = c̃1x1+̃ · · · +̃c̃n xn,
s.t.
ãi1x1+̃ · · · +̃ãinxn P̃b̃i , i = 1, . . . ,m
x j ≥ 0, j = 1, 2, . . . , n,

(23)
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where c̃ j , ãi j ∈ F(R), i = 1, . . . ,m, j = 1, 2, . . . , n, and
the fuzzy sets c̃1x1+̃ · · · , +̃c̃nxn and ãi1x1+̃ · · · +̃ãinxn are
defined by the extension of usual binary relation ≤ on R. In
(23), the value ãi1+̃ · · · +̃ãinxn ∈ F(R) is compared with a
fuzzy quantity b̃i ∈ F(R) by some fuzzy relation P̃ . Ramik
considered P̃ =�Pos (see some properties of the relation
in Inuiguchi et al. (1992)) and defined some indices as fol-
lows.

Let A and B be the fuzzy sets with the membership func-
tions, μA : R → [0, 1] and μB : R → [0, 1], respectively.
Let

Pos(A � B)

= sup{min(μA(x), μB(y))|x ≤ y, y ∈ R},
Pos(A ≺ B)

= sup{inf{min(μA, 1 − μB(y))|x ≤ y, y ∈ R}|x ∈ R},
Nec(A � B)

= inf{sup{max(1 − μA(x), μB(y))|x ≤ y, y ∈ R|x ∈ R},
Nec(A ≺ B)

= inf{max(1 − μA(x), 1 − μB(y))|x > y, x, y ∈ R}.

He named Pos(A � B) and Pos(A ≺ B) as the possibility
indices and Nec(A � B) and Nec(A ≺ B) as the necessity
indices. Then, he alternatively obtained:

Pos(A � B) = μPos(A, B) = (A �Pos B),

Nec(A ≺ B) = μNec(A, B) = (A,≺Nec B).

Next, Ramik defined the concept of β-solution as fol-
lows.

Letμãi j : R → [0, 1] andμb̃i
: R → [0, 1], i = 1, . . . ,m

and j = 1, 2, . . . , n, bemembership functions of fuzzy quan-
tities ãi j and b̃i , respectively. Let P̃ be a fuzzy extension of
a binary relation P on R. A fuzzy set X̃ , whose membership
function μX̃ is defined for all x ∈ R

n by

μX̃ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

min{μP̃ (ã11x1+̃ · · · +̃ã1nxn, b̃), . . . ,
μP̃ (ãm1x1+̃ · · · +̃ãmnxn, m̃)},

if x j ≥ 0,∀ j = 1, . . . , n,

0 O.W.,

is called the fuzzy set of feasible region or shortly feasible
region of (23). For β ∈ (0, 1], a vector x ∈ [X̃ ]β is called
β-feasible for (23). He then defined (α, β)-maximal and (α,
β)-minimal solutions. His approach was different from the
approaches of Inuiguchi et al. (2003) and Ramik and Vlach
(2001). Particularly, in Inuiguchi et al. (2003) and Ramik
and Vlach (2001), the authors investigated a different con-
cept of an optimal solution of FNLPP, namely the satisficing
solution. In contrast to the α-efficient solution of FNLPP,
which is a crisp vector, the satisficing solution is a fuzzy set.
In Inuiguchi et al. (2003) and Ramik and Vlach (2001), the

authors assumed the existence of exogenously given addi-
tional goals d̃ ∈ F(R) and h̃ ∈ F(R), and the fuzzy goal
d̃ was compared with the fuzzy value z̃ = c̃1x1+̃ . . . +̃c̃nxn
of the objective function of the primal FNLPP (P) by the
fuzzy relation�Pos . On the other hand, the fuzzy goal h̃ was
compared to the fuzzy value ω̃ = b̃1y1+̃ . . . +̃b̃m ym of the
objective function of the dual of FNLPP (D) by the fuzzy
relation≺Nec. This way, the fuzzy objectives were treated as
constraints. Compared with the approach of Inuiguchi et al.
(2003) and Ramik and Vlach (2001), the main advantage of
the approach of Ramik (2006) is the removal of the need
for the additional goals d̃ and h̃. Moreover, the investigated
strong duality theorem was stronger than the correspond-
ing results of Inuiguchi et al. (2003) and Ramik and Vlach
(2001); see other work of Ramik on FNLPP in Ramik and
Rommelfanger (1993). Nakahara and Gen (1993) proposed
some ranking criteria of triangular fuzzy numbers, each being
defined using twoparameters. They showed that the proposed
criteria included the criterion proposed by Dubois and Prade
(1983). The authors of Nakahara and Gen (1993), based on
the Dubois and Prade’s criteria, defined four ranking crite-
ria for triangular fuzzy numbers. They considered FNLPP as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ = ∑n
j=1 c̃ j x j

s.t.
∑n

j=1 Ãi j x j � B̃i , i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n,

where c̃ j = (c1j , c
2
j , c

3
j ), for j = 1, 2, . . . , n, Ãi j =

(a1i j , a
2
i j , a

3
i j ), j = 1, . . . , n, B̃i = (b1i , b

2
i , b

3
i ), for i =

1, . . . ,m. Then, they defined a method for solving fuzzy
linear programming problems with triangular fuzzy number
coefficients using the ranking obtained by the proposed rank-
ing criteria. In their method, the decision maker can treat the
constraint in more detail than the method using the ranking
by indices of Dubois and Prade (1983).

Jimenez et al. (2007) proposed amethod for solving linear
programming problems where all the coefficients were fuzzy
numbers in general. They considered the following linear
programming problem with fuzzy parameters:

{
min z = c̃T x
x ∈ ℵ( Ã, b̃) = {x ∈ R

n|ãi x 	 b̃i , i = 1, . . . ,m, x ≥ 0},

where c̃ = (c̃1, . . . , c̃n), Ã = [ãi j ]m×n , b̃ = (b̃1, . . . , b̃m)T ,
respectively, represent the fuzzy parameters involved in the
objective function and constraints. The possibility distribu-
tion of fuzzy parameters was assumed to be characterized by
fuzzy numbers. The decision vector x = (x1, . . . , xn)T is
assumed to be crisp. Some authors considered binary linear
programming problems and introduced algorithm for gener-
alized fuzzy binary linear programs.
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ci

µ(ci)

ci,1 ci,3ci,2
0

1

si,1 si,2

Fig. 1 A triangle membership function

Yu and Li (2001) discussed fuzzy binary linear program-
ming problems (FBLPPs). In their work, they proposed a
simple way to express a widely spread triangular fuzzy num-
ber by an absolute term, by giving the membership value of
a triangular fuzzy value ci with absolute value as follows:

μ(ci ) = μ(ci,1) + si,1(ci − ci,1)

+ si,2 − si,1
2

(|ci − ci,2| + ci,1 + ci,2),

where ci,1, ci,2 and ci,3 are, respectively, the possible lowest
number, middle number and highest number and si,1 and si,2
are the slopes of line segments between ci,k and ci,k+1, for
k = 1, 2 (Fig. 1) and

si,k = μ(ci,k+1) − μ(ci,k)

ci,k+1 − ci,k
.

Then, they formulated an FBLPP as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max c̃1x1 + c̃2x2 + . . . + c̃nxn
s.t.
n∑

i=1
ãi j x j � b̃ j ,

(24)

where the x j are zero-one variables and the c̃i are fuzzy
coefficients in the objective function, the ãi j represent the
fuzzy coefficient with respect to the xi in the j-th constraint,
and b̃ j denotes the fuzzy number in the right-hand side of the
j-th constraint. Next, they changed problem (24) into

⎧
⎪⎪⎨

⎪⎪⎩

max

(
n∑

i=1
ci xi ,

n∑

i=1
μ(ci )

)

s.t.
ci ∈ F(R), i = 1, . . . , n,

(25)

where μ(ci ) is the membership value corresponding to c̃i .
Then, they proved that an optimal solution for (25) was a
solution of the following maximization problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max

{
n∑

i=1
ci xi −

n∑

i=1
(w+

i δ+
i + w−

i δ−
i )

}

s.t.

μ j (ci ) + δ+
i + δ−

i = 1,

ci ≥ 0, ci ∈ F(R), i = 1, . . . , n,

where w+
i = | 1

sLi
| and w−

i = | 1
sRi

| are the inverse of slopes
for the triangular fuzzy numbers. They proposed an algo-
rithm to treat a binary linear programming problem with
fuzzy coefficients in the objective function, fuzzy coefficient
in the constraint matrix and fuzzy numbers in the right-hand
sides of the constraints; see an overview of the FBLPP tech-
niques and a list of references in Carlsson and Fullér (1996),
Castro et al. (1994), Herrera and Verdegay (1996), Mohanaty
and Vijayaraghavan (1995), Rommelfanger et al. (1989) and
Teng and Tzeng (1990).

Wu (2003) characterized the concept of fuzzy scalar
(inner) product to be used in fuzzy objective and inequal-
ity constraints of the fuzzy primal problem. He considered
the fuzzy primal (P) and dual (D) linear programming prob-
lems with fuzzy coefficients as follows:

(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min (c1 ⊗ x1) ⊕ · · · ⊕ (cn ⊗ xn)

s.t.

(ãi1 ⊗ x1) ⊕ · · · ⊕ (ãin ⊗ xn) 	 b̃i , i = 1, . . . ,m

x1, . . . , xn ≥ 0

and

(D)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (b̃1 ⊗ y1) ⊕ · · · ⊕ (b̃m ⊗ ym)

s.t.

(ã1 j ⊗ y1) ⊕ · · · ⊕ (ãm jin ⊗ ym) � c̃ j , j = 1, . . . , n

y1, . . . , ym ≥ 0,

where the coefficients in both the objective and the inequal-
ity constraint functions are taken to be fuzzy numbers. Wu
defined b̃ 	 ã (b̃ and ã are fuzzy numbers) if and only if
b̃Lα ≥ ãLα and b̃Uα ≥ ãUα for an α ∈ [0, 1]. In order to discuss
the duality theorems more conveniently, Wu reformulated
the primal problem (P) and the dual problem (D) using the
fuzzy scalar (inner) product. Then, by using the fuzzy scalar
concept, problem (P) was rewritten as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min � c̃, x �
s.t.

