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Abstract
In this paper, a new hybrid intelligent technique is presented based on the improvement in the feature selection method for

multi-fault classification. The bearing conditions used in this study include healthy condition, defective inner ring,

defective outer ring, and the faulty rolling element at different rotating motor speeds. To form the feature matrix, at first,

the vibration signals are decomposed using empirical mode decomposition and wavelet packet decomposition. Then, the

time and frequency domain features are extracted from the raw signals and the components are obtained from the signal

decomposition. The high-dimensional feature matrix leads to increasing the computational complexity and reducing the

efficiency in the classification accuracy of faults. Therefore, in the first stage of the feature selection process, the redundant

and unnecessary features are eliminated by the FDAF-score feature selection method and the preselected feature set is

formed. The FDAF-score technique is a combination of both F-score and Fisher discriminate analysis (FDA) algorithms.

Since there may exist the features that are not susceptible to the presence of faults, the binary particle swarm optimization

(BPSO) algorithm and the support vector machine (SVM) are used to select the optimal features from the preselected

features. The BPSO algorithm is used to determine the optimal feature set and SVM classifier parameters so that the

predictive error of the bearing conditions and the number of selected features are minimized. The results obtained in this

paper demonstrate that the selected features are able to differentiate the different bearing conditions at various speeds.

Comparing the results of this article with other fault detection methods indicates the ability of the proposed method.

Keywords Bearing fault detection � Feature extraction � FDAF-score method � Binary particle swarm optimization �
Support vector machine

1 Introduction

The fault detection in rotating machinery is one of the most

important topics in the field of fault detection. On the other

hand, bearings are one of the vital components of these

machines, so that the fault of this component may result in

full machine breakdown. Therefore, detecting the presence

of defects and their characteristics in bearings plays an

important role in the maintenance of machinery.

The analysis of vibration signals is one of the common

points of view for the bearing fault diagnosis which has

been particularly interested in researches. The vibration

signals acquired from rotating machinery are nonlinear and

non-stationary. The conventional methods in time and

frequency domain are not able to extract useful information

from these data. In recent years, the advanced intelligent

methods have been developed in the time–frequency

domain for extracting the information of defects.

The vibration data acquired from the rotating

machineries have the high complexity as usual, and many

researchers and engineers have used the concepts such as

artificial intelligence, machine learning, and signal pro-

cessing techniques to detect the occurrence of the fault of

machine. Intelligent fault diagnosis methods for the rotat-

ing machinery include four stages: preprocessing, signal

processing and feature extraction, post-processing, and
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pattern recognition. At the feature extraction stage, the

statistical time and frequency features and the signal pro-

cessing techniques are used to extract the fault-sensitive

features in rotary machines. Among the signal processing

methods, empirical mode decomposition (EMD) (Huang

et al. 1998) and its new versions, wavelet transform (WT)

and wavelet packet decomposition (WPD) (Mallat 1989),

empirical wavelet transform (EWT) method (Gilles 2013),

and intrinsic time-scale decomposition (ITD) (Frei and

Osorio 2007) are widely used in fault detection. The EMD

and ITD methods are adaptive techniques that are able to

decompose each complex and multi-component signal into

a collection of complete or almost mono-components with

physical meanings by considering their local characteristics

such as local maximum and minimum points. The wavelet

transform can provide the excellence local analysis in the

time–frequency/scale domain for the non-stationary sig-

nals. Since defects often appear as impulses that cover a

wide range of frequencies, the WT assigns the large

coefficients to such impulses. WPD is the extended version

of WT that decomposes both the approximation and detail

coefficients, and this fact causes to extract and retain very

useful information contained in high-frequency compo-

nents. In other words, WPD is a very useful tool that has

been widely applied for processing the non-stationary

vibration signals. This technique exploits the meaningful

properties and has a good performance for analyzing both

high and low frequencies.

In the smart fault detection methods, an intelligent

classification system is required to automatically diagnose

and classify the actual state of the rotating machine com-

ponents. To this end, many modern machine learning tools

such as artificial neural network (ANN) (Sperduti and

Starita 1997), support vector machine (SVM) (Vapnik

1995) and adaptive neural fuzzy inference system (ANFIS)

(Jang 1993) have been used. Since the theoretical basis of

the neural network and other conventional artificial intel-

ligent techniques is based on empirical risk minimization

(ERM) principle, these techniques have limitation on

generalization of results in models that can over-fit the

samples. The SVM is a computational supervised learning

method based on statistical learning theory, and to be

implemented is based on the structural risk minimization

(SRM) principle so that the training accuracy and the

capacity of the classifier model are considered. The SVM

has properties such as high accuracy and good general-

ization for smaller number of fault samples. This method

has been extensively studied by researches for recognizing

the rotary machine faults. The development of each of the

intelligent fault diagnosis steps is the subject of many

researches. Some of these researches will be described in

the following.

Lei and Zuo (2009) decomposed the vibration signals by

ensemble EMD (EEMD) method, and then, they improved

the Hilbert–Huang transform based on selecting the sen-

sitive IMFs for extracting the fault features. In papers such

as Jiang et al. (2013), Lei et al. (2017), Li et al. (2015), Xue

et al. (2015), and Guo and Deng (2017), researchers

developed the bearings and gears fault detection method

based on improving the implementation steps of the EMD

and EEMD techniques. Nguyen et al. (2015) presented a

new robust fault detection technique for rolling bearings.

They suggested a new approach based on de-noising using

EMD method, Naive Bayes classifier, and thresholding of

the noisy components. Then, the authors presented a

technique for identifying the bearing condition by utilizing

WPD, Hilbert transform and the envelope spectra of the

signal. Nezamivand Chegini et al. (2019) introduced a new

vibration signal de-noising strategy based on EWT, the

kurtosis factor, and the envelope spectrum analysis for the

bearing fault diagnosis. Tabrizi et al. (2015) introduced a

method for early fault detection in bearings. They de-

noised the signals using WPD and then extracted the

meaningful feature vectors by applying the EEMD method.

Finally, they used the SVM for the bearing fault diagnosis.

In Zhao et al. (2016), in order to improve the de-noising

methods by means of EMD, authors inspired by the noise

cleaning methods in wavelet transform. In this work, two

concepts of the kurtosis and the cross-correlation are used

to select the noisy and meaningful IMFs. Wang et al.

(2017) proposed a self-adaptive filter using the EEMD

method in order to eliminate the noise from vibration sig-

nals acquired from a locomotive damaged bearing. For this

purpose, an adaptive relationship is suggested for com-

puting the number of the sifting process based on the

number of the signal IMFs. The results of their work

demonstrate that the fault characteristics can easily be seen

in the frequency spectrum of the de-noised signal. Bordoloi

and Tiwari (2014a, b, 2015) introduced a multi-classifier

method to classify the multiple faults in gears and bearings.

