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Abstract
The detection and treatment of increasing air pollution due to technological developments represent some of the most

important challenges facing the world today. Indeed, there has been a significant increase in levels of environmental

pollution in recent years. The aim of the work presented herein is to design an intelligent predictor for the concentrations of

air pollutants over the next 2 days based on deep learning techniques using a recurrent neural network (RNN). The best

structure for its operation is then determined using a particle swarm optimization (PSO) algorithm. The new predictor

based on intelligent computation relying on unsupervised learning, i.e., long short-term memory (LSTM) and optimization

(i.e., PSO), is called the smart air quality prediction model (SAQPM). The main goal is to predict six the concentrations of

six types of air pollution, viz. PM2.5 particulate matter, PM10, particulate matter, nitrogen dioxide (NO2), carbon

monoxide (CO), ozone (O3), and sulfur dioxide (SO2). SAQPM consists of four stages. The first stage involves data

collection from multiple stations (35 in this case). The second stage involves preprocessing of the data, including

(a) separation of each station with an independent focus, (b) handle missing values, and (c) normalization of the dataset to

the range of (0, 1) using the MinMaxScalar method. The third stage relates to building the predictor based on the LSTM

method by identifying the best structure and parameter values (weight, bias, number of hidden layers, number of nodes in

each hidden layer, and activation function) for the network using the functional PSO algorithm to achieve a goal.

Thereafter, the dataset is split into training and testing parts based on the ten cross-validation principle. The training dataset

is then used to build the predictor. In the fourth stage, evaluation results for each station are obtained by reading the

concentration of each pollutant each hour for at most 30 days then taking the average of the symmetric mean absolute

percentage error (SMAPE) for 25 days only.

Keywords Air pollutants � Big data � Prediction � Analytical solution � Long short-term memory � Particle swarm

algorithm � Intelligent computation

1 Introduction

Data is one of the most valuable treasures in the world,

forming the basis of different branches of computer sci-

ence. Data refers to any set of objects with organized

features, or specific characteristics of an object or collec-

tion thereof and their features. Data can be of different

types and can be obtained by observation, search, or

recording (Alkaim & Al-Janabi 2020). In general,

researchers dealing with the concept called data science

work in three domains, related to data, intelligence, and

statistics (Buyya et al. 2016). Data science can be divided

into three fields, viz. small, normal, and big/huge data.

Small data is organized into uniform structures such as

tables or lists containing no more than 30 samples and thus

Communicated by V. Loia.

& Samaher Al-Janabi

samaher@itnet.uobabylon.edu.iq

Mustafa Mohammad

musmmus505@gmail.com

Ali Al-Sultan

wsci.ali.yakoob@uobabylon.edu.iq

1 Department of Computer Science, Faculty of Science for

Women (SCIW), University of Babylon, Babylon, Iraq

123

Soft Computing (2020) 24:661–680
https://doi.org/10.1007/s00500-019-04495-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2811-1493
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04495-1&amp;domain=pdf
https://doi.org/10.1007/s00500-019-04495-1


does not follow the normal distribution and cannot be used

for decision-making. On the other hand, normal data is also

structured but does follow the normal distribution and is

thus useful for taking different types of decision such as

clustering, classification, prediction, optimization, etc.

Finally, big data can have different types such as struc-

tured, semistructured, or unstructured, with size ranging

from 1 TB to 1 ZB. Extraction of useful knowledge or

patterns from big data can be achieved by the combination

of the two main concepts of machine learning and cloud

computing.

Deep learning is a branch of modern science that con-

siders multilevel learning processes, where learning is

applied at each level for a specific part of the problem and

aggregation of the corresponding results enables the overall

problem to be solved. It is thus classified as a branch of

artificial intelligence (Liu et al. 2019).

Prediction is a type of decision-making technique where

future events are forecast based on historical information.

Among the three types of prediction technique, viz. tradi-

tional (offering accuracy), self (offering speed), and intel-

ligent (offering both speed and accuracy), this work relates

to the latter (Al-Janabi et al. 2015).

Increasing air pollution caused by technological devel-

opment represents one of the most important challenges

facing the world today. It can be categorized into several

classes depending on its origin, viz. pollution due to living

organisms such as bacteria and fungi in the environment

such as water, air, or soil; chemical air pollution due to an

the imbalance in the ecosystem resulting from chemical

effects, being in the form of solid particles or liquid dro-

plets or gases; and technological, due to a change in the

balance between the components of an ecosystem that

prevents its efficient operation and ability to perform its

natural role in the disposal of pollutants.

2 Related work

The issue of air quality prediction is one of the critical

topics related to human lives and health. The aim of the

work presented herein is to develop a new method for such

prediction based on the huge amount of data that is avail-

able and operating on data series. This section first reviews

previous studies by researchers in this area and compares

them based on the database used in each case, the methods

applied to assess the results, the advantages of each

method, and its limitations.

Ong et al. (2015) used a deep recurrent neural network

(DRNN) reinforced with a novel pretraining system using an

autoencoder, principally designed for time-series prediction.

Moreover, the sensors were chosen within the DRNN

without degrading the accuracy of the predictions by

considering the sparsity of the system. This method was

applied to the prediction of air pollution, in particular for

PM2.5 particulate matter concentration, offering more

accurate results compared with the poor performance

achieved using the noise reduction approach. The results

were evaluated using four measures, viz. the root-mean-

square error (RMSE), precision (P), recall (R), and F mea-

sure. The work presented herein is similar in that it uses the

same technique (RNN), albeit based on the LSTM approach.

Al-Janabi et al. (2015) applied a hybrid system using

genetic neural computing (GNC) to analyze and understand

data corresponding to the concentration of dissolved gases

in four subgroups for analysis based on the IEEE C57.104

specification using a genetic algorithm (GA). The cluster-

ing data was input to the neural network to predict the

different types of errors. The hybrid system generates

decision rules which identify the error accurately. Two

measures were used in that work, viz. the Davies–Bouldin

(DB) index and the mean square error (MSE). The results

indicated that the problem could be solved at lower cost

and that the described method facilitated the prediction

process and enabled a more accurate approach through the

analysis of errors and ways to address them. This work is

similar to that presented herein in that it uses neural net-

works, while the difference lies in the use of the PSO

algorithm combined with LSTM.