� ãi ., x � 	 b̃i , i = 1, . . . ,m

x ≥ 0,

where ai . is the i-th row of the coefficient matrix. The dual
of the primal problem is:
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⎧
⎪⎪⎨

⎪⎪⎩

max � b̃, y �
s.t.
� ã. j , y � � c̃ j , j = 1, . . . , n
y ≥ 0,

where a. j is the j-th column of the coefficientmatrix. Finally,
he established weak and strong duality results based on the
scalar product properties.

Furthermore, Wu (2008) proposed a solution concept by
considering the orderings via α-levels on the set of all fuzzy
numbers. He derived the optimality conditions for linear pro-
gramming problems with fuzzy coefficients and proposed a
solution concept, similar to the non-dominated solution used
in multi-objective programming.

Rommelfanger et al. (1989) presented a method for solv-
ing linear programming problems with fuzzy parameters in
the objective function. To determine a compromise solu-
tion, the authors did not reduce the set of infinitely many
objective functions as usually done in classical deterministic
or stochastic procedures. Rommelfanger et al. (1989) intro-
duced a problem that was reduced to a few extreme objective
functions. The information in themembership function could
be used to any extent by a method called α-level-related pair
formation.

Jamison and Lodwick (2001) used a penalty approach to
propose a solution method. They considered the fuzzy linear
programming problem,

⎧
⎪⎪⎨

⎪⎪⎩

max c̃T x
s.t.
Ãx � b̃,
x ≥ 0,

with c̃, b̃ and Ã having fuzzy components. They replaced
the constraints Ãi x ≤ b̃i , i = 1, . . . ,m, by subtracting the
following penalty terms from the objective function:

d̃i max(0, Ãi x − b̃i ), i = 1, . . . ,m,

where each d̃i is a positive fuzzy number (i.e., d̃−
α > 0, ∀α ∈

[0, 1]). The objective function then turns to

f̃ (x) = c̃T x − d̃T max(0, Ãx − b̃),

where max was handled component-wise using the exten-
sion principle Kaufmann andGupa (1986) and Klir and Yuan
(1995). Jamison and Lodwick (1999) showed that f̃ (x), the
image at any vector x , was a fuzzy number, and it was com-
pletely characterized by its α-cut:

f̃ (x)α = {cT x − dT max(0, Ax − b)|c, d, A

and b ∈ c̃α, d̃α, Ãα and b̃α, respectively}.

This fuzzy number provides the possibility distribution for
the outcome of taking action x . Thus, Jamison andLodwich’s
objective was to, in some sense, find the optimal fuzzy num-
ber. To do this, they adopted a view of possibility distribution
as cumulative subjective probability distribution (see Jami-
son 2000) and assumed that their utility for a given interval
was a positive value at its midpoint. Then, the optimization
problem turned to:

max EA( f̃ (x)) = EA (c̃T x − d̃T max(0, Ãx − b̃)).

This objective function requires the α-cuts of the fuzzy num-
ber f̃ (x) given the definition of expected average. But, this
is straightforward given the alpha cuts of the fuzzy coeffi-
cients because of the linearity of the original problem and
nonnegativity of x . Therefore,

f̃ +
α (x) = (c̃+

α )x − (d̃−
α )T max(0, Ã−

α x − (b+
α )),

f̃ −
α (x) = (c̃−

α )x − (d̃+
α )T max(0, Ã+

α x − (b−
α )).

These two numbers define the right and left points of the
α-cut of the fuzzy function evaluated at x , where f̃ +

α (x) is
called the optimistic value of f̃ (x) at the possibility level
α and f̃ −

α (x) is called the pessimistic value. The modified
problem was posed as

max EA( f̃ (x)) = 1
2

∫ 1

0
( f̃ −

α (x) + f̃ +
α (x))dα

= 1
2

∫ 1

0
(c̃−

α )T x + (c̃+
α )T x − (d̃−

α )T max(0, Ã−
α x − b̃+

α )

−(d̃+
α )T max(0, Ã+

α x − b̃−
α )dα.

Then, they proved some properties of this optimization prob-
lem. Jamison and Lodwick (2001) discussed the gradient
ascent algorithm for solving this optimization problem. The
first step of the algorithm determines whether the compo-
nents of the termsmax(0, Ã−

α x−b̃+
α ) andmax(0, Ã+

α x−b̃−
α )

become active for some α ∈ (0, 1). The second step of the
algorithm calculates the values of these αs. The third step
utilizes the calculated αs to determine gradient of the objec-
tive function. This gradient is then used as the direction in
which to search for the optimal value.

Chanasa and Zielińskib (2000) analyzed a linear pro-
gramming problem with fuzzy coefficients in the objective
function as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max
∑n

j=1 c j x j
n∑

j=1
ai j x j ≤ bi , i = 1, . . . , m

x j ≥ 0, j = 1, . . . , n,

(26)
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where c j , j = 1, . . . , n, are fuzzy numbers. In the objective
function of problem (26), they used the extended opera-
tions of the addition of fuzzy numbers and the multiplication
of a fuzzy number by a scalar. Then, they defined the set
of non-dominated solutions, with respect to an assumed
fuzzy preference relation, according to Orlovsky’s concept
(Orlovsky 1978). Special attention was paid to un-fuzzy
non-dominated (UND) solutions (the solutions which are
non-dominated to degree one). The main results obtained
by Chanas and Zieli-Nskiare are the sufficient conditions on
a fuzzy preference relation allowing for the reduction in the
problem of determining the UND solutions to finding the
optimal solutions of a classical linear programming prob-
lem. These solutions could thus be determined by classical
linear programming methods.

Zhang et al. (2005) defined notions of subgradient, sub-
differential and differential with respect to convex fuzzy
extremum problem. They considered the problems of mini-
mizing ormaximizing a convex fuzzymapping over a convex
set and developed the necessary and sufficient optimality
conditions. After that, they discussed the concept of saddle
point and proved min–max theorems under fuzzy environ-
ment. They applied the obtained results to a fuzzy linear
programming problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min c̃T x
s.t.
Ãx � b̃,
x ∈ R

m+,

where b ∈ R
m , c̃ and Ã are, respectively, an n-dimensional

fuzzy vector and an m × n fuzzy matrix. Since x ≥ 0,
f (x) = c̃T x is both a convex and a concave fuzzy map-
ping and g(x) = Ãx − b̃ is an m-dimensional fuzzy vector.
Hence, the fuzzy programming problem is convex, with the
Lagrangian function being given by

L(x, λ) = c̃T x + λT ( Ãx − b̃),

where λ = (λ1, . . . , λm)T with λi ≥ 0, i = 1, . . . ,m. Then,
they presented the (Lagrangian) dual problem of the fuzzy
linear programming as follows:

max
λ≥0

d(λ)

where d(λ) = minx≥0 L(x, λ). Since

d(λ) = min
x≥0

L(x, λ) = min
x≥0

{c̃T x + λT ( Ãx − b̃)}
= min

x≥0
{c̃T x + λT ( Ãx) − λT b̃}

= min
x≥0

{xT c̃ + xT ÃT λ − λT b̃},

we have d(λ) = −λT b̃, if c̃ + ÃT λ ≥ 0, and d(λ) = −∞,
otherwise. Therefore, the dual problem is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

max−λT b̃
s.t.
c̃ + ÃT λ 	 0̃,
λ ∈ R

m+.

They finally established some results on duality and derived
the KKT conditions for fuzzy linear programming problems.

Up to now, we have considered FNLP problems with
non-stochastic parameters. The occurrence of randomness is
inevitable owing to unexpected situations and has been con-
sidered in the context of stochastic optimization problems
(Kall 1976; Luhandjula 2006; Prekopa 1995; Rommelfanger
2007; Stancu-Minasian 1984; Vajda 2010). Buckley (1988)
restricted his attention to possibility linear programming
problems with triangular fuzzy numbers; also see Zadeh
(1975). He considered a mathematical programming prob-
lem, where all parameters could be fuzzy, specified by
possibility distributions as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max (min)z = c̃T x
s.t.
Ãx � b̃,
x ≥ 0,

where Ã = [ãi j ]m×n, x̃ = (x1, . . . , xn)T , b̃ = (b̃1, . . . , b̃m)T

and c̃ = (c̃1, . . . , c̃n)T

In this model, Buckley considered all parameters to be
fuzzy numbers specified by their possibility distributions
and also considered a possibility distribution for the objec-
tive function. He also assumed that all fuzzy numbers were
non-interactive. Then, he proposed the method for solving
this probabilistic linear programming problem. Zhong and
Guang-Yuan (1993) studied the solution method of linear
programming problems with fuzzy random coefficients and
proposed some probability distribution functions, projective
distribution functions and used expectation of these prob-
lems. In addition, they also used the theory of fuzzy random
variables of Guang-Yuan and Zhong (1992), Kowakernaak
(1978) and Puri and Ralescu (1986) to discuss two other
types of linear programming problems with fuzzy random
variable objective coefficients as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min z = c̃T x
s.t.
Ax ≤ b,
x ≥ 0.

(27)

They also considered a linear programming problem with
fuzzy random number coefficients and decision vector x̃ as
follows:
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⎧
⎪⎪⎨

⎪⎪⎩

min c̃T x̃
s.t.
Ãx̃ � b̃,
x̃ 	 0̃,

(28)

where x̃ 	 0̃ means (x̃ j )α ≥ 0, for j = 1, . . . , n, for any
α ∈ (0, 1]. Then, they established that (27) is equivalent
to the following linear programming problem with random
variable coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

min{(c−
α )T x, (c+

α )T x}
s.t.
Ax ≤ b,
x ≥ 0, ∀α ∈ (0, 1],

(29)

where (c̃ j )α = [(c j )−α , (c j )+α ], c+
α = ((c1)+α , . . . , (cn)+α )T ,

c−
α = ((c1)−α , . . . , (cn)−α )T . They then structured two pro-
gramming problems using the coefficients of model (29) as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

min(c−
α )T x

s.t.
Ax ≤ b,
x ≥ 0, ∀α ∈ (0, 1],

and

⎧
⎪⎪⎨

⎪⎪⎩

min(c+
α )T x

s.t.
Ax ≤ b,
x ≥ 0 ∀α ∈ (0, 1].

Then, they established some results on the distribution prob-
lem of model (27). They transformed model (27) into a
linear programming problem with random variable coeffi-
cients which might be solved by the simplex method of
Guang-Yuan and Zhong (1993). Next, they deduced some
results about distribution of model (28).