They optimized the supporting vector machine parameters

by genetic algorithm (GA) and artificial bee colony (ABC)

algorithm before the learning and final testing SVM. In this

work, statistical functions such as kurtosis, standard devi-

ation, and skewness are used as the SVM inputs. Ben Ali

et al. (2015) extracted some features from nonlinear signals

using the EMD method. Then, they used these features for

training the ANN and classifying the bearing faults.

Jedlinski and Jonak (2015) used a method for early fault

detection in the gearbox. They decomposed vibration sig-

nals into wavelet coefficients by means of continuous

wavelet transform (CWT). Then, scales and coefficients of

large values are selected as inputs of the ANN and SVM.

Fu et al. (2019) introduced a novel bearing fault diagnosis

technique based on blind parameter identification of MAR
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model and mutation hybrid gray wolf optimization

(GWO)–sine cosine algorithm (SCA) optimized SVM. The

results of experimental data set indicate the superiority of

their proposed approach.

In other studies, in order to increase the accuracy of the

fault diagnosis, various features such as different levels of

wavelet packet transform, time and frequency domain

features of the components derived from EMD and EEMD

methods were used. However, with increasing the number

of attributes, the feature vector not only includes the useful

features but also contains the insensitive and redundant

features. Increasing the dimension of the feature matrix

leads to the computational complexity and the reduction in

the classification accuracy. In such cases, in order to solve

the dimensionality feature space problem, the feature

selection methods were used in different researches. Fea-

ture selection is one of the matters that is applied in various

fields such as fault detection (Chen and Chen 2015),

machine learning (Banka and Dara 2015), and data mining

(Bhuyan and Kamila 2015). The feature selection methods

are grouped into three categories: the filter method, the

wrapper method, and the hybrid method. In the filter

methods, the weight of each attribute regardless of the

classifier is calculated using a criterion function and the

features with the highest weight are chosen as effective

features, and the rest are eliminated. The wrapper methods

select the features as the optimal feature set that can obtain

the most accuracy for the classifiers. The wrapper method

is superior to the filter method, but its computational cost is

higher. The hybrid method is a combination of both the

filter and the wrapper methods and has the advantages of

both methods (Zeng et al. 2015). Fatima et al. (2015) used

the SVM to study the fault classification in bearings at five

different speeds. Firstly, they extracted twelve statistical

features in the time domain and then used the compensa-

tion distance evaluation technique (CDET) method for

identifying the most informative features as inputs of the

multi-class SVM. Wei et al. (2017) proposed a new signal

processing for bearing fault detection. They extracted the

time and frequency statistical features from the vibration

signal using the WPD and EEMD methods. Then, the

authors presented a novel optimal feature selection method

based on the adaptive feature selection technique and

affinity propagation clustering method. Yan and Jia (2018)

suggested a new multi-fault classification technique for

bearing fault diagnosis in different working conditions. In

this study, the multi-domain feature is extracting using

three strategies: statistical characteristics, fast Fourier

transform (FFT) and variational mode decomposition

(VMD). Then, informative and sensitive features are

selected using the Laplacian feature selection method.

Finally, the PSO-SVM method is implemented for the

identification of rolling bearing conditions. Vakharia et al.

(2016) designed a technique for bearing fault detection in

four conditions: healthy bearing, defected ball, defected

inner race, and defected outer race. In that work, the feature

vector of each signal includes features such as kurtosis,

skewness, mean, root mean square, and Shannon entropy.

Then, most sensitive features are extracted using filter

methods such as chi-square and Relief-F methods. In Ziani

et al. (2017a), a new optimal feature selection method was

presented for bearing fault detection with various types of

faults. In this reference, most effectiveness features were

chosen using the BPSO algorithm. In this study, regular-

ized Fisher’s criterion (RFC) was used as a fitness function

in order to increase the performance of the classification

accuracy. Ziani et al. (2017b) investigated a new feature

selection scheme for the gearbox fault diagnosis. In this

work, statistical characteristics, spectral features, and

coefficients of the WPD and EMD are used for extracting

the feature vector of each signal. In the next step, the most

important features are selected according to three different

algorithms such as the Fisher score, correlation criterion,

and signal-to-noise criterion. Then, the Pareto method was

used to determine the sensitive features. The results of this

study demonstrated that Pareto–Fisher with SVM classifier

leads to high-performance accuracy. Attoui et al. (2017)

introduced a new procedure for identifying bearing fault

conditions such as the damaged ball, inner race, and outer

race at different speeds. They extracted fault features using

WPD and short-time Fourier transform (STFT) methods. In

this work, linear discriminant analysis (LDA) and locality

sensitive discriminant analysis (LSDA) were used as fea-

ture dimensionality reduction techniques and ANFIS was

utilized as a classification system. Zhang et al. (2015)

suggested a pattern recognition technique based on syn-

chronous feature selection and SVM parameters opti-

mization using ant colony algorithm (ACA). This approach

was utilized for identifying the rotating machinery condi-

tions. Lu et al. (2015) presented a new strategy based on

the GA, EMD, and SVM in rotary mechanical fault diag-

nosis. They employed a modified GA with a dynamic

searching strategy for selecting the most representative

features. Shan et al. (2019) suggested a rotating machinery

fault diagnosis method based on improved VMD (IVMD)

and hybrid artificial sheep algorithm (HASA). The authors

utilized IVMD to decompose the vibration data and extract

the feature set. Finally, the HASA is applied to select the

optimal features and optimize the SVM parameters.

In this paper, a new method is presented for the bearing

fault diagnosis with different faults at various motor speeds

based on selecting the optimal feature set and classifying

the faults. Each signal is decomposed into simpler oscil-

lating components by means of the WPD and EMD

methods. To form the feature vector of each raw signal,

time and frequency statistical features related to the raw
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signal, IMFs derived from EMD and the wavelet coeffi-

cients derived from WPD have been extracted. Increasing

the number of features in the feature matrix leads to pro-

duce the unrelated information to bearing conditions. The

optimal feature selection procedure and fault detection

method presented in this paper contain two stages: The first

stage involves eliminating the redundant and inefficient

features that are carried out using a new method called

FDAF-score (Song et al. 2017). In fact, in this step the

FDAF-score method is applied for selecting the useful

features from the original feature set with high dimension.

In the second step, the BPSO algorithm (Kennedy and

Eberhart 1997) is used to determine the most appropriate

features of the preselected feature set and identify the

optimal SVM parameters, simultaneously. In fact, the

proposed feature selection method is a combination of the

wrapper and filter methods. In the optimization process

with BPSO, the optimal feature sets and the SVM param-

eters have been obtained so that the prediction error of the

bearing conditions and the number of optimal features are

minimized. Finally, the proposed method is compared with

other techniques presented in recent years. The results

show that the technique presented in this paper has a good

capability for detecting the bearing defects.