Li et al. (2016) described an air quality prediction

method based on a spatiotemporal deep learning (STDL)

model. A stacked autoencoder (SAE) method was applied

to extract inherent air quality characteristics, being trained

using a greedy layerwise method. In comparison with tra-

ditional time-series prediction models, the described model

could predict the air quality at all stations at the same time

and exhibited temporal stability across all seasons. In

addition, a comparison with the spatiotemporal artificial

neural network (STANN), autoregression moving average

(ARMA), and support vector regression (SVR) models was

presented. The results of the model were evaluated using

three measures, viz. RMSE, mean absolute error (MAE),

and mean absolute percentage error (MAPE). The work

presented herein is similar in that the same technique

(RNN) is applied to prediction the air quality indexes, but

now dealing with huge data and also applying the LSTM

approach to enhance the operation of the network.

Li et al. (2017) used a long short-term memory extended

(LSTME) neural network model with combined spatial–

temporal links to predict concentrations of air pollutants. In

that approach, the LSTM layers automatically extract

potential intrinsic properties from historical air pollutant

and accompanying data, while meteorological data and

timestamp data are also incorporated into the proposed

model to improve its performance. The technique was

evaluated using three measures (RMSE, MAE, and MAPE)
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and compared with the STANN, ARMA, and SVR models.

The work presented herein is similar in its use of the LSTM

approach as part of a recurrent neural network structure but

differs in its use of another evaluation measure.

Ghoneim and Manjunatha (2017) described a new pre-

diction model based on deep learning for ozone levels,

considering pollution and weather correlations in an inte-

grated fashion. This deep learning model was used to learn

ozone level features, and trained using a grid search tech-

nique. A deep architecture model is utilized to represent the

ozone level features for the predictions. Experiments

demonstrated that the proposed method offered superior

performance for ozone level predictions. The results of this

study could be helpful for predicting ozone level pollution

in Aarhus City as a model for smart cities, to improve the

accuracy of ozone forecasting tools. The results of the

model were evaluated based on the RMSE, MAE, MAPE,

squared R2, and correlation coefficient. The work presented

herein also uses a memory (LSTM in this case) for pro-

cessing of large data, but differs in that the optimal structure

of the neural network is found by applying a PSO algorithm.

Lifeng et al. (2018) reported that the best predictions of

air quality could be obtained using the GM model (1.1)

with fractional order accumulation, i.e., FGM (1.1), to find

the expected average annual concentrations of PM2.5,

PM10, SO2, NO2, 8-h O3, and O-24 h. The measure used in

that work was the MAPE. Application of the FGM (1.1)

method resulted in much better performance compared

with the traditional GM model (1.1), revealing that the

average annual concentrations of PM2.5, PM10, SO2, NO2,

O8–O3, and O3 24-h will decrease from 2017 to 2020. That

work presented herein is similar in that it predicts the

concentration of air pollutants and finds ways to address

them, but differs in its use of the LSTM method for the

predictions.

Popoola et al. (2018) considered sensor measurements

including SNAQ boxes and network deployment, sensor

measurement validation, and source apportionment to build

a predictive model for the ADMS-Airport tool, using the

concentration of pollutants to determine the air quality

model. The results showed that such a method can be

applied in many environments that suffer from air pollu-

tion, potentially reducing the health effects of reduced air

quality and decreasing cost, as well as for monitoring of

greenhouse-gas emissions. The work presented herein is

similar in that the concentration of air pollutants is deter-

mined, but differs in its use of the LSTM RNN method.

For effective extraction of spatiotemporal features, Wen

et al. (2019) combined a convolutional neural network

(CNN) and LSTM neural network (NN), as well as mete-

orological and aerosol data, to refine the prediction per-

formance of the model. Data collected from 1233 air

quality monitoring stations in Beijing and the whole of

China were used to verify the effectiveness of the proposed

model (C-LSTME). The results showed that the model

achieved better performance than state-of-the-art tech-

nologies for predictions over different durations at various

regional and environmental scales. The technique was

evaluated using three measures (RMSE, MAE, and

MAPE). In comparison, the LSTM approach is also applied

in a RNN in this work, but after having identified the best

structure for the network. In addition, another evaluation

measure is used herein.

Shang et al. (2019) described a prediction method based

on a classification and regression tree (CART) approach in

combination with the ensemble extreme learning machine

(EELM) method. Subgroups were created by dividing the

datasets using a shallow hierarchy tree through the CART

approach. At each node of the tree, EEL models were

constructed using the training samples of the node, to

minimize the verification errors sequentially in all of the

subtrees of each tree by identifying the number of hidden

intestines, where each node is considered to be a root.

Finally, the EEL models for each path to a leaf are com-

pared with the root of each leaf, selecting only the path

with the smallest error to check the leaf. The measures used

in that work were the RMSE and MAPE. This experimental

measurement results revealed that such a method can

address the issue of global–local duplication of the pre-

diction method at each leaf and that the combined CART–

EELM approach worked better than the random forest

(RF), v-(SVR), and EELM models, while also showing

superior performance compared with EELM or k-means-

EELM seasonal. The work presented herein is similar in

that it uses the same set of six air pollution indexes (PM2.5,

O3, PM10, SO2, NO2, CO) but differs in terms of the

mechanism applied to reduce air pollutants, applying the

RNN method.

Li et al. (2019) applied a new air quality forecasting

method and proposed a new positive analysis mechanism

that includes complex analysis, improved prediction units,

data pretreatment, and air quality control problems. The

system analyzes the original series using an entropy model

and a data processing process. The multiobjective multi-

verse optimization (MOMVO) algorithm is used to achieve

the required performance, revealing that the least-squares

(LS)SVM achieved the best accuracy in addition to

stable predictions. Three measures were used for the

evaluation in that work , viz. RMSE, MAE, and MAPE.

The results of the application of the proposed method to the

dataset revealed good performance for the analysis and

control of air quality, in addition to the approximation of

values with high precision. The work presented herein uses

the same evaluation measures but differs in its use of the

LSTM approach in the RNN after identifying the best

structure for the network.

A new method for prediction of air pollution based on intelligent computation 663

123



Table 1 Comparison of previous works

Name Dataset/database Method Evaluation Advantage

Ong et al.