Maeda (2001) considered a fuzzy linear programming
problem involving fuzzy numbers only for the coefficients
of the objective function. The model is defined as

⎧
⎪⎪⎨

⎪⎪⎩

max < c̃, x >F≡ ∑n
i=1 c̃i xi

s.t.
Ax ≤ b,
x ≥ 0,

where c̃ = (c̃1, . . . , c̃n)T , with the ci being triangular fuzzy
numbers, A being an m × n matrix and b ∈ R

m . First, they
gave a concept of an optimal solution for a fuzzy linear pro-
gramming problem and investigated some properties. Then,
in order to find all the optimal solutions, they made use of
three types of bi-criteria optimization problems.

Van Hop (2007) adopted a model to measure the supe-
riority and inferiority of fuzzy numbers/fuzzy stochastic
variables. He made use of superiority between general fuzzy
numbers P̃ and Q̃ as follows:

S(P̃, Q̃) =
∫ 1

0
max{0, sup{s, μP̃ (s) ≥ α}}

− sup{t : μQ̃(t) ≥ α}dα.

Analogously, Van Hop defined the inferiority of P̃ and Q̃ as

I (P̃, Q̃) =
∫ 1

0
max{0, inf{s, μP̃ (s) ≥ α}}

− inf{t : μQ̃(t) ≥ α}dα.

Then, he considered the superiority and inferiority between
two triangular fuzzy numbers, P̃ = (u, a, b) and Q̃ =
(v, c, d), as follows:

{
S(Q̃, P̃) = v − u + d−p

2 ,

I (P̃, Q̃) = v − u − c−a
2 .

Next, he considered the following fuzzy linear program:

⎧
⎪⎪⎨

⎪⎪⎩

max cT x
s.t.
∑n

j=1(ãi j )x j � b̃i , i = 1, . . . ,m
x j ≥ 0, j = 1, . . . , n.

(30)

He then considered maximizing the objective function
subject to superiority of right-hand sides over the left-hand
sides of the constraints and the inferiority of the left-hand
side to the right-hand sides. This requirement corresponded
to maximizing the objective function along with penalty for
any violation of superiority of right-hand side over left-hand
side and inferiority of the left-hand side to the right-hand
side. Then, problem (30) is reformulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max cT x − [pi Si (∑n
j=1 ãi j x j , b̃i )

+qi Ii (b̃i ,
∑n

j=1 ãi j x j )]i = 1, . . . ,m,

s.t.
x j ≥ 0, j = 1, . . . , n,

(31)

where pi > 0 and qi > 0, for all i , are penalty coefficients.
It is noticed that the penalty costs are basically determined
without any rule. Next, they extended their consideration to
the more general case of fuzzy objective function as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max
∑n

j=1 c̃ j x j
s.t.
∑n

j=1 ãi j x j � b̃i , i = 1, . . . ,m
x j ≥ 0, j = 1, . . . , n.

(32)
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An equivalent form of (32) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maxΘ

s.t.
∑n

j=1 c̃ j x j ≥ Θ,
∑n

j=1(ãi j )x j � b̃i , i = 1, . . . ,m,

x j ≥ 0, k = 1, . . . , l,

(33)

which in turn is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max θ − p0S(θ,
∑n

j=1 c̃ j x j ) − q0 I (
∑n

j=1 c̃ j x j , θ)

−pi S(
∑n

j=1 ãi j x j , b̃i )
−qi I (b̃i ,

∑n
j=1 ãi j x j ), i = 1, . . . ,m

s.t.
x j ≥ 0, j = 1, . . . , n,

(34)

where the crisp variable θ could be fuzzified as (θ, 0, 0), pos-
ing (34) as a standard linear program. Then, they discussed
the fuzzy stochastic linear programming problem,

⎧
⎪⎪⎨

⎪⎪⎩

max cT x
s.t.
∑n

j=1(ãi j )wx j � (b̃i )w, i = 1, . . . ,m,

x j ≥ 0, k = 1, . . . , l,

(35)

where c, n × 1, is a crisp vector, Ã = [ãi j ]m×n , and
b̃ = (b̃1, . . . , b̃m)T is the fuzzy random variable constraint
coefficient vector, with,

(ãi j )w = [(ai j )Lα (w), (ai j )
U
α (w)],

(b̃i )w = [(bi )Lα (w), (bi )
U
α (w)],

with E denoting the expected value, an equivalent corre-
sponding to deterministic program for (35) was defined to
be

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max cT x − pi E[∑m
i=1 λi (w)] − ai E[∑2m

i=m+1 λi (w)]
s.t.
Si (

∑n
j=1(ãi j )wx j , b̃iw) = λi (w), i = 1, . . . ,m,

Ii (b̃iw,
∑n

j=1(ãi j )wx j ) = λi (w), i = m + 1, . . . , 2m,

x j , λ j ≥ 0.

(36)

Van Hop (2007) used a penalty function for violation of the
constraints instead of using ranking function. The proposed
method provides a simple deterministic linear programming
model, which can be solved easily by a standard optimization
package. Also, Chiang (2001) used statistical data and statis-
tical confidence interval to derive (1−α)-level fuzzy numbers
(0 < α < 1) and obtained a fuzzy linear programming prob-
lem. He used two statistical confidence intervals to derive the
(1 − β, 1 − α)-level of interval-valued fuzzy numbers (see
Chiang 2001 for the definition of (1− β, 1− α)-level, when
0 < β < α < 1) and obtained an alternative fuzzy linear

programming problem. More details about linear program-
ming with random parameters can be found in Luhandjula
(2007).

Farhadinia (2014) considered a fuzzy linear programming
problem involving the level (hL , hU )-interval-valued trape-
zoidal fuzzy numbers as parameters. The model is defined to
be
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min ˜̃z ≈ ˜̃cT x
s.t.
˜̃Ax ≥ ˜̃b,
x ≥ 0,

(37)

where

˜̃c ∈ (FIV T N (hL , hU ))n,
˜̃A ∈ (FIV T N (hL , hU ))m×n,

x ∈ R
n and ˜̃b ∈ (FIV T N (hL , hU ))m,

with FIV T N (hL , hU ) being the family of all level (hL , hU )-
interval-valued trapezoidal fuzzy numbers. The author then
made a sensitivity analysis of the problem.

Wan and Dong (2014) considered an FNLP problem with
trapezoidal fuzzy numbers as

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ = c̃T x
s.t.
Ãx ≤ b̃
x ≥ 0.

(38)

In their proposed method, the authors used trapezoidal
fuzzy numbers to capture imprecise or uncertain information
of the imprecise objective coefficients and/or the impre-
cise technological coefficients and/or available resources.
An auxiliary multi-objective programming problem was
constructed to solve the corresponding possibility linear pro-
gramming problem with trapezoidal fuzzy numbers. The
auxiliary multi-objective programming problem involved
four objectives: minimizing the left spread, maximizing the
right spread, maximizing the left endpoint of the mode and
maximizing the middle point of the mode. Three approaches
were proposed to solve the constructed auxiliary problem,
including optimistic approach, pessimistic approach and lin-
ear sum approach based on membership function.

Dong and Wan (2018) considered the problem,

⎧
⎨

⎩

max z̃ =
m∑

i=1
ũi xi

s.t. x = (x1, . . . , xm)T ∈ X ,

(39)

where X is a set of constraints which the variable x should
satisfy according to some physical requirements. The authors
showed (39) to be equivalent to a bi-objective problem,which
was solved by their proposed goal programming approach.
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Then, the effectiveness of the proposed method was verified
by a fuzzy knapsack problem and an investment problem.

Wan and Li (2014) developed a new Atanassov’s intu-
itionistic fuzzy (A-IF) programming method to solve het-
erogeneous multi-attribute group decision-making problems
with A-IF truth degrees in which there were several types
of attribute values such as A-IF sets (A-IFSs), trapezoidal
fuzzy numbers, intervals and real numbers. In this method,
the preference relations in comparison of alternatives with
hesitancy degrees were expressed by A-IFSs. Hereby, A-IF
group consistency and inconsistency indices were defined
on the basis of preference relations between alternatives. To
estimate the fuzzy ideal solution (IS) and weights, a new
A-IF programming model was constructed on the concept
that the AIF group inconsistency index should be minimized
and should not be larger than the A-IF group consistency
index by some fixed A-IFS. Also, Wan and Li (2015)
developed a new fuzzy mathematical programming method
for solving heterogeneous multi-attribute decision-making
problems based on a linear programming technique for
multi-dimensional analysis of preference. In this method,
interval-valued intuitionistic fuzzy sets (IVIFSs), intuition-
istic fuzzy sets (IFSs), trapezoidal fuzzy numbers, linguistic
variables, intervals and real numbers were used to represent
multiple types of attribute values. The preference relations
between the alternatives given by the decision maker were
expressedby IVIFSsof orderedpairs of alternatives. The con-
sistency and inconsistency indices were defined as IVIFSs
on the basis of comparisons of alternatives with IVIF truth
degrees. The attribute weights and fuzzy ideal solution (FIS)
were estimated through constructing a fuzzy mathematical
programming model, which was solved by the technically
developed method of IVIF mathematical programming.

Wan and Dong (2015) developed a novel interval-valued
intuitionistic fuzzy (IVIF) mathematical programming
method for hybrid multi-criteria group decision making
(MCGDM) considering alternative comparisons with hesi-
tancy degrees. The subjective preference relations between
alternatives given by each decision maker (DM) were formu-
lated as an IVIF set (IVIFS). The IVIFSs, intuitionistic fuzzy
sets (IFSs), trapezoidal fuzzy numbers (TrFNs), linguistic
variables, intervals and real numbers were used to represent
the multiple types of criterion values. The information of the
criterion weights was incomplete. The IVIFS-type consis-
tency and inconsistency indices were defined by considering
the fuzzy positive and negative ideal solutions simultane-
ously. To determine the criterion weights, they constructed
a novel bi-objective IVIF mathematical programming prob-
lem of minimizing the inconsistency index and meanwhile
maximizing the consistency index, which was solved by a
technically developed linear goal programming approach.

Wan et al. (2015) formulated the logistics outsourc-
ing provider selection as a kind of group decision-making

(GDM) problem with intuitionistic fuzzy preference rela-
tions (IFPRs). A new intuitionistic fuzzy linear programming
method was proposed for solving such problems. First,
they constructed an intuitionistic fuzzy linear programming
model to derive priority weights from the IFPRs. Depending
on the construction of the non-membership functions, this
intuitionistic fuzzy linear programming model was solved
by three approaches including the optimistic, pessimistic
and mixed approaches. Then, using TOPSIS (technique
for order preference by similarity to ideal solution), the
experts’ weights were determined objectively. Combining
the experts’ weights with the derived priority weights, the
authors presented a method for GDM with IFPRs.

