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Abstract
ABC analysis is a widespread inventorymanagement technique designed to classify inventory items—based on their weighted
scores—into three ordered categories A, B and C, where category A contains the most important items and category C
includes the least important ones. This paper proposes a newABC classification approach which involves a non-compensatory
aggregation procedure, based on a simplified ELECTRE III method, to compute the score of each inventory item. A non-
compensatory aggregation scheme means that the bad scores of an item on some significant criteria could not be offset by
its high performances on the other criteria. This way of proceeding prohibits this kind of items from being classified into
good categories and therefore generates a more realistic ABC classification of inventory items. Since the application of the
simplified ELECTRE III method requires the knowledge of some parameter values, the continuous variable neighborhood
search meta-heuristic will be used for their estimation. The comparative study—conducted on two real datasets—shows that
the classification of items produced by our proposed approach has generated the lowest inventory cost value among those
produced by all tested classification models.

Keywords ELECTRE III · ABC inventory classification · Non-compensatory aggregation procedure · Variable neighborhood
search · Inventory management

1 Introduction

ABC analysis is one of the most widely used techniques
in inventory management to classify inventory items into
three ordered categories: categoryAcontains themost impor-
tant items, category B involves items which are moderately
important and category C contains items of little importance.
The main idea behind the ABC classification consists in
managing in an effective way a large number of items by
determining the appropriate inventory control policy to use
for each category of items. In this way, managers can keep
inventory costs under control.
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Traditional ABC analysis uses the Annual Dollar Usage
(ADU) criterion to classify inventory items into one of the
above-mentioned categories. However, recent literature has
showed thatmanyother criteriamaybe significant and should
be involved in the item classification process (e.g., order-
ing cost, criticality, lead time, obsolescence, substitutability,
order size requirement, etc.). This indicates that the perfor-
mance of each inventory item is measured by a composite
score issued from a multi-criteria aggregation procedure that
combines the item evaluations on the different criteria and the
criteria weights (and eventually other intra-criteria parame-
ters). Items are then ordered in a descending order of their
composite (or weighted) score. Finally, the following prede-
fined distribution is applied to obtain the different categories:
the top 5–10% of items constitute category A (items with
highest scores), the next 20–30%of items are classified in cat-
egoryB and categoryCwill involve 50–70%of the remaining
items (items with lowest scores).

It should be noted that most of the existing aggregation
procedures designed to compute the weighted score of each
item are fully compensatory. Despite the advantages of these
procedures, full compensability refers to the possibility that
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an item with weak performance on some significant criteria
can be compensated by its high performance on other criteria
and therefore it may be classified in a good category. This
way of proceeding may provide scores that do not reflect the
true performance of inventory items, and in this case, man-
agerswill expend precious resources bymanaging rigorously
many insignificant items. In addition, in full compensatory
aggregation scheme the criteria weights play the role of
substitution rates (or trade-off coefficients) rather than the
importance (or power) to be assigned to each criterion, which
is their real theoretical meaning. In order to consider weights
as “importance coefficients,” non-compensatory aggregation
procedures must be used to construct the composite indi-
cators (Podinovskii 1994). To the best of our knowledge,
classification approaches with non-compensatory aggrega-
tion procedures are rarely tackled in the ABC analysis
literature. The works of Zhou and Fan (2007), Hadi-Vencheh
(2010), Lolli et al. (2014) and Liu et al. (2016) consti-
tute some exceptions of non-compensatory classification
approaches Zhou and Fan (2007), Hadi-Vencheh (2010),
Lolli et al. (2014), Liu et al. (2016).

This paper proposes a new non-compensatory classifica-
tion approach based on a simplified ELECTRE III method
to compute the weighted scores of inventory items on which
the ABC classification is based. ELECTRE III is a well-
known Multi-Criteria Decision-Making (MCDM) method
that aims to rank—by using a non-compensatory aggrega-
tion scheme—a set of alternatives (inventory items in our
case) evaluated on a set of conflicting criteria with non-
commensurablemeasurement scales. Since the application of
ELECTRE III method requires the knowledge of some intra-
criteria (e.g., indifference, preference and veto thresholds)
and inter-criteria (e.g., criteria weights) parameter values, the
Continuous Variable Neighborhood Search (CVNS) meta-
heuristic will be used for their estimation. To analyze the
performance of the proposed approach with respect to some
existing classification models, a comparative study is con-
ducted by using two real benchmark datasets: the first one
is proposed by Reid (1987) and involves 47 inventory items
used in a Hospital Respiratory Therapy Unit (HRTU) Reid
(1987), whereas the second is proposed by Liu et al. (2016)
and includes 63 inventory items used by a sports equipment
manufacturer in China Liu et al. (2016). In this comparative
study, the Total Relevant Cost (TRC) function (Mohamma-
ditabar et al. (2012)) is also used to evaluate objectively the
ABC classifications generated by of all tested classification
approaches Mohammaditabar et al. (2012).

This paper makes three main contributions. First, the
proposed classification approach adopts—through ELEC-
TRE III method—a non-compensatory aggregation scheme
to compute the global score of each inventory item, a scheme
rarely tackled in the ABC inventory classification literature.
A non-compensatory logic assumes that a poor score of an

item on a specific criterion cannot be necessarily compen-
sated by its good scores on the remaining criteria. Thus, when
comparing an itemwith reasonably good scores on all criteria
with an itemwith a very bad score on one criterion and excel-
lent scores on all remaining criteria, a non-compensatory
model (like ELECTRE III method) will be potentially in
favor of the first item, whereas a full compensatory model
(like the weighted sum model) will be potentially in favor of
the second item. Moreover, with a non-compensatory logic,
the criteria weights are not considered as “substitution rates”
but rather as “coefficients of importance, i.e., the greatest
weight is assigned to the most important criterion, which
is their real theoretical meaning Vincke (1992), Mousseau
(1995), Rogers and Bruen (1998).

Second, the proposed classification approach combines
the benefits of MCDM methods and meta-heuristics in
order to provide an ABC classification that minimizes an
important inventory performance measure: the Total Rel-
evant Cost (TRC). As most MCDM methods, ELECTRE
III is designed to explicitly incorporate human judgements
(decision-maker’s preferences), to consider a set of con-
flicting criteria and to deal with evaluations obtained on
heterogeneous measurement scales. These advantages come
with a price: ELECTRE III has relatively a large number of
parameters to be set up. In MCDM context, these parameters
are usually elicited through an interactive process, at the end
of which the decision-maker provides their values accord-
ing to his point of view: it is the Direct Elicitation Approach
(DEA). However, when it is difficult for the decision-maker
to provide such information in a coherent way, the Indirect
Elicitation Approach (IEA) (also known as disaggregation
approach) might be a suitable solution to elicit automatically
the values of these parameters based on a set of pre-assigned
items. It is important to underline that most of the existing
IEAs are usually based on complex combinatorial optimiza-
tion problems which are both difficult and time-consuming
to solve using classical optimization methods. For this pur-
pose, the CVNS meta-heuristic will be used in this paper to
elicit the values of ELECTRE III parameters. The VNS (and
its continuous version CVNS) is a widespreadmeta-heuristic
designed to solve complexes combinatorial and continuous
optimization problems. Its main advantages are: it provides
excellent solutions in a reasonable computation time, it is
easy to implement and it requires very few parameters to be
set in order to obtain good results.

Third, the comparative study proposed in this paper uses
both the Total Relevant Cost (TRC) and two real benchmark
datasets to evaluate objectively the performance of all tested
ABC classification models. For that purpose, it is important
to highlight thatmost of the existing comparatives studies not
only use one benchmark dataset (most often Reid’s dataset)
for their experimental results but they are also limited to some
elementary comparisons of all obtained ABC classifications
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(e.g., identifying inventory items which are assigned to the
same category by all tested classification approaches).

The outline of this paper is as follows. The relevant litera-
ture on ABC inventory classification is presented in Sect. 2.
The proposed classification approach will be detailed in
Sect. 3. In Sect. 4, the comparative study of all tested classifi-
cation models is reported and discussed. Finally, conclusions
and perspectives for future research are reported in Sect. 5.

2 Related literature

Flores and Whybark (1986, 1987) were the first authors
to consider a multi-criteria scoring of inventory items in
order to classify them into ABC categories Flores and
Whybark (1986, 1987). Since then, many classification
approaches are proposed in the literature to solve in differ-
ent ways this inventory classification problem . In spite of
this extensive literature, most of the existing classification
approaches may be categorized into four main classes: (i)
classification approaches based on Mathematical Program-
ming (MP) techniques, (ii) classification approaches basedon
Artificial Intelligence (AI) and Meta-Heuristics (MH) tech-
niques, (iii) classification approaches based onMulti-Criteria
Decision-Making (MCDM) techniques and (iv) classification
approaches based on hybrid (HB) techniques.

2.1 Classification approaches based onMP
techniques

Themain idea behind this family of classification approaches
is that a Mathematical Programming (MP) model (which
may be linear or nonlinear) is used to generate a vector (or a
matrix) of criteria weights (and perhaps some other parame-
ters) in order to compute—through its objective function—a
global score for each inventory item. Based on these scores,
items are then classified into ABC categories according to a
predefined distribution.

Ramanathan (2006) introduced the first Linear Pro-
gramming (LP) model (hereafter called R-model) to solve
the multi-criteria ABC inventory classification problem
Ramanathan (2006). This LP model uses a weighted addi-
tive function as objective function to combine the inventory
item performances on the different criteria and the criteria
weights into an overall normalized score. Two major criti-
cisms may be addressed to the R-model. First, the scoring
function of the R-model, i.e., its objective function, is fully
compensatory, and this means the possibility of offsetting
a poor performance of an item on some criteria by suffi-
ciently high values on other criteria. Therefore, an item with
bad scores on some significant criteria could be classified,
due to the full compensability, into good categories, and this
can generate a non-realistic ABC classification of inventory

items. Second, by applying R-model, it may occur that two
items with the same weighted score will be assigned into
two different (but adjacent) categories. This is due to the fact
that the assignment of an item into a specific category with
the R-model is determined by the position of this item in the
ranking and two predefined cutting levels which set the num-
ber of items involved in each category. To overcome the first
limitation of the R-model, Zhou and Fan (2007) proposed a
classification approach based on two LPmodels (called here-
after ZF-model) Zhou and Fan (2007). The first LP model
(respectively, the second)—to bemaximized (respectively, to
be minimized)—computes the best (respectively, the worst)
score that an inventory itemmay have by generating the most
(respectively, the least) favorable weights for this item. Then,
Zhou and Fan (2007) proceed with a convex combination of
these two scores (after their normalization) in order to gener-
ate the overall score of each inventory item.Ng (2007) (called
hereafter NG-model) proposed an extension of the R-model
in which the decision-maker can introduce additional con-
straints that express an ordinal ranking on the criteria weights
Ng (2007). Ng (2007) has shown that its model may be writ-
ten, by performing some simplifications, in a canonical form
with only one equality constraint and, therefore, it can be
solvedwithout using any linear optimizer. However, it should
be noted that the overall scores of inventory items generated
byNG-model have the drawback of being independent of cri-
teria weights. To overcome the weakness of the NG-model,
Hadi-Vencheh (2010) (called hereafter H-model) proposed a
Nonlinear Programming (NLP) model that incorporates the
effects of weights in the computation of the overall score of
inventory items Hadi-Vencheh (2010). The nonlinearity of
the H-model is due to the constraint that assumes that the
sum of the squared criteria weights is equal to 1. It should be
noted that in the ABC analysis literature, many other works
have tried to improve the NG-model (e.g., Jie et al. (2010),
Fu et al. (2015), Zheng et al. (2017)).