(2015)

Air quality index (AQI)

http://uk-air.defra.gov.uk

DRNN enhanced with

a novel pretraining

method using an

autoencoder

RMSE

P

R

F

(1) Numerical experiments showed that use

of the DRNN with the proposed

pretraining method was superior to

canonical and state-of-the-art autoencoder

training methods for time-series

prediction, compared with the VENUS

PM2.5 prediction system;

(2) NN (known as RNN, in contrast to

FNN) showed very good performance for

modeling temporal structures and was

successfully applied to many real-world

problems

Al-Janabi

et al. (2015)

GNC

BPNN

MSE

(DB)

This work showed that the problem could

be solved at lower cost and that the

method facilitates the prediction process

and provides greater accuracy based on

the analysis of errors and ways to address

them

Li et al.

(2016)

Air quality using PM2.5

http://datacenter.mep.gov.cn/

STDL-based air

quality prediction

method

SAE

RMSE

MAE

MAPE

In contrast to traditional prediction models

for air quality time series, the model

predicted the air quality at all monitoring

stations simultaneously and showed

satisfactory seasonal stability. The

performance of the proposed method was

compared with that of the STANN,

ARMA, and SVR models, revealing that it

was effective and outperformed these

competitors

Li et al.

(2017)

Air quality using PM2.5

http://datacenter.mep.gov.cn/

LSTM RMSE

MAE

MAPE

The model is capable of modeling time

series with long time dependencies and

can automatically determine the optimum

time lags. The performance of the model

was compared with that of six other

models, including the LSTME approach

considered herein, traditional LSTM NN,

STDL, TDNN, ARMA, and SVR

Ghoneim and

Manjunatha

(2017)

CityPulse dataset

http://iot.ee.surrey.ac.uk

(1) Deep learning

approach

(2) In-memory

computing

RMSE

MAE

MAPE

R2

r

The method was evaluated on the CityPluse

dataset and compared with SVM, NN, and

a generalized linear model (GLM).

Comparison of the results revealed that

the proposed model is efficient and

superior compared with existing models

Lifeng et al.

(2018)

Beijing Smog: when Growth Trumps Life

in China (BBC, 2013)

www.bbc.com/news/magazine-21198265

FGM(1,1) RMSE

MAPE

The FGM (1.1) method showed much

higher performance than the traditional

GM model (1.1), revealing that the

average annual concentrations of PM2.5,

PM10, SO2, NO2, O8–O3, and O3 24-h

will decrease

Popoola et al.

(2018)

SNAQ boxes and

network deployment

Sensor measurement

validation

Source apportionment

The results of this study revealed that this

method could be applied in many

environments that suffer from air

pollution
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Table 1 presents a comparison of the cited previous

works based on the type of dataset considered, the

methodology used, the evaluation measures applied, and

the advantages offered.

3 Main concept

3.1 Big data

This term is commonly used today due to the abundance and

diversity of sources, which lead to difficulty in dealing with

the resulting data because they may be unorganized and

require large storage systems. Big data was first defined by

Douglas Laney based on the 3Vs, viz. volume, velocity, and

variety, and has been widely cited since 2001, although

many have tried to increase the number of Vs, to 4, 5, 6, and

even 11. Big data has also been defined as an application,

which emphasizes its different applications based on the

different types of data, whereas Barry Devlin defined it as

the application of process-mediated data, human-sourced

information, and machine-generated data. Shaun Connolly

focused on analyzing the transactions, interactions, and

observation of data, seeking hindsights using big data

technology; this type of definition is oriented by new tech-

nological developments such as MapReduce, bulk syn-

chronous parallel (BSP) computing such as Hama, resilient

distributed datasets (RDDs) such as Spark, and Lambda

architecture such as Flink (Buyya et al. 2016) (Fig. 1).

3.2 Big data analysis stages

Data analysis is the process of inspecting, transforming,

and modeling data with the goal of discovering useful

information (Al-Janabi & Alkaim 2019), informing con-

clusions, and supporting decision-making. Data analysis

has multiple facets and approaches, encompassing diverse

techniques under a variety of names while being used in

different business, science, and social science domains. In

today’s business, data analysis plays a role in making

decision-making more scientific and helping businesses

operate effectively (Buyya et al. 2016) (Fig. 2).

Table 1 (continued)

Name Dataset/database Method Evaluation Advantage

Wen et al.

(2019)

Hourly PM2.5 concentration data from

1233 air quality monitoring

stations in China collected from 1 January

2016 to 31 December 2017, acquired

from the Ministry of Environmental

Protection of China

http://datacenter.mep.gov.cn/

Combination of CNN

and LSTM-NN

RMSE

MAE

MAPE

(1) Addition of PM2.5 information from

neighboring stations, which contributes to

the spatiality of the data, considerably

improved the prediction accuracy of the

model

(2) Use of auxiliary data helped predict

sudden changes in air quality, thereby

improving the prediction performance of

the model. Moreover, compared with

meteorological data, aerosol optical depth

(AOD) data contributed more to the

accuracy of the model

(3) The model could efficiently extract more

essential spatiotemporal correlation

features based on the combination of 3D

CNN and stateful LSTM, thereby

achieving air quality predictions with

greater accuracy and stability over

different spatiotemporal scales

Shang et al.

(2019).

Yancheng City, 1 of the 13 cities under the

direct administration of Jiangsu

Province, China, ranging from

32�340–34�280 N, 119�270–120�540 E

CART and EELM RMSE

MAPE

The experimental results revealed that the

method could address the global–local

duplication of the prediction method at

each leaf and that CART–EELM work

better compared with the RF, v-SVR, and

EELM models, as well as showing

superior performance compared with the

EELM and k-means-EELM seasonal

approaches

Li et al.

(2019)

Datasets from eight sites in China

https://data.epmap.org

LSSVM

MOMV

RMSE

MAE

MAPE

Application of the proposed method to the

dataset revealed good performance for

analysis and control of air quality, as well

as the approximation of values with high

precision
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3.3 Deep learning

Deep learning is a new area of machine learning which has

gained popularity in the recent past. Deep learning refers to

architectures that contain multiple hidden layers (deep

networks) to learn different features at multiple levels of

abstraction. Deep learning algorithms seek to exploit the

unknown structure in the input distribution to discover

useful representations, often at multiple levels, where

higher-level learned features are defined in terms of lower-

level features (Ali et al. 2019).

3.4 Prediction

Prediction can be defined as the task of data analysis to

predict unknown values of target features. It includes a

classification task for class label prediction and numerical

prediction whose aim is to predict continuous or ordered

values. The type of target attribute specifies whether the

problem is classification with binary values or numerical

prediction with continuous values. Many statistical

methodologies have been used for such numerical predic-

tion, among which regression analysis is most often applied

(Basavaraju et al. 2019) (Fig. 3).

