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Abstract
In recent years, network representation learning has attracted extensive attention in the academic field due to its significant
application potential. However, most of the methods cannot explore edge information in the network deeply, resulting in poor
performance at downstream tasks such as classification, clustering and link prediction. In order to solve this problem, we
propose a novel way to extract network information. First, the original network is transformed into an edge network with
structure and edge information. Then, edge representation vectors can be obtained directly by using an existing network
representation model with edge network as its input. Node representation vectors can also be obtained by utilizing the
relationships between edges and nodes. Compared with the structure of original network, the edge network is denser, which
can help solving the problems caused by sparseness. Extensive experiments on several real-world networks demonstrate that
edge network outperforms original network in various graph mining tasks, i.e., node classification and node clustering.

Keywords Network representation learning · Edge network · Node representation vectors · Edge representation vectors

1 Introduction

With the development of Internet, information networks have
become one of the most common data forms to preserve
information. Analysis and research on networks have great
academic value and high potential application value (Hoang
et al. 2018). For example, user recommendation system is
designed to explore potential relationships between users in
social networks (Wang et al. 2017c; Zedan and Miller 2017;
Hu et al. 2015;Wang et al. 2017a), and someonline advertise-
ment delivery systems also deliver similar advertisements to
people in similar groups. An important issue in the network
research is how to represent network information properly.
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Network representation learning, or network embedding,
is a promisingway to explore information. It has been applied
in many fields such as sociology and computer science.
Network representation learning methods first identify and
preserve valuable information in the original network auto-
matically. Then, encode them into a low-dimension, dense
and continuous vector space, so that the noise or redun-
dant information can be reduced and the intrinsic structure
information can be preserved. Node representation vectors
obtained by the representation vector space can be applied
to many downstream tasks, such as node classification (Per-
ozzi et al. 2014), node clustering (Wang et al. 2017b), link
prediction (Ou et al. 2016), visualization (Wang et al. 2016)
and so on. Early network representation learning methods
obtain node representation vectors by constructing a feature
matrix. However, these methods usually have high compu-
tational complexity and poor performance when the scale of
network is very large. With the development of deep learn-
ing, many representation learning methods based on neural
networks have been proposed.

However, they do not make full use of edge information
and ignore edge representation, which causes (1) information
in the original network is not utilized sufficiently, (2) edge
representation vectors are too dependent on node represen-
tation vectors. In order to preserve both network structure
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and edge information better, in this paper, we transform an
original network into an edge network. During this process,
first-order and second-order similarities between nodes and
edge information in original network are preserved. Because
of more nodes and edges, edge network will alleviate sparse-
ness greatly. As shown in Fig. 1, edge network preserves the
structure of original network well and becomes denser than
that. Based on edge network, we input edge network into
an existing network representation model to get edge repre-
sentation vectors directly. Then, edge representation vectors
are transformed into node representation vectors by using
relationships between nodes and edges. In order to verify
the effectiveness of the proposed method, we use the net-
work representation learned by LINE on Polbooks dataset as
the input to the visualization tool t-SNE (Van Der Maaten
2014) to compare the visualization effect. In Fig. 1, the left
two graphs are the structure of the original network and the
transformed edge network, respectively. The right two are
the corresponding visualization results. Different clusters are
represented by different colors. We can see that in the visu-
alization result of original network, the nodes are uniformly
distributed in whole space, which cannot reflect the cluster
relationship of nodes. While in the edge network, nodes in
the same cluster are located more closely to each other. It can
be found that the network representation of edge network is
better than that of original network. More downstream tasks
of node classification and node clustering are conducted on
several real-world networks. The results show that edge net-
work outperforms original network in most cases.

The main contributions of this paper are summarized as
follows:

1. We present a novel way to extract network information,
which not only preserves network information better, but
also alleviates sparseness greatly.

2. Edge representation vectors use original network infor-
mation sufficiently and are not dependent on node
representation vectors.

3. We conduct comprehensive node classification and node
clustering experiments on several real-world networks to
demonstrate the effectiveness of the proposed method.

