
Soft Computing (2020) 24:4729–4738
https://doi.org/10.1007/s00500-019-04480-8

FOCUS

Effects of direct input–output connections onmultilayer perceptron
neural networks for time series prediction

Yaoli Wang1 · Lipo Wang2 ·Qing Chang1 · Chunxia Yang1

Published online: 20 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Feedforward neural network prediction is the most commonly used method in time series prediction. In view of the low
prediction accuracy of the conventional BPNN model when the time series data contain a certain linear relationship, this
paper describes a neural network approach for time series prediction, that is BPNN–DIOC (back-propagation neural network
with direct input-to-output connections). Eight different datasets were used to verify the validity of BPNN–DIOC model in
time series prediction. In this paper, the BPNN was extended to four variants based on the presence or absence of output layer
bias and input-to-output connections firstly, and the prediction accuracy of eight datasets are analyzed by statistic method
secondly. Finally, the experimental results demonstrate that the BPNN–DIOC has better prediction accuracy compared to
the conventional BPNN while the output layer bias has no significant effect. Therefore, the input-to-output connections can
significantly improve the prediction ability of time series.

Keywords Time series prediction · BPNN–DIOC · Linear relationship · Prediction accuracy

1 Introduction

Time series refers to the sequence of the same statistical indi-
cators according to time sequence occurring within the same
time interval and has the characteristics of large data volume,
large noise, and fast data update. It is a very important and
complex data that are widely existed in various fields, such
as gross domestic product (GDP) (Jovic et al. 2019), stock
price (Wang et al. 2011; Zhu and Wang 2010; Gupta and
Wang 2010; Fang et al. 2014), population (Chi et al. 2019),
unemployment rate (Li et al. 2014), traffic flow (Hou and
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Mai 2013; Yang and Hu 2016), precipitation (Ramana et al.
2013), carbon dioxide concentration (Besteiro et al. 2017)
and so on (Wang et al. 2001; 2001).

Time series prediction is forecasting the future data based
on the existing historical data. Since the time series contains
lots of information and rules, it is very important to find the
hidden rules in this field and predict the unknown situation in
advance more precisely (Taylor et al. 2006; Li and Shi 2010;
Camara 2016). Through accurate forecasting results, people
can arrange work and take measures ahead of time to pre-
vent unfavorable situations and minimize losses (Samsudin
et al. 2010). For example, stock prices forecast can enable
investors to effectively avoid risks (Selvamuthu et al. 2019);
predicting precipitation can enable people to do preventive
work in advance (Devi et al. 2017); forecasting power load
could provide certain decision-making direction for power
participants (Bozkurt et al. 2017).

Time series prediction is to use statistical techniques and
methods to establish a mathematical model which uses past
values as input and future values as outputs, then find out
the function that satisfies the changes of the sequence data.
Subsequently, quantitatively estimate the future development
trend of the data (Ding et al. 2008; Jia 2014). In previous
time series prediction studies, most scholars first judged the
attributes of the sequence data and then selected the appropri-
atemodel for prediction. If the time series data approximately
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satisfy linear, a linear prediction method can be used, mainly
including an autoregressive model, a moving average model,
a self-slidingmoving averagemodel and so on. Thesemodels
require linear functional relationships of future and historical
values of time series; otherwise, the above linear prediction
method will cause large prediction errors; therefore, the non-
linear method should be used when data satisfy nonlinear.
However, the time series data collected under actual con-
ditions is usually complex and nonlinear. Artificial neural
network has the advantages of self-organization and strong
nonlinearity in solving complex nonlinear problems (Li et al.
2013; Szoplik 2015; Doucoure et al. 2016). It can actively
find the rule from the sample data and approximate the non-
linear function with arbitrary precision. These advantages
of neural network make it obtain good prediction effect in
nonlinear prediction, and it is widely used in time series pre-
diction.