The rest of this paper is organized as follows: EMD

method, feature extraction, FDAF-score method, SVM

classifier, and BPSO algorithm are discussed in Sect. 2. In

Sect. 3, the feature selection scheme and the proposed fault

detection method are presented. In Sect. 4, case studies are

introduced. The results of the proposed method are pre-

sented in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Methods

2.1 Empirical mode decomposition

The acquired vibration signals from the rotating machinery

are always non-stationary, complex, and nonlinear.

Therefore, in order to extract the useful information related

to defects, it is necessary to utilize an appropriate signal

processing method. The EMD method decomposes a

complex signal based on its local behavior into simple

oscillating modes that are called intrinsic mode functions

(IMFs). An IMF has the two following features (Huang

et al. 1998):

1. In total data sets, the number of maximum and

minimum points and the number of zero-crossings

are equal or differ by one.

2. In any data location, the mean value of the upper

envelope determined with the local maximum and

lower envelope determined by the local minimum is

zero.

For given signal x(t), the signal decomposition process

in the EMD method contains the following steps (Huang

et al. 1998):

1. Determine all local maxima and local minima of signal

x(t).

2. Calculate the upper envelope curve by connecting the

local maxima by cubic spline lines. Repeat the same

process for the local minima to obtain the lower

envelope curve.

3. Compute the mean value of the upper envelope and the

lower envelope. This parameter is denoted as m1(t).

4. Identify the difference between signals x(t) and m1(t),

denoted as h1(t):

x tð Þ � m1 tð Þ ¼ h1 tð Þ ð1Þ

5. If h1(t) has two conditions of an IMF, it is considered

as first IMF. Otherwise, h1(t) is considered instead of

the original signal and steps 1–4, called sifting process,

are repeated. After k times repetition of the sifting

process, the first IMF c1(t) = h1k(t) is obtained. In this

study, Cauchy-type convergence is considered as the

stopping criterion in the sifting process:

Dk ¼
PT

t¼0 hk�1
1 tð Þ � hk1 tð Þ

�
�

�
�2

PT
t¼0 hk�1

1 tð Þ
�
�

�
�2

� SD ð2Þ

where SD is considered in interval [0.2, 0.3].

6. By subtracting c1(t) from the original signal x(t), the

residue r1(t) is obtained:

r1 tð Þ ¼ x tð Þ � c1 tð Þ ð3Þ

7. r1(t) is considered as new time series and by repeating

steps 1–6, it can be calculated the intrinsic mode

functions c1, c2, …, cn.

8. When residue rn(t) becomes a monotonic function, in

this case, no more IMF can be extracted and decom-

position procedure is stopped.

Finally, signal x(t) can be expressed as follows:

x tð Þ ¼
Xn

i¼1

ci þ rn: ð4Þ

2.2 Feature extraction

The bearings have nonlinear dynamics behavior, and the

acquired vibrational signals are always non-stationary. If
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only vibration signals are investigated, it cannot be

obtained much useful information about the type and size

of the defects. As a result, the different feature extraction

methods will be used here. In this paper, the following

procedure is employed for forming the feature vector cor-

responding to each signal:

1. From each raw signal, the time-domain statistical

features presented in Table 1 are extracted (features

FV1–FV21).

2. Each vibration signal is decomposed into different

modes using the EMD algorithm. Since the first few

components include more information about defects

than the rest of the IMFs (Tabrizi et al. 2015), in this

study, the first five IMFs are chosen to extract the time-

domain features (features FV22–FV126).

3. From each raw signal, the frequency-domain statistical

parameters presented in Table 1 are extracted (features

FV127–FV130). Also, these features are calculated for

each IMF (features FV131–FV150).

4. The WPD is one of the suitable signal processing

methods and also the feature extraction techniques in

the rotating machinery fault diagnosis. This method

extracts the useful information from non-stationary

signals in the high and low frequencies (Li et al. 2013).

One of the most effective and important parameters in

the WPD is the mother wavelet function. In this study,

similar to (Ziani et al. 2017a), the db44 wavelet is used.

The maximum depth for the decomposition tree is

equal to 3. Therefore, for each signal, fourteen wavelet

coefficients will be obtained. Finally, for each coeffi-

cient, the time-domain statistical parameters according

to Table 1 are calculated (features FV151–FV444).

After extracting the above features, for each signal

sample, a feature vector will be obtained. The elements of

the feature vector are shown in Fig. 1.

The above feature vector is calculated for all signals,

and the new data set is obtained in the general form as

follows:

FM ¼ fm;j;i
� �

;m ¼ 1; 2; . . .;Mii ¼ 1; 2; . . .;C
j ¼ 1; 2; . . .; J:

ð5Þ

Table 1 Time-domain and

frequency-domain features (Ben

Ali et al. 2015)

Time-domain features

Mean ¼ 1
N

PN

i¼1

x ið Þ Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN

i¼1

xi � �xð Þ2
s

Maximum ¼ max x ið Þð Þ
Skewness ¼

1
N

PN

i¼1
xi��xð Þ3

1
N

PN

i¼1
xi��xð Þ2

� �3
2

Minimum ¼ min x ið Þð Þ
Kurtosis ¼

1
N

PN

i¼1
xi��xð Þ4

1
N

PN

i¼1
xi��xð Þ2

� �2

Median ¼ x Nþ1
2ð Þ Crest factor ¼ max abs xð Þð Þ

RMS

Energy ¼ r x tð Þj j2dt Shape factor ¼ xRMS

1
Nð Þ
PN

i¼1
xij j

Entropy ¼ �
PN

i¼1

x2i log x2i
� � Impulse factor ¼ Peak

1
Nð Þ
PN

i¼1
xij j

Range ¼ max xið Þ �min xið Þ Clearance factor ¼ Peak
1
Nð Þ
PN

i¼1

ffiffiffiffiffi
xij j

p� �2

Root mean square ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN

i¼1

x2i

s
Hybrid feature 1 ¼ log Kurtosisþ RMS

0:078

� 	

Peak value ¼ max xij jð Þ
Hybrid feature 2 ¼ log KurtosisCrestfactor þ RMS

0:078

� 	Range

 �

Mean peak ¼ mean total peakð Þ
Tigear� Kaiser energy ¼

PN

i¼1

x ið Þ½ �2�x i� 1ð Þx iþ 1ð Þ
� i

Þ

In these features, x(n) denotes a vibrational signal and n = 1, 2 3, …, N

Frequency domain features

Mean frequency ¼ 1
K

PK

k¼1

s kð Þ Standard deviation frequency ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
f 2
k
s kð Þ

PK

k¼1
s kð Þ

s

Frequency center ¼
PK

k¼1
fks kð Þ

PK

k¼1
s kð Þ Root - mean - square frequency ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
fk�F15ð Þ2s kð Þ

PK

k¼1
s kð Þ

s

s(k): spectrum, K: number of spectrum lines, fk: frequency value of the of the kth spectrum line
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In this matrix, fm;j;i is the jth feature corresponding to the

mth signal under the ith condition. Mi is the number of

signals under condition i, J is the number of extracted

features for each signal, and C is the number of conditions.