Xu et al. (2016) investigated a kind of hybrid multiple
attribute decision-making (MADM) problem with incom-
plete attribute weight information and developed a hesitant
fuzzy programming method based on a linear programming
technique formulti-dimensional analysis of preference (LIN-
MAP).

See other works on FNLPP in Candenas and Jiménez
(1996), Dubois and Prade (1978), Fang et al. (1999), Guang-
Yuan and Zhong (1993), Guu andWu (1999), Rommelfanger
et al. (1989), Tanaka and Asai (1984a), Tanaka et al. (1984),
Wan et al. (2017a), Wan et al. (2017b), Wan et al. (2018) and
Zadeh (1975).

See the summary of Sect. 3 in Table 2.

4 Fully fuzzy linear programming problems

Here, we review somemethods for finding approximate solu-
tions of fully fuzzy linear programming problems. First, we
point out certain applications of fully fuzzy linear program-
ming problems.Kim andRoush (1982) presented a theory for
fuzzy flows on networks and found closed formulas giving
necessary and sufficient conditions for existence of admissi-
ble flows and for the maximal admissible flow. Buckley and
Jowers (2008) used such problems for generalizing the fuzzy
min–max capacitated network and then solved this problem
with a randommethod (see Chanas and Kolodziejczyk 1986;
Taha 2010 for other applications in network).

A fully fuzzy linear programming problem (FFLPP) is

(FFLPP)

⎧
⎪⎪⎨

⎪⎪⎩

max(min) z̃ ≈ c̃T x̃
s.t.
Ãx̃“ �, ≈, 	′′ b̃,
x̃ 	 0,

(40)

where Ã = (ãi j )m×n, c̃ = (c̃1, . . . , c̃n)T , b̃ = (b̃1, . . . .,
b̃m)T , x̃ = (x̃1, . . . , x̃n) and ãi j , b̃i , c̃ j ∈ F(R). In this
model, all the variables and parameters are fuzzy numbers.
Next, we want to review some methods on FFLPP.

123



10058 R. Ghanbari et al.

Table 2 Summary of Sect. 3

Name of the authors Model of problem Method of solving

Maleki et al. (2000)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x j

s.t.
n∑

j=1
ãi j x j � b̃i , i = 1, 2, . . . ,m◦

n∑

j=1
ãi j x j 	 b̃i , i = m◦ + 1, . . . ,m,

x j ≥ 0, j = 1, 2, . . . , n.

They changed FNLPP to a crisp problem by using ranking
function, and then, they defined optimality conditions

Mahdavi-Amiri and
Nasseri (2006)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃x

s.t.

Ãx 	 b̃

x ≥ 0.

They proved some duality properties of FNLPP

Ebrahimnejad (2011)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x

s.t.

Ãx � b̃

x ≥ 0.

He generalized the concept of sensitivity analysis in FNLPP

Ebrahimnejad and
Nasseri (2009)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x

s.t.

Ãx 	 b̃

x ≥ 0.

They used complementary slackness for solving FNLPP
without the need for a simplex tablue

Liu (2001) ⎧
⎨

⎩

max (c1x1 + · · · + cn xn )

s.t.
ãi1x1 + ãi2x2 + · · · + ãin xn � b̃, i = 1, . . . ,m
x j ≥ 0, j = 1, . . . , n.

They solved FNLPP by using a method based on
satisfaction degree

Ramik (2006)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ = c̃1x1+̃ · · · +̃c̃n xn,

s.t.

ãi1x1+̃ · · · +̃ãin xn �Pos b̃i , i = 1, . . . ,m

x j ≥ 0, j = 1, 2, . . . , n.

They defined concept of (α, β)-solution for FNLPP and
then established some properties of duality

Nakahara and Gen (1993)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ = ∑n
j=1 c̃ j x j

s.t.
∑n

j=1 Ãi j x j � B̃i , i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

They solved the FNLPP by using the ranking obtained by
the proposed ranking criterion

Jimenez et al. (2007)

⎧
⎪⎨

⎪⎩

min z = c̃T x

s.t.

x ∈ ℵ( Ã, b̃) = {x ∈ R
n+|ãi x 	 b̃i , i = 1, . . . ,m}

They used a fuzzy ranking method to rank the fuzzy
objective values and to deal with the inequality constraints

Yu and Li (2001)
⎧
⎪⎪⎨

⎪⎪⎩

max c̃1x1 + c̃2x2 + . . . + c̃n xn
s.t.
n∑

i=1
ãi j x j � b̃ j .

They proposed an algorithm to treat a binary linear
programming problem with fuzzy coefficients in the
objective function, fuzzy coefficient in the constraint
matrix, and fuzzy numbers in the right-hand side of the
constraints

Wu (2003)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min (c1 ⊗ x1) ⊕ · · · ⊕ (cn ⊗ xn)

s.t.

(ãi1 ⊗ x1) ⊕ · · · ⊕ (ãin ⊗ xn) 	 b̃i ,

i = 1, . . . ,m

x1, . . . , xn ≥ 0.

He generalized the concept of duality for FNLPP
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Table 2 continued

Name of the authors Model of problem Method of solving

Wu (2008) ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min (c̃1 ⊗ x1) ⊕ · · · ⊕ (c̃n ⊗ xn)

s.t.

(ai1 ⊗ x1) ⊕ · · · ⊕ (ain ⊗ xn) + bi ≤ 0,

i = 1, . . . ,m

x1, . . . , xn ≥ 0.

He solved FNLPP by using α-levels

Rommelfanger et al. (1989)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

i=1
c̃i xi

s.t.

Ax ≤ b

x ≥ 0.

They solved FNLPP by using α-levels

Jamison and Lodwick (2001)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ = c̃T x,

s.t.

Ãx ≤ b̃

x ≥ 0.

They used a penalty approach for solving the FNLPP

Chanasa and Zielińskib (2000)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ = ∑n
j=1 c̃ j x j

s.t.
∑n

j=1 ai j x j ≤ bi , i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

They obtained sufficient conditions on a fuzzy
preferencerelation allowing for the reduction in the
problem of determining non-fuzzy non-dominated
solutions to that of determining the optimal solutions of a
classical linear programming problem

Zhang et al. (2005)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x

s.t.

Ãx � b̃,

x ∈ R
m+.

They established some results on duality and derived the
KKT conditions for FNLPP

Buckley (1988)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (min)z̃ ≈ c̃T x

s.t.

Ãx � b̃,

x ≥ 0.

He proposed an efficient method for solving a possibilistic
programming problem

Zhong and Guang-Yuan (1993)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x

s.t.

Ax ≤ b

x ≥ 0.

They solved a FNLPP with random variable objective
coefficient by changing the problem into two crisp
problems

Maeda (2001)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ ∑n
i=1 c̃i xi ,

s.t.

Ax ≤ b,

x ≥ 0.

He defined three types of bi-criteria optimization problems
and found optimal solutions

Van Hop (2007)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ ∑n
j=1 c̃ j x j

s.t.
∑n

j=1(ãi j )x j � b̃i , i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n.

He used the penalty method for any violation of the
constraints instead of ranking operations; the proposed
method provides a simple deterministic linear
programming model, which can be solved easily by
standard optimization packages

Chiang (2001)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ ∑n
j=1 c j x j

s.t.
∑n

j=1 ãi j x j � b̃i , i = 1, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

He used level (1− α) fuzzy numbers or level (1− β, 1− α)

interval-valued fuzzy numbers to derive fuzzy linear
programming problem and used signed distance
programming ranking to defuzzify fuzzy problem. Then,
he used simplex method to find the optimal solution
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Table 2 continued

Name of the authors Model of problem Method of solving

Farhadinia (2014)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min ˜̃z ≈ ˜̃cT x
s.t.
˜̃Ax ≥ ˜̃b
x ≥ 0.

He considered a fuzzy linear programming problem
involving the level (hL , hU )-interval-valued trapezoidal
fuzzy numbers as parameters. He studied the sensitivity
analysis for level (hL , hU )-interval-valued trapezoidal
fuzzy number linear programming problems

Wan and Dong (2014)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min ˜̃z ≈ ˜̃cT x
s.t.
˜̃Ax ≥ ˜̃b
x ≥ 0.

In their method, trapezoidal fuzzy numbers were used to
capture imprecise or uncertain information for the
imprecise objective coefficients and/or the imprecise
technological coefficients and/or available resources. An
auxiliary multi-objective programming problem was
constructed to solve the corresponding possibility linear
programming problem with trapezoidal fuzzy numbers

Dong and Wan (2018) ⎧
⎨

⎩

max z̃ =
m∑

i=1
ũi xi

s.t. x = (x1, . . . , xm)T ∈ X .

Their proposed method is not only mathematically rigorous,
but can also sufficiently consider the acceptance degree of
the violated fuzzy constraints. The effectiveness and
superiority of the proposed method were verified using a
fuzzy knapsack problem and an investment problem

Kumar et al. (2010) proposed a method for finding the
fuzzy optimal solution of FFLP problems. They presented
their model as (40) with all parameters and variables being
triangular fuzzy numbers. Then, using some properties of
fuzzy numbers (see Kaufmann and Gupa 1986; Liou and
Wang 1992) and fuzzy arithmetic, they presented a method
for solving the FFLP problems. In their method, they first
converted all the inequalities into equality constraints and
then substituting c̃ = (c j )1×n, Ã = (ãi j )m×n, x̃ = (x̃ j )n×1

and b̃ = (b̃i )m×1, they obtained the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x̃ j

s.t.
n∑

j=1
ãi j x̃ j ≈ b̃i , i = 1, . . . ,m

x̃ j ≥ 0̃, j = 1, . . . , n.

(41)

All parameters and variables being fuzzy numbers, they
rewrote (41) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
(p j , q j , r j ) ⊗ (x j , y j , z j )

s.t.
n∑

j=1
(ai j , bi j , ci j ) ⊗ (x j , y j , z j ) ≈ (bi , gi , hi ), i = 1, . . . ,m

(x j , y j , z j ) ≥ (0, 0, 0),

(42)

where ⊗ denotes a fuzzy multiplication. Finally, they
changed (42) into a crisp problem by use of arithmetic oper-
ations and a ranking function. Then, they found the optimal
solution of (42) by solving crisp problem.