The above explains a time series with a linear or nonlin-
ear relationship. When the nonlinear time series contains a
certain non-negligible linear relationship, the BP neural net-
work with highly nonlinear fitting characteristics may not be
able to express the implicit relationship between the sam-
ple data perfectly and completely. On the contrary, it will
lead to a decline in the prediction accuracy of time series
and accuracy of the prediction result. To solve this problem,
this paper adopts an improved BP neural network (BPNN–
DIOC), which adds input-to-output connections based on
BPNN. In addition, eight groups of time series datasets were
used to compare the prediction performance ofBPNN–DIOC
network and BPNN.

2 Description of neural network

2.1 Back-propagation neural network (BPNN)

Artificial Neural Network (ANN) is a data processing system
consisting of a large number of simple and highly inter-
connected processing elements (Cui et al. 2005). It is the
abstraction and simulation of the human brain, which can
imitate the human brain for complex parallel information
processing, grasp the internal rules of the data and achieve a
highly nonlinear mapping.

The most widely used artificial neural network is BPNN,
which is a multilayer forward network based on error
back-propagation (BP) learning algorithm. In the practical
application of BPNN, the specific structure of BPNN should
be determined first, namely the number of hidden layers and
neurons required by the input layer, hidden layer and output
layer. For determining the number of hidden layers: Kol-
mogorov theorem indicates that only three layers of BPNN
can approximate any continuous function, so it is generally
enough to select one layer of hidden layer (Hornik et al.

Input OutputHiddenInput OutputHidden

Fig. 1 The topology of BPNN

1989); for determining the number of neurons each layer,
the number of input and output nodes depends on the dimen-
sion of the training sample, and there is no definite selection
method to determine the number of nodes in the middle hid-
den layer.

Figure 1 shows the structure of BPNN, it can be seen
that the BPNN is composed of three parts: the input layer,
the hidden layer and the output layer. There is no connec-
tion between the neurons in the same layer and between the
neurons in the non-adjacent layers and only a forward con-
nection between neurons in adjacent layers. Obviously, the
BPNN has an outstanding nonlinear mapping ability, which
is shown that the relationship between input and output neu-
rons is represented by n nonlinear terms (n is the number of
neurons in the hidden layer). Therefore, the corresponding
output of BPNN is:

Ok =
n∑

j=1

wk j y j + γk (1)

y j = f

(
m∑

i=1

w j i xi + θ j

)
(2)

where Ok is the output vector and y j is the hidden layer
output; n is the number of hidden nodes andm is the number
of input layer neurons; wk j is the weight between the hidden
and output nodes; w j i is the weight between the input to
hidden nodes; γk is the threshold of the output layer neurons
and θ j is the threshold of the hidden neurons; f is the transfer
function of the hidden neurons.

2.2 Back-propagation neural network with direct
input-to-output connections (BPNN–DIOC)

We have been using BPNN to achieve a nonlinear mapping
between input and output. However, most problems are a
combination of nonlinear and linear problems in real life,
so BPNN may not be able to express the implicit relation-
ship between input and output sample data completely and
accurately.

In fact, not only the learning algorithm affects the predic-
tion accuracy and generalization ability of the BPNN, but
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also the network topology structure has a certain influence
on the prediction performance. In other word, both learn-
ing algorithm and network topology structure have certain
influence on prediction performance when BPNN is used
for prediction and estimation. and the generalization ability
of the network for unknown samples is also affected by the
topology of the network.

2.2.1 Overview of previous work

Peng et al. (1992) proposed an improved neural network
algorithm, including the combined representation of linear
and nonlinear terms that map input to output. Pao et al.
(1994) proposed a random vector functional-link (RVFL)
network with a combination of random weights and func-
tional links that has direct connection from input layer to
output layer. Looney (1996) extended the radial basis func-
tion neural network (RBFNN) architecture to a more robust
radial basis function link network (RBFLN), which also has
the direct connection from input layer to output layer and
can obtain more accurate results than RBF neural networks.
However, such networks have not been fully researched and
developed since then. Ren et al. (2016) andZhang andSugan-
than (2016) demonstrated that the RVFL network that adds
input-to-output connections in RWSLFN can improve the
network’s generalization ability compared with RWSLFN
network through the examples of prediction and classifica-
tion , that is, the input-to-output connections in the network
has a significant positive impact on the prediction effect of
the network.