In this paper, J = 444 and C is equal to number of fault

classes.

2.3 Feature selection using FDAF-score method

Consider the data set xn; ynð Þf gNn¼12 X � Y where X 2 RM

is the feature space with M dimensionality and Y ¼
1; 2; . . .;Cf g is the labels of these data. If the space

dimensionality of the features extracted from the training

data is very large, then feature matrix not only includes the

fault-sensitive features, but also the non-sensitive features

will appear in this matrix. In 2017, a new feature selection

approach has been proposed that is called as FDAF-score

(Song et al. 2017). This technique is the combination of

two methods: F-score and Fisher discriminant analysis. The

F-score feature selection method is applicable only for the

data samples with two classes (c = 1, 2). In this technique,

the following criteria are used to select the effective fea-

tures (Guyon et al. 2002):

si ¼
�X1
i � �Xi

� �2þ �X2
i � �Xi

� �2

1
n1�1

Pn1
j¼1 x1i;j � �X1

i

� 	2
þ 1

n2�1

Pn2
j¼1 x2i;j � �X2

i

� 	2 ; ð6Þ

where si is the ith feature, �Xi, �X
1
i , and

�X2
i are the averages of

the ith feature for all classes, class 1, and class 2, respec-

tively. X1
j;i, and X2

j;i are the ith feature of the jth sample of

class 1 and class 2, respectively.

In Song et al. (2017), researchers have used Fisher

discriminant analysis to develop the F-score method from

two classes to multi-class. In FDAF-score, two con-

cepts « average between-class distance » and « within-

class scatter » are used for evaluating each feature. The

average between-class distance is calculated for the kth

feature, i.e., xk as follows:

D xkð Þ ¼
X

1� j\i�C

nj þ ni

N

� 	
�xkj � �xki

� 	2
; ð7Þ

where N is the number of samples, and i and j are class

labels. ni and nj are the number of observations in ith and

jth classes, respectively. �Xk
i and �Xk

j are the averages of

classes i and j for the kth feature.

The within-class scatter is defined as follows:

S xkð Þj¼
1
nj

Pnj
l¼1 xkj

� 	

l
��xkj

� 	2
�min1� l�nj xkj

� 	

l
��xkj

� 	2

max1� l�nj xkj

� 	

l
��xkj

� 	2
�min1� l�nj xkj

� 	

l
��xkj

� 	2 :

ð8Þ

In this equation, j is the class type and nj indicate the

number of samples in the jth class. xkj

� 	

l
is the lth sample

of the jth class corresponding to the kth feature.

Similar to FDA technique, in FDAF-score approach, the

following criterion is used to evaluate the kth feature:

J xkð Þj¼
PC

j¼1 D xkð Þj
PC

j¼1 S xkð Þj
: ð9Þ

The J xkð Þ value represents the degree of the correlation

coefficient of the kth feature with classes 1 to C. The large

J xkð Þ values for feature xk indicate that this feature has

good capability to separate the different classes.

The FDAF-score feature selection process is summa-

rized as follows:

1. Preset the value of the threshold k and the maximum

classification accuracy p.

2. Compute the expressions D xkð Þ and s xkð Þj using

Eqs. (7) and (8) for all features.

3. Compute the ranking index of the features, i.e., J xkð Þ,
by means of Eq. (9) for all the attributes.

4. If J xkð Þ[ k, then the kth feature is appropriate,

otherwise eliminate it.

5. Construct the SVM classifier using the selected feature

subset in step 4. If the classification accuracy reaches

the desired value of P, then pick out the chosen feature

as the optimal feature set. Otherwise, change the value

of k and return to step 4.

6. Repeat the above steps to obtain the prediction

accuracy of P and optimal feature set.

The flowchart of the FDAF-score feature selection

method is presented in Fig. 2.

Fig. 1 Schematic of feature vector elements
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Since the classification accuracy is considered as a

decisive parameter during their feature selection process

using FDAF-score, the capability of this method is under-

standable. The adjusting screw of this method is the

threshold parameter k, which can be changed according to

the predetermined accuracy P.

2.4 Support vector machine

Consider data set xi; yif gNi¼1 labeled as two classes: positive

(yi ¼ þ1) and negative (yi ¼ �1). Suppose that these data

are separable using hyperplane wx ? b = 0. The parame-

ters w and b are normal vector and scalar parameter,

respectively. The training data set satisfies the following

constraints (Vapnik 1995):

wxþ b� þ 1 if yi ¼ þ1 ð10Þ
wxþ b� � 1 if yi ¼ �1: ð11Þ

Here, the goal is to find the parameters b and w so that

the hyperplane maximizes the margin between two planes

wxþ b ¼ þ1 and wxþ b ¼ �1. These parameters can be

achieved by minimizing the expression 1
2
w2. In actual

cases, the data are not linearly segregated. In these situa-

tions, the optimal hyperplane is determined by solving the

following problem:

min
1

2
w2 þ C

XN

i¼1

ni

 !

subject to

:
yi w � xþ bð Þ� 1� ni

ni � 0

�

i ¼ 1; . . .;N; ð12Þ

where ni � 0 and C are slack variable and penalty param-

eter. The above problem is converted into the Lagrangian

dual problem using the Kuhn–Tucker condition. By intro-

ducing the Lagrangian multipliers ai and bi for the problem
constraints (12), the following quadratic optimization

problem is obtained:

minL að Þ ¼
XN

i¼1

ai �
1

2

XN

i¼1

aiajyiyjxi:xj

subject to :

PN

i¼1

aiyi

0� ai �C

8
<

:
i ¼ 1; . . .;N:

ð13Þ

The coefficients ai are obtained by solving the opti-

mization problem (13). Therefore, the nonlinear decision

function for classifying new data can be written as follows:

f xð Þ ¼ sign
XN

i¼1

aiyi xi � xj
� �

þ b

 !

: ð14Þ

The input space with nonlinear classification can be

mapped using a nonlinear vector function (/ xð Þ) into a

high-dimensional feature space, in case the linear classifi-

cation to be possible. Finally, the decision function is

converted to the following form:

f xð Þ ¼ sign
XN

i¼1

aiyiK xi � xj
� �

þ b

 !