It is important to underline that most above mathe-
matical programming-based classification models consider
only quantitative criteria. Classification models that take
into account both quantitative and qualitative criteria are
rather rare in the ABC analysis literature. To overcome this
shortcoming, Hatefi et al. (2013) proposed a linear optimiza-
tion model based on a DEA (Data Envelopment Analysis)
model—introduced by Cook et al. (1996)—that considers
both qualitative and quantitative criteria. The main aim of
their optimization model is to improve the discrimination
power among inventory items. Similarly, Torabi et al. (2012)
modified the DEA model introduced by Hatefi and Torabi
(2010)—by integrating some concepts used in the Imprecise
DEA (IDEA) model developed by Zhu (2003)—in order to
perform the ABC inventory classification when both quan-
titative and qualitative criteria are considered (Torabi et al.
2012; Hatefi et al. 2013).
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2.2 Classification approaches based on AI &MH
techniques

This family of classification approaches can be split into
two distinct subfamilies: classification approaches based on
Meta-Heuristics (MH) and classification approaches based
on Artificial Intelligence (AI) techniques.

2.2.1 Classification approaches based onmeta-heuristics

The main idea behind this family of approaches is that
a meta-heuristic (e.g., Genetic Algorithm (GA), Particle
SwarmOptimization (PSO), SimulatedAnnealing (SA), etc.)
is used to elicit the parameters of the aggregation model
(essentially the criteria weights) by optimizing single- or
many-objective functions (e.g., minimizing an inventory cost
function, minimizing the rate of misclassified items, maxi-
mizing the turnover ratio, etc.). Then, a simple weighted sum
is used as aggregation model to compute the overall score of
each item. Based on these scores, items are finally classified
into ABC categories according to a predefined distribution.

Guvenir andErel (1998) proposed a classification approach
—called GAMIC (Genetic Algorithm for Multi-Criteria
Inventory Classification)—which uses the Genetic Algo-
rithm (GA) to learn the criteria weights and two cutoff points
by maximizing the rate of well-classified items (fitness func-
tion of the GA) Guvenir and Erel (1998). Once weights are
obtained, the simpleweighted sum is then applied to compute
the overall score of each item. Tsai and Yeh (2008) proposed
a classification approach based on Particle SwarmOptimiza-
tion (PSO) meta-heuristic Tsai and Yeh (2008). The aim was
to learn the criteria weights, the cutoff points and the number
of categories by optimizing simultaneously (through a Goal
Programming (GP) modelization) or separately three objec-
tive functions: minimizing the Total Relevant Costs (TRCs),
maximizing the Demand Correlation (DC) and maximizing
Inventory Turnover Ratios (ITRs). Mohammaditabar et al.
(2012) proposed an integrated classification approach which
simultaneously categorizes the inventory items and finds the
best inventory policy for each category Mohammaditabar
et al. (2012). For this purpose, a bi-objective mathematical
model minimizing both the dissimilarity between each pair
of items and the Total Inventory Cost (TIC) is formulated.
Since it is difficult to obtain the optimal solution of the above
mathematical model due to the non-convexity of its objec-
tive functions, the Simulated Annealing (SA) meta-heuristic
is used to find “good” solutions.

2.2.2 Classification approaches based on artificial
intelligence techniques

The main idea behind these classification approaches is that
a set of Artificial Intelligence (AI) techniques—such as Arti-

ficial Neural Network (ANN), Support Vector Machines
(SVMs), Back Propagation Networks (BPNs) and the K-
Nearest Neighbor (K-NN) algorithm—are used—such as
Machine Learning (ML) algorithms—to construct the ABC
classification model. Hence, the use of this type of classifi-
cation approaches, whatever the application field, assumes
the availability of a set of pre-assigned items to perform the
learning process (e.g., Agarwal and Mittal 2019; Rosdi et al.
2019; Naderpour and Mirrashid 2019).

Partovi and Anandarajan (2002) presented a classification
approach based on the Artificial Neural Network (ANN) to
carry out the ABC classification of pharmaceutical inventory
items Partovi and Anandarajan (2002). In their approach,
two learning methods, namely Back Propagation (PB) and
Genetic Algorithm (GA), are used to determine the “best”
set of weights for the network. López-Soto et al. (2017)
also designed a classification approach based on Artificial
Neural Network (ANN) with discrete activation functions
to solve the multi-criteria inventory classification problem
López-Soto et al. (2017). For this purpose, a multi-start con-
structive algorithm—using a randomized greedy strategy—is
applied to train the neural network byminimizing the number
of hidden layer neurons. In addition and, in order to speed up
the training process and solve large dataset instances, the pro-
posed approach determines the neuron’s weights by solving
some LP models.

In the same context, Yu (2011) proposed a compara-
tive study where three Machine Learning techniques (Sup-
port Vector Machines (SVMs), Back Propagation Networks
(BPNs) and the K-Nearest Neighbor (K-NN) algorithm)
are compared to Multiple Discriminate Analysis (MDA) Yu
(2011). This study was conducted by using the ABC classi-
fications generated by four benchmark classification models
[Reid model (1987), Flores et al. model (1992), R-model
(2006) and Ng-model (2007)].

Kartal and Cebi (2013) proposed a classification approach
based on Support Vector Machines (SVMs) to classify
inventory items used in a large-scale automobile company
operating in TurkeyKartal and Cebi (2013). In this approach,
a Simple Additive Weighting (SAW) method is firstly used
to compute the scores of items based on which an ABC clas-
sification is obtained. The SVMs are then used as learning
algorithm to predict the classes of the SAW-based ABC clas-
sification. López-Soto et al. (2016) developed a classification
approach based on two supervised classification techniques,
namely Logical Analysis of Data (LAD) and K-Nearest
Neighbor (K-NN) algorithm, in order to detect and correct
familiarity bias that may appear in the ABC classification of
items provided by inventory experts López-Soto et al. (2016).
Lolli et al. (2017) proposed a classification approach based
on two supervised classification techniques, namelyDecision
Trees (DTs) and Random Forests (RFs), to solve the ABC
inventory classification problem Lolli et al. (2017). In this
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approach, the training process is performed by using a sam-
ple of items previously classified by simulating a predefined
inventory control system. The computational experiments—
conducted on a dataset issued from a firm producing electric
resistances—show that the proposed approach outperforms
the classification approach suggested by Ladhari et al. (2016)
in terms of rate of misclassified items.

2.3 Classification approaches based onMCDM
techniques

In general, classification approaches based on MCDM tech-
niques proceed in two steps to classify inventory items into
ABC categories. In the first step, an MCDM method—
essentially the Analytic Hierarchy Process (AHP) (Saaty
1990)—is applied once to compute the criteria weights. In
the second step, an aggregation rule—usually an MCDM
method—is used to compute the global score of each
inventory item. It is important to underline that MCDM
techniques have the ability to incorporate explicitly human
judgments, considering conflicting criteria and dealing with
data obtained on heterogeneous measurement scales (i.e.,
quantitative and qualitative).

Flores et al. (1992) proposed a classification approach
based on AHP method to classify inventory items into
ABC categories by considering multiple criteria Flores et al.
(1992). In their approach, the AHP method is used to deter-
mine the criteria weights and the Weighted Sum (WS) rule
is used to compute the overall score of each inventory item.
In the same context, Partovi and Burton (1993) proposed a
classification approach in which the computation of the cri-
teria weights and the item scores are both determined by
AHP method Partovi and Burton (1993). The main advan-
tage of Partovi and Burton’s model with respect to Flores et
al.’s model is that the former considers both qualitative and
quantitative criteria, whereas the latter considers only quanti-
tative criteria Kaabi et al. (2018). Bhattacharya et al. (2007)
proposed a classification approach based on two MCDM,
namely TOPSIS technique (Technique for Order Preferences
by Similarity to the Ideal Solution) (Hwang and Yoon, 1981)
and AHP method, to classify inventory items into ABC
categories Bhattacharya et al. (2007). The AHP method is
used to determine the criteria weights, whereas the TOP-
SIS technique is used—as aggregation rule—to compute the
overall scores of inventory items. The proposed classification
approach has been applied on a real case study involving
items used in a pharmaceutical company located in India.
Rezaei (2007) proposed a classification approach based on
Fuzzy AHP (FAHP) to assign inventory items into ABC cat-
egories Rezaei (2007). In FAHP, the pairwise comparisons of
both criteria and the alternatives are made by using linguis-
tic variables expressed by triangular fuzzy numbers. In his
approach, Rezaei (2007) developed a six-step algorithm in

which some basic concepts of fuzzy set theory (mathematical
and comparison operators) are used in order to assign each
inventory item into its corresponding category. This same
algorithm was later used by Cakir and Canbolat (2008) to
develop aWeb-based decision support systemCakir andCan-
bolat (2008). Many other classification approaches that use
the FAHP to solve the ABC inventory classification problem
merit to be mentioned here (Kabir and Hasin 2011, 2012;
Kabir et al. 2011; Çebi et al. 2010; Kiris 2013).

Although the AHP method (and its fuzzy version FAHP)
has been widely used to solve the multi-criteria ABC inven-
tory classification problem, three main criticisms may be
addressed to this method. First, when the problem size, i.e.,
the number of criteria and/or inventory items, increases, the
number of pairwise comparisons increases significantly and,
therefore, this may discourage the decision-maker to use
AHP given the significant cognitive effort that he/she should
provide. Second, even if the problem has a reasonable size,
the input data, i.e., the pairwise comparisons required to
apply AHPmethod, are not easy to obtain from the decision-
maker since it is measured on a ratio scale (e.g., how much a
criterion is more important than another criterion), the most
demanding measurement scale in terms of cognitive effort
provided. Third, due to the limited rationality of the decision-
maker, it is often difficult to obtain a low consistency index,
especially when the problem size is high.

Douissa and Jabeur (2016a) have proposed a new classi-
fication approach in which the ABC classification problem
is solved as a nominal sorting problem rather than a ranking
problem like the most existing ABC classification models
Douissa and Jabeur (2016a). In their approach, an MCDM
method, called PROAFTN (PROcédure d’Affectation Floue
pour la problématique de Tri Nominal), is used to assign
each inventory item into the category A, B or C with which
it has the most similar characteristics. Since the applica-
tion of PROAFTN method requires the knowledge of some
parameter values (e.g., prototypes intervals and discrimina-
tion thresholds), the Chebyshev’s theorem is used for their
estimation. Li et al. (2017) proposed a new classification
approach based on Stochastic Multi-criteria Acceptability
Analysis (SMAA) Li et al. (2017). In their approach, the
authors developed a stochastic formulation of the multi-
criteria ABC inventory classification problem by considering
all possible ranking orders of the criteria weights.