2.2.2 Structure of BPNN–DIOC

Inspired by the above work, BPNN–DIOC model is adopted
in this paper, which improves the capability of BPNN with
highly nonlinear fitting capability to solve the nonlinear and
linear synthesis problems.

Figure 2 shows the structure of the BPNN–DIOC. Obvi-
ously, theBPNN–DIOCadds the direct linear input-to-output
connections based on the conventional BPNN and reveals the
combination function of the linear and nonlinear mapping of
the input variables. Therefore, BPNN–DIOC shows the rela-
tionship between the input and output, which is expressed by
m linear terms and n nonlinear terms approximately. There-
fore, the corresponding output of BPNN–DIOC is:

Ok =
m∑

i=1

βki xi +
n∑

j=1

wk j y j + γk (3)

where βki is the linear connection weight from the input-
to-output neurons, the remaining parameters are shown in
Formula 1 and 2.

Input OutputHiddenInput OutputHidden

Fig. 2 The topology of BPNN–DIOC

Similar to BPNN, BPNN–DIOC uses training algorithms
to adjust network parameters through an iterative process.
Nevertheless, the main difference between these two models
is that the direct input-to-output connections of the BPNN–
DIOC simulates the linear components of the data compares
to BPNN model.

3 Experimental configuration

3.1 Datasets

This paper selects 8 groups of common time series data
to explore the performance of BPNN–DIOC model in time
series prediction. Their statistics features include the length,
min/max, median, average, and standard deviation of each
datasets shown in Table 1.

3.2 Variations on BPNN

The difference between BPNN–DIOC and BP neural net-
work is whether there is direct mapping between input layer
and output layer. In this paper, four different network models
are obtained based on whether input-to-output connections
and output layer thresholds are added in the BPNN. The
four different configurations of BPNN and their formulas
are shown in Table 2. M1, M3 indicate that the input layer is
not connected to the output layer.

M2, M4 model indicate that the input layer is connected
to the output layer. In Table 2, h is the output of hidden layer
neurons; O is the output of the output layer neurons; X is
the input of the network; W1 is the connection weights from
the input layer to the hidden layer; W21 is the connection
weights from the input layer to the output layer; W22 is the
connection weights from the hidden layer to the output layer;
θ is the threshold of the hidden neurons; β is the threshold
of the output neurons; f is the transfer function.
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Table 1 Summary of the eight time series datasets

Sequence number Name Length Min Median Max Mean SD

1 CO2 concentration 192 317.25 328.295 341.19 328.464 5.9627

2 Milk production 168 553 761 969 754.7083 102.2045

3 Atvinnulausir eftir menntun 185 1441 5112 16822 6407 4538

4 Number of unemployed 414 0.1515 2.1021 9.2871 2.7553 2.2585

5 Monthly lake erie levels 600 10 14.858 20 14.9931 2.0121

6 Social media payroll index 207 107078 108714 115068 109384 2205

7 Electricity load demand 1440 5676.57 7811.27 10398.73 7717.34 895.9621

8 Electricity price 1200 26.33 64.44 410.39 80.0491 49.5126

Table 2 BPNN with different
configurations

Model Output layer bias Input-to-output connections Formula

M1 × × h = f (
∑

XW1 + θ)

O = ∑
W22h

M2 × √
h = f (

∑
XW1 + θ)

O = ∑
W21X+ ∑

W22h

M3
√ × h = f (

∑
XW1 + θ)

O = ∑
W22h + β

M4
√ √

h = f (
∑

XW1 + θ)

O = ∑
W21X+ ∑

W22h + β

4 Assessment on eight time series data

Time series prediction is to speculate the future value based
on historical data. If time series is {xn}, its general form can
be described as:

xn+k = f (xn, xn−1, . . . , xn−(m−1)) (4)

where k is the number of prediction steps; m represents the
input dimension of the model. When k = 1, it is the sim-
plest single-step prediction; when k > 1, it is the multi-step
prediction. This article only discusses single-step prediction
of time series, that is, multiple time steps that are used for
rolling predict the next time step.