; ð15Þ

where K xi � xj
� �

is the kernel function and defined as

follows:

K xi � xj
� �

¼ / xið Þ;/ xj
� �

: ð16Þ

Since the radial basis kernel function (RBF) is widely

employed in the machinery fault detection, so this function

is used in this study (Huang and Wang 2006). The math-

ematical formulation of RBF function is as follows:

K x � xj
� �

¼ exp �
x� xj
�
�

�
�

�
�

�
�2

r2

 !

: ð17Þ

The choice of parameters C and r affects the efficiency

of the SVM method. It can be seen in this study that the

Feature matrix

Predetermine threshold 

Compute D(x) and J(x)

Compute the feature 
ranking criterion J(x)

Using it as the one of the 
preselected feature subset

All features 
traversed?

Preselect feature subset

No

Yes

No

Yes

Fig. 2 Flowchart of the FDAF-score feature selection method (Song

et al. 2017)
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PSO algorithm will be used to find the optimal values for

these two parameters.

Two strategies « one-against-all (OAA) » and « one-

against-one (OAO) » are commonly used to construct the

multi-class SVM. Hsu and Lin (2002) demonstrated that

the SVM-OAO method is more appropriate for practical

applications. Therefore, this strategy is used in this work.

2.5 Binary particle swarm optimization

The particle swarm optimization algorithm is one of the

population-based and the swarm intelligence algorithms

that is used in many practical applications. In this algo-

rithm, the particle concept is used to represent the

responses of a problem. For a d-dimensional problem, each

particle is to be introduced with two numbers: the velocity

and the position vectors. The PSO algorithm consists of

two stages: initialization and calculation. In the initializa-

tion phase, an initial position and an initial velocity are

allocated randomly to each particle. In the calculation

phase, each particle uses its personal best experience

(X~pBest) and the best solution obtained by all particles

(X~gBest) to find its next position and move in the search

space as follows (Shi and Eberhart 1998):

V~i t þ 1ð Þ ¼ wV~i tð Þ þ c1r1 X~pBesti � X~i tð Þ
� �

þ c2r2 X~gBest � X~i tð Þ
� �

ð18Þ

X~i t þ 1ð Þ ¼ X~i tð Þ þ V~i t þ 1ð Þ; ð19Þ

where V~i t þ 1ð Þ and X~i t þ 1ð Þ are the velocity and position

vectors of ith particle in t ? 1 iteration, respectively. r1 and

r2 are random variables in the interval [0,1]. In this paper,

the learning factors C1 and C2 and inertia weight w

according to Nezamivand Chegini et al. (2018) are calcu-

lated as follows:

c1 tð Þ ¼ c1min þ
tmax � t

tmax


 �

c1max � c1minð Þ ð20Þ

c2 tð Þ ¼ c2max þ
tmax � t

tmax


 �

c2min � c2maxð Þ ð21Þ

w tð Þ ¼ wf þ
1þ cos pt

tmax

� 	

2

0

@

1

A

k

wi � wf

� �
; ð22Þ

where C1min, C2min, and Wmin are the minimum values of

C1, C2, and W parameters, respectively. C1max, C2max, and

Wmax are the maximum values of C1, C2, and W parame-

ters, respectively. These parameters are set according to

Nezamivand Chegini et al. (2018).

The BPSO algorithm was introduced by Kennedy and

Eberhart (1997) for solving the optimization problems in

the discrete binary space. Recently, this technique has been

applied in many fault detection researches. In the BPSO

algorithm, each particle is constructed by bits that only

consist of ‘0’ or ‘1’ values. In BPSO similar to PSO, the

velocity of each particle is calculated by Eq. (18). In this

case, X~pBest and X~gBest are vectors that their elements

become ‘0’ or ‘1.’ In this algorithm, the position of each

particle is updated in direction d using the following

equation (Ziani et al. 2017a):

xid t þ 1ð Þ ¼ 1; if randðÞ\s vid t þ 1ð Þð Þ
0; otherwise

�

; ð23Þ

where rand() is a random variable in interval [0,1] and s(x)

is a sigmoid function that is defined as follows:

s xð Þ ¼ 1

1þ e�x
: ð24Þ

3 Proposed intelligent method

The main parts of the new hybrid intelligent method pre-

sented in this paper are: the feature extraction, the feature

preselection using the FDAF-score method, and determi-

nation of the optimal feature set and the optimal SVM

parameters using the BPSO algorithm. The flowchart of

this method is shown in Fig. 3. The steps of the proposed

algorithm are described below:

1. 60 percent of the signals are assigned to « training data

set for parameter estimation », and the rest of the

signals are used for « final test data set ».

2. Feature extraction: According to Subsection 2.2, some

of the features extracted from each signal sample

belong to « training data set for parameter estima-

tion ». Each feature vector corresponding to each

signal consists of the time and frequency domain

features of the original signal, time and frequency

features of the first five IMFs, and time-domain

features of the wavelet coefficients. In this step, 444

features are obtained for each vibration data. The

feature matrix is formed so that its rows correspond to

the signals and columns correspond to the features.

Then, the data for each column are normalized so that

their values place in the interval [0, 1].

3. Feature preselection using the FDAF-score method:

The original feature matrix obtained in step 2 has high

dimensions. If this matrix is used as the SVM classifier

input, the computational cost is increased. In this study,

the FDAF-score feature selection method is applied to

select the primary effective features. Features are

chosen in a way that their scores are larger than the

threshold k = 0.5. The value of k is obtained

experimentally.
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4. The feature matrix with the preselected features is

separated into two new data sets: « training

data » and « validation data ».

5. Selecting the optimal features and improving SVM: In

the third step, some of the redundant features are

eliminated and the rest of the features create the

preselected feature set. In this feature set, there may

exist features that are not sensitive to the presence of

defects. In this stage, the SVM classifier and the BPSO

algorithm are used to select the optimal feature set. On

the other hand, the SVM algorithm has two parameters

such as C and r that can influence the prediction

accuracy of this classifier. In this study, selecting the

optimal feature set and determining the optimal SVM

parameters are done simultaneously. The process of

finding the optimal features and the parameters C and r
using the BPSO algorithm is indicated in Fig. 4.

As shown in Fig. 4, in the first step of the

optimization process, the parameters of the BPSO

algorithm and the interval of variations of the

Final test datasetsParameter estimation datasets

Time domain features & 
Original signal

Frequency domain 
features & Original signal

Time domain features & 
WPD

Time domain features & 
EMD

Frequency domain 
features & EMD

Building feature matrix

Feature matrix normalization

Calculate feature score for all 
feature using FADF-score method 

Select features with scores 
larger than threshold 

Training datasets Validation datasets 

Building SVM & select optimal 
feature sets

Trained SVM with reselected 
features  

BPSO 

Stopping criteria 
reached?