2.4 Classification approaches based on Hybrid
techniques

Recently, an emerging researchdirection consists in hybridiz-
ing classification techniques issued from different families
of approaches. For instance, Lolli et al. (2014) introduced a
newhybrid classification approach based on theAHPmethod
and the K-means algorithm Lolli et al. (2014). The proposed
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approach uses first AHP method to generate a ranking of
inventory items. Then, the K-means algorithm is applied
to group the most similar items with the aim of generat-
ing compact and well-separated clusters. Douissa and Jabeur
(2016b) proposed an hybrid approach in which the ELEC-
TRE III method and the VNS meta-heuristic are combined
to generate a classification of inventory items Douissa and
Jabeur (2016b). In their approach, the criteria weights are
determined ’objectively’ by using the entropy method—
instead of the AHP method—in order to avoid making a
high number of pairwise comparisons. Liu et al. (2016) com-
bined theELECTRE IIImethod and theSimulatedAnnealing
(SA) meta-heuristic to tackle the compensation problem in
the ABC inventory classification Liu et al. (2016). Kartal
et al. (2016) presented some hybrid approaches by combin-
ing MCDM methods with machine learning (ML) models
for the multi-criteria ABC analysis Kartal et al. (2016).
Three different MCDM methods, namely Simple Additive
Weighting (SAW), Analytic Hierarchy Process (AHP) and
VIKOR, 1 were used to determine the items’ categories.
Then, Naive Bayes (NB), Bayesian Network (BN), Artifi-
cial Neural Network (ANN) and Support Vector Machine
(SVM) algorithms were used as supervised learning tech-
niques to predict the pre-established items’ categories.

It is important to underline that, in the ABC analysis lit-
erature, there are many other ABC classification models that
do not belong to any of the above families of approaches.
Table 1 reports the main features of these “Other” classifica-
tion models and all relevant classification models belonging
to the four above families of approaches. The meanings of
these features are explained as follows:

– The approach to which the classification model belongs
(MP, AI, MCDM,…)

– The type of criteria considered (Quantitative, Qualitative
or both, i.e., Mixed) and their weighting process which
may be “subjective” when the decision-maker provides
directly the criteria weights or “objective” when these
weights are derived automatically from the dataset with-
out any intervention from the decision-maker;

– The level of compensation (full compensatory or non-
compensatory) used by the classification model to com-
pute the weighted scores of inventory items;

– The number of the evaluation functions (single/multiple)
used in the construction and the evaluation of the gener-
ated ABC classifications;

– The decision-making problematic according to which
the ABC inventory classification problem is solved:
ranking problematic, sorting problematic (assignment

1 The name VIKOR appeared in 1990 Opricovic (1990) from Ser-
bian: VIseKriterijumska Optimizacija I Kompromisno Resenje, which
means: Multi-criteria Optimization and Compromise Solution.

with ordinal categories) and classification problematic
(assignment with nominal categories);

– The number of datasets used to measure the performance
of the classification model;

– The existence or the nonexistence of an inventory cost
analysis to measure the performance of the classification
model.

The analysis of the multi-criteria ABC inventory classi-
fication literature presented above shows that this research
field has some shortcomings that can be resumed in the fol-
lowing points:

– Most of the existing ABC classification models consider
only quantitative criteria. Models that deal with mixed
criteria (Quantitative and Qualitative) are relatively rare.

– Despite the various benefits of non-compensatory aggre-
gation scheme (discussed in detail in Introduction sec-
tion), the use of such scheme in the existing ABC
classification models during the item scoring process
remains insufficient.

– Although the ABC analysis is, by nature, an ordinal
classification problematic,most of the existingABCclas-
sification models treat it as ranking problematic and then
they apply a predefined distribution to assign each inven-
tory item into a specific category. It will be shown in
Conclusion section that this way of proceeding may gen-
erate some inconsistencies.

– Most of the above research works use only one bench-
mark dataset (most often Reid’s dataset) in order to
compare the performance of their classification models
with respect to some other existing models.

– Most of the existing classificationmodels determine their
ABC classifications of inventory items without consid-
ering any inventory performance measure such as the
inventory cost. In fact, these models generate their ABC
classifications bymaximizing the score of each inventory
item, minimizing the divergence with respect to a subjec-
tive ABC classification provided by the decision-maker,
etc.

– Most of the existing classification models use a single-
objective-based evaluation function in the item scoring
process. The use of the multi-objective scheme remains
very limited.

In this work, our aim is to overcome some of the above
shortcomings by proposing a newclassification approach that
combines a simplified version of ELECTRE III method to
compute the item scores and the meta-heuristic CVNS to
estimate the ELECTRE III parameters. It is important to
note that ELECTRE III is an MCDM method that consid-
ers mixed (quantitative and qualitative) criteria and uses a
non-compensatory aggregation scheme to compute the item
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scores. In addition, our proposed classification approach
considers the Total Relevant Cost (TRC) as an inventory per-
formancemeasure in the generation of theABCclassification
of inventory items. Finally, to evaluate the performance of our
proposed classification approach with respect to some exist-
ing classification models, two real benchmark datasets will
be used.

Algorithm 1 Pseudocode of the proposed classification
approach
Initialization:

– Find an initial solution x = (q, p, v, w), i.e., a parameter vector
of the simplified ELECTRE III method.

– Select an evaluation set E = (
ei j = g j (ai )

)
i=1...m, j=1...n

– Select a set of neighborhood structures Nk(x), k = 1, . . . , kmax
– Select a random distribution to generate the neighborhoods of a
solution.

– Select a predefined distribution to set the number of items to
include in each category.

– Choose an evaluation function f to measure the performance of
an ABC classification.

– Choose a stopping criterion.

repeat
Set k ← 1;
repeat

Shaking Step: Generate a random solution x ′ from the neigh-
borhood structures Nk(x).
Local search Step:
repeat

Improve ← False
Set x" ← x ′
for each y ∈ Nk(x ′) do

if ( fT RC (ABC (y)) < fT RC (ABC (x"))) 2 then
x" ← y
Improve ← True

end if
end for
if Improve = True then

x ′ ← x"
end if

until Improve = False
Neighborhood Change Step:
if

(
fT RC

(
ABC

(
x′)) < fT RC (ABC (x))

)
then

x ← x′
k ← 1

else
k ← k + 1

end if
until k > kmax :

until a stopping criterion is met

2 In this pseudocode, the computation of the cost function fT RC of
any solution z requires the execution of the three following steps: (1)
apply the simplified ELECTRE III method by using z as parameter
vector to generate a ranking of inventory items, (2) generate an ABC
classification, i.e., ABC(z), by splitting the above item ranking accord-
ing to a predefined distribution and (3) evaluate the generated ABC
classification by using the Total Relevant Cost (TRC) function, i.e.,
fT RC (ABC (z)).

3 The proposed classification approach

The detailed pseudocode of the proposed classification
approach is presented in Algorithm 1. Essentially, two major
components constitute the proposed classification approach:
a simplified version of the ELECTRE III method is used
to compute the global score of each item, and the Continu-
ous Variable Neighborhood Search (CVNS) meta-heuristic
is used to estimate the simplified ELECTRE III parameters.

The main aim of the proposed classification model is to
find a set of values for ELECTRE III parameters that provides
the best classification of inventory items, i.e., a classification
thatminimizes theTotalRelevantCost (TRC).Hence, in each
iteration, the CVNS generates a vector of parameters

((q1, p1, v1, w1), (q2, p2, v2, w2), . . . , (qn, pn, vn, wn))

for all criteria where qi , pi , vi and wi are, respectively,
the indifference threshold, the preference threshold, the veto
threshold and the weight of the criterion i (i = 1, 2, . . . , n).
This vector (or solution) is generated in the neighborhoods
of the current solution (vector of parameters) by applying
a shaking operation. The generated vector is then used by
ELECTRE III to compute a global score for each item. Based
on these scores, an ABC classification of inventory items
is provided and evaluated by using the Total Relevant Cost
(TRC) function. If any improvement is reached (i.e., a smaller
value of TRC), the algorithm will update its vector of param-
eters (or solution) or, in the opposite case, will move to the
next neighborhood (in the same or in the next neighborhood
structures, as the case may be). The process is repeated until
the stopping condition is met. The general framework of the
proposed classification approach is presented in Fig. 1.

In what follows, the main components of the proposed
classification approachwill be detailed: the simplifiedELEC-
TRE III method and the Continuous Variable Neighborhood
Search (CVNS) meta-heuristic.

3.1 The simplified ELECTRE III method

The ELECTRE III method—a French abbreviation of the
expression ELimination Et Choix Traduisant la REalité
(Elimination and Choice Expressing the Reality)—is a well-
known Multi-criteria Decision-Making (MCDM) method
which was originally introduced by Roy (1978) in order
to enhance some earlier ELECTRE methods (ELECTRE I
and II) with the aim of explicitly incorporating the fuzzy
(imprecise and uncertain) nature of decision making Roy
(1978). Indeed, ELECTRE III method aims to rank a set
of alternatives (e.g., projects, candidates, inventory items,
etc.) evaluated according to a set of conflicting and non-
commensurable criteria.
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Neighborhood change Step 

Start 

Initialization 
˗ Find an initial solution ( , , , )x q p v w , a parameter vector for ELECTRE III method; 

˗ Select an evaluation matrix ( ) ( )
1.. , 1..

E g a e
j i ij i m j n

; 

˗ Select a neighborhood structures , 1.. maxN k kk ; 

˗ Select a random distribution for the generation of the neighborhood solutions in the Shaking Step; 

˗ Select a predefined ABC category distribution (e.g. 20% - 30% - 50%); 

˗ Choose a fitness function f for the evaluation of the ABC classification; 

˗ Choose a stopping criterion. 

Set 11, . .k i e N  the first neighborhood structure

Shaking Step 

Generate a random solution 'x from the thk neighborhood structure of x , i.e. ' ( )x Nk x . 

Local Search Step 

Stop 

Stopping 
Criterion? 

Yes 

No 

max ?k k

Yes 

No 

ABC ' ABC ?CRTCRTf x f x

No 

1k k

Yes 
'x x

Yes 
ABC '' ABC ' ?CRTCRTf x f x ' ''x x

No 

( ')
'' arg min ABC

k
TRCy N x

x f y

Fig. 1 Framework of the proposed classification approach
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Algorithm 2 Pseudocode of the simplified ELECTRE III
method

Input: The evaluation set E, the indifference threshold vector q, the
preference threshold vector p, the veto threshold vector v and the
criteria weight vector w.
Output:A ranking of inventory items ai (i = 1,…,m) in a decreasing
order of their weighted score.
Construction Step
Set i ← 1;
repeat

Set k ← 1;
repeat

Set j ← 1, C(ai , ak) ← 0
repeat

Step 1. Compute the local concordance index C j (ai , ak)
according to (1)
Step 2. Compute the local discordance index Dj (ai , ak)
according to (3)
Step 3. C(ai , ak) ← C(ai , ak) + wN

j × C j (ai , ak)3

j ← j + 1;
until j > n
Compute the credibility index σ(ai , ak) according to (4)
k ← k + 1;

until k > m
i ← i + 1;

until i > m
Exploitation Step
Set i ← 1;
repeat

Set k ← 1, Φ+(ai ) ← 0, Φ−(ai ) ← 0;
repeat

if i �= k then
Φ+(ai ) ← Φ+(ai ) + σ(ai , ak)
Φ−(ai ) ← Φ−(ai ) + σ(ak , ai )

end if
k ← k + 1;

until k > m
Compute the weighted score of item ai as follows: Φ(ai ) ←(

1
m−1

) (
Φ+(ai ) − Φ−(ai )

)

i ← i + 1;
until i > m
Rank inventory items ai (i = 1, …, m) in a decreasing order of
their weighted score Φ(ai ).