4.1 Select input and output variables

In this paper, 8 datasets are selected, of which dataset 1,
dataset 2, dataset 3, dataset 4 and dataset 5 are monthly
datasets, i.e., one data per month; dataset 6 is a weekly
dataset, i.e., one data per week; dataset 7 and dataset 8 are
one data every half hour. The input and output pattern of the
sample is shown in Table 3.

According to the control variable method, the same ini-
tial conditions were used for different models to remove the
influence of the initial conditions on the experimental results.
The number of neurons in the hidden layer was tested from

Table 3 The input and output
patterns for neural network
training

Input Output

1 x1 ∼ x12 x13

2 x2 ∼ x13 x14

3 x3 ∼ x14 x15
.
.
.

.

.

.
.
.
.

n xn ∼ xn+11 xn+12

1:30 to find out the best accuracy of the test set and obtain the
number of neurons in the hidden layer under the optimal pre-
cision of the test set.Due to the randomness of neural network
training, each network structure was trained 10 times, and
then the average prediction accuracy of the test set was cal-
culated. Finally, the optimal topology structure was obtained
for rolling prediction in 8 datasets.

4.2 Error measures

There are too many factors that affect data, including pre-
dictability, unknown and all kinds of unexpected conditions.
Therefore, errorswill inevitably occur in the predictionwork.
Errors are impossible to eliminate, only try to improve the
prediction method or learning algorithm to reduce them. In
this paper, in order to analyze the prediction effect of the four
different neural networks, Root Mean Square Error (RMSE)
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Table 4 Weights and thresholds
of linear neural network after
training

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7 Dataset8

w1 0.1444 0.2153 −0.0095 −0.025 0.1155 0.0711 −0.0116 −0.0899

w2 0.2215 0.1339 −0.0118 0.2088 0.1009 0.0829 0.1044 −0.0558

w3 0.0666 −0.1163 0.0849 0.1471 0.1379 0.1197 −0.0545 0.0559

w4 0.0114 0.2882 −0.1273 0.0237 −0.0574 −0.0538 −0.0753 −0.1183

w5 0.0527 0.0641 0.1034 0.1207 0.185 0.0539 −0.0491 0.127

w6 −0.0195 −0.1267 −0.1403 −0.0002 −0.015 0.0826 0.0597 −0.0954

w7 −0.0876 −0.0416 −0.0647 −0.1145 −0.112 −0.0396 −0.0706 0.0125

w8 0.0817 0.0742 0.2284 0.1286 −0.0589 0.0486 0.1056 0.1443

w9 0.1234 −0.1944 0.0279 −0.0352 0.0823 0.1766 0.0383 0.1129

w10 0.0503 0.0851 0.0742 0.1503 0.0844 0.1594 0.0291 0.0553

w11 0.0992 0.2279 0.4522 0.125 0.1113 0.1194 0.2518 0.2076

w12 0.2233 0.3322 0.3341 0.236 0.2845 0.0559 0.2699 0.4408

b 0.0371 0.0531 0.0232 0.0141 0.077 0.1424 0.2794 0.029

and Mean Absolute Percentage Error (MAPE) are used to
measure the predictive performance of the network. They
are defined as shown in Eqs. 6 and 7.

RMSE =
√√√√1

n

n∑

k=1

(Tk − Ok)
2 (5)

MAPE = 1

n

n∑

k=1

∣∣∣∣
Tk − Ok

Tk

∣∣∣∣ × 100 % (6)

where T is the target vector, O is the output vector and n is
the length of data. MAPE is an extension ofMSE andMAPE
is the preferred measure for industry practitioners.