Recently, Ganesan andVeermani (2006) introduced a type
of fuzzy linear programming problem in which the elements
of the coefficients, the constraints matrix and the right-hand
side all being represented by symmetric trapezoidal fuzzy
numbers. Nasseri et al. (2013) named this kind of problem
as semi-fully fuzzy linear programming problem (SFFLPP).
An SFFLPP is defined as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min z̃ ≈ c̃T x̃

s.t.

Ãx̃ 	 b̃,

x̃ 	 0̃,

(43)

where b̃ ∈ F(Rm), c̃ ∈ F(Rn) and Ã ∈ F(Rm×n) are given
and x̃ ∈ F(Rn) is to be determined. The authors first pointed
out the shortcomings of primal basic feasible solutions and
the dual simplex method. To alleviate the shortcomings, the
authors proposed a method to determine fuzzy optimal solu-
tion of the problem and showed some advantages of the
proposed method over other methods.

Kumar et al. (2011) also proposed amethod for finding the
fuzzy optimization solution of FFLP problems with equal-
ity constraints and compared it with the existing method of
Kumar et al. (2010). However, Saberi Najafi and Edalatpanah
(2013) showed theKumar et al.’smodel not to be correct, gen-
erally, and a new alternative version was provided. Kumar
and Kaur (2011) proposed a method for solving FFLPP.
Their method named as Mehar’s method was proposed for
solving FFLP problems, and it was shown that the Mehar’s
methodwas easier to apply as compared to the existingmeth-
ods. Bhatia and Kumar (2012) showed the advantages of

123



Fuzzy linear programming problems: models and solutions 10061

Mehar’s method over existing methods, some fuzzy sensitiv-
ity analysis problemswhichmay not be solved by the existing
methods were solved by using the Mehar’s method.

Kaur and Kumar (2014) formulated a fully fuzzy critical
path as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

(i, j)∈A
(t̃i j ⊗ x̃i j )

s.t.
∑

j :(i, j)∈A
x̃i j = 1̃, i = 1,

∑

i :(i, j)∈A
x̃i j = ∑

j :( j,k)∈A x̃ jk, i �= 1, k �= n,

∑

i :(i, j)∈A
x̃i j = 1̃, j = n,

where x̃i j is a nonnegative fuzzy number for each (i, j) ∈ A,
with A being a set of activities (i, j) and all the parameters
being LR flat fuzzy numbers. The authors changed FFLPP
to crisp problem by using ranking function and arithmetic
operations.

Hashemi et al. (2006) considered the FFLP problem as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x̃ j

s.t.
n∑

j=1
ãi j x̃ j � b̃ j , i = 1, . . . ,m,

x̃ j 	 (0, 0)L , j = 1, . . . , n,

(44)

where ãi j = (ai j , αi j )L , b̃i = (bi , βi )L , c̃ j = (c j , ω j )L
and the decision variables x̃ j = (x j , γ j ) are all symmetric
fuzzy numbers. In order to obtain an optimal solution of (44),
at first they determined the set of all feasible solutions that
maximized the mean value of the fuzzy objective. Then, at
the next phase, they minimized the standard deviation of the
original fuzzy objective function subject to the set obtained at
the first phase. Then, they generalized the concept of duality
and appropriated the duality theory to the FFLP problem.

Hosseinzadeh Lotfi et al. (2009) considered symmetric
fuzzy variables. In their work, the fuzzy triangular number
was approximated by the nearest symmetric fuzzy triangular
number. They considered an FFLP model as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z̃ ≈ (cc̃, wL
c̃ , wR

c̃ ) (cx̃ , wL
x̃ , wR

x̃ )

s.t.
(cÃ, wL

Ã
, wR

Ã
)(cx̃ , wL

x̃ , wR
x̃ ) = (cb̃, w

L
b̃
, wR

b̃
)

cx̃ − wL
x̃ ≥ 0,

where x̃ = (cx̃ , wL
x̃ , wR

x̃ ), b̃ = (cb̃, w
L
b̃
, wR

b̃
), Ã =

(cÃ, wL
Ã
, wR

Ã
), c̃ = (cc̃, w

L
c̃ , wR

c̃ ). Then, the authors reduced

the above problem into two crisp linear problems. They found
the optimal solution of FFLPP by using the solutions of these
two problems.

Ezzati et al. (2015) considered a standard form of FFLP
problem as follows:

⎧
⎨

⎩

max(min) c̃T x̃
s.t.
Ãx̃ ≈ b̃,

where all fuzzy numbers were triangular fuzzy numbers.
Then, based on a new lexicographic ordering, a novel
algorithm was proposed to solve the FFLP problem by
converting it to an equivalent multi-objective linear program-
ming (MOLP) problem and solved it by the lexicographic
method. It was shown that the lexicographic optimal solu-
tion of theMOLP problem could be considered as an optimal
solution of the FFLP problem. Ezzati et al. (2015) also
claimed that the fuzzy optimal solution of FFLP problems
with inequality constraints can also be obtained by the same
algorithm by transforming it into FFLP problems with equal-
ity constraints, but Bhardwaj and Kumar (2015) proved that
the FFLP problems with inequality constraints cannot be
transformed into FFLP problems with equality constraints,
and hence, the algorithm, proposed by Ezzati et al. (2015) to
find the fuzzy optimal solution of FFLP problemswith equal-
ity constraints, cannot be used for finding the fuzzy optimal
solution of FFLP problems with inequality constraints.

Kaur and Kumar (2013) proposed the product of unre-
stricted LR flat fuzzy numbers and then offered a method
for solving FFLP problems. It was also shown that the FFLP
problems which could be solved by the existing methods
could also be solved by a method named Mehar’s method.

Kaur and Kumar (2012) pointed out the limitations of the
method of Kumar et al. (2011) and proposed a newmethod to
find the exact fuzzy optimal solution of the following types
of problems:

(i) FFLP problems with equality constraints having non-
negative fuzzy coefficients and nonnegative fuzzy variables.

(ii) FFLP problems with equality constraints having unre-
stricted fuzzy coefficients and nonnegative fuzzy variables.

(iii) FFLP problems with equality constraints having non-
negative fuzzy coefficients where some or all the fuzzy
variables were unrestricted.

Baykasoglu and Subulan (2017) presented a novel method
based on the constrained fuzzy arithmetic concept to solve
FFLP as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z̃ =
S∑

i=1

D∑

j=1
c̃Ti j x̃i j

s.t.
D∑

j=1
x̃i j � C̃api , ∀i

S∑

j=1
x̃i j 	 D̃e j , ∀ j

x̃i j 	 0̃, ∀i ∈ S, ∀ j ∈ D

(45)

where S and D denote the total number of sources and des-
tinations, respectively. Moreover, C̃api and D̃e j represent
the unit transportation cost from source node i to destina-
tion node j , product availability of source i and demand
of destination j , respectively. In their proposed method, the
requisite crisp and/or fuzzy constraints between the base vari-
ables of the fuzzy components are provided from the decision
maker according to his/her exact or vague judgments. There-
after, fuzzy arithmetic operations are performed under these
requisite constraints by taking into account the additional
information while transforming the fuzzy transportation
model into crisp equivalent form. Therefore, various fuzzy
efficient solutions can be generated bymaking use of the pro-
posedmethod according to the decisionmaker’s risk attitude.
In order to present the efficiency/applicability of the proposed
method, different types of fully fuzzy transportation prob-
lems were generated and solved as illustrative examples. A
detailed comparative study was performed with other meth-
ods available. The computational analysis has shown that
relatively more precise solutions were obtained from the pro-
posed method for “risk-averse” and “partially risk-averse”
decision makers. Their proposed method successfully pro-
vided fuzzy acceptable solutions for “risk seekers” with high
degree of uncertainty similar to the other existing methods
in the literature.

Baykasoglu and Subulan (2015) presented a detailed
review and an analysis of the solution procedures devel-
oped for solving fully fuzzy linear programming problems
with fuzzy decision variables. Furthermore, a new paramet-
ricmethod incorporating the decisionmaker’s attitude toward
risk was proposed.

Zhong et al. (1994) proposed a fuzzy random program-
ming problem with fuzzy random variable coefficients and
fuzzy pseudo-random decision vector as follows:

⎧
⎨

⎩

min c̃T x̃
Ãx̃ � B̃
x̃ 	 0̃,

(46)

where Ã = (ãi j )m×n , B̃ = (b̃1, . . . , b̃m)T , c̃ = (c̃1, . . . ,
c̃n)T , x̃ = (x̃1, . . . , x̃n)T , with ãi j , b̃i , c̃ j ∈ F(R). By
interpreting x̃ 	 0̃ with (x̃ j )α ≥ 0, for any α ∈ (0, 1],
j = 1, . . . , n, the relation ≤ was then defined by

f ≤ g ⇔ fα ≤ gα, ∀α ∈ (0, 1].

The authors showed that a fuzzy pseudo-random (respec-
tively, fuzzy random) optimization solution of a fuzzy
random linear programming problem might be resolved into
a series of pseudo-random (respectively, random) optimiza-
tion solutions of a related random linear program. They
then presented methods to structure a fuzzy pseudo-random
(respectively, fuzzy random) optimization solution of a fuzzy
random linear program by a class of pseudo-random (respec-
tively, random) optimization solutions of the related random
linear program. Then, they established some results to solve
the problems by finding the fuzzy probability distribution
function and fuzzymathematical expectation of optimization
value for fuzzy random linear programs. The results revealed
some properties of fuzzy random linear programs and pro-
vided a solution method. See other works of FFLP problems
in Ghatee and Mehdi Hashemi (2007). We close this section
by giving a summary in Table 3.

5 Heuristic algorithms for fuzzy linear
programming problems

The need for solving real problems of ever greater dimen-
sions, the impossibility of obtaining exact solutions in all
cases and the need to provide appropriate approximate solu-
tions for a host of practical cases (sequencing problems,
design of routes, location, etc.) have all led to the growing
use of heuristic-type algorithms as valuable tools to provide
resultswhich exact algorithms are not likely to provide. Here,
wefirst discuss someheuristic algorithms developed for solv-
ing the corresponding crisp problems of the original fuzzy
problems. We then conclude this section by a new approach
for solving fuzzy problems directly, without converting them
to crisp problems.