The ELECTRE III method stands out from the other
MCDM methods in at least two fundamental characteris-
tics. First, it explicitly takes into account the uncertainty and
imprecision associated with the pairwise comparisons of the
alternatives by using the concept of indifference, preference
and veto thresholds (or shortly the pseudo-criterion concept).
For example, when the difference of scores between two
alternatives ai and ak on a criterion g j is sufficiently small,
i.e., below a given indifference threshold q j , the ELECTRE
III method will consider these two alternatives as indifferent.
Second, ELECTRE III uses a non-compensatory aggregation
scheme, i.e., a very bad performance on one criterionmay not
be compensated by good performances on the other criteria.

3 wN
j = w j

n∑

i=1
wi

is the normalized weight of criterion j ( j = 1 . . . n).

Thisway of proceedingwill promote the alternatives that per-
form globally well on the different criteria. Furthermore, in
non-compensatory aggregation scheme, criteria weights are
interpreted as “importance coefficients”—which is their true
theoretical meaning—whereas in fully compensatory aggre-
gation scheme these weights play the role of substitution
rates. It is important to underline that ELECTRE III method
has been successfully applied in a wide range of real-world
applications. An extensive literature review on methodolo-
gies and applications based on this method may be found
in the recent paper of Govindan and Jepsen (2016). The
detailed pseudocode of the simplified ELECTRE III method
is reported in Algorithm 2.

ELECTRE III method uses pairwise comparisons of alter-
natives (in our case inventory items) in order to rank them.
Each pairwise comparison is characterized by a binary out-
ranking relation, called S. The construction of the outranking
relation S is based upon two fundamental concepts: the con-
cordance and the discordance. Indeed, Roy (1978) defined
the outranking relation S as follows: an alternative ai out-
ranks an alternative ak (or ai S ak) if and only if there are
enough arguments to decide that ai is at least as good as ak
(concordance concept) while there is no essential reason to
refute that statement (discordance concept). Since in ELEC-
TRE III method the outranking relation is defined as a valued
(or fuzzy) relation, it is defined by an index measuring the
credibility degree of the outranking relation, i.e., of the asser-
tion “ai is at least as good as ak .” Finally, as any outranking
methods, ELECTRE III proceeds into two steps to provide a
ranking of inventory items:

1. The construction of a valued outranking relation for
each pair of inventory items (ai ,ak) by measuring the
credibility degree of the assertion “ai is at least as good
as ak”;

2. The exploitation of these valued outranking relations in
order to produce a ranking of the inventory items.

Before presenting the computation details of the valued
outranking relation, the concept of Discrete MCDM (D-
MCDM) problem—which represents the basic input dataset
for ELECTRE III method—should be introduced. A D-
MCDM is usually defined by the following triplet (A, F, E),
where:

A = {a1, a2, . . . , am}

is a set of m alternatives (or inventory items),

F = {g1, g2, . . . , gn}

is a set or a family of n criteria and

E = {
g j (ai ), j = 1 . . . n, i = 1 . . .m

}
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is a set of n × m evaluations so that g j (ai ) represents the
performance (or the evaluation) of the alternative ai on the
criterion g j . Without loss of generality, It’s assumed that the
greater the value of g j (ai ), the better the alternative ai .

3.1.1 The construction of the valued outranking relation

To measure the credibility degree of the assertion “ai out-
ranks ak ,” the following four steps should be performed:

1. Compute—for each criterion g j and for each pair of
items (ai ,ak)—the partial concordance index, denoted
by C j (ai , ak), as follows:

C j (ai , ak ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if g j (ak ) − g j (ai ) ≥ p j

p j+g j (ai )−g j (ak )
p j−q j

otherwise

1 if g j (ak ) − g j (ai ) ≤ q j

(1)

where q j and p j are, respectively, the indifference and
the preference thresholds of the criterion j . The indif-
ference threshold represents the greatest performance
difference on the criterion g j for which the decision-
maker remains indifferent between two alternatives ai
and ak . The preference threshold represents the small-
est performance difference on the criterion g j for which
the decision-maker is able to make a clear preference
for one alternative over another. The use of q j and p j

in ELECTRE III is not only to nuance the distinction
between weak and strong preference, but also to take
into account the imperfect character of input data.When
the discrimination thresholds q j and p j are associated
with a criterion g j , it is called pseudo-criterion. Finally,
the partial concordance index C j (ai , ak) measures the
level to which the criterion g j supports the assertion “ai
is at least as good as ak" or "ai outranks ak .”

2. Compute—for each pair of items (ai ,ak)—the global
concordance index, denoted by C(ai , ak), as follows:

C (ai , ak) =
∑n

j=1 w j × C j (ai , ak)
∑n

j=1 w j
(2)

where w j is the relative importance coefficient of the
criterion g j . Let us point out that w j is an intrinsic
value and reflects the voting power of the criterion ,
i.e., the higher the w j , the more important the crite-
rion is. Furthermore, each weight w j neither depends
on the range of the criterion scale nor on the encoding
chosen to express the evaluation (score) on this scale
Figueira et al. (2005). Thus, in ELECTRE III, the crite-
ria weightsw j do not act as substitution rates as in fully
compensatory aggregation scheme. Finally, the global
concordance index C(ai , ak) measures the strength of

arguments which agree with the assertion "ai is at least
as good as ak" or "ai outranks ak".

3. Compute—for each criterion g j and for each pair of
items (ai ,ak)—the partial discordance index, denoted
by Dj (ai , ak), as follows:

Dj (ai , ak ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if g j (ak ) − g j (ai ) ≥ v j

g j (ak )−g j (ai )−p j
v j−p j

otherwise

0 if g j (ak ) − g j (ai ) ≤ p j

(3)

where v j is the veto threshold of the criterion g j and
represents the limit of tolerance that the decision-maker
is willing to accept for any compensation. In other
words, if the evaluation of ak is at least v j greater than
the evaluation of ai on a given criterion g j , then the
decision-maker may refuse the assertion "ai outranks
ak" without regarding their evaluations on the other cri-
teria. Thus, the integration of the veto threshold in the
computation of the partial discordance index reinforces
the non-compensatory effects in ELECTRE III. Finally,
the partial discordance index Dj (ai , ak) measures—
according to the criterion g j—the strength of arguments
which disagree with the assertion "ai is at least as good
as ak" or "ai outranks ak".

4. Compute—for each pair of items (ai ,ak)—the valued
outranking relation, i.e., the credibility degree σ(ai , ak)
of the assertion "ai outranks ak", as follows:

σ (ai , ak ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C(ai , ak ) i f D j (ai , ak ) ≤ C(ai , ak ) ∀ j

Otherwise

C(ai , ak ) × ∏

D j (ai ,ak )>C(ai ,ak )

1−D j (ai ,ak )
1−C(ai ,ak )

(4)

Let us point out that the credibility index σ(ai , ak)
corresponds to the concordance indexweakenedbypos-
sible veto effects.

3.1.2 Exploitation of valued outranking relation

The original exploitation procedure of ELECTRE III starts
by deriving from valued outranking relations and through
an iterative process two complete pre-orders: in the first the
alternatives are classified from the best to theworst (descend-
ing distillation), whereas in the second the alternatives are
classified from the worst to the best (ascending distillation).
A final partial pre-order is then derived by performing the
intersection of the above two complete pre-orders. Twomain
reasons motivated us to adapt/simplify the original exploita-
tion procedure of ELECTRE III, hence the term “simplified”
ELECTRE III in this work. First, this procedure is not easy
to understand by the decision makers due to its complexity in
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the generation of the intermediate total pre-orders (ascend-
ing and descending distillations). Second, this exploitation
procedure does not attribute scores to the alternatives (these
scores are required to generate the ABC classification) but
rather it generates an incomplete (or partial) pre-order on
the alternative set A. (Some pairs of alternatives may be
incomparable.) For this purpose, the exploitation procedure
of PROMETHEE II (Mareschal et al. 1984) will be used
generate—from the credibility degrees σ(ai , ak)—an over-
all score for each alternative. This overall score is obtained
by performing the following three steps:

1. Compute the positive outranking flow of each alterna-
tive ai as follows:

Φ+ (ai ) = 1

m − 1

∑

x∈A,x �=ai

σ (ai , x) (5)

The positive outranking flow expresses how an alterna-
tive ai outranks all the others, i.e., its strength. Thus, the
greater the value of Φ+(ai ), the better the alternative
ai .

2. Compute the negative outranking flow of each alterna-
tive ai as follows

Φ− (ai ) = 1

m − 1

∑

x∈A,x �=ai

σ (x, ai ) (6)

The negative outranking flow expresses how an alterna-
tive ai is outranked by all the others, i.e., its weakness.
Thus, the lower the value ofΦ−(ai ), the better the alter-
native ai .

3. Compute the net outranking flow (or the overall score)
of each alternative ai as follows:

Φ (ai ) = Φ+ (ai ) − Φ− (ai ) (7)

A higher value of the net outranking flowΦ(ai ) reflects
higher attractiveness of the alternative ai . Based on
these overall scores Φ(ai ) (for all ai ∈ A), a ranking
on the alternative set A may be generated.

The simplified ELECTRE III method steps are summa-
rized in Fig. 2.

3.1.3 Inferring the ELECTRE III parameters

In order to apply the ELECTRE III method, the following set
of intra-criteria (discrimination thresholds) and inter-criteria
(criteria weights) parameters should be specified:

– The indifference thresholds vector q = (q1, …,qn).
– The preference thresholds vector p = (p1, …,pn).

– The veto thresholds vector v= (v1, …,vn).
– The criteria weights vector w = (w1, …,wn).