4.3 Prediction results and analysis

For each time series, the first 70% was used for training and
the remaining 30% was used for testing. Due to the random-
ness of neural network training, each network structure was
trained 10 times.

4.3.1 Linear analysis

The linear neural network has a similar structure as the single-
layer perceptron, which is also composed of the input layer
and the output layer, and the neurons in the output layer have
the ability of information processing. The only difference
between them is that the activation function of the perceptron
is a hard transfer function, while the linear neuron uses the
linear transfer function purelin, so the output of the linear
neural network can be arbitrary value, rather than only two
values. The output of linear neural network can be calculated
by the following formula 7:

y = purelin(v) = purelin(w · p + b) = w · p + b (7)

It can be seen from the above formula that the linear neural
network can be approximated as a linear function, but can-
not complete the calculation of approximating a nonlinear
function.

In order to analyze whether there is a linear factor in the
system, this paper uses linear neural networks to predict time
series first. Table 4 shows the weights and thresholds of the
network after the training of each dataset, that is to say, for
each dataset, it can be expressed as a linear relationship as
shown in Equation 9.

x13 = w1x1 + w2x2 + w3x3 + · · · + w12x12 + b (8)

4.3.2 Performance evaluation between different models

In this paper, the experiments are simulated on MATLAB
2012a version. For four different BPNN variant networks,
the transfer functions of the hidden layer and the output layer
are logsig and purelin, respectively, and the network training
function is traingda. Set the number of hidden neurons to 1–
30 and train the network in turn, and then the average value
of RMSE and MAPE was taken as the prediction precision
of each network structure. Furthermore, in order to compare
the results of the experiment, the four different models of
each datasets were trained in the same initial conditions.

Hidden layer nodes Optimization

The experiment is repeated by adjusting the number of
hidden nodes under the other parameters remain unchanged
and the optimal number of hidden neurons is determined
according to the minimum output error in the training pro-
cess. The number of optimal hidden neurons required for
each dataset of four different network structures is shown in
Table 5. Figures 3 and 4 show the RMSE and MAPE change
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Table 5 Optimal hidden nodes

M1 M2 M3 M4

Dataset 1 8 1 11 1

Dataset 2 12 4 11 3

Dataset 3 13 2 13 4

Dataset 4 18 1 18 1

Dataset 5 13 2 13 1

Dataset 6 18 2 17 3

Dataset 7 9 1 12 1

Dataset 8 7 2 8 2

curves of dataset 7with the increase in hidden neurons during
the training of M3 and M4 models, respectively.

Apparently, the number of hidden neurons needed of
BPNN–DIOC model is much less than the conventional
BPNN. So it is useful to add that input-to-output connections
based on BPNN reduce the number of neurons required by
the hidden layer and delete some input-to-hidden weights
that are less importance for training results of network. Con-
sequently, the BPNN–DIOC model simplifies the network

structure greatly and reduces the amount of weight adjust-
ment.

Performance Optimization

The prediction results of 8 datasets using linear neural
networks are shown in the right column of Table 6. The
performance of four models was measured by RMSE and
MAPE, and the average RMSE and MAPE is tabulated in
Table 6. It can be seen that, compared with BPNN, 1–8 data
sets with input and output connected network of RMSE and
MAPE decreased significantly. However, there is no signifi-
cant difference in the prediction results of the network with
or without the output threshold. The prediction structure of
the linear neural network is shown in Fig. 5. Figure 6 is the
improved percentage of RMSE for BPNN–DIOC and the
RMSE for linear neural network. It can be seen from Table 6
and Fig. 6, in dataset 1, the prediction result using linear neu-
ral network is similar to that of BPNN, indicating that there
is a certain linear predictability between the data. Moreover,
BPNN–DIOCgreatly improves the prediction accuracy com-
pared with BPNN, and the RMSE is reduced from 0.0992 to
0.0329. In dataset 2, the prediction result using linear neural