2 Related work

Network representation learning, also known as network
embedding, aims to find the low-dimensional vector space to
better capture the information in the network. It has shown
superior performance in various tasks, such as node classifi-
cation, node clustering, link prediction. As a result, network
representation learning has attractedmore andmore attention
in recent years.

Fig. 1 An example of 2D visualization result of network representation
on Polbooks dataset by t-SNE. Please see text for details

Although network representation learning has achieved
good results, it still facesmany challenges. (1)Network struc-
ture is highly nonlinear, which means it is very difficult to
capture structural features completely (Luo et al. 2011); (2)
most of the real-world networks are sparse, in other words,
there are little edges can be observed. So, results will not be
good if only the observed edges are used (Tang et al. 2015);
(3) there is a lot of edge information in network, so how to
make full use of it is also a key problem to be solved (Perozzi
et al. 2014).

Traditional network representation learning methods usu-
ally use spectrum properties, such as eigenvalues and eigen-
vectors, also known as singular values and singular vectors.
The input matrix, adjacency matrix or Laplacian matrix in
most cases, is designed by a specific method. For exam-
ple, locally linear embedding (LLE) (Roweis and Saul 2000)
considers that each node can be constructed through a lin-
ear weighted combination of its neighbor nodes. Laplacian
Eigenmaps (LE) (Belkin and Niyogi 2002) can reflect the
intrinsic manifold structure of the data with an adjacency
matrix as input. Unlike LLE, the feature vectors correspond-
ing to the minimum K nonzero feature values of Laplacian
matrix are used as network representation learning vectors.
The network representation learning methods based on spec-
trum properties only consider network structure, and their
computational complexity is high O(n2), so they are difficult
to be applied to large scale networks.

With the development of deep learning, a large number of
representation learning methods based on neural networks
have emerged. Mikolov et al. propose an effective neural
network framework to learn the distributed representation of
words in natural language (Mikolov et al. 2013a, b). Inspired
by this, Deepwalk (Perozzi et al. 2014) first obtains a series
of node sequences by using random walk approach to gen-
erate network neighborhoods for nodes, which is analogical
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to a depth-first search. It treats each node sequence as a sen-
tence, then inputs node sequences into the Skip-gram model
and finally obtains a low-dimensional representation vec-
tor for each node. Based on Deepwalk, LINE (Tang et al.
2015) uses a breath-first search strategy to preservefirst-order
and second-order similarities in the network. However, both
of them fail to offer any flexibility in node sampling from
networks. Node2vec (Grover and Leskovec 2016) improves
randomwalk approach with a more flexible approach, so that
sampled paths can preserve the local and global properties of
the network to a greater extent. Different from these shallow
neural networks-based methods, SDNE (Wang et al. 2016)
uses deep neural networks to capture highly nonlinear rela-
tionships between nodes.

However, a major limitation in all of the above works
is that they only use the network structure for network
representation. But for most of the real-world networks,
other information such as node features, the supervised
label information and heterogeneous information is also
important. Matrix factorization-based network representa-
tion techniques can fuse structure and other informationwell.
TADW (Yang et al. 2015) introduces the text features of
nodes into network representation learning under a matrix
decomposition framework. BANE (Yang et al. 2018) formu-
lates a new Weisfeiler-Lehman matrix factorization learning
function under the binary node representation constraint.
Based on BANE, LQANR (Yang et al. 2019) compacts node
representations with low bitwidth values and achieves high
representation accuracy.

However, thesemethods suffer high time complexitywhen
network scale is large. Since deep neural networks can inte-
grate different kinds of information,MMDW(Tu et al. 2016),
which is based on Deepwalk, incorporates label information
into the network representation learning process. CANE (Tu
et al. 2017a) encodes text information by using CNN and
obtains context-aware network representation. SNE (Liao
et al. 2018) learns node representation vectors in the attribute
network by using neural networks. DANE (Hong et al. 2019)
applies GCN to learn transferable node representation of
attributed networks.