It is important to note that these parameters should ful-
fill the following conditions: q j , p j , v j , w j ≥ 0 and q j ≤
p j ≤ v j (for j = 1 . . . n). In MCDM literature, determining
the parameter values of ELECTRE methods was the pur-
pose of many research papers. Two main approaches are
often proposed to elicit these parameters: the Direct Elicita-
tion Approach (DEA) and the Indirect Elicitation Approach
(IEA). In the first approach, the decision-maker provides,
through an interactive questioning with the analyst, the val-
ues of these parameters. The aim of this interaction is to
ensure that the provided parameters values represent prop-
erly the decision-maker judgments and preference system
Jabeur andGuitouni (2009). Furthermore, DEA assumes that
the decision-maker has good understanding of the decision-
making problem in hand. However, in most decision-making
situations, providing directly the values of these parame-
ters represents a difficult task for the decision-maker due
to many reasons such as the high number of parameters used
by the aggregation model, the imprecise nature of the data
and the misunderstanding of the parameters meaning. Thus,
the DEA is often time-consuming and may discourage the
decision-maker from participating in the interactive process.
To overcome the drawbacks of the DEA, the IEA proposes
to infer automatically the values of these parameters based
on decision examples obtained from the decision-maker. In
MCDM literature, this second approach is also called Prefer-
enceDesegregationApproach (PDA) (e.g., Siskos et al. 1998;
Dias et al. 2002; Dias and Mousseau 2006). It is essential to
underline that there exists in the MCDM literature another
approach, called Ad Hoc Approach (AHA), for setting the
parameter values (mainly the discrimination thresholds) of
some ELECTRE methods (e.g., Kangas et al. 2001; Huck
2009; Banias et al. 2010; Liu and Zhang 2011). Indeed, AHA
proposes predefined formulas in order to compute default val-
ues for the parameters. In Table 2, all relevant papers dealing
with different approaches proposed to elicit the parameters
of ELECTRE methods are presented.

Mousseau and Dias (2004) proposed some adaptations of
the original valued outranking relation used in the ELEC-
TRE III and ELECTRE TRI methods in order to make easier
the resolution of complex inference optimization programs
Mousseau and Dias (2004). In their disaggregation approach
(IEA approach), these authors infer some parameters values
of the above two outranking methods (all ELECTRE TRI
parameters, the criteria weights w j and the cutting level λ

for ELECTRE III) by using the holistic judgements provided
by the decision-maker. Note that the parameters inference in
the proposed approach is carried out through the resolution
of some linear programming models—used as aggregation
models—that aim to minimize an “Error Function.” Later,
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Fig. 2 Simplified ELECTRE III
method steps Start

Evaluation Matrix 

Thresholds 

Local concordance index 

Compute this index for each ordered pair 
according to the formula (1).

Local discordance index

Compute this index for each ordered pair 
according to the formula (3).

Criteria weights

Global concordance index 

Compute this index for each ordered pair 
according to the formula (2).

Credibility index 

Compute this index for each ordered pair 

according to the formula (4).

Net outranking flow

Compute this index for each alternative as follows: 

Where and 

Rank alternatives in a descending order of their 

Dias and Mousseau (2006) presented partial inference pro-
cedures to infer veto-related parameterswith the aimof better
reproducing—by fixing the values of remaining parameters
of the model—a set of outranking statements (i.e., examples
that ELECTRE methods generate) provided by a decision-
maker Dias andMousseau (2006). These authors have shown
that their proposed procedures lead to the development of
linear programming, 0–1 linear programming or separable
programming problems, depending on the type of the out-
ranking relation used. (In this work, the original outranking
relation of ELECTRE III and two of its variants are used.)
It should be noted that all these mathematical programming
models are not solved once, but rather several times through
an interactive learning process in which the decision-maker

continuously revises the information that he provides based
on results learned from previous iterations.

Augusto et al. (2008) proposed amulti-criteria approach—
based on ELECTRE III method—to rank the performance
of Portuguese firms operating in different economic sectors
Augusto et al. (2008). Based on the results of this study,
a set of economic and financial indicators are proposed as
benchmarks for Portuguese firms in order to enhance their
performance. In their proposed approach, the authors use the
revised method of cards of Simos (Figueira and Roy (2002))
to elicit the criteriaweightsw = (w1,…,wn). In this approach,
the discrimination thresholds are constant values and pro-
vided directly by the decision-maker.
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Table 2 Approaches proposed to elicit the parameters of ELECTRE methods

References Elicitation approach The used ELECTRE method The estimated
parameters

Techniques/formulas used
for parameters estimation

Mousseau and Dias (2004) IEA ELECTRE TRI All parameters Linear programmingmodels

ELECTRE III Weights w =
(w1, w2, . . . , wn)

and cutting level
λ

Dias and Mousseau (2006) IEA ELECTRE TRI Veto thresholds Linear, 0-1 linear and sepa-
rable programming models

ELECTRE III v =
(v1, v2, . . . , vn)

Kangas et al. (2001) AHA ELECTRE III Discrimination
thresholds q, p
and v

q j = α×Δ j ; p j = β×Δ j ,
v j = θ × Δ4

j

Huck (2009) AHA ELECTRE III Discrimination
thresholds q, p
and v

q j = σg j ; p j = 2×q j ; v j =
+∞

Augusto et al. (2008) AHA ELECTRE III Weights w =
(w1, w2, . . . , wn)

Revised Simos Method
(Figueira and Roy, 2002)

Banias et al. (2010) AHA ELECTRE III Discrimination
thresholds q, p
and v

q j = 0.3 × p j ; p j = 1
m Δ j ;

v j = +∞

Certa et al. (2009) AHA ELECTRE III Discrimination
thresholds q, p
and v

Analytic Network Process
(ANP) for the weights; q j
= the upper bound u—the
central value m of a fuzzy
number. ; p j = 2 × q j ;
v j = 3 × q j ;

Liu and Zhang (2011) AHA ELECTRE III Discrimination
thresholds q, p
and v

q j = α×Δ j ; p j = β×Δ j ,
v j = θ × Δ j

Liu et al. 2016 IEA ELECTRE III All parameters Direct interaction with the
decision-maker

In this table Δ j = max
i

(g j (ai )) − min
i

(g j (ai ))

Kangas et al. (2001) proposed to use two outranking
methods, namely PROMETHEE II Brans et al. (1986) and
ELECTRE III Roy (1978), in order to support decision-
making problem in forestry planning Kangas et al. (2001).
In these methods, three sets of the discrimination threshold
values are tested:

1. q j = 0
p j = max

i
(g j (ai )) − min

i
(g j (ai ))

v j = +∞
2. q j = 0.1 × (max

i
(g j (ai )) − min

i
(g j (ai )))

p j = 0.5 × (max
i

(g j (ai )) − min
i

(g j (ai )))

v j = max
i

(g j (ai )) − min
i

(g j (ai ))

3. q j = 0.1 × (max
i

(g j (ai )) − min
i

(g j (ai )))

p j = 0.5 × (max
i

(g j (ai )) − min
i

(g j (ai )))

v j = 0.75 × (max
i

(g j (ai )) − min
i

(g j (ai )))

Huck (2009) used an integrated approach combining fore-
casting and MCDM methods in order to select stocks for
pairs trading from the S&P 100 index Huck (2009). In this
approach, ELECTRE III method is applied to obtain a rank-
ing of stocks. For this purpose, the ELECTRE III thresholds
are computed according to the following rules:

q j = σ
(
g j (a1), g j (a2), . . . , g j (am)

)

=
√

1
m

∑m
i=1

(
g j (ai ) − ḡ j

)2 where ḡ j = 1
m

∑m
i=1 g j (ai )

p j = 2 × q j

v j = +∞

Banias et al. (2010) proposed amethodological framework
—based on ELECTRE III—to find the optimal location for
construction and demolition waste management Banias et al.
(2010). The proposed approach is successfully implemented
in the Region of Central Macedonia, Greece. In order to
elicit the criteria thresholds, the authors propose the follow-
ing rules:
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p j = 1
m × (maxi (g j (ai )) − mini (g j (ai )))

q j = 0.3 × p j

v j = +∞

Liu andZhang (2011) proposed a supplier selectionmodel
based on an improved ELECTRE III method Liu and Zhang
(2011). In this model, the criteria weights are determined
by using the information entropy to avoid subjectivity of the
obtained weights. In order to elicit the discrimination thresh-
olds for each criterion, the authors propose the following
rules:

q j = α × (max
i

(g j (ai )) − min
i

(g j (ai ))) where α ∈
[0.05, 0.1]
p j = β × q j where β ∈ [3, 10]
v j = γ × (max

i
(g j (ai )) − min

i
(g j (ai ))) where γ ≥ 3

According to Mousseau and Dias (2004), disaggregation
approaches (or IEA) have been largely used for additivemod-
els but only few advances have been made for outranking
methods. This is due to the fact that parameters inference
in outranking models often leads to complex and nonlin-
ear optimization problems which are difficult to solve with
the classical optimization techniques. This paper proposes
an IEA—based on the Continuous Variable Neighborhood
Search (CVNS) meta-heuristic—to infer the parameters q,
p, v and w of the simplified ELECTRE III method. The
main aim of the proposed IEA is to find the “Best” set of
parameter values, i.e., a set generating an ABC classification
of inventory items that minimizes an inventory cost func-
tion. Finally, the proposed IEA will be compared—by using
two real datasets—to some parameters elicitation approaches
presented above. The purpose of this comparative study is to
analyze the quality of the ABC classifications of inventory
items—in terms of minimizing an inventory cost function—
generated by all tested elicitation approaches.

3.2 Continuous Variable Neighborhood Search
(CVNS)

The Variable Neighborhood Search (VNS) is a well-known
meta-heuristic which was developed by Nenad Mladenovic
and Pierre Hansen in 1997 in order to solve combinatorial
and global optimization problems Mladenović and Hansen
(1997). The basic idea behind the VNS meta-heuristic is
based—as most modern meta-heuristics—on two comple-
mentary principles: (i) intensification in which a local search
algorithm is carried out in order to improve the current solu-
tion and (ii) diversification in which a perturbation operation
is performed with the aim of extending the space of explored
solutions. More precisely, VNS proceeds with a system-
atic change of neighborhood both within a descent phase

to find a local optimum (intensification) and in a perturba-
tion phase (diversification) to get out of the corresponding
valley (Hansen et al. 2010). Three main advantages charac-
terize the VNS meta-heuristic: it usually provides excellent
approximate solutions in a reasonable time, it has very
few parameters to be set and finally it is easy to imple-
ment. Although the VNS meta-heuristic has been originally
designed to solve combinatorial optimization problems, it
was extended to address continuous optimization problems.
Applications of VNS involve a wide range of critical areas,
including data mining, scheduling, vehicle routing, graph
theory, etc. For an exhaustive survey of the different exten-
sions ofVNSmeta-heuristic and their applications, the reader
may be referred to (Hansen et al. 2010).

In this work, the VNS meta-heuristic will be used to
estimate the parameter vector (p, q, v, w) of the simplified
ELECTRE III method. Since all these parameters are real
numbers, the Continuous variant of VNS, called (CVNS),
will be used for this purpose. Finally, the pseudocode of
CVNS meta-heuristic, as described in Mladenović et al.
(2008), is detailed in Algorithm 3.

Algorithm 3 Pseudocode of the Continuous Variable Neigh-
borhood Search (CVNS)
1: Initialization:

– Find an arbitrary initial solution x
– Select a set of neighborhood structures Nk , k = 1, . . . , kmax
– Select an array of random distributions types to generate the
neighborhoods of a solution.

– Choose an evaluation function f (without loss of generality, it’s
assumed that f is to be minimized).

– Choose a stoping criterion.
– Set x∗ ← x and f ∗ ← f (x∗).