The number of hidden neurons
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
M

S
E

0

0.02

0.04

0.06

0.08

0.1
RMSE curve with the increase of hidden neurons

M3
M4

Fig. 3 The RMSE curve of M3 and M4 models in dataset 7
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The number of hidden neurons
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Fig. 4 The MAPE curve of M3 and M4 models in dataset

Table 6 The average RMSE and MAPE of four different models and linear neural network

M1 M2 M3 M4 Linear neural network

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Dataset 1 0.1003 0.0062 0.0319 0.0019 0.0992 0.0061 0.0329 0.002 0.1041 0.0062

Dataset 2 0.0803 0.0323 0.0667 0.0269 0.0821 0.0324 0.0662 0.0274 0.1437 0.0563

Dataset 3 0.0659 0.1094 0.0385 0.0614 0.0653 0.1089 0.0383 0.0635 0.0817 0.1315

Dataset 4 0.1357 0.1914 0.106 0.1626 0.1348 0.19 0.107 0.1604 0.1527 0.2233

Dataset 5 0.0581 0.0323 0.0423 0.0227 0.0592 0.0335 0.0427 0.0232 0.1231 0.0678

Dataset 6 0.0765 0.0054 0.0536 0.0038 0.0784 0.0056 0.0517 0.0036 0.0893 0.0063

Dataset 7 0.0525 0.0242 0.0318 0.0141 0.0552 0.0225 0.0326 0.0145 0.1078 0.0517

Dataset 8 0.0763 0.2286 0.0687 0.1722 0.0761 0.2141 0.0678 0.167 0.0891 0.2465

network is poor, which is quite different from the prediction
result of BPNN, indicating that there is no obvious linear pre-
dictability between the data. Moreover, BPNN–DIOC has a
smaller improvement in prediction accuracy compared with
BPNN, and the RMSE is reduced from 0.0821 to 0.0662.
In dataset 3, the prediction result using linear neural net-
work is similar to that of BPNN, indicating that there is a
certain linear predictability between data.Moreover, BPNN–
DIOC greatly improves the prediction accuracy compared

withBPNN, and theRMSE is reduced from0.0653 to 0.0383.
In dataset 4, the prediction result using linear neural net-
work is similar to that of BPNN, indicating that there is a
certain linear predictability between data.Moreover, BPNN–
DIOC greatly improves the prediction accuracy compared
withBPNN, and theRMSE is reduced from0.1348 to 0.1070.
In dataset 5, the prediction result using linear neural network
is poor, which is quite different from the prediction result of
BPNN, indicating that there is no obvious linear predictabil-
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Input Output

X1

X2

X12

X13∑

W1

W2

W12

bias

1

Fig. 5 Prediction structure of linear neural network

ity between the data. Moreover, BPNN–DIOC has a smaller
improvement in prediction accuracy compared with BPNN,
and the RMSE is reduced from 0.0592 to 0.0427. In dataset
6, the prediction result using linear neural network is simi-
lar to that of BPNN, indicating that there is a certain linear
predictability between data.Moreover, BPNN–DIOCgreatly
improves the prediction accuracy compared with BPNN, and
the RMSE is reduced from 0.0784 to 0.0517. Since datasets
7–8 are collected every half hour, the 12-dimensional input
and 1-dimensional output structure cannot well interpret the
relationship between the data. Therefore, the prediction result
of linear neural network has little relationship with the pre-
diction results of BPNN–DIOC, but it can be seen that the
prediction result of BPNN–DIOC is still superior to that of
BPNN. Therefore, for data that have a linear relationship,
BPNN–DIOC plays an important role in time series predic-
tion, it can obtain better prediction accuracy than BPNN.