3.5 Air pollution

Air pollution remains a serious concern and has attracted

attention from industries, governments, as well as the sci-

entific community. One type of air pollutant that has

attracted immense attention is fine particulate matter. PM2.5

is a widespread air pollutant, consisting of a mixture of solid

and liquid particles suspended in the air, in addition to PM10

andO3 as other types of air pollution. Air pollution is a global

issue that transcends geographical boundaries and calls for

an interdisciplinary approach to solve a global problem.

Thus, forecasting concentrations of air pollutants is an

effective method for protecting public health by providing

early warnings of harmful air pollutants (Liu et al. 2019).

4 Building the DLSTM-PSO model

In this section, an effective prediction model is built,

including four stages. The first stage involves dataset pre-

processing, including data collection, splitting, handling of

missing values, and normalization of the dataset. In the

second stage, the PSO algorithm is applied to identify the

best structure for the LSTM network, including determi-

nation of the best weight, bias, number of hidden layers,

number of nodes in each hidden layer, and activation

function. In the third stage, the prediction model (called

DLSTM-PSO) is built to predict the concentration of the

six pollutants considered. The final stage is the evaluation

of the results based on the symmetric mean absolute per-

centage error (SMAPE) and 10 cross-validations.

Data domain .3V

Statistics Intelligence 
Domain.32V Domain.3v

Validity Veracity

Variability

Statistics

Velocity Variety

Volume   
Big data

Data

Visibility Verdict

Value

Intelligent 

Fig. 1 Big data

Problem 
Understanding

Deployment

Data ExplorationData Modeling 

Data Evaluation

Data   
Preparation

Big Data Analytics

Process 

2

1

35

6

4

Fig. 2 Big data analysis stages
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First, the main details of the model are presented, being

based on the following assumptions:

• The air quality data file contains the concentration of

several major air pollutants: PM2.5 (lg/m3), PM10 (lg/
m3), and NO2 (lg/m

3). In addition, we also provide the

concentrations of CO (mg/m3), O3 (lg/m
3), and SO2 (-

lg/m3) from Beijing 2018.

• All points with NA or negative values in the PM2.5

or PM10 (or O3 from) data are considered to be invalid

and are dropped from the truth file; For example, the

data [2957631, CT3, 2018-04-13 00:00:00, 24.0,,15. 7,]

has no PM2.5 data and thus is dropped from the scoring

matrix, even though it includes PM10 data.

• The PM2.5 limit is taken as 10 lg/m3 (average

allowable value per year) or 25 lg/m3 (average allow-

able value in 24 h).

• The PM10 limit is taken as 20 lg/m3 (average allow-

able value per year) or 50 lg/m3 (average allowable

value).

• The O3 limit is taken as 100 lg/m3 (average allowable

value in 8 h). The recommended maximum value,

previously set at 120 lg/m3 in 8 h, has been reduced to

100 lg/m3 based on recent findings of the relationships

between daily mortality and ozone levels in locations

where the concentration of this substance is less than

120 lg/m3.

• The NO2 limit is taken as 40 lg/m3 (average allowable

value per year) or 200 lg/m3 (average allowable value

per hour).

• The SO2 limit is taken as 20 lg/m3 (average allowable

value in 24 h) or 500 lg/m3 (average allowable value in

10 min) (Fig. 4).

Fig. 3 Main types of machine

learning techniques (Al-Janabi

& Mahdi 2019)

Fig. 4 Block diagram of

proposed DLSTM-RNN
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4.1 Data preprocessing stage

As explained above, datasets were collected from two type

of resources (i.e., from the directory of websites such as the

KDD Cup 2018 dataset, or by building stations to capture

concentrations). These datasets must be handling before

using them to build predictive models. The dataset for each

station was split and saved in a separate file containing the

name of the station. Then, missing values were treated by

dropping each row from which one or more value was

lacking. Finally, normalization was applied in each column

of the dataset related to each station, using the

MinMaxScaler process on all the dataset (PM2.5, PM10,

NO2, CO, O3, and SO2) to make the concentration values

lie in the range [0, 1]. The main steps in this stage are

described in Algorithm 2.

Algorithm#1: DLSTM-PSO
Input: Air pollution dataset include multi station and six concentration of 

PM22.5, PM10, NO2, CO, O3, SO2
Output: Predict the air quality index
// Pre-Processing Stage
1: For each row in air pollution dataset 
2: Call split Stations
3: For each column in air pollution dataset 
4: Call handle missing value
5: Call normalize
6: End for 
7: End for
// Build DLSTM-PSO Predictor
8: For each id_station 
9: For i in range (1: total number of samples [id_station] 
10: Split dataset according 10- Cross Validation into Training and Testing 

dataset 
11: End for
12: For each Training part not used 
13: Call DSN-PS //determined the structure & parameters of model 
14: Call DLSTM           //predictive the value of six concertation 
15: End for
16: For each Testing part not used 
17: Test stopping conditions // max number of epoch and max error 

generation 
18: IF max error generation < Emax 
19: Go to step 25
20: Else 
21:              GO to step 10
22:          End IF
23:    End for
24: End for
// Evaluation stage
25: Call Evaluation SMAPE
End SAQPM
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4.2 Determined structure network-particle
swarm (DSN-PS)

In this step, the structure of the LSTM is specified by PSO.

During the PSO, the three following steps are repeated until

the maximum epoch limit is reached or one of the stop

conditions is met:

• Calculate the value of the fit for each element among

the particles;

• Update the pBest appropriate values for each particle,

as well as the best gBest general value;

• Update the speed and position of each particle.

The aim of the PSO algorithm is to optimize the LSTM-

RNN by specifying the optimal values of the weight, bias,

number of hidden layers, number of nodes in each hidden

layer, and activation function, as shown in the diagram in

Fig. 5 and presented in Tables 2 and 3.