Despite node features and label information, deep neu-
ral networks can also fuse heterogeneous information into
network representation process. MVE (Qu et al. 2017) pro-
poses a multi-view representation learning approach, which
promotes the collaboration of different views and lets them
vote for the robust representations by using attention mech-
anism. Different from the voting process in MVE, MEGAN
(Sun et al. 2019) employs a generator to integrate informa-
tion about pair-wise links between nodes across all of the
views.

All the above methods focus on the node representation,
but ignore the edge representation. There are a few exiting
methods which can obtain edge representation. Node2vec

(Grover and Leskovec 2016) obtains edge representation
vectors by using vector operations between the node repre-
sentation vectors. TransNet (Tu et al. 2017b) uses translation
mechanism to get edge representation vectors. HEER (Shi
et al. 2018) obtains node representation vectors and edge
representation vectors simultaneously by extracting the rela-
tionships in the heterogeneous network. However, they all
obtain the node representation vectors first and then obtain
the edge representation vectors through their relationships,
which causes edge information in the original networks
utilized insufficiently, and edge representation is deeply
dependent on the node representation.

In order to solve these problems, we propose an informa-
tion extraction method that transforms an original network
into an edge network. By inputting the edge network into an
existing network representation model, edge representation
vectors can be obtained directly. Node representation can be
further obtained by the edge representation vectors.

3 Network representation learning based on
edge information extraction

In this section, we formally define the related problem of
network representation learning and introduce our method.
Figure 2 illustrates the framework of our method.

3.1 Problem definition

In this section, we will introduce notions and define the prob-
lems formally.

Definition 1 Network representation learning. Given net-
work G = (V , E), where V = {v1, v2, . . . , vn} represents
the set of nodes, E = {e1, e2, . . . , em} represents the set of
edges. n andm are the number of nodes and edges in the net-
work, respectively. A represents the adjacency matrix. If vi
and v j are connected, ai j = 1. Otherwise, ai j = 0. The pur-
pose of network representation is to learn amapping function
f : vi → yi ∈ Rd , where d is the dimension of the vector
and d � |V |. The relationship between node representation
vectors yi and y j can reflect the relationship between nodes
vi and v j in G.

Definition 2 First-order similarity. Given a graph G =
(V , E), for any two nodes vi and v j , if they are connected
directly(ai j = 1), nodes vi and v j have first-order similarity
(Grover and Leskovec 2016).

First-order similarity intuitively reflects the relationship
between nodes in the network. If there is a connection
between two nodes, these two nodes are more similar. For
example, if a paper cites another one, then these two papers
are more similar than others. However, a large number of
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Fig. 2 The framework of the proposed method. An original network
G with 6 nodes and 7 edges is transformed into an edge network G1,
which has 7 nodes and 13 edges. By inputting G1 into the existing

network representation models (such as Deepwalk, LINE.), the node
representation vectors in G1 (also edge representation vectors in G)
can be obtained directly

node pairs do not have first-order similarity because of the
sparseness in the real-world networks. Therefore, it is diffi-
cult to save the network structure well by relying only on the
first-order similarity. Second-order similarity is used to solve
this problem.

Definition 3 Second-order similarity. Given a graph G =
(V , E), for any two nodes vi and v j , if there is a common
neighbor vk between them, that is, aik = 1, a jk = 1, vi and
v j have second-order similarity (Grover andLeskovec 2016).

Second-order similarity assumes that the more common
neighbors between two nodes, the higher similarity between
them. For example, in the sentences I like eating apple and
I like eating meat, the words apple and meat should have
higher similarity because of the similar context. By the way,
the problem of sparseness can be alleviated greatly by using
second-order similarity.

Local and global information can be preserved finally in
the network by using first-order and second-order similari-
ties.