2: Main Steps:
3: repeat
4: Set k ← 1;
5: repeat
6: for all distributions from the array do
7: Shaking Step:

Generate at random a solution y ∈ Nk(x∗));
8: Local search Step:

Apply some local search method with (y) as initial solution
to obtain a local optimum given by (y′);

9: Neighborhood change Step:
10: if

(
f
(
y′) < f ∗) then

11: x∗ ← y′, f ∗ ← f (y′) and goto line 04;
12: end if
13: end for
14: k ← k + 1
15: until k > kmax
16: until until stopping condition is met
17: return Point x∗ is an approximate solution of minimizing f .

It is important to underline that in this work a solution x
in the CVNS represents the parameter vector (p, q, v, w) of
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the simplified ELECTRE III method which is expressed as
follows:

x = ((q1, p1, v1, w1), (q2, p2, v2, w2), . . . ., (qn , pn , vn , wn))

where q j , p j , w j and w j are, respectively, the indifference
threshold, the preference threshold, the veto threshold and
the weight (relative importance) of the criterion g j . Thus,
the dimension of each solution vector x is equal to 4n since
for each of the n criteria four parameters should be estimated.
Let us recall that all these parameters are real number and
should verify the following two conditions: 0 ≤ q j ≤ p j ≤
v j ∀ j = 1 . . . n and

∑n
j=1 w j = 1. To ensure that the gen-

erated solution x is valid, i.e., it fulfills the above conditions,
the following generation strategy will be used:

1. For each criterion g j , an indifference thresholdq j is ran-
domly generated betweenmini,k i �=k(|g j (ai )−g j (ak)|)
and maxi,k i �=k(|g j (ai ) − g j (ak)|). The lower bound is
to ensure that the indifference threshold has an effect
on the computation of the valued outranking relation,
whereas the upper bound is used to avoid the situation
where all alternatives are indifferent to each other;

2. For each criterion g j , a preference threshold p j is ran-
domly generated between q j and maxi,k i �=k(|g j (ai ) −
g j (ak)|).

3. For each criterion g j , a veto threshold v j is ran-
domly generated between p j and maxi,k i �=k(|g j (ai ) −
g j (ak)|).

4. For each criterion g j , a weight w j is randomly gener-
ated in an interval of real numbers (e.g., (0,1), (0,100),
etc.). The generated weights are then normalized by
using the following formula: w j

N = w j∑n
j=1 w j

As initialization step, a set of neighborhood structures
Nk k = 1 . . . kmax should be defined in CVNS in order to
guide in a systematic way the search for better solutions
through the solution space S. Note that Nk(x) is the set of
solutions in the kth neighborhood of x and its geometry is
designed by using two components, namely a metric ρk and
a radius rk , in the following manner:

Nk(x) = {y ∈ S/ρk(x, y) ≤ rk}

where rk is the radius (or the size) of the neighborhood Nk(x)
that should be monotonically nondecreasing with k and ρk is
a metric function which may be defined, for instance, as �p
distance, let:

ρk(x, y) =
(

4n∑

t=1

|xt − yt |p
)1/p

where 1 ≤ p ≤ ∞

In this work and, before running the CVNSmeta-heuristic
(in Experimental results section), the following set of its

designing parameters (among many others) should be spec-
ified (Mladenović et al. 2008):

– The stopping conditionwhichmay be themaximumCPU
time allowed for the search, the maximum number of
iterations or the maximum number of iterations between
two improvements;

– The number of neighborhood structures kmax used in the
search;

– The geometry of neighborhood structures Nk k =
1 . . . kmax defined by the pair (ρk, rk), i.e., themetric used
to compute the distance between two solutions and the
magnitude of the neighborhood;

– The distributions used to obtain the random solution y
from the neighborhood Nk(x) in the shaking step;

– The local optimizer used in the local search step.

It is important to note that the numerical values to
be assigned to these designing parameters may be either
obtained froman extensive computational analysis or directly
provided by the user. In addition, it is possible to reduce
the number of parameters that the user must provide by
fixing some of them in advance based on the results of a
preliminary extensive computational analysis. The CVNS
meta-heuristic starts by generating an initial solution x , a
set of neighborhood structures Nk k = 1 . . . kmax, some ran-
domdistributions (e.g., uniformdistribution) to be used in the
shaking step and a stopping condition. The first step, denoted
the shaking step, consists in generating randomly a solution
vector y from the neighborhood of the incumbent solution
vector x , i.e., y ∈ Nk(x). For this purpose,many distributions
may be used, including uniform distribution, normal distri-
bution, etc 5. The random moves of the shaking step allow
both to escape from local minima and to diversify the space
of explored solutions. In the second step, a Local Search (LS)
algorithm is applied by using the solution y as initial solu-
tion in order to generate a local optimum, denoted by y′. Two
main strategies may be followed in the LS algorithm: the best
improvement and thefirst improvement strategies. In the first,
all the neighborhood of y is explored and the best solution
found is selected. In the second strategy, the neighborhood
of y is explored until the first solution which is better than
y is obtained. In the last step, called neighborhood change,
two cases may occur. In the first case, the obtained local
optimum y′ is not better than the last best solution (or incum-
bent) x according to an evaluation/objective function f , i.e.,
f
(
y′) ≥ f (x) (for a minimization function); in this case,

the process is iterated using the next neighborhood structure,
i.e., k ← k + 1. In the second case, the obtained local opti-
mum y′ is better than the last best solution (or incumbent)
x , i.e., f

(
y′) < f (x) (for a minimization function); in this

5 In our case, only one distribution type will be used.
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case, the solution x is updated by setting x to y′ (x ← y′) and
the process is iterated using the first neighborhood structure,
i.e., N1(x). Finally, the above three steps are repeated until a
stopping condition is met.

3.2.1 Objective function

In the proposed classification approach, the Total Relevant
Cost (TRC)—suggested byMohammaditabar et al. (2012)—
will be used as objective/evaluation function both to evaluate
each ABC classification of inventory items and to guide the
CVNS meta-heuristic to determine the “best” set of the sim-
plified ELECTRE III parameter values. Indeed, the TRC
measures the total cost of the obtained ABC classification
by considering the ordering cost for each placed order, the
setup cost of each itemwhen it is replenished and the holding
cost of carrying items in stockMohammaditabar et al. (2012).
According toMohammaditabar et al. (2012), the TRC is con-
sidered as one of the most important performance measures
that can be used to improve the effectiveness of the inven-
tory management. Hence, the TRC of an ABC classification
is computed as follows:

TRC =
∑

z

(∑
i∈category(z) Si

Tz

+1

2
Tz

∑

i∈category(z) Dihi

)
(8)

where Tz =
√

2(
∑

i∈category(z) Si )∑
i∈category(g) Di hi

is the optimal joint replen-

ishment cycle of any item ai belonging to the category z
(z = A, B,C). In the above formula, it is assumed that items
of the same category z have the same replenishment cycle.
Si , Di and hi are the setup cost, the demand and the holding
cost per unit of time of item ai , respectively.

4 Experimental results

To illustrate the proposed classification approach and to test
its performances with respect to some other existing clas-
sification models, two common benchmark datasets will be
used: the dataset proposed by Reid (1987) and the dataset
provided by Liu et al. (2016).

4.1 Experimental results with Reid’s dataset

This dataset includes 47 inventory items used in a Hospital
Respiratory Therapy Unit (HRTU) and evaluated accord-
ing to four criteria: (1) the Annual Dollar Usage (ADU),
(2) the Average Unit Cost (AUC), (3) the Lead Time (LT)
and (4) the Critical Factor (CF). The first three criteria are
quantitative, whereas the last criterion is qualitative. Since

most of prior works (e.g., Ng (2007), Zhou and Fan (2007),
Hadi-Vencheh (2010), Chen (2011) and many others) did
not consider categorical criteria, the Critical Factor (CF)
criterion has been omitted in this study only for compari-
son purposes. In this first comparative study, our proposed
classification approach will be compared with six other
classification models, namely R-model (Ramanathan 2006),
ZF-model (Zhou and Fan 2007), NG-model (Ng 2007), H-
model (Hadi-Vencheh 2010), Peer-model (Chen 2011) and
TOPSIS-based model (Chen 2012).

For the implementation of theCVNSmeta-heuristic, some
technical choices have been made on its parameters:

– The number of neighborhood structures kmax is fixed to
6.

– The neighborhood structures Nk k = 1 . . . 6 are defined

by the metric �2 = ρ2(x, y) =
√∑12

t=1 (xt − yt )2, i.e.,
the Euclidian distance.

– The radii rk k = 1 . . . 6 are predefined values verifying
the following order r1 < r2 < . . . < r6

– The stopping condition is set to a maximal number of
iterations which is equal to 30.

– The uniform distribution is used to obtain the random
solutions from the neighborhood Nk(x) in the shaking
step.

– The best improvement local search method is used as
local optimizer.

Once the parameter vector (q, p, v, w) is generated by
the (CVNS) meta-heuristic, the simplified ELECTRE III is
first applied to compute the overall score of each inventory
item ai (i = 1 . . .m). Then, the inventory items are ranked
in a decreasing order of their scores. Finally, based on this
ranking, anABC classification is built by respecting the com-
monly used distribution proposed by Flores et al. (1992):
the first ten ranked items are classified in category A (about
21% of total items), the last 23 ranked items are classified
in category C (about 49% of total items) and the remain-
ing 14 items are classified in category B (about 30% of total
items). In order to evaluate each obtained ABC classifica-
tion according to TRC function, the values of the setup cost
Si , the demand per unit time Di and the holding cost hi of
each item ai should be set. For this purpose, the same values
proposed by Mohammaditabar et al. (2012) will be used, let:

– Si = LT (ai )× ξ (where ξ = 1 in our case) ∀i = 1 . . .m
– Di = ADU (ai )

AUC(ai )
∀i = 1 . . .m

– hi = 0.1 × AUC(ai ) ∀i = 1 . . .m

The Reid’s dataset details and the ABC classifications
obtained by all tested classification models are reported in
Table 3.
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Table 3 ABC classifications
issued from the application of
all tested classification models
on Reid’s (1987) dataset