Algorithm#2: Pre-processing
Input: Air pollution dataset include multi station and six concentration of 

PM22.5, PM10, NO2, CO, O3, SO2
Output: Split station [id_station] have clean data in range [0, 1]
// Split air pollution dataset according [id_station]
1: For all samples in Air pollution dataset 
2: IF station_name = id_station
3: create file called station_name 
4: Put all the concentrations related to station_name in that file
5: End IF
6: End for
// Treatment Missing values
7: For each row in air pollution dataset 
8: For each column in air pollution dataset 
9: IF value of column = Nan 
10: droop the row contain that columns 
11: End IF
12: End for
13:End for
// apply normalization
14: For each row in air pollution dataset 
15: For each column in air pollution dataset 
16: Compute MinMaxScaler            
17: End for
18: End for
End pre-processing 
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Algorithm#3: DSN-PS
Input: Split station [id_station] have clean data in range [0, 1], problem size, 

Population size
Output: Optimal of (weights, bias, number of hidden layer, number of node in  

each hidden layer, and activation function)
Initialization:  A: Population of agents, pi: Position of agent  ai in the solution space,  f : 
Objective functions, vi : Velocity of agent’s ai , V(ai): Neighborhood of agent ai (fixed), W
= random weights, B=random bias, H=number of hidden layer >257, N=number of  
node in each hidden layer>257 , AF= call activation function

1: For i=1 to it_max
2: For number of hhidden layer h in H do
3: fh = f(h)
4: IF fh is better than f(hBest) 
5: hBest = h
1: End IF
2: End for
3: For number of node of each hidden layer n  in N  do
4: fn = f(n)
5: IF fn is better than f(nBest) 
6: nBest = n
7: End IF
8: End for
9: For ranodom weights w  in W do
10: fw = f(w)
11: IF fw is better than f(wBest) 
12: wBest = w
13: End IF
14: End for
15: For ranodom bias b  in B do
16: fb = f(b)
17: IF fb is better than f(bBest) 
18: bBest = b
19: End IF
20: End for
21: Call activation function af in AF
22: faf = f(af)
23: IF faf is better than f(afBest) 
24: afBest = af
25: End IF
26: ghBest = best h in H
27: For number of hhidden layer h in H do
28: hv = hv + c1*rand*(hBest – h) + c2*rand*(ghBest – h)
29: h = h + hv
30: End for 
36: gnBest = best n in N
37: For number of node of each hidden layer n  in N do
38: nv = nv + c1*rand*(nBest – n) + c2*rand*(gnBest – n)
39: n = n +nv
40: End for 
41: gwBest = best w in W
42: For ranodom weights w  in W do
43: wv = wv + c1*rand*(wBest – w) + c2*rand*(gwBest – w)
44: w = w + wv
45: End for
46:
47: gbBest = best b in B
48: For ranodom bias b  in B do
49: bv = bv + c1*rand*(bBest – b) + c2*rand*(gbBest – b)
50: b = b +bv
51: End for 
52: gafBest = best af in AF
53: Call activation function af in AF
54: afv = afv + c1*rand*(afBest – af) + c2*rand*(gafBest – af)
55: af = af + afv
56: End for

End DNS-PS
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4.3 Development of the long short-term
memory (DLSTM) approach

The common LSTM module consists of a cell, an input

port, an output port, and a forgotten gateway. The cell

remembers values at random intervals, and the three gates

regulate the flow of information inside and outside the cell.

Activation 
Function

# Hidden Layer
[ 2 -10 ]

# Node
Of hidden layer

[ 1 – 5 ]
Weight Of 

W
Weight of 

U

Weight of Input 
Activation (Wa)

Weight of Input
Gate (Wi)

Weight of
Forget Gate 

(Wf) 

Weight of Out-
put Gate (Wo)

Weight of In-
put Activation 

Ua

Weight of In-
put Gate Ui 

Weight of
Forget Gate 

Uf 

Weight of 
Output Gate 

Uo 

Hyperbolic
Function 

Polynomial
Function 

Fig. 5 Determination of the

optimal parameters of the

LSTM using PSO

Table 2 Hyperbolic Functions with description (Al-Janabi and Alwan

2017)

Hyperbolic functions

Name No. of variables Function

Sinh 1 F(x) = ex�e�x

2

Cosh 1 F(x) = exþe�x

2

Tanh 1 F(x) = ex�e�x

exþe�x

Sinh-1 1 F(x) = 2
ex�e�x

Cosh-1 1 F(x) = 2
exþe�x

Tanh-1 1 F(x) = exþe�x

ex�e�x

x is the input, and F(x) is the output

Table 3 Polynomial Functions with description (Al-Janabi and

Alwan 2017)

Polynomial function

Name No. of

variables

Function

Linear 1 F xð Þ ¼ p1 þ p2 � x1

Linear 2 F xð Þ ¼ p1 þ p2 � x1 þ p3 � x2

Linear 3 F xð Þ ¼ p1 þ p2 � x1 þ p3 � x2 þ p4 � x3

Quadratic 1 F xð Þ ¼ p1 þ p2 � x1 þ p3 � x21

Quadratic 2 F xð Þ ¼ 1þ p2 � x1 þ p3 � x21 þ p4 � x2
þ p5 � x22 þ p6 � x1 � x2

Cubic 1 F xð Þ ¼ p1 þ p2 � x1 þ p3 � x21 þ p4 � x31

Product 2 F xð Þ ¼ p1 þ p2 � x1 � x2

Ratio 2 F xð Þ ¼ p1 þ p2 � x1=x2ð Þ
Logistic 1 F xð Þ ¼ p1 þ p2= 1þ exp p3 � x1 � p4ð Þð Þð Þ
Log 1 F xð Þ ¼ p1 þ p2 � Log x1 þ p3ð Þ
Exponential 1 F xð Þ ¼ p1 þ p2 � expð p3 � x1 þ p4ð Þð Þ
Asymptotic 1 F xð Þ ¼ p1 þ p2= x1 þ p3ð Þ

x is input

F(x) is output

p1, p2, p3, and p4 are constants
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LSTM networks are well suited for classifying, processing,

and predicting predictions based on time-series data, where

there may be an unknown delay for important events in a

time series. LSTMs have been developed to deal with

fading problems that can be encountered when training

traditional RNNs. The relative lack of sense of the gap

length is a feature of LSTM in RNNs, hidden Markov

models, and other sequential learning methods in many

applications (Inácio et al. 2019).

An LSTM module (or cell) has five essential compo-

nents, which allows it to model both long- and short-term

data:

• Memory cell: This represents the internal memory of

the cell, which stores both short- and long-term

memories.