3.2 Edge information extraction

Different from the existing network representation learning
methods, we focus on how to extract network information
better. In order to solve this problem, an original network
G is transformed into an edge network G1. In other words,
the edges in G will become the nodes in G1. As shown in
Fig. 2, G has 7 edges and G1 has 7 nodes. The similarity
between nodes in G1 will be constructed by the first-order
and the second-order similarities of the original network G.
The similarity between nodes in G1 can be calculated by
Cosine similarity (Salton 1970), also called Salton index, as
shown in Eq. 1.

spq = sep,eq =
∣
∣N (vi )

⋂N (v j )
∣
∣

√

|N (vi )|
∣
∣N (v j )

∣
∣

(1)

Where N (v) represents the neighborhoods of node v. Node
pair (vi , vk) is connectedby edge ep , and (v j , vk) is connected
by eq in original network G. For example, in Fig. 2, the way
to calculate similarity between e6 and e7 is s67 = se6,e7 =
|N (v5)

⋂N (v6)|√|N (v5)||N (v6)|
= 1√

2×1
≈ 0.7071. The detailed construct

algorithm of edge network can be seen in Algorithm 1.

Algorithm 1 Transform original network to edge network.
Input: Original network G;
Output: Edge network G1;
1: Generate an empty network G1;
2: for e in G.edges() do
3: G1.add_nodes(e);
4: end for
5: for ep in G1.nodes() do
6: for eq in G1.nodes() do
7: get node pair (vi , vk) connected by edge ep in G (first-order

similarity);
8: get node pair (v j , vk) connected by edge eq in G (first-order

similarity);
9: calculate similarity between ep and eq by Equation 1 (second-

order similarity)
10: G1.add_edges(ep, eq , spq );
11: end for
12: end for

3.3 Network representation learning

Edge network can not only preserve network structure and
edge information, but also alleviate the sparseness in the orig-
inal network greatly. As shown in Fig. 2, an original network
G is transformed into an denser edge network G1. Then,
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edge network is input into the existing network represen-
tation models. Finally, edge representation vectors can be
obtained directly.

In order to evaluate our method on downstream tasks, we
transform edge representation vectors into node representa-
tion vectors according to their relationships. As shown in
Fig. 2, v1 is connected to only one edge e1 in G, so v1’s
representation vector can be expressed as y(v1) = y(e1).
Node v4 is connected to the edges e3, e4, e6, e7; then,
v4’s representation vector can be expressed as y(v4) =
y(e3)+y(e4)+y(e6)+y(e7)

4 .

3.4 Complexity analysis

In transform process, we need to calculate the similarities
between nodes in the edge network. As seen in Algorithm 1,
the time complexity is O(m2), where m is the number of
nodes in the edge network. However, since a large number of
node pairs have no connection, so in fact, the time complexity
is much smaller than O(m2).

In addition, in order to evaluate our method on down-
stream tasks, edge representation vectors are transformed
into node representation vectors. Therefore, we need to cal-
culate the relationship between edges and nodes in G, so the
time complexity is O(n). In summary, the time complexity
of our method is much smaller than O(m2).

4 Experiments

4.1 Experiment settings

Our experiments focus on two common tasks: node classifi-
cation and node clustering. We evaluate our method on five
different networks under different inputs (original network
and edge network). Node classification is also conducted on
different network representation models. In order to verify
the dimensional sensitivity of edge network, we cluster node
representation vectors with different dimensions and com-
pare their node clustering performance. Lastly, we classify
five different edge networks, which are constructed by using
different similarity measuring methods, to verity the effect
of similarity measuring methods.

4.1.1 Datasets

In the experiments, we use five different real-world net-
works, which are processed into connected networks during
preprocessing process. The detailed information has been
summarized as follows:

– Polbooks1 is a co-sold relationship network of American
political books, consisting of 105 nodes and 441 edges.

1 http://www.orgnet.com/.

Nodes represent books. If two books were bought by one
person, they are connected. The nodes are divided into
three categories: liberal, conservative and central.

– Football2 is a complex social network consisting of 115
nodes and 613 edges.Nodes represent football teams, and
edges represent the two teams had a match. The nodes
are divided into 12 categories.

– WebKB3 consists of four independent subnetworks—
Cornell, Texas, Wisconsin and Washington. The num-
ber of nodes and edges for each of these subnetworks are
listed in Table 1. Nodes represent the site ID, and edges
represent reference relationship between the sites. The
nodes are divided into five categories: course, faculty,
student, project and staff.

– ColiInter4 is a transcription network consisting of 328
nodes and 497 edges. The edges are divided into three
categories.