Item AUC ADU LT Tested classification models

ELIII-CVNS R ZF Peer NG H TOPSIS

2 210 5670 5 A A A A A A A

1 49.92 5840.64 2 A A A A A A A

3 23.76 5037.12 4 A A A A A A A

5 57.98 3478.8 3 A B B B A A B

4 27.73 4769.56 1 A B C B A A B

6 31.24 2936.67 3 A C C B A B B

7 28.2 2820 3 A C C B B B B

8 55 2640 4 A B B B B B A

9 73.44 2423.52 6 A A A A A A A

10 160.5 2407.5 4 A B A A A A A

13 86.5 1038 7 B A A A A A A

12 20.87 1043.5 5 B B B B B B C

11 5.12 1075.2 2 B C C C C C C

14 110.4 883.2 5 B B A B B A A

15 71.2 854.4 3 B C C C C C B

16 45 810 3 B C C C C C C

18 49.5 594 6 B A A B B B B

17 14.66 703.68 4 B C C C C C C

19 47.5 570 5 B B B B B B B

20 58.45 467.6 4 B C B C C C C

21 24.4 463.6 4 B C C C C C C

22 65 455 4 B C B C C C B

23 86.5 432.5 4 B C B C B B B

24 33.2 398.4 3 B C C C C C C

29 13434 268.68 7 C A A A A A A

28 78.4 313.6 6 C A A A B B A

26 33.84 338.4 3 C C C C C C C

25 37.05 370.5 1 C C C C C C C

34 7.07 190.89 7 C A B A B B C

27 84.03 336.12 1 C C C C C C C

31 72 216 5 C B B B B B B

33 49.48 197.92 5 C B B B B B B

32 53.02 212.08 2 C C C C C C C

35 60.6 181.8 3 C C C C C C C

37 30 150 5 C B B B C C C

30 56 224 1 C C C C C C C

36 40.82 163.28 3 C C C C C C C

39 59.6 119.2 5 C B B B B B B

40 51.68 103.36 6 C B B B B B B

45 34.4 34.4 7 C A B A B B B

38 67.4 134.8 3 C C C C C C C

43 29.89 59.78 5 C B C C C C C

47 8.46 25.38 5 C B C C C C C

41 19.8 79.2 2 C C C C C C C

42 37.7 75.4 2 C C C C C C C

44 48.3 48.3 3 C C C C C C C

46 28.8 28.8 3 C C C C C C C
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Table 4 Rate of Items that are Identically Classified (RIIC) by each pair of tested classification models

ELIII-CVNS R-model (%) ZF-model (%) Peer-model (%) NG-model (%) H-model (%) Topsis (%)

ELIII-CVNS – 40.4 51.1 48.9 59.6 55.3 57.4

R-model – 78.7 87.2 72.3 70.2 68.1

ZF-model – 78.7 78.7 80.9 78.7

Peer-model – 83.0 83.0 80.9

NG-model – 95.7 78.7

H-model – 83.0

Topsis –

Table 5 Computation details of the Total Relevant Cost (TRC) function of the ABC classifications obtained by all tested models

TRC details Model Tz( A ) Tz( B ) Tz( C ) Class A cost ($) Class B cost ($) Class C cost ($) TRC ($)

ELIII-CVNS 0.1357 0.3472 0.6818 515.9134 342.8693 263.9962 1122.7789

NG 0.1575 0.3791 0.4246 533.3968 385.1170 325.0368 1243.5506

H 0.1663 0.3410 0.4246 529.1406 416.4264 325.0368 1270.6038

Topsis 0.1942 0.2613 0.4419 514.9977 459.3275 334.9545 1309.2796

Peer 0.2176 0.2438 0.4139 505.4383 500.3708 328.5724 1334.3815

ZF 0.2061 0.3697 0.2714 504.5326 373.3210 464.3036 1342.1571

R 0.2307 0.2750 0.3067 494.0483 458.2237 417.3782 1369.6501

It is obvious that our proposed classification approach,
hereafter called (ELIII-CVNS), generates an ABC classifi-
cation relatively different from those produced by all other
tested models. These differences may be clearly observed
in Table 4 which reports the Rate of Items that are Identi-
cally Classified (RIIC) by each pair of tested classification
models. In this context, two RIIC merit to be explained and
discussed. The ABC classification provided by ELIII-CVNS
model has the lowest RIIC compared to those obtained by
classification models based on MP techniques, especially
the R-model with a RIIC of 40.04%. This low RIIC may
be explained by the following two facts. First, the process
of items scoring in both models, i.e., ELIII-CVNS model
and R-model, are quite different: in ELIII-CVNS model this
process is guided by the minimization of the Total Relevant
Cost (TRC) function, whereas in the R-model this process
is directed by the optimization of each item score. Second,
the levels of compensation in the aggregation schemes of
both models are almost opposite: ELIII-CVNS uses a non-
compensatory aggregation scheme due to the application of
the simplified ELECTRE III method, whereas R-model uses
a full compensatory aggregation scheme through its objective
function expressed by a weighted sum. On the other hand,
the ABC classifications provided by H-model and Ng-model
are the most similar since they have obtained the highest
RIIC of 95.7%. This high RIIC may be explained by the fact
that the H-model is a simple extension/improvement of the
Ng-model. By applying ELIII-CVNS, the following criteria
weight vector is obtainedw = (wAUC = 0.183,wADU = 0.691,

wLT = 0.126). Although the H-model and the Ng-model use
the same criteria weight ordering, i.e., the ADU is the most
important criterion followed by the AUC and the LT criteria,
as constraints in their respective mathematical formulation,
the ABC classification produced by ELIII-CVNS model is
relatively different from that obtained by H-model (RIIC =
55.3%) or Ng-model (RIIC = 59.6%).

To show the effect of the non-compensation of ELIII-
CVNS model in the computation of the item scores, let us
take two examples. Items a13 and a29 have the highest score
on the LT criterion; however, their scorings on both ADU and
AUC criteria are below average. These two items are clas-
sified in category A by all classification models, except our
model which classify a13 in category B and a29 in category
C. Since all tested classificationmodels (except ELIII-CVNS
model) use full compensatory aggregation scheme, it is quite
natural that the bad performances of a13 and a29 on both
ADU and AUC criteria are compensated by their good per-
formances on LT criterion and, thus, both items are classified
in category A. However, the classification of these two items,
according to the ELIII-CVNSmodel, has been treated differ-
ently. Indeed, item a13 is assigned by ELIII-CVNS model to
a lower category, i.e., category B, due to its scorings below
average on both ADU and AUC criteria given that these two
criteria are the most important for this classification model
(wAUC = 0.183, wADU =0.691). Thus, the highest scoring of
itema13 on (LT) criterion does not compensate its low scoring
on both ADU and AUC criteria. On the other hand, item a29
has a very weak performance on the ADU, which is the most
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Fig. 3 Obtained TRC values
over the test runs

important criterion for ELIII-CVNS model. Thus, despite
the good performances of a29 on both AUC and LT criteria,
this item is assigned to the category C which confirms the
non-compensatory aggregation scheme used in ELIII-CVNS
model.

After 30 test runs, the ABC classification obtained by
ELIII-CVNS approach seems to be the most efficient since it
obtained the lowestTRCvalue (1122.7789$) among theABC
classifications produced by all tested models (see Table 5). It
is important to note that this TRC value is the mean value of
the 30 test runs, where 1119.78$ and 1127.13$ are, respec-
tively, the best and the worst obtained TRC values. The
variation in the TRC values over the 30 test runs is presented
in Fig. 3.

4.2 Experimental results with Liu et al.’s dataset

This dataset includes 63 inventory items used by a manufac-
turer of sports equipments operating in China and evaluated
according to the following four criteria: (1) the Average Unit
Cost (AUC), (2) the Annual (RMB) Usage (ARMBU), (3)
the Lead Time (LT) and (4) the Turnover Ratio (TR). It is
important to note that all the above criteria are numerical.
In this second comparative study, our proposed classification
approach will be compared with six classification models,
namely The R-model (Ramanathan 2006), the ZF-model
(Zhou and Fan 2007), the H-model (Hadi-Vencheh 2010),
the NG-model (Ng 2007), the AHP-based model of Lolli
et al. (2014) and the ELECTRE III-based model of Liu et al.
(2016).

For the implementation of the CVNS meta-heuristic, the
same parameter setting used for Reid’s dataset will be reused,

except for the number of neighborhood structures kmax which
is fixed to 10.

Once the parameter vector (q, p, v, w) is generated by
the CVNS meta-heuristic, the simplified ELECTRE III is
first applied to compute the overall score of each inventory
item ai (i = 1 . . .m). Then, the inventory items are ranked
in a decreasing order of their scores. Finally, based on this
ranking, an ABC classification is built according to the dis-
tribution proposed by Liu et al. (2016): the first seven ranked
items are classified in category A (about 11% of total items),
the last 31 ranked items are classified in category C (about
49% of total items) and the remaining 25 items are classified
in category B (about 40% of total items).

In order to evaluate—according to the TRC function—
each ABC classification obtained from Liu et al.’s dataset,
the values of the setup cost Si , the demand per unit time Di

and the holding cost hi of each item ai will be set as follows:

– Si = LT(ai ) × TR(ai ) ∀i = 1 . . .m
– Di = ARMBU(ai )

AUC(ai )
∀i = 1 . . .m

– hi = 0.1 × AUC(ai ) ∀i = 1 . . .m

Table 6 summarizes Liu et al.’s dataset details and reports
the ABC classifications produced by all tested classification
models.

As shown in Table 6, the proposed ELIII-CVNS approach
generates an ABC classification relatively different from
those produced by all tested classification models. This
difference is justified by the same reasons mentioned and
discussed during the result analysis of Reid’s dataset: (i) the
process of item scoring in ELIII-CVNS model is guided by
the minimization of the Total Relevant Cost (TRC) function,
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Table 6 ABC classifications
issued from the application of
all tested classification models
on Liu et al.’s (2016) dataset

Item AUC ARMBU LT TR Tested classification models

ELIII-CVNS R Ng ZF H Lolli Liu (1)

37 147.65 364491.1 28 2.665 A A B A A A A

11 71.21 390861.5 30 2.407 A B B B A B B

29 228.69 311478.1 29 2.319 A A A A A A A

48 160.84 296976.8 28 2.108 A B B A A A A

21 75.92 454758.8 20 2.929 A B B B A A A

2 70.92 363303.1 29 1.87 A B C B B B B

22 67.16 80559.6 27 2.381 A B C C C C C

28 189.24 128298.4 18 2.979 B B B B B B B

51 32.53 273490.9 20 2.507 B C C B B C C

16 103.63 77582 30 1.836 B C C B B C C

33 152.85 383919.9 22 1.79 B A B B B A A

4 26.72 391531.3 16 2.548 B C C C B C C

30 54.94 188630.7 29 1.54 B C C B C B C

24 41.71 336693 15 2.37 B B C C B C C

10 119.58 294066.8 25 1.374 B B C B B C B

31 42.17 180117 30 1.135 B B C B C C C

20 51.35 231721.6 26 1.376 B B C C C C C

43 243.36 209629.8 25 1.127 B B A A A A A

7 219.19 327849.6 5 2.994 B B A A A B B

5 81.98 164125.6 24 1.204 B C C C C C C

62 99.15 20635.4 18 2.069 B C C C C C C

45 170.96 370885.2 10 2.002 B B B B B B B

40 225.49 322614 6 2.548 B B A A B B B

58 0.68 341859.6 13 1.991 B C C C C C C

47 187.27 274935.6 5 2.512 B C B B B B B

3 125.24 452711.6 12 1.653 B C B B B A A

57 194.05 316586 1 2.928 B B B C B B B

23 173.29 397196.1 23 0.471 B B B B B B B

59 151.69 228109 18 1.259 B C C C C C B

17 230.34 31681.6 2 2.822 B A A C B B B

49 36.47 78051.4 22 0.882 B C C C C C C

44 140.26 38914.1 25 0.609 B C C C C C C

56 15.4 103414 1 2.902 C C C C C C C

54 113.84 497119.6 23 0.03 C C B B B B B

41 102.61 50402.1 25 0.42 C C C C C C C

50 209.5 318688.5 4 2.259 C B B B B B B

9 202.96 443096.1 18 0.378 C A B B B B B

15 153.28 414547.2 14 1.032 C C B B B B B

1 210.39 413692.2 18 0.487 C B B A B B B

55 27.85 255434 6 2.227 C B C C C C C

35 138.47 333290.6 6 2.05 C C C B B C C

25 132.89 459578.7 3 2.152 C C B B B B B

26 50.33 281313.1 16 0.917 C C C C C C C

63 104.84 370919.4 11 1.214 C C C C C C C

12 113.36 298718.7 11 1.211 C C C C C C C

42 207.53 499699.9 10 0.692 C C A B B B B

39 92.86 370301.3 21 0.107 C B C C C B B
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Table 6 continued Item AUC ARMBU LT TR Tested classification models