• Hidden state: This is the output state information

calculated from the current input, previous hidden state,

and current cell input, eventually being used to predict

the future concentrations. Additionally, the hidden state

can decide to retrieve only the short- or long-term or

both types of memory stored in the cell state to make

the next prediction.

• Input gate: Decides how much information from the

current input flows to the cell state.

• Forget gate: Decides how much information from the

current input and the previous cell state flows into the

current cell state.

• Output gate: Decides how much information from the

current cell state flows into the hidden state.

4.3.1 The variables in LSTM–RNN

This algorithm requires multiple variables to be set at the

beginning, then these are updated by applying computa-

tional operations, as shown below:

Step 1: The forward components

Step 1.1: Compute the gates:

Input activation:

at ¼ tanh Wa:Xt þ Ua:outt�1 þ bað Þ ð1Þ

Input gate:

it ¼ WI:Xt þ Ui:outt�1 þ bið Þ ð2Þ

Forget gate:

ft ¼ Wf:Xt þ Uf :outt�1 þ bf
� �

ð3Þ

Output gate:

ot ¼ Wo:Xt þ Uo:outt�1 þ boð Þ ð4Þ

Then find:

Internal state:

State ¼ atit þ ft � statet�1 ð5Þ

Output:

outt ¼ tanh stateð Þ � ot ð6Þ

where

Gate St ¼

at

it
ft

ot

2

6664

3

7775
; W ¼

Wa

Wi

Wf

Wo

2

6664

3

7775
; U

¼

Ua

Ui

Uf

Uo

2

6664

3

7775
; b ¼

ba

bi
bf

bo

2

6664

3

7775

Step 2: The backward components:

Step 2.1: Find

Dt, the output difference as computed by any

subsequent

DOUT, the output difference as computed by

the next time step.

doutt ¼ Dt þ Doutt ð7Þ

dstatet ¼ doutt � ot � 1� tanh2 statetð Þ
� �

þ dstatetþ1 � ftþ1 ð8Þ

Step 2.2: This gives

dat ¼ dstatet � it � 1� a2t
� �

ð9Þ

dit ¼ dstatet � at � it � 1� itð Þ ð10Þ
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dft ¼ dstatet � statet�1 � ft � 1� ftð Þ ð11Þ

dot ¼ doutt � tanhðstatetÞ � ot � 1� otð Þ ð12Þ

dxt ¼ Wt:dstatet ð13Þ

doutt�1 ¼ Ut:dstatet ð14Þ

Step 3: Update the internal parameter.

dW ¼
XT

t¼0

dgatest � xt ð15Þ

dU ¼
XT

t¼0

dgatestþ1 � outt ð16Þ

db ¼
XT

t¼0

dgatestþ1 ð17Þ
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5 Experiment

This section presents the results of each stage in the pre-

diction model. Also, a justification is presented for all the

results.

5.1 Dataset used

Data from KDD cup 2018* is used, containing the name of

the 35 stations and the concentration of each pollutant per

hour, viz. PM2.5, PM10, SOx, CO, NO2, and O3. Table 4

presents the raw dataset.

The dataset is split by station and saved in separate files

containing the name of each station. Thereby, each station

contains six types of concentrations and a number of

records as presented in Table 5.

Missing values in each column are then handled as

illustrated in Table 6.

Table 7 presents a description of the results after han-

dling missing values.

5.2 Data visualization

Figure 6 illustrates the resulting data, which contains var-

ious patterns occurring over time.

This graph already says a lot. The specific reason for

picking this data is that this graph presents a wide range of

different behaviors in the concentrations of the air pollu-

tants over time, which will make the learning process more

robust and provide the opportunity to test the quality of the

predictions in a variety of situations.

Another feature to notice is that the values at the

beginning of 2017 are much higher and fluctuate more than

the values close to the end of the dataset. Therefore, one

must ensure that the data exhibit similar value ranges

throughout the time frame, which will be considered during

the data normalization phase.

5.3 Normalizing the data

Before normalizing, the dataset is split into a training set

and a test set, using 70% for training and 30% for testing.

A scaler must now be defined to normalize the data.

MinMaxScalar scales all the data to the region of 0 and 1.

One can also reshape the training and test data to have the

shape [data_size, num_features].

Due to the observation above that different time periods

of the data have different value ranges, one should nor-

malize the data after splitting the full series into windows.

Otherwise, the earlier data will be close to 0 and will not

add much value to the learning process. Here, a window

size of 2500 is chosen.

The data can now be smoothed using an exponential

moving average, which helps to remove the inherent

raggedness of the concentration data and produce a

smoother curve. Note that only the training data should be

smoothed in this way.

5.4 Data generator

A data generator is first implemented to train our model,

including a method called unroll_batches(…) that will

output a set of num_unrollings batches of input data

obtained sequentially, where each batch of data is of size

[batch_size, 1]. Then, each batch of input data will have a

corresponding output batch of data (Tables 8, 9).

For example, if num_unrollings = 3 and batch_size = 4,

a set of unrolled batches might look like:

• input data: [x0,x10, x20, x30, x40, x50], [x1,x11, x21, x31,

x41, x51], [x2,x12, x22, x32,x42, x35]

• output data[x1,x11, x21, x31, x41, x51],[x2,x12, x22,

x32,x42, x52], [x3,x13, x23, x33,x43, x53]

Then, one finds the best weights of the input between the

hidden layers as illustrated in Tables 10, 11, and 12.

Table 4 Dataset before

handling missing values
No. utc_time Station PM2.5 PM10 NO2 O3 CO SO2

6 1/1/2017

19:00

aotizhongxin_aq 429.0 141.0 6.5 3.0 9.0 NaN

7 1/1/2017

20:00

aotizhongxin_aq 211.0 110.0 3.3 11.0 NaN NaN

…
…
175 1/8/2017

20:00

aotizhongxin_aq 6.0 20.0 0.3 4.0 NaN NaN

176 1/8/2017 21:00 aotizhongxin_aq 6.0 28.0 0.2 49.0 4.0 NaN

….

….
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Meanwhile, the weights of the recurrent connections are

illustrated in Tables 13 and 14.

After constructing the LSTM model using the DSN-PS

algorithm, the model consists of several layers capable of

predicting the concentrations of the air pollutants. We have

32 stations 9 6 pollutants (PM2.5, PM10, SOx, CO, NOx,

and O3), resulting in 192 readings per hour, 4608 per day,

and 138,240 within the 30 days of the training process of

the network. After the training, DLSTM-RNN can predict

air pollution concentrations over the next 48 h based on the

previous training. The SMAPE error rate scale is then used

to evaluate the results from the DLSTM network for the

least or nearest error (Table 15).