Lin (2008) proposed a genetic algorithm (GA) for solv-
ing a linear programming problem with fuzzy constraints as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z = ∑n
j=1 c j x j

s.t.
∑n

j=1 ãk j x j � b̃k, k = 1, . . . ,m,

x j ≥ 0, j = 1, 2, . . . , n,

(47)

where � stands for a fuzzified version of ≤, with the mean-
ing that some constraints may be violated. The decision
maker accepts small constraint violations but attaches differ-
ent degrees of importance to violationof different constraints.
Thus, the fuzzy constraints are defined by membership func-
tions,

μk : R
n → [0, 1], k = 1, . . . ,m.
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Table 3 Summary of Sect. 4

Name of the authors Model of problem Method of solving

Kumar et al. (2010)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
(p j , q j , r j ) ⊗ (x j , y j , z j )

s.t.
n∑

j=1
(ai j , bi j , ci j ) ⊗ (x j , y j , z j )

�≈	 (bi , gi , hi ), i = 1, . . . ,m

(x j , y j , z j ) ≥ (0, 0, 0).

They changed FFLPP to a crisp problem by using
ranking function and arithmetic operations

Ganesan and Veermani (2006)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z̃ ≈ c̃T x̃

s.t.

Ãx̃ 	 b̃,

x̃ 	 0̃.

They solved a symmetric FFLPP without converting
it to a crisp problem

Kumar et al. (2011)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max z̃ ≈ ∑n
j=1 c̃ j x̃ j

s.t.
n∑

j=1
ãi j x̃ j ≈ b̃ j , i = 1, . . . ,m

x̃ j 	 0̃, j = 1, . . . , n.

They changed FFLPP to a crisp problem by using a
ranking function and arithmetic operations

Kaur and Kumar (2014)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

(i, j)∈A
(t̃i j ⊗ x̃i j )

s.t.
∑

j :(i, j)∈A
x̃i j = 1̃, i = 1,

∑

i :(i, j)∈A
x̃i j = ∑

j :( j,k)∈A
x̃ jk , i �= 1, k �= n,

∑

i :(i, j)∈A
x̃i j = 1̃, j = n.

They proposed a method to find the fuzzy optimal
solution of FFLP problems and discussed validity
and advantages of their method

Hashemi et al. (2006)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max z̃ ≈
n∑

j=1
c̃ j x̃ j

s.t.
n∑

j=1
ãi j x̃i j � b̃ j , i = 1, . . . ,m,

x̃ j 	 (0, 0)L , j = 1, . . . , n.

They generalized the concept of duality and
appropriated the duality theory to the FFLP
problem

Hosseinzadeh Lotfi et al. (2009)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ (cc̃, wL
c̃ , wR

c̃ ) (cx̃ , wL
x̃ , wR

x̃ )

s.t.

(cÃ, wL
Ã
, wR

Ã
)(cx̃ , wL

x̃ , wR
x̃ ) = (cb̃, w

L
b̃
, wR

b̃
)

cx̃ − wL
x̃ ≥ 0.

They reduced FFLPP into two crisp linear programs.
They found the optimal solution of FFLPP by
using the solutions of these two programs

Ezzati et al. (2015)
⎧
⎪⎨

⎪⎩

max(min) z̃ ≈ c̃T x̃

s.t.

Ãx̃ ≈ b̃.

They proposed an approach for solving FFLPP by
converting it to an equivalent multi-objective linear
programming problem and solved it by the
lexicographic method

Kaur and Kumar (2013)
⎧
⎪⎨

⎪⎩

max(min) z̃ ≈ c̃T x̃

s.t.

Ãx̃ �≈	 b̃.

They solved FFLPP by using a method named
Mehar’s method

Kaur and Kumar (2012) ⎧
⎪⎨

⎪⎩

max(min) z̃ ≈ c̃T x̃

s.t.

Ãx̃ �≈	 b̃.

They proposed a method to find the exact fuzzy
optimal solution

Zhong et al. (1994)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min c̃T x̃

s.t.

Ãx̃ � b̃

x̃ 	 0.

They presented methods to structure a fuzzy pseudo-
random optimization solutions of the related
random linear program
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Each μk gives the degree of lack of precision in the coef-
ficient values expressed by the decision maker. Lin (2008),
for the fuzzy linear programming problem (47), did not use
membership functions to define fuzzy numbers ãk j and b̃k ,
j = 1, . . . , n, k = 1, . . . ,m; nor did he use penalty costs for
the constraint violations. Instead, he used a genetic algorithm
(GA) to approximate fuzzynumbers for the fuzzy coefficients
in the constraints. The proposed approach is described next.
Let triangular fuzzy number w̃ = (w − Δ1, w,w + Δ2)

(0 ≤ Δ1 ≤ w, 0 ≤ Δ2 ≤ w) be replaced by an arbitrary
fuzzy set W̃ in a given interval [a, b]. Then, Lin divided the
interval [a, b] into t partitions as

pi = a + i
b − a

t
, i = 0, 1, . . . , t,

naming pi as the partition point. Let the membership grade
of W̃ at pi be W̃ (pi ) = μi , i = 0, . . . , t , with μi ∈ [0, 1].
Then, a discrete fuzzy set is obtained as follows:

W̃ = (μ0, μ1, . . . , μt ) = μ0

p0
+ μ1

p1
+ · · · + μt

pt
.

For each coefficient in (47), the decision maker can provide
some leeway in the constraints in order to perform flexible
linear programming. Assume that w̃ is a triangular fuzzy
number or a triangular-shaped fuzzy number defined on the
interval [w − Δ,w + Δ] (0 < Δ < w). This interval is
further equally divided into t partitions. Let

pi = w − Δ + i × 2Δ

t
, i = 0, 1, . . . , t

be the partition points and let W̃ (pi ) = μi ∈ [0, 1],
i = 0, 1, . . . , t , be the membership grades of the pi in an
arbitrary fuzzy set W̃ . Thus, we obtain a discrete fuzzy set
W̃ = (μ0, μ1, . . . , μt ), with each μi , i = 0, 1, . . . , t , being
a random number in [0, 1]. Lin finds an estimated value of
w in [w − Δ,w + Δ] via GA. After computing the cen-
troid of the fuzzy number w̃ defined on the discrete fuzzy set
W̃ = (μ0, μ1, . . . , μt ), the estimated value w∗ is defined to
be

w∗ =
∑μi

i=0 pi × μi
∑t

i=0 μi
.

Lin (2008) also made use of a function N (x) = y. Having
membership values N (xi ), i = 0, 1, . . . , t, the fuzzy func-
tion can then be defined by

N (x̃) = N (μ0, . . . , μt ) = μ0

N (x0)
+ · · · + μt

N (xt )
, (48)

and the centroid can be defined by (the fitness value of each
chromosome)

θ(N (x̃)) =
∑t

i=0 N (xi )μt
∑t

i=0 μi
. (49)

Following this concept, (47) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max z = ∑n
j=1 c j x j

s.t.
∑n

j=1 a
∗
k j x j ≤ b∗

k , , k = 1, 2, . . . ,m,

x j ≥ 0, j = 1, . . . , n.

The estimated value of each fuzzy coefficient ˜akj is calculated
to be

a∗
k j =

∑t
i=0 pi × μ∗

hi
∑t

i=0 μ∗
hi

, (50)

where pi = akj − Δ + i × 2Δ
t , i = 0, 1, . . . , t , is defined on

the interval [akj − Δ, akj + Δ]. Similarly,

b∗
k =

∑t
i=0 pi × μ∗

hi
∑t

i=0 μ∗
hi

, (51)

where pi = bk − Δ + i × 2Δ
t , i = 0, 1, . . . , t , which is

defined on the interval [bk − Δ, bk + Δ]. Note that z is
used as the fitness of each chromosome in GA’s population.
GA is a stochastic search technique based on the principles
and mechanisms of natural genetics and selection (Goldberg
1989).

The proposed GA for solving the fuzzy linear program-
ming problem is stated as follows (see Lin 2008):

1. Generate an initial population: An initial population of
size n is generated randomly from [0, 1]t+1 with each μ

according to the uniform distribution in the closed inter-
val [0, 1]. Let the population be

W̃h = (μh0 , μh1 , . . . , μht ) = μh0
p0

+ μh1
p1

+ · · · + μht
pt

,

where h = 1, 2, . . . , n, μhi is a real number in [0, 1]
and pi is a regular partition point in a given interval,
i = 0, 1, 2, . . . , t . Each individual W̃h , h = 1, 2, . . . , n,
in a population is a chromosome evaluated as follows:

μãk (x)

⎧
⎪⎪⎨

⎪⎪⎩

x−ak+Δk1
Δk1

, ak − Δk1 ≤ x ≤ ak
ak+Δk2−x

Δk2
, ak ≤ ak + Δk2

0, O.W .,
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where ãk = (ak − Δk1, ak, ak + Δk2), 0 ≤ Δk1 ≤ ak ,
0 ≤ Δk2 ≤ ak , 0 ≤ k ≤ n. By using (50) and (51), the
constraints are defined as follows:

n∑

j=1

a∗
k j x j ≤ b∗

k , , k = 1, 2, . . . ,m.

2. Calculate the fitness value for each chromosome: The
fitness value of each chromosome is then obtained from
(49). The chromosomes in the population can be rated in
terms of their fitness values. Let the total fitness value of
the population be T . The cumulative fitness value (par-
tial sum) for each chromosome Sh , h = 1, 2 . . . , n, is
calculated. The intervals, I1 = [0, S1], I j = [S j−1, S j ],
j = 2, 3, . . . , n−1, and In = [Sn−1, Sn] are constructed
for the purpose of selection.

3. Selection and reproduction: In the selection process, a
random number r ∈ [0, T ] is generated. Then, the new
population is produced as follows:

Ỹl=1,2,... =
{
W̃1, if r ∈ I1,

W̃k, if r ∈ Ik, k = 2, . . . , n.

This selection process is continued until the new popula-
tion is created.

4. Performcrossover:The crossovermethodused here is the
one-point method, which randomly selects one cut point
and exchanges the right parts of two parents to generate
an offspring. Let p be the probability of a crossover, 0 ≤
p ≤ 1. It is expected that on the average 80 percent of
the chromosomes will undergo crossover.

5. Perform mutation:Mutation resets a selected position in
a chromosome to a randomly generated real number in
[0, 1]. The number of selected positions for mutation in
the population is related to the mutation rate. Let q be
the probability of a mutation, 0 ≤ q ≤ 1. Usually q is a
very small value, around 0.003, so we expect that, on the
average, 0.3 percent of the total population will undergo
mutation.