Optimal feature subsets 
& optimized SVM  

Fault diagnosis  

No

Yes

Fig. 3 Flowchart of the proposed method
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parameters C and r are determined. In this paper, the

maximum iteration and the number of particles are set

as MaxIt = 100 and npop = 20, respectively. The

parameters C and r are limited in interval [0.001,

100] and [0.01, 10], respectively. Then, the initial

population is randomly produced and the optimization

process begins.

Each particle in the BPSO is composed of N =

Np ? Nc ? Nr bits for displaying the selection state

of the features and values of C and r parameters. The

value of each bit can be only 0 or 1. A schematic of a

particle is shown in Fig. 5. Np is equal to the number of

the features preselected by FDAF-score. If the value of

bit is ‘1,’ the feature is selected, and otherwise, the

feature is discarded. The Nc and Nr are corresponding

to the number of bits of the C and r parameters,

respectively. The decimal value of C and r can be

obtained via the following equation (Zhang et al.

2018):

xd ¼
PN

i¼1 bit ið Þ � 2ið Þ
2N � 1

xdmax � xdminð Þ þ xdmin; ð25Þ

BPSO parameter initialization, npop, 
MaxIt, xmin, xmax

Particle initialization & 
determine , 

Determine the selected feature indexesCalculate the SVM 
parameters and C with 

Eq. (25)

Building the SVM classifier

Calculate the prediction error

Features number
Reconstructed 

validation data with 
new feature set

Reconstructed 
training data with 
new feature set

Calculate the cost function for 
all particles using Eq. (26)

, 

If iteration < MaxIt?

Update the bits of each particles
Np NC N

0 … 1 1 … 0 1 … 0
1 … 0 0 … 1 0 … 1

...
1 … 0 1 … 0 1 … 1
1 … 0 0 … 1 0 … 1
0 … 1 1 … 0 1 … 0 Optimal feature set 

& optimized SVM

Yes

No

Fig. 4 Flowchart for determining the optimal feature selection and the SVM parameters

Fig. 5 Particle encoding

schematic in BPSO
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where Xd is the decimal representation of the parame-

ters C and r. N is the number of bits. N for C and r is

equal to Nc and Nr, respectively. Interval [xmin, xmax] is

the search space for C and r. In this work similar to

Zhang et al. (2018), NC and Nr are considered 8 and 16,

respectively.

During the optimization process, Np bits in each

particle are assigned to determine the reselected feature

subset from the preselected feature subset. The value of

parameters C and r is computed using Eq. 25. The

training data set and the validation data set are recon-

structed using the reselected features. The SVM clas-

sifier is constructed by the reconstructed training data

and the C and r parameters. Then, the prediction error

of the reconstructed SVM is calculated by the recon-

structed validation data set. To evaluate each particle

during the optimization process, the following objec-

tive function is used. It includes two terms: the pre-

diction error and the number of selected features

(Zhang et al. 2018):

Objective function ¼ 1� að Þ � Errorþ a � R
Np

ð26Þ

where Error is the prediction error of the validation

data set, R is the number of the optimal features, and

Np is the number of the preselected features. Here,

similar to Zhang et al. (2018), the weight coefficient a
is set 0.01. At the end of each repetition of the opti-

mization process, X~gBest indicates the current best

result.

The termination condition of the optimization pro-

cess with BPSO is the maximum iteration. The above

process is repeated until the iteration number is equal

to MaxIt and the bits of all particles are updated using

the position and velocity updating equations. In the

end, the most appropriate feature set and the optimal

SVM parameters are achieved with the maximum

prediction accuracy in the training step.

6. Fault diagnostics: According to Fig. 2, the final test is

used for evaluating the proposed method. The optimal

features obtained at previous step are utilized to form

the feature vectors for the final test data. Finally, the

data class and the bearing conditions are recognized by

the improved SVM classifier.

4 Vibrational data sets

In this study, the bearing vibration signals acquired from

Bearing Data Center of Case Western Reverse University

(Bearing Data Center 2016) have been used to evaluate the

ability of the proposed method and compare its results with

other methods. As shown in Fig. 6, the experimental setup

includes a motor (left), coupling (middle), and dynamotor

(right). The vibration signals used in this article are related

to a bearing of type SKF 6205-2RS JEM. The geometric

characteristics of this bearing are presented in Table 2.

Single-point defects created in the bearings were produced

using electro-discharge machining. These faults were pro-

duced at the inner race, outer race, and rolling element with

the diameters of 0.007 in, 0.014 in, 0.021 in, and 0.028 in

and the depth of 0.011 in. The vibration data were mea-

sured by accelerometers placed at the 12 o’clock position at

the drive end with a sampling frequency of 12 kHz. These

data were recorded for four different loads 0, 1, 2, and 3 in

HP at the rotating speeds 1797 rpm, 1772 rpm, 1750 rpm,

and 1730 rpm, respectively.

Table 3 describes the characteristics of the vibration

data and the case studies used in this work. Case 1 is used

to evaluate the capability of the proposed method in the

early detection of the fault type with the smallest fault

diameter of 0.007 in at different speeds. The aim of

applying case studies 2–4 is to identify the different fault

sizes at the different rotational speeds. The vibration data

sets of the cases 2 to 4 are corresponding to the fault sizes

0.007 in, 0.014 in, 0.021 in, and 0.028 in. For example, the

vibration signals corresponding to different conditions with

two defect sizes 0.007 in and 0.021 in at speed 1750 rpm

are illustrated in Fig. 7. As shown in Fig. 7, the apparent

characteristics of vibration signals, such as shocks and

amplitudes, are dependent on the type and size of the

Fig. 6 Experimental set (Bearing Data Center 2016)

Table 2 Details of ball bearing

6205-2RS JEM SKF (Bearing

Data Center 2016)

Parameter Value (in)

Inside diameter 0.9843

Outside diameter 2.0472

Thickness 0.5906

Ball diameter 0.3126

Pitch diameter 1.5370
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defect. On the other hand, the exact diagnosis of the defect

type and its severity only by examining these characteris-

tics is a difficult problem. Therefore, it is necessary to

develop a powerful feature extraction method and intro-

duce an intelligent fault detection technique that can

diagnose the fault characteristics.

The vibration signals of all classes of case studies used

in this work (see Table 3) were acquired at four speeds of

1730, 1750, 1772, and 1797 in rpm. For example, in Case

1, twenty vibration signals are provided for each operating

condition, i.e., normal state, faulty inner race, faulty outer

race, and faulty rolling element. Also, in each working

condition, five signals corresponding to each rotational

speed (i.e., 1730, 1750, 1772, and 1797 in rpm) are con-

sidered. Finally, with considering all operating conditions,

twenty signals are considered for each rotational speed.