The Wilcoxon signed-ranks test is a non-parametric alter-
native to the paired t test, which ranks the differences in

performances of two classifiers for each data set, ignoring
the signs, and compares the ranks for the positive and the
negative differences. The differences are ranked according
to their absolute values. Ranks of di = 0 are split evenly
among the sums; if there is an odd number of them, one is
ignored. Let N be the number of pairs.

R+ =
∑

di>0

rank(di ) + 1

2

∑

di=0

rank(di ) (9)

R− =
∑

di<0

rank(di ) + 1

2

∑

di=0

rank(di ) (10)

T = min(R+, R−) (11)

z = T − 1
4N (N + 1)

√
1
24N (N + 1)(2N + 1)

, (N (N + 1)/2) > 25)

(12)

With α = 0.05, the null-hypothesis can be rejected if z is
smaller than a given value.

In order to explore whether the output bias has a signif-
icant effect on prediction results, we applied the Wilcoxon
signed-rank test on the two pairs: M1 and M3, M2 and M4.
The p values shown in Tables 7 and 8 are bigger than 0.05,
indicating that the output bias has no significant effect on
prediction effect.

In order to explore whether the input-to-output connec-
tions has a significant effect on prediction results, we applied
the Wilcoxon signed-rank test on the two pairs: M1 and M2,
M3 andM4. The p values shown in Tables 7 and 8 are smaller

Fig. 6 Improved percentage of
RMSE for BPNN–DIOC and the
RMSE for linear neural network
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Table 7 Wilcoxon signed-rank test of the BPNNwhether has the output
bias

Dataset 1–8 RMSE MAPE

M1 versus M3 0.3281 0.2656

M2 versus M4 0.9141 0.9219

Table 8 Wilcoxon signed-rank test of the BPNNwhether has the input-
to-output connections

Dataset 1–8 RMSE MAPE

M1 versus M2 0.0078 0.0078

M3 versus M4 0.0078 0.0078

than 0.05, indicating that the input-to-output connections has
a significant effect on prediction effect.

In general,BPNN–DIOCcan improve the prediction accu-
racy owing to the input-to-output connections. It strengthens
the description of the linear relationship in the time series
data of the entire network and improves the generalization
ability of the network.

5 Conclusion

When the target system contains linear component, the tradi-
tional method is to use BPNN network with highly nonlinear
fitting characteristics to approximate the system. There is no
doubt that the effect of using nonlinear network to approx-
imate linear system is worse than that of linear model.
Therefore, this paper adopts BPNN–DIOC for time series
prediction, joining a linear connection between the input
layer and the output layer of the based BPNN, a linear
and nonlinear combined network is formed to enhance the
generalization ability of the network and fully express the
implicit relationship between the input and output samples.
This paper discusses the influence on the input-to-output con-
nections and output layer bias on the prediction results based
on 8 sets of datasets, the following conclusions can be drawn:

1. During network training, BPNN–DIOC can reduce the
number of neurons required by the hidden layer by adding
input-to-output connections than BPNN, it deletes some
input-to-hidden weights that are less important for train-
ing results of network. The total number of connections in
BP networks could be reduced if (m + q) × p > m × q ,
wherem is the number of input layer nodes, q is the num-
ber of output layer nodes and p is the reduction in the
number of the hidden layer nodes. So the BPNN–DIOC
could simplify the network structure greatly.

2. The direct input-to-output connections can improve the
prediction accuracy significantly. Moreover, the better

linear fitting of the data, the better prediction effect of
BPNN–DIOC. However, the output bias has no signifi-
cant effect on network prediction result.

3. The prediction result of linear neural network has rela-
tionship with the prediction results of BPNN–DIOC.
In general, BPNN–DIOC plays an important role in
time series prediction for data that has a linear relation-
ship, which can obtain a better prediction accuracy than
BPNN.

Therefore, adding a connection from input-to-output
based on BPNN can map the input to the output of the net-
work more completely and describe the characteristics of the
time series data more accurately. Thence, the BPNN–DIOC
network provides a more general framework for prediction
model.
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