Finally, the algorithm is terminated after k generations are
produced. Let the final population be composed of W̃ ∗

1 , W̃
∗
2 ,

. . ., W̃ ∗
n . The maximum fitness value is the best chromosome

in the population. The best chromosome represents the opti-
mal solution for the problem. Let the best chromosome be

W̃ ∗
h = (μ∗

h0 , μ
∗
h1 , . . . , μ

∗
ht )

= μ∗
h0

p0
+ μ∗

h1

p1
+ · · · + μ∗

ht

pt
, 1 ≤ h ≤ n.

Fig. 2 Graphical descriptions of A1 and A2

The estimated value of each fuzzy coefficient ãk j is calculated
as

a∗
k j =

(∑t
i=0 pi × μ∗

hi

)

∑t
i=0 μ∗

hi

, (52)

where pi = akj − Δ + i × 2Δ
t , i = 0, 1, . . . , t , is defined on

the interval [akj − Δ, akj + Δ]. Similarly,

b∗
k =

∑t
i=0 pi × μ∗

hi
∑t

i=0 μ∗
hi

,

where pi = bk − Δ + i × 2Δ
t , i = 0, 1, . . . , t , which is

defined on the interval [bk − Δ, bk + Δ].
Buckley and Feuring (2000) discussed a solution of the

fully fuzzified linear programming (FFLP) problem as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max z̃ ≈ c̃T x̃,

s.t.

Ãx̃ � b̃,

x̃ 	 0,

where parameters and the variables being triangular fuzzy
numbers. They first changed the problem of max(z̃ =
(z1/z2/z3)), z1 < z2 < z3, the fuzzy number value of the
objective function, into a multiple objective problem. So, for
max z̃ they have a multi-objective optimization problem as

[sup z2, sup A2, inf A1],

where A1 is the area under the function in the interval [z1, z2]
and A2 is the area under the function in the interval [z2, z3]
(see Fig. 2). They used sup and inf because there is no guaran-
tee thatmax z2,max A2 ormin A1 exist. Then, they discussed
the method of fuzzy flexible programming to explore the
denominated set for the FFLP problem. Let F be the set of
feasible x̃ = (x̃1, . . . , x̃n) for the FFLP problem. That is,
F contains all x̃ such that x̃ 	 0̃; and

∑n
j=1 ãi j x̃ j � b̃i ,

for 1 ≤ i ≤ m. Buckly and Feuring assumed that c̃i 	 0̃,
ãi j 	 0̃ and b̃i 	 0̃, for all i, j , so that x̃ ≈ 0̃ (fuzzy number
zero) is feasible, that is, F is always non-empty. If x̃ ∈ F,
then they assumed that z̃ = ∑n

i=1 c̃i x̃i is bounded, which
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means, there is M > 0 so that z̃ is a fuzzy subtest of [0, M].
Let sup z2 = b1, sup A2 = b2 and sup A1 = b3, for x̃ ∈ F.
To change the objective on A1 to be supremum instead of
infimum, set A

′
1 = b3 − A1. For max z̃, they then have the

multi-objective problem:

[ sup z2, sup A2, sup A
′
1], x̃ ∈ F.

They used Kerre’s and Chen’s inequalities for evaluating
fuzzy numbers, which insured that the objective function (z̃)
was bounded. Searching for an undominated solution of the
FFLP problem was sufficiently complex that they employed
a directed search technique as an evolutionary algorithm.

They applied the evolutionary algorithm to two classi-
cal fuzzified linear programs to show that it could produce
good approximate solutions. A description of the algorithm
is presented below. The main processes of the evolutionary
algorithm are recombination, mutation and selection. Each
element of the population is described by a set of triangular
fuzzy number, x̃i , i = 1, . . . , n, which is a feasible solution
of the FFLP problem.

In order to minimize the computational expense, each
fuzzy number was represented by three real numbers,
ri0, ri1, ri2 ∈ [xi1, xi3], where ri0 = xi1 and ri3 = xi3 were
the limits of the support of x̃i and ri1 is the central value of
x̃i . In order to compute the sum and product of fuzzy num-
bers, α−cuts for each fuzzy number were calculated. The
α−cuts were used to produce the corresponding sum or prod-
uct. Because the sumandproduct of triangular fuzzy numbers
might not be triangular, but instead triangular-shaped fuzzy
numbers, Buckley and Feuring (2000) stored all the α−cuts
so that they could use triangular-shaped fuzzy numbers in
further calculations. For each population member, additional
value was added to represent the mutation rate. This value
was self-adapted during the evolution process.

The proposed GA for solving the fuzzy linear program-
ming problem is stated as follows:

1. Generate an initial population: Buckley and Feuring
(2000) supposed the population members as vectors π ∈
R
3n+1. Hence, an element of the population looks like

π = (p0, p1, p2, p3, . . . , pn, . . . , p3n−3, p3n−2, p3n−1, σ ),

where σ stands for the mutation rate of the correspond-
ing member. In the above equation, p3i+ j = ri+1, j , for
1 ≤ i ≤ n and 0 ≤ j ≤ 2. Buckly and Feuring used
a population size of 2000 elements. First, all elements
of the population are randomly chosen according to the
constraints. In order to get a suitable starting population,
they randomly choose the central values of x̃i , p3i+1,
close to the solution of corresponding crisp linear pro-

gramming problem. A generated individual is only taken
into population if it satisfies the constraints.

2. Calculate the fitness value for each chromosome: After
initializing, the evolution starts with the selection pro-
cess. During selection, the fitness of the individual is
computed. The fitness of an individual is given by the
objective function

G(z2, A2, A
′
1) = Ḡ1(z2)Ḡ2(A2)Ḡ1(A

′
1),

so that if 0 ≤ c1 < b1, then

Ḡ1(z2) =
⎧
⎨

⎩

0, z2 < c1,
0.1 + 0.9( z2−c1

b1−c1
), c1 ≤ z2 ≤ b1,

1, z2 ≥ b1,

if 0 ≤ c2 < b2, then

Ḡ1(A2) =
⎧
⎨

⎩

0, A2 < c2,
0.1 + 0.9( A2−c2

b2−c2
), c2 ≤ A2 ≤ b2,

1, A2 ≥ b2,

if 0 ≤ c3 < b3, then

Ḡ1(A2) =

⎧
⎪⎨

⎪⎩

0, A
′
1 < c3,

0.1 + 0.9(
A

′
1−c3

b3−c3
), c2 ≤ c3 ≤ b3,

1, A
′
1 ≥ b3.

3. Selection and reproduction: Selection is deterministic. In
evolution strategies, the μ = 300 fittest individuals are
chosen to build the offspring of the next generation by
using recombination and mutation.

4. Perform crossover: The recombination process builds a
temporary generation by applying a crossover operator to
theμfittestmembers of the previous generation. For each
individual of the temporary generation, two parentsπold1

andπold2 are randomly chosen from theμfittest elements
of the previous generation (for details, see Buckley and
Feuring 2000).

5. Perform mutation: The mutation process generates the
new generation by randomly changing the members.

The process continues until the fitness of a population mem-
ber is greater than a positive value or a user-defined number
of generations is reached.

Wang (1997) considered a linear programming problem
with fuzzy resources and crisp objective function as follows:

⎧
⎪⎪⎨

⎪⎪⎩

max cT x
s.t.
Ax ≤ b̃,
x ≥ 0,

(53)
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where x ∈ R
n is the decision vector, A ∈ R

m×n , c ∈ R
n

are crisp constraint matrix and objective vector, and b̃ is the
fuzzy resource vector. The constraint matrix A can be written
as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT
1

AT
2

.

.

.

AT
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where AT
i is the i-th row of matrix A, for i = 1, 2, . . . ,m.

Assuming the decision maker desires the objective values
to be fuzzy, and the membership functions of the objective
function and constraints are non-decreasing continuous lin-
ear functions, let p0 and pi be the tolerances of the objective
function and the i-th resource constraint. Then, the member-
ship functions can be described as follows. For the objective
function, they defined:

μ0(x) =

⎧
⎪⎨

⎪⎩

1, if cT x > z0
1 − (z0−cT x)

p0
, if z0 − p0 ≤ cT x ≤ z0,

0, if cT x < z0 − p0,

and for the i-th resource constraint, i = 1, 2, . . . ,m, they
considered:

μi (x) =

⎧
⎪⎨

⎪⎩

1, if AT
i x < bi

1 − (AT
i x−bi )
pi

if bi ≤ AT
i x ≤ bi + pi ,

0, if AT
i x > bi + pi .

The problem was then rewritten as:

⎧
⎪⎪⎨

⎪⎪⎩

max α

cT x ≥ z0 − (1 − α)p0,
AT
i x ≤ bi + (1 − α)pi , i = 1, 2, . . . ,m,

x ≥ 0, α ∈ [0, 1].
(54)

Generally, a unique optimal solution (x∗, α∗) can be found by
solving the crisp linear programming problem (54) using the
simplexmethod. Let x∗ be the solutionwith the highestmem-
bership degree to the fuzzy programming problem (53). This
means that the best balance of the objective and constraints
has been achieved by the optimal solution x∗. However , the
membership function usually is not the preference function
of the decision maker. It is possible that the unique x∗ is not
desired by the decision maker. On the other hand, a unique
exact optimal solution is meaningless for a fuzzy program-
ming problem, because the original data to be used for the
calculation are imprecise or vague. Wang (1997) proposed

the concept of fuzzy optimal solution of (53) instead of a
unique optimal solution as follows:

S̃ = {(x, μS̃(x))| x ∈ (Rn)+},
μS̃(x) = min{μ0(x), μi (x), i = 1, 2, . . . ,m}, x ∈ (Rn)+,

where (Rn)+ is the nonnegative n-dimensional space. Wang
proved that the fuzzy optimal solution of (53) is a con-
vex fuzzy set. This is a fundamental result for the inexact
approach to linear programming problems with fuzzy objec-
tive and resources. The linear programming problem (54) is
equivalent to the following optimization problem:

max
x∈(Rn)+

μS̃(x) = max{min{μ0(x), μi (x), i = 1, 2, . . . ,m}}.
(55)

The optimization problem (55) can be rewritten as

max
x∈(Rn)+

μS̃(x)

=max

{

0,min

[

1, 1−
(
z0−cT x

)

p0
, 1−

(
AT
i − bi

)

pi

]}

.