This pattern has been applied to other case studies. The

fault identification results presented in this paper have been

Table 3 Description of case studies used in the proposed method

Case studies Number of

classes

Number of training

samples

Number of testing

samples

Working condition Fault size

(in)

Case 1: fault identification 4 48 32 Normal –

Inner race, outer race and

rolling element

0.007

Case 2: fault level identification for

inner race

5 60 40 Normal –

Inner race 0.007–0.028

Case 3: fault level identification for

outer race

4 48 32 Normal –

Outer race 0.007–0.021

Case 4: fault level identification for

rolling element

5 60 40 Normal –

Rolling element 0.07–0.028

Fig. 7 Vibrational signals under

speed 1750 rpm for four

different cases: a normal,

b inner race (0.007 in), c inner

race (0.021 in), d outer race

(0.007 in), e outer race (0.021

in), f rolling element (0.007 in),

and g rolling element (0.021 in)

10016 S. Nezamivand Chegini et al.

123



obtained by taking into account two important fac-

tors: « various defects with different sizes » and « differ-

ent rotational shaft speeds ».

5 Results and discussion

5.1 Optimal feature selection using
the proposed method

According to the flowchart of the proposed method shown

in Fig. 3, some of the features extracted from each signal

are related to IMFs obtained by the EMD method. For

instance, the first five IMFs of the vibration signals shown

in Fig. 7c, d, which correspond to the faulty inner race and

faulty outer race, are illustrated in Fig. 8.

In the next step, the time-domain and frequency-domain

features have been extracted from the raw signals, the first

five IMFs are obtained by the EMD method, and the dif-

ferent levels are derived by the WPD technique. If the

original feature set with high dimension is used as the SVM

classifier input, then it leads to an increase in the

computational time and a decrease in the efficiency of the

SVM classifier in recognizing the bearing conditions

(Zhang et al. 2018). Therefore, in this work, the FDAF-

score feature selection method is used to identify the

weight of each feature. Then, the features have been

selected which have the weight larger than the threshold

value k = 0.5. In the next step, the preselected features set

has been used as candidates for selecting the optimal fea-

ture set using the BPSO algorithm. Figure 9 illustrates the

weight scores of all features calculated by the FDAF-score

method and the best features determined by the BPSO

algorithm for all case studies described in Table 3. As

shown in this figure, the features FVn6 (entropy of the raw

signal) and FVn171 (Teager–Kaiser energy of the packet (1,

0) coefficients) for case 1, features FVn129 (standard

deviation of the raw signal) and FVn244 (the mean of peaks

of the packet (2, 2) coefficients) for case 2, the features

FVn129 (standard deviation of the raw signal) and FVn366
(entropy of the packet (3, 4) coefficients) for case 3, and

features FVn219 (entropy of the packet (2,1) coefficients),

FVn261 (entropy of the packet (2,3) coefficients), and

FVn408 (entropy of the packet (3,6) coefficients) for the

Fig. 8 IMFs of the bearing

signals: a defected inner race

with fault depth 0.021 in and

b defected outer race with fault

depth 0.021 in
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case 4 have been selected as the optimal feature set. It can

be seen that IMFs of the vibration signals do not appear in

any of the optimal features set. It can be concluded that the

wavelet packet decomposition method is superior to the

empirical mode decomposition in extracting the most

effective features.

The distribution of optimal feature sets for the case

studies used in this paper is plotted and shown in Fig. 10.

As shown in the distribution of the feature vector of the

first case study, by selecting the optimal feature set

obtained by the proposed method, the different fault types

can be well separated. With regard to the distribution of the

optimal feature for all cases, it can be concluded that dis-

tance between the normal condition and the faulty bearing

is high. Another important point in the distribution of the

optimal features is the excellent separation of both dam-

aged and healthy bearings from each other. By investi-

gating the feature vectors of the second and third cases of

study, it is seen that different fault sizes and healthy state

are completely separated from each other for the defected

inner ring and the defected outer ring. But, in the fourth

case study, i.e., defected rolling element, there is an

overlap between two fault sizes 0.007 in and 0.014 in.

5.2 Comparison with other methods

In this section, in order to evaluate the performance of the

proposed method, its results have been compared with the

methods that are described in Table 4. Some of these

methods have been studied by researchers. In method 1

(Yin et al. 2014), the BPSO algorithm has been used to

select the optimal feature set from the high-dimensional

feature set and to optimize the SVM parameters, simulta-

neously. Method 1 has been selected to appraise the effect

of applying the FDAF-score feature selection technique in

the proposed approach in this article. In method 2 (Zhang

et al. 2018), the vibration signals are decomposed using the

ITD decomposition method and the features are ranked by

the Relief-F algorithm, and then, the preselected features

are identified. By comparing the present study with method

2, it can be evaluated the capability of the hybrid methods

FDAF-score ? EMD and Relief-F ? ITD. The method 3 is

similar to the proposed technique. But, in method 3, GA is

used as substitutions of the BPSO algorithm. In method 4,

similar to the proposed method, the feature preselection is

performed by the FDAF-score algorithm and the optimal

feature selection is carried out by the BPSO algorithm. In

this method, the SVM classifier with default parameters is

employed for identifying faults. By investigating the results

of this method, we can study the effect of the optimization

of the SVM parameters on the fault detection accuracy.

In all of the methods described in Table 4, the meta-

heuristics optimization algorithms have been used. Since

meta-heuristic algorithms have a stochastic nature and their

solutions might be distinct for different runs, the proposed

method and other methods explained in Table 4 are run 30

Fig. 9 Weight scores of all

features for all case studies
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times independently. Finally, the results of the fault diag-

nosis accuracy are reported in Table 5 as the average

training accuracy and the average testing accuracy. Also,

the optimal parameters of the SVM method and the most

appropriate features are presented in Table 5.

The interpretation of the results reported in Table 5 is as

follows:

1. Optimal features: In method 1, there is no filter for

removing the unrelated and redundant features. There-

fore, the number of optimal features obtained by

method 1 is higher than that of the other methods.

Since in other methods, there are the preselection

feature processes. Consequently, the number of opti-

mal features obtained by them for all case studies has

been significantly reduced. From Table 5, it can be

seen that the optimal feature number obtained by the

proposed method is 2 for cases 1–3 and 3 for case 4.

2. The fault prediction accuracy: As can be seen in

Table 5, among the methods discussed in this paper,

the fourth method has the least accuracy in predicting

the bearing conditions in both the training and the

testing stages for cases of studies 1–3. In the method 4,

the trained model has been constructed using the

optimal feature set and the SVM classifier with default

Fig. 10 Distributions of the optimal feature sets for all cases

Table 4 Description of the other fault diagnosis method for comparison with the proposed method

Method Description of method

The proposed method Construct the preselected features using FDAF-score method ? determine the optimal features and optimize the

parameters of the SVM classifier using BPSO algorithm ? fault diagnosis by the optimal feature subsets and the

optimized SVM

Method 1 (Yin et al.