The combination of LSTM and SPO reduces the training

time for the network because the SPO algorithm provides

the best function for activation and identifies the number of

hidden layers and number of nodes in each hidden layer,

considering that they provide better weights, but at the

same time complicate the network for the reason described

above.

6 Discussion and conclusions

Air quality index datasets represent huge data, requiring

intelligent and deep computation for the extraction of

useful patterns. Despite the advantage of their large size,

the limitations of such datasets include the possibility of

missing values, that each concentration may show high and

low value, and that the records for each station may not be

equal.

DSN-PS is used to determine the parameters and acti-

vation function of the DLSTM, offering the advantage of

reduced time of execution for LSTM, and limitation of the

DSN-PS will increase the complexity of the LSTM.

The DLSTM is constructed by using the LSTM of the

DSN-PS, and PSO is used to determine the optimal number

of hidden layers, number of nodes in each hidden layer,

weight, bias, and activation function. The advantage of

Table 5 Split stations

No. Name of station No. of features No. of records

1. aotizhongxin_aq 6 8886

2. badaling_aq 6 8886

3. beibuxinqu_aq 6 8886

4. daxing_aq 6 8886

5. dingling_aq 6 8886

6. donggaocun_aq 6 8886

7. dongsi_aq 6 8886

8. dongsihuan_aq 6 8886

9. fangshan_aq 6 8886

10. fengtaihuayuan_aq 6 8886

11. guanyuan_aq 6 8886

12. gucheng_aq 6 8886

13. huairou_aq 6 8886

14. liulihe_aq 6 8886

15. mentougou_aq 6 8886

16. miyun_aq 6 8886

17. miyunshuiku_aq 6 8886

18. miyunshuiku_aq 6 8886

19. nongzhanguan_aq 6 8886

20. pingchang_aq 6 8886

21. pinggu_aq 6 8886

22. qianmen_aq 6 8886

23. shunyi_aq 6 8886

24. tiantan_aq 6 8886

25. tongzhou_aq 6 8886

26. wanliu_aq 6 8886

27. wanshouxigong_aq 6 8886

28. xizhimenbei_aq 6 8886

29. yanqin_aq 6 8886

30. yizhuang_aq 6 8886

31. yongdingmennei_aq 6 8886

32. yongledian_aq 6 8886

33. yufa_aq 6 8886

34. yungang_aq 6 8886

35. zhiwuyuan_aq 6 8886

Table 6 Dataset after handling

missing values
No. utc_time Station PM2.5 PM10 NO2 O3 CO SO2

6 1/1/2017

19:00

aotizhongxin_aq 429.0 141.0 6.5 3.0 9.0 11.212

7 1/1/2017

20:00

aotizhongxin_aq 211.0 110.0 3.3 11.0 15.78 11.212

…
…
175 1/8/2017

20:00

aotizhongxin_aq 6.0 20.0 0.3 4.0 15.78 11.212

176 1/8/2017 21:00 aotizhongxin_aq 6.0 28.0 0.2 49.0 4.0 11.212

…
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DLSTM is its ability to deal with huge data and the use of

memory cells to save information in the long term, while

the limitation of DSTM is the huge number of parameters.

Evaluation is the process of calculating the error

between actual and predicted values, which can be

achieved using different types of error measure, including

prediction (i.e., SMAPE, MSE, RMSE, MAE, MAPE, etc.)

and coefficient matrixes (i.e., accuracy, F, FP, etc.).

• How particle swarm can be useful in building a

recurrent neural network (RNN)?

PSO works to modify the behavior of each in a partic-

ular environment gradually, depending on the behavior of

their neighbors until they are obtained the optimal solution.

On the other hand, the neural networks use the principle of

the try and error in the selection of the basic parameters of

their own and modified gradually to reach the values

accepted for those parameters.

Depending on the PSO and neural networks of the above

subject, we used the PSO principle to find the optimal

parameters and the activation function of the neural

network.

• How to build a multi-layer model with a combination of

two technologies( LSTM-RNN with particle swarm)?

Through, building new predictor called SAQPM that

combining between the DSN-PS and the DLSTM. Where

DSN-PS used to find the best structure with parameter to

LSTM while DLSTM used to predict the rate Concentra-

tions of air pollution.

• IS SMAPE measure enough to evaluate the results of

suggesting predictor?

Yes, The SMAPE is sufficient to evaluate the results of

the predictor within the next 48 h.

• What is the beneficial result from building predictor by

the combination between DSNPS and DLSTM?

By combining DNS-PS and DLSTM they will reduce

the execution time by defining network parameters but at

the same time will increase the computational complexity.

Table 7 Description of data after preprocessing

PM2.5 PM10 NO2 CO O3 SO2

Count 200.000 200.000 200.000 200.000 200.000 200.000

Mean 179.949 134.376 27.180 17.205 15.788 11.212

Std 131.835 123.790 56.373 20.671 11.056 2.788

Min 5.000 4.600 0.200 0.200 2.000 2.000

Max 500.000 561.000 208.000 79.000 61.000 37.000

Fig. 6 Data visualization
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Table 8 Dataset after normalization and splitting for training and testing

Station PM2.5 PM10 NO2

aotizhongxin_aq Train 0.63380282 0 0.54107981 0.03508772 0.74634146 0.25892857

Test 0 0.376 0.07017544 0.45614035 0.25892857 0.75

badaling_aq Train 0.3032491 0.20454545 0.26201923 0.2745098 0.55944056 0.36567164

Test 0.22272727 0.16363636 0.29019608 0.43529412 0.39552239 0.43283582

… …
…

yungang_aq Train 0.62329803 0.29487179 0.55191874 0.43915344 0.59292035 0.44217687