(56)

This is an unconstrainedmax−−min optimization problem,
but its objective function is not continuously differentiable.
Thus, it cannot be solved by traditional optimization meth-
ods, and a genetic algorithm (GA) may be applied. Wang
(1997) took the membership function of fuzzy optimal solu-
tion, μS̃(x) ∈ [0, 1], to be the fitness function of the
recommended GA. For a GA, the larger the fitness value, the
higher the probability to produce children. Thus, the indi-
viduals with higher membership degrees have more chances
to reproduce children. The remaining task is how to design
the mutation operator to generate children more fit than their
parents. Wang (1997) recommended the mutation operator
along the weighted gradient direction. The weighted gradi-
ent of μS̃(x) can be given as follows:

G(x) ≡ �μS̃(x) = w0c

p0
−

m∑

i=1

wi Ai

pi
, (57)

where w0, and wi , i = 1, 2, . . . ,m, are, respectively, the
weights of the objective function and the i-th constraint. Let
μmin = min{μ0(x), μi (x), i = 1, 2, . . . ,m}. Then,

wi (x) =
⎧
⎨

⎩

1, μi = μmin,
σ
μi

, μmin < μi < 1,
0, μi = 1,

where σ is a sufficiently small positive number.
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The proposed inexact approach for fuzzy linear program-
ming problem of the objective fuzzy type can find a family
of preferred solutions which give more candidates than exact
solutions. The GA used in this approach takes the mutation
along the weighted gradient direction as a genetic operator.
It can lead most points to the fuzzy optimal solution quickly.
The points in dead area would be eliminated by the propor-
tion selection strategy. The human–computer interaction in
this approach is useful for the decisionmaker to find themost
preferred solution.

The procedure of the approach can be described as fol-
lows:

1. Generate an initial population: The basic idea is to pro-
duce a number of individuals in (Rn)+ randomly.

2. Calculate the fitness value for each chromosome: For
individual j , j = 1, . . . , N , calculate its fitness value
F( j) and selection probability P( j) by

F( j) = μS̃(x( j)) + ε, P( j) = F( j)
∑N

i=1 F(i)
,

where ε is a small positive number (usually, ε = 10−8);
it is used to guarantee a nonzero denominator.

3. Selection and reproduction:The selection process begins
with spinning of the roulette wheel N times.

4. Perform crossover: For each individual of the temporary
generation, two parents are randomly chosen from the
previous generation.

5. Perform mutation: The mutation process generates the
new generation by

xkj = xk−1
j + θG(x(i)),

where G(x(i)) is the weighted gradient direction (57), i
is a selected index, θ is the step length generated by a
random number generator and k is the number of itera-
tions.

The process continues until a user-defined number of gener-
ations is reached. Wang (1997), instead of finding an exact
optimal solution, used a genetic algorithm with mutation
along theweighted gradient direction to find a family of inex-
act solutionswith acceptablemembership degrees. Bymeans
of the human–computer interaction, the solution preferred by
the decision maker can be achieved by a convex combina-
tion of the solutions selected from the family. Finally, Wang
implemented this algorithm and tested the program on some
examples.

Ribeiro and Pires (1999) considered an FNLP problem
with the concept of fuzzy goal and fuzzy constraints first
introduced by Bellman and Zadeh (1970) considering sym-
metry between the objective function and the constraints.

Bellman andZadeh stated that a fuzzy decision can be viewed
as the intersection of fuzzy goal and the problem constraints
since they were all defined as fuzzy sets in the space of
alternatives. The optimal decision is a point at which the
intersection of fuzzy goal and constraints takes themaximum
membership value. The method is usually called the max–
min approach. The maximum model of the fuzzy problem
is:

maxmin
k

μk(x), k = 1, . . . ,m,

whereμk(x) is the k-thmembership value of the goals or con-
straint satisfactions. Note that in Bellman and Zadeh’s model
(Bellman and Zadeh 1970), there is no difference between
the objectives and constraints. Ribeiro and Pires (1999) used
a simulated annealing (SA) algorithm for solving the max–
min problem. According to Kirkpatrick et al. (1984), the four
basic requirements for using an SA algorithm for combina-
torial optimization problems are:

1. Concise description of the problem.
2. Random generation of the changes from one configura-

tion to another.
3. An objective function containing the utility function of

the trade-offs.
4. The initial state, the number of iterations to be per-

formed at each temperature and its annealing scheme (for
a detailed discussions of the algorithm, see Eglese 1990;
Kirkpatrick et al. 1984).

Ribeiro and Pires (1999) developed two implementations
of the SA algorithm, one maximizing the aggregation of
the tolerance intervals (membership values of the goals and
constraints), i.e., the fuzzification of both the objective and
constraints, and the other only handling the fuzzification of
constraints. The objective of the first implementation of the
SA algorithm was to solve a maximization problem by max-
imizing the aggregation of the membership values of the
goals and constraints (Zimmermann 1978). The membership
functions of the fuzzy goal and constraints used in the two
implementations were triangular. For example, for the case
�, the membership function is defined to be

μk(x) =
⎧
⎨

⎩

0, Rk(x) > ck + dk
1 − Rk (x)+ck

dk
, ck < Rk(x) ≤ ck + dk

1, Rk ≤ ck,

where Rk(x) = ∑
j ak j x j or

∑
j g j x j (the akj are coeffi-

cients of the constraints k = 1, . . . ,m, j = 1, . . . , n, the
g j are the coefficients of the objective function and ck, k =
1, . . . ,m, are the right-hand sides of the constraints), and
the dk are the deviations from the crisp values. Ribeiro and
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Table 4 Summary of Sect. 5

Name of the authors Model of problem Method of solving

Lin (2008)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z = ∑n
j=1 c j x j

s.t.
∑n

j=1 ãk j x j � b̃k , k = 1, . . . ,m,

x j ≥ 0, j = 1, 2, . . . , n.

He proposed a genetic algorithm for solving FNLPP

Buckley and Feuring (2000)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max z̃ ≈ c̃T x̃,

s.t.

Ãx̃ � b̃,

x 	 0.

They proposed a genetic algorithm for solving FFLPP

Wang (1997)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max cT x

s.t.

Ax ≤ b̃

x ≥ 0.

They proposed a genetic algorithm for solving FNLPP

Ribeiro and Pires (1999)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min c̃T x

s.t.

Ãx � b̃

x ≥ 0.

They proposed a simulated annealing algorithm for solving FNLPP

Pires (1999) first solved the crisp problem with both the sim-
plex algorithm and SA. The results obtained for the objective
function were the same, though with different solutions for
the variables because there were multiple solutions for the
crisp problem. Second, they tested the fuzzy Zimmermann’s
approach (Zimmermann 2001) with the fuzzy SA approach.
The fuzzy results obtained for the max–min approach with
the SA algorithm were also equivalent to the ones obtained
by Zimmermann’s method.

Liu (2001) presented a new concept of chance of fuzzy
random events and then constructed a general framework for
fuzzy random chance-constrained programming problems.
He also designed a spectrum of fuzzy random simulation
for computing uncertain functions arising in fuzzy random
programming. To speed up the process of handling uncertain
functions, Liu trained a neural network to approximate uncer-
tain functions based on the training data generated by fuzzy
random simulation. He also integrated fuzzy random simu-
lation, neural network, and a genetic algorithm to produce a
more powerful and effective hybrid intelligent algorithm for
solving fuzzy random programming models.

In the reviewedmethods so far, we saw fuzzy optimization
problems converted to crisp problems, but at times it may be
appropriate to solve the fuzzyoptimization problemsdirectly.
Ghanbari et al. (2018) modified Kerre’s method for compar-
ison of LR fuzzy numbers. They gave some new results for
comparison of LR fuzzy numbers and showed how to com-
pare two LR fuzzy numbers, without computing the fuzzy
maximum of the two numbers directly. Using the modified
Kerre’s method, they proposed a new variable neighborhood
search (VNS) algorithm for solving fuzzy number linear pro-

gramming problems. In their algorithm, a local search is
made based on descent directions, which are found by four
incurring mathematical programming problems.

Other approaches for solving fuzzy linear programming
problems by heuristic algorithms can be seen in Buckley
et al. (1999), Buckley (1995), Guu and Wu (2017), Tanaka
and Asai (1984b), Wang and Liang (2004) and Zhang et al.
(2018).

See the summary of Sect. 5 in Table 4.

6 Conclusion

In the conventional linear programming problems, it is
assumed that the parameters of the problem are exactly
known, but there may be some situations in formulating real-
life problems where variables and parameters may not be
known precisely.

Here, we provided a survey of the models, methods and
algorithms for fuzzy linear programming problems (FLPPs)
along with promising research directions. Being a survey,
our work included many references to help readers obtain
more detailed information on issues of interest. First, we tried
FLPPs with fuzzy decision variables. Most methods were
based on different ranking functions and α-cuts. One bug of
ranking functions is that any two numbers Ã = (a, α, β)

and Ã′ = (a, α + γ, β + γ ), for any γ , will have the same
rank and thus are considered to be equal, meaning that the
appropriateness of the method may not generally be justi-
fied. Another bug of these methods is that authors convert
fuzzy linear programming problems to crisp problems, and
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thus, they effectively change the underlying environment for
solving the problems. Then, we explored the FLPPs with
fuzzy parameters (fuzzy numbers in the objective function
and in the definitions of constraints) in three parts. First, we
reviewed some methods based on ranking functions. Next,
we considered problems formulated by fuzzy functions using
the extension principle. After that, making use of the scalar
product definition to define left and right spreads in fuzzyvec-
tors, we discussed a method based on α-levels and penalty
methods. In these methods, authors also change the fuzzy
linear programming problems to crisp problems.

Next, we investigated the FLPPs with fuzzy variables
and parameters. These types of FLPPs were solved by
using approximation methods and some methods based on
α levels. Finally, we discussed some heuristic methods,
like genetic, simulated annealing and variable neighborhood
search algorithms for solving different models of fuzzy lin-
ear programming problems. The considered models by some
authors were the equivalent crisp problems, while a recent
approach solved the fuzzy problems directly.

As interesting areas of further research on fuzzy optimiza-
tion, we point out the followings: investigating the possibility
of developing duality results for direct (not crisp) fuzzy lin-
ear programming models, investigation of various heuristic
methods and their possible effectiveness on various types of
fuzzy optimization problems, development of various direct
methods along with methods of fuzzy comparison, exten-
sive and comprehensive comparisons of the various fuzzy
optimization techniques based on acceptable benchmarks,
characterization of optimal solutions of fuzzy nonlinear opti-
mization problems and development of numerical methods
(iterative algorithms).
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