ELIII-CVNS R Ng ZF H Lolli Liu (1)

32 199.8 15296.7 16 0.799 C A B C C B B

38 40.93 407329.5 3 1.856 C C C C C C C

13 71.83 88071.9 1 2.264 C C C C C C C

53 235.08 329205.1 3 1.574 C B A B B B B

8 190.53 55345.3 18 0.13 C B B C C C B

46 136.45 499854.8 7 0.376 C C B B B B B

61 98.65 495254.8 1 1.089 C A B C C A B

18 80.27 295351.8 11 0.531 C C C C C C C

27 39.29 101493.5 13 0.431 C C C C C C C

36 73.4 374496.8 8 0.619 C B C C C C C

6 164.18 101627 12 0.162 C B B C C C C

52 171.64 142923 5 0.815 C C B C C C C

14 89.35 41150.6 2 1.019 C C C C C C C

19 187.75 233313.8 6 0.353 C B B B C C C

34 193.37 119454.6 5 0.324 C C B B C C C

60 89.23 43136.7 2 0.025 C C C C C C C

whereas in the most of other tested classification models this
process is directed by the optimization of the item scores,
and (ii) the levels of compensation used, i.e., ELIII-CVNS
uses a non-compensatory aggregation scheme,whereas some
of the other tested classification models use a full compen-
satory aggregation scheme. In order to alleviate the text, the
direct comparison of the obtained ABC classifications will
not be reiterated with Liu et al.’s dataset. Indeed, this second
dataset will be essentially used to analyze the performance
of the different threshold setting rules in the context of the
ELECTRE family of methods.

4.2.1 Comparison between different thresholds setting
rules

As stated earlier, the application of the simplified ELEC-
TRE III method requires the knowledge of the values of a
set of parameters, including thresholds (q, p, v). This paper
proposed an IEA based on CVNS meta-heuristic in order to
estimate automatically these thresholds. Thus, the main aim
of this IEA is to provide a set of values for the simplified
ELECTRE III parameters that generates an ABC classifica-
tion of inventory items with competitive TRC, as required
by the decision-maker. To evaluate the benefit of such IEA,
the generated thresholds will be compared with those pro-
duced by some other existing setting rules. For this purpose,
fiveELECTRE III threshold setting rules—proposed, respec-
tively, by Kangas et al. (2001), Huck (2009), Banias et al.
(2010), Liu and Zhang (2011) and Liu et al. (2016)—will be
considered. Table 2 reports the mathematical formulations of
these different threshold setting rules. From Table 2, Table 7

is derived by consideringmore than one variant of the thresh-
old setting rules proposed by Kangas et al. (2001) and Liu
and Zhang (2011). In total, there are nine sets of threshold
values to be tested: the eight sets reported in Table 7 and
issued from the threshold setting rules of Table 2 plus the
set of threshold values generated by our proposed IEA, i.e.,
the ELIII-CVNS classification approach. Note that when the
veto threshold v j is set to +∞, this means that v j is not con-
sidered in the computation of the valued outranking relation
and, therefore, in the item score. Table 8 presents all sets of
threshold values and reports some descriptive statistics on
the criteria set of Liu et al.’s (2016) dataset.

It is important to underline that the application of the pro-
posed ELIII-CVNS classification approach on Liu et al.’s
dataset provides the following vector of the criteria weights:
w = (wAUC = 0.2, wARMBU = 0.23, wLT = 0.3, wTR =
0.27). When looking at w, it can be observed that the criteria
weights are relatively close to each other, which is not the
case with the Reid’s dataset. Thus, with this second dataset,
the criteria weights will not have a significant discrimina-
tory power in the construction of the ABC classifications. To
test the quality—in terms of minimizing the TRC function—
of each set of threshold values, the parameter vector, i.e.,
threshold and weight vectors, is first introduced in the sim-
plified ELECTRE III method to generate the item scores.
Then, an ABC classification is produced by ranking items
in a descending order of their score. Finally, the obtained
ABC classification is evaluated by using the TRC function.
Table 9 reports the ABC classifications issued from all sets
of threshold values and their corresponding TRC.

123



A non-compensatory classification approach for multi-criteria ABC analysis 9549

Ta
bl
e
7

Fo
rm

ul
at
io
ns

an
d
no

ta
tio

ns
of

al
lt
es
te
d
th
re
sh
ol
d
se
ts

R
ef
er
en
ce
s

Fo
rm

ul
at
io
ns

N
ot
at
io
ns

K
an
ga
s
et
al
.(
20
01
)

q
j
=
0

p
j
=

Δ
6 j

v
j
=
10

×
Δ

j
K
an
ga
s
et
al
(1
)

q
j
=
0,

1
×

Δ
j

p
j
=
0,

5
×

Δ
j

v
j
=

Δ
j

K
an
ga
s
et
al
(2
)

q
j
=
0,

1
×

Δ
j

p
j
=
0,

1
×

Δ
j

v
j
=
0,

75
×

Δ
j

K
an
ga
s
et
al
(3
)

H
uc
k
(2
00
9)

q
j
=

√
1 m

∑
m i=

1

( g
j(
a i

)
−

ḡ
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It should be noted that the set of threshold values issued
from ELIII-CVNS approach has produced—among all sets
generated from different threshold setting rules—the most
effective ABC classification since it obtained the smallest
TRC value which is equal to 61642.32$ (see Table 9). This
result stated that Ad Hoc Approaches (AHAs), as all rules
presented in Table 7, are less efficient than our IEA (illus-
trated by the ELIII-CVNS classification approach) in setting
the threshold values. Table 10 reports the RIIC per category
between the ABC classification generated by ELIII-CVNS
and each ABC classification produced by all tested threshold
setting rules. Our proposed ABC classification, i.e., issued
from ELIII-CVNS approach, and that obtained by using the
threshold setting rule of Liu et al. (2016) have a RIIC of
68.3%. This relatively low RIIC may be explained by the
meaningful difference between the threshold vector gener-
ated by ELIII-CVNS approach and that proposed by Liu
et al. (2016) classification model, mainly on the AUC and
ARMBU criteria.

4.3 Assumptions and limitations

The main assumptions that will be considered in this work
are essentially related to the item evaluations on the different
criteria. Hence, only item evaluations known with certainty
and measured on at least ordinal measurement scale will be
considered.

Despite the advantages of our proposed classification
approach, it presents—as any classification model—some
limits. The first limit may be explained as follows: when the
ABC inventory classification problem is treated as a rank-
ing problematic, it may occur that two items with the same
weighted score will be assigned into two adjacent categories.
This is due to the fact that—with such problematic—the
assignment of an item into a specific category is determined
by both its position in the item ranking and two predefined
cutting levels which set the number of items involved in each
category. Despite the existence of many inventory perfor-
mance measures in the literature, the second limit of this
work consists in using only the Total Relevant Cost (TRC)
to compare the performance of our proposed classification
approach with respect to some existing classification mod-
els.

5 Conclusion

This paper proposed a new classification approach which
illustrates the benefits of cross-fertilization of Multi-Criteria
Decision-Making (MCDM) methods and Meta-Heuristics
(MH) in order to carry out the ABC classification of
inventory items. Two main interrelated components consti-
tute the proposed approach. In the first one, a simplified

version of ELECTRE III method is applied—by using
a non-compensatory aggregation scheme—to compute the
weighted score of each inventory item. In the second com-
ponent, an Indirect Elicitation Approach (IEA) based on the
Continuous Variable Neighborhood Search (CVNS) meta-
heuristic is used to set the parameter values of the simplified
ELECTRE III method. Hence, the proposed approach pro-
ceeds essentially into three steps to classify inventory items
into ABC categories. In the first step, a vector of the simpli-
fiedELECTRE III parameters (or solution) is generated in the
neighborhoods of the current solution. The generated vector
is then used (step 2) by the simplified ELECTRE III method
to compute a weighted global score for each item. Based on
these scores, an ABC classification of inventory items is gen-
erated by using a predefined distribution in terms of number
of items that each category should contain (e.g., 10–30–60%)
and evaluated by using the Total Relevant Cost (TRC) func-
tion. Finally (Step 3), if any improvement is reached (i.e., a
smaller valueofTRC), the classification approachwill update
its vector of parameters (or solution) or, in the opposite case,
will move to the next neighborhood (in the same or in the next
neighborhood structures, as the case may be). The process
will be repeated until a stopping criterion is met.

It is important to underline that the proposed approach
has at least two main advantages with respect to the existing
classification models. Although most of the existing items’
scoring processes use full compensatory scheme, the non-
compensatory aggregation scheme used by our classification
approach has the advantage of promoting items that perform
globally well on the different criteria and using in an appro-
priate way the relative importance of criteria so that they
reflect their true theoretical meaning. Second, the main aim
of our proposed classification approach is not to provide a
simple ABC classification of inventory items based on their
global “performance,” as is done by the most existing mod-
els, but rather to build an ABC classification based on an
inventory performance measure such as the TRC in order to
improve the effectiveness of the inventory management.

To estimate the performance of our proposed classifica-
tion approach with respect to some other existing models,
a comparative study—based on two benchmark datasets—is
conducted. The computational results showed that our pro-
posed model outperformed all other existing classification
models since it has obtained the lowest TRC value for both
datasets (another advantage of the proposed classification
approach). In this paper, some rules to set default values for
the discrimination thresholds are reviewed and tested. The
experimental results showed that these rules are limitedwhen
compared to the parameter setting produced by our proposed
IEA, i.e., ELIII-CVNS. In fact, the existing rules cannot be of
general use since they are closely linked to the dataset from
which they are derived, especially when the decision-maker
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cannot and/or refuse to provide directly the values of these
thresholds.

In future research, at least two main interesting research
directions merit to be explored. The first one consists in
considering the ABC inventory classification problem as
a sorting (nominal or ordinal) problematic and not as a
ranking problematic as is done by the most existing classifi-
cation models. In this way, the first limit of the classification
approach proposed in this work may be avoided. For this
purpose, an adapted version of the ELECTRE TRI (Yu
1992) method designed to assign inventory items into the
ordered ABC categories can be used, for example. The sec-
ond research direction consists in considering (individually
or simultaneously) other inventory performance measures—
such as the Safety Stock Inventory Cost (SSIC) (to be
minimized), the Inventory Turnover Ratios (ITR) (to be
maximized) and the Fill Rate (FR) (to be maximized)—to
generate more effective classifications of inventory items.
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