Test 0.32692308 0.23717949 0.47619048 0.4021164 0.3877551 0.21768707

zhiwuyuan_aq Train 0.97430407 0.45454545 0.8627451 0.50549451 0.96875 0.78

Test 0.58441558 0.03896104 0.61538462 0.08241758 1.08 0.5

Station CO O3 SO2

aotizhongxin_aq Train 0.71 0.04761905 0.00546448 0.28985507 0.04320988 0

Test 0.04761905 0.38095238 0.27536232 0.05797101 0 0.4

badaling_aq Train 0.26415094 0.3125 0 0 0.58024691 0

Test 0.3125 0.375 0 0.05649718 0.03333333 0.53333333

… …
…

yungang_aq Train 0.52066116 0.3 0 0.36521739 0.03571429 0.52

Test 0.35 0.25 0.47826087 0.33043478 0.48 0.48

zhiwuyuan_aq Train 0.85106383 0.41176471 0.03896104 0.33841463 0.02857143 0

Test 0.47058824 0.17647059 0.35670732 0.35670732 0.125 0

Table 9 Data generator to train

our model
Unrolled index 0:

Inputs: [0.86032474 0.79311657 0.79409707 0.8310883 0.90970576

0.79311657]

Output: [0.86032474 0.90970576 0.90970576 0.09216607 0.90970576

0.90970576]

Unrolled index 1:

Inputs: [0.79311657 0.79409707 0.8310883 0.90970576 0.90970576

0.79409707]

Output: [0.8310883 0.41866928 0.8310883 0.09216607 0.41866928

0.90970576]

…
…
Unrolled index 132:

Inputs: [0.79409707 0.86032474 0.8310883 0.90970576 0.79409707

0.90970576]

Output: [0.2070513 0.79409707 0.90970576 0.2070513 0.2070513

0.02807767]

Unrolled index 133:

Inputs: [0.8310883 0.79311657 0.90970576 0.8310883 0.8310883

0.79311657]

Output: [0.2070513 0.41866928 0.02807767 0.90970576 0.2070513

0.79409707]
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Table 10 Weights of the input

between input and first hidden

layers

Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo

Node 1 Node 2 Node 3

0.378 0.199 0.305 0.506 0.163 0.263 0.979 0.992 0.545 0.576 0.376 0.889

0.059 0.716 0.352 0.521 0.411 0.986 0.836 0.793 0.928 0.174 0.177 0.901

0.399 0.228 0.628 0.243 0.728 0.440 0.519 0.826 0.204 0.838 0.954 0.411

0.663 0.708 0.069 0.910 0.725 0.698 0.181 0.902 0.522 0.695 0.121 0.136

Node 4 Node 5 Node 6

0.486 0.219 0.191 0.990 0.091 0.648 0.422 0.156 0.515 0.797 0.680 0.883

0.018 0.968 0.928 0.564 0.352 0.405 0.386 0.865 0.940 0.938 0.253 0.580

0.062 0.893 0.098 0.950 0.159 0.136 0.356 0.475 0.951 0.447 0.096 0.827

0.725 0.823 0.400 0.291 0.862 0.312 0.074 0.475 0.303 0.544 0.842 0.279

Table 11 Optimal weights of input between first and second layer

Node 1 Node 2 Node 3 Node 4

Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo

0.882 0.256 0.604 0.403 0.373 0.999 0.252 0.875 0.350 0.841 0.158 0.912 0.113 0.814 0.287 0.782

0.447 0.412 0.067 0.900 0.223 0.860 0.594 0.913 0.087 0.273 0.174 0.537 0.300 0.895 0.082 0.636

0.338 0.467 0.832 0.209 0.039 0.091 0.547 0.717 0.286 0.918 0.394 0.215 0.603 0.608 0.930 0.460

0.661 0.362 0.657 0.592 0.900 0.763 0.934 0.029 0.542 0.767 0.998 0.794 0.619 0.623 0.899 0.483

Table 12 Optimal weights of input between second and third layer

Node 1 Node 2 Node 3 Node 4

Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo

0.067 0.724 0.363 0.178 0.709 0.755 0.743 0.843 0.757 0.989 0.547 0.671 0.311 0.930 0.457 0.718

0.422 0.321 0.590 0.597 0.707 0.120 0.699 0.269 0.991 0.030 0.576 0.247 0.238 0.367 0.716 0.740

0.161 0.665 0.109 0.467 0.305 0.992 0.343 0.327 0.053 0.084 0.889 0.092 0.049 0.719 0.816 0.687

0.783 0.388 0.733 0.263 0.130 0.879 0.799 0.906 0.731 0.674 0.420 0.765 0.154 0.443 0.198 0.323

Table 13 Weights of input between third and output layer

Node 1 Node 2 Node 3 Node 4

Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo Wa Wi Wf Wo

0.410 0.492 0.598 0.842 0.651 0.777 0.599 0.033 0.456 0.983 0.647 0.569 0.608 0.006 0.192 0.476

0.137 0.681 0.510 0.839 0.741 0.934 0.680 0.817 0.346 0.848 0.984 0.007 0.041 0.557 0.350 0.329

0.801 0.171 0.317 0.079 0.099 0.613 0.227 0.671 0.385 0.218 0.903 0.890 0.053 0.579 0.625 0.936

0.605 0.418 0.610 0.850 0.351 0.303 0.095 0.008 0.152 0.601 0.087 0.990 0.549 0.913 0.731 0.373

0.132 0.830 0.711 0.139 0.092 0.545 0.181 0.717 0.291 0.376 0.722 0.297 0.036 0.084 0.776 0.853

0.456 0.033 0.562 0.703 0.981 0.003 0.254 0.185 0.839 0.431 0.363 0.470 0.792 0.674 0.376 0.420
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Appendix

Item Description

DLSTM Developed long short-term memory

LSTM Long short-term memory

PSO Particle swarm optimization

SMAPE Symmetric mean absolute percentage error

PM2.5 Particulate matter with diameter less than 2.5 lm

PM10 Particulate matter with diameter less than 10 lm

O3 Ozone, the unstable triatomic form of oxygen

SOx Sulfur oxides

CO Carbon monoxide

NOx Nitrogen oxides

� Elementwise or Hadamard product

� Outer product

r Sigmoid function

at Input activation

it Input gate

ft Forget gate

ot Output gate

Statet Internal state

Outt Output

W The weights of the input

U The weights of recurrent connections

Item Description

Vt
i : Velocity of particle i in swarm in dimension j and

frequency t

Xt
i Location of particle i in swarm in dimension j and

frequency t

c1 Acceleration factor related to Pbest

c2 Acceleration factor related to gbest

rt1, r
t
2: Random number between 0 and 1

t Number of occurrences specified by type of problem

Gt
best;i gbest position of swarm

Pt
best;i pbest position of particle
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