2014)

Select the optimal feature subsets from the original feature set with high dimension and optimize the SVM classifier

simultaneously using the BPSO algorithm

Method 2 (Zhang et al.

2018)

Preselect the primary features using Relief-F method ? find the optimal features and optimize the SVM using BPSO

algorithm ? detect the condition of the system by selected features and optimized SVM

Method 3 FDAF-score ? GA ? SVM: In this method, the GA replaces the BPSO algorithm in the proposed method

Method 4 Preselect features using FDAF-score ? select the optimal feature subsets using BPSO ? fault detection using the

final selected features and SVM classifier with the default parameters
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parameters. Therefore, if this model is exerted on the

final testing data, it cannot obtain high accuracy in the

fault diagnosis. Consequently, the compound of fea-

tures and the parameters of SVM influence on the

performance of fault detection.

The proposed method identifies exactly the conditions of

the validation data set in the training step. Another point

that can be found by observing the results of all case

studies is the superiority of the proposed method to the

other methods for detecting the bearing conditions for the

final testing data. This fact indicates the ability of the

FDAF-score and BPSO-SVM methods. According to

Table 5, the method 3 is ranked second among all methods.

In the third method, the GA is used to select the optimal

features and optimize the SVM model. This is while the

BPSO algorithm plays this role in the proposed technique.

The comparison of the proposed technique with method 3

shows that BPSO is superior to GA in the fault detection

process. Of course, it should be pointed out that the results

of the third method are close to the results of the proposed

method.

Also, in Table 5, it can be seen that the proposed

method is more effective and more accurate than the sec-

ond method. In other words, when the FDAF-score method

is used instead of the Relief-F method, the fault detection

accuracy in cases such as case 2 and case 4 increases

significantly. This improvement is insignificant in cases 1

and 3.

When the optimization algorithms with random behav-

ior are used in the intelligent fault detection methods, it is

important to consider the issue of stability of these methods

and the non-scattering of solutions in different implemen-

tations. Here, the standard deviation has been used in order

to investigate the stability of the method presented in this

paper and the methods described in Table 4. For this pur-

pose, these methods are run 100 times independently, and

the standard deviation of the fault prediction results has

been calculated at the final test stage. The results of the

current work and other techniques are presented in Table 6

for all case studies. It should be noted that the low value of

standard deviation for a particular method reflects its

robustness and the non-scattering of the responses obtained

in different runs. As can be seen in Table 6, the data pre-

diction by the proposed approach for all case studies has

the lowest standard deviation than other methods. This

result shows that the method presented in this paper has

very good stability in predicting the status of a signal

sample in different implementations. In other words, the

dispersion of solutions predicted by the present work is less

than that of the other methods.

Table 5 Results of the proposed method and the other fault detection techniques

Case

study

Method Optimal features or

number of features

Optimal parameters Average rate

accuracy in train (%)

Average rate

accuracy in test (%)

Case 1 This study FVn6; FVn171 r = 6.7459, C = 94.5099 100 99.6875

Method 1 171 features r = 8.9005, C = 92.1569 99.72 94.47

Method 2 FVn18;FVn30 r = 9.4753, C = 23.9223 100 97.6042

Method 3 FVn177 r = 7.5172, C = 7.0598 100 99.3750

Method 4 20 features Default parameter 70.4167 70.1042

Case 2 This study FVn129;FVn244 r = 9.1396, C = 60.3926 100 98.9167

Method 1 173 features r = 9.9599, C = 56.0789 96.77 91.58

Method 2 FVn130;FVn433 r = 1.7478, C = 88.6276 100 90.6667

Method 3 FVn219;FVn279 r = 6.7319, C = 85.4903 100 96.6667

Method 4 10 features Default parameter 81.2222 64.5

Case 3 This study FVn129;FVn366 r = 7.3784, C = 23.1380 100 98.6458

Method 1 173 features r = 9.7907, C = 52.1537 99.86 98.02

Method 2 FVn103;FVn255 r = 9.8184, C = 676.8630 99.8611 98.3333

Method 3 FVn10 r = 5.4232, C = 10.9812 100 97.6042

Method 4 25 features Default parameter 99.5833 95.1042

Case 4 This study FVn219;FVn261; FVn408 r = 281.5803, C = 49.4123 100 97.25

Method 1 175 features r = 9.7276, C = 72.9414 98.88 95.66

Method 2 FVn130;FVn134; FVn244 r = 3.2577, C = 36.4712 95.6667 91.1667

Method 3 FVn261;FVn279; FVn263 r = 5.9764, C = 50.1966 100 96.5

Method 4 FVn129;FVn258; FVn261

FVn279;FVn408

Default parameter 94.3333 94.6667
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6 Conclusion

The main subject of this paper is the bearing condition

monitoring with various defects under the different rota-

tional speeds. The analyzed signals are corresponding to

four cases: normal condition, damaged inner race, damaged

outer race, and damaged rolling element. The intelligent

approaches presented in this study, the empirical mode

decomposition (EMD) and the wavelet packet decompo-

sition (WPD), are applied for decomposing and processing

the vibration signals. In the next stage, the time- and fre-

quency-domain features are utilized to construct the feature

matrix. These features are extracted from the raw signal,

the first five IMFs obtained by EMD, and the wavelet

coefficients. The increase in the number of features leads to

producing a high-dimensional feature matrix that may

include meaningless and redundant features. Consequently,

the FDAF-score technique is applied for removing some

insensitive features. Finally, the most informative features

and the optimal parameters of the support vector machine

(SVM) are determined using the binary particle swarm

optimization (BPSO) algorithm, simultaneously.

The results of the proposed method are briefly listed

below:

1. The proposed method is able to select the features that

are sufficiently sensitive in case of the presence of

defects in bearings. These features separate the normal

and faulty conditions very well.

2. The proposed method is able to identify the different

fault sizes for the three faulty states in bearings. In fact,

the optimal features obtained by the hybrid method

FDAF-score ? BPSO are sensitive to the different

fault sizes in each bearing component. Also, the results

demonstrate that the proposed method for detecting the

different fault types with the smallest size or the early

fault detection is superior to the other methods

considered in the literature.

3. The dimensionality problem of the feature space is

solved by utilizing the FDAF-score method for pres-

electing the useful features and the BPSO algorithm for

reselecting the optimal features and improving the

SVM classifier. The results show that the proposed

method is efficient and suitable in selecting the most

appropriate features and diagnosing the bearing condi-

tions. Also, these results indicate the high performance

of the proposed technique compared to other fault

diagnosis methods. This superiority implies the capa-

bility of the SVM, BPSO, FDAF-score, EMD, and

WPD methods in the proposed approach in this article.

4. The fault prediction results show that the proposed

technique has very good stability in different

implementations.
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