– Protein5 is a network of protein interactions in yeast. It
consists of 1458 nodes and 1993 edges. Nodes repre-
sent protein, and edges represent metabolic interaction
between two proteins.

4.1.2 Adopted methods and experiment setup

In order to evaluate the effect of the proposed method, we
use five state-of-the-art network representation models as
intermediate algorithms. The details of these methods are
as follows:

– Deepwalk (Perozzi et al. 2014) is the firstmethod to intro-
duce deep learning into network representation learning.
It obtains sequences of nodes by applying random walks
first and then inputs the sequences into the skip-gram
model to learn a low-dimensional vector representation
for each node.

– LINE (Tang et al. 2015) preserves the first-order and
second-order similarities between node pairs and min-
imizes the KL distance between the probability distribu-
tion and the empirical distribution.

– SDNE (Wang et al. 2016) is different from the previous
shallowneural networks, and it uses deepneural networks
to capture the high nonlinearity between nodes and uses
intermediate layer in the deep self-encoder as node rep-
resentation.

2 http://www-personal.umich.edu/~mejn/netdata/.
3 http://linqs.cs.umd.edu/projects/projects/lbc.
4 http://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription-
network.
5 http://moreno.ss.uci.edu/data.html#Pro-pro.
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Table 1 Information between
original and edge network,
where n is the number of nodes,
m is the number of edges, C is
the number of categories, D is
the average degree, and P is the
increasing rate of average
degree between edge and
original network

Method Original network Edge network

n m C D n m D P

Polbooks 105 441 3 8.40 441 4822 21.87 2.60

Football 115 613 12 10.66 613 5967 19.47 1.83

WebKB-Cornell 183 280 5 3.06 280 5072 36.23 11.84

WebKB-Texas 183 295 5 3.22 295 6184 41.93 13.00

WebKB-Wisconsin 251 466 5 3.71 466 9113 39.11 10.53

WebKB-Washington 215 402 5 3.74 402 8448 42.03 11.24

ColiInter 328 497 3 3.03 497 5504 22.15 7.31

Protein 1458 1993 – 2.73 1993 12152 12.19 4.46

– Node2vec (Grover and Leskovec 2016) is an improved
version ofDeepwalk. It controls how to choose neighbors
of a node by using two parameters.

– GraRep (Cao et al. 2015) extends to high-order prox-
imity and uses SVD to train the model. It also directly
concatenates the representations of first-order and high-
order similarity.

We set the dimension size d = 128 for all the models, and
other parameters are set to the default values presented in the
publicly available implementations.

4.2 Comparison between original network and edge
network

In this section, we will compare network information
between original and edge networks. Average degree is used
tomeasure the network density. The detailed information can
be seen in Table 1.

Aswecan see, the density changes of edgenetworkonPol-
books and Football increase less (2.6 and 1.83, respectively),
which may because the original network is relatively dense,
so the changes are not obvious compared to other networks.
In Cornell, Texas, Wisconsin and Washington, the original
networks are very sparse, and the density changes are more
obvious (11.84, 13.00, 10.53 and 11.24, respectively). Both
ColiInter and Protein are sparse networks with a large num-
ber of nodes. After transformation, they become denser (7.31
and 4.46, respectively).

In summary, ourmethod can be applied to sparse networks
with different node numbers and different densities, which
alleviates the sparseness greatly.

4.3 Node classification

Node classification is a common task for measuring perfor-
mance of node features. In order to minimize the impact of
different classifiers and indicators, we use LR as classifier
and accuracy as indicator. Specifically, TP, FP, TN and FN

Fig. 3 Classification accuracy on different datasets with LINE model

are the number of true positives, false positives, true nega-
tives and false negatives, respectively. Then, the accuracy is
defined as Eq. 2.

Accuracy = TP + TN

TP + FP + TN + FN
(2)

We randomly select 90% nodes as the training set and rest
as the testing set. Since ColiInter has edge labels instead of
node labels, we transform node representation vectors into
the edge representation vectors. In addition, there is no label
in Protein, so we do not make experiments on it. Figure 3
shows the classification performance of different datasets
between original and edge network under the LINE model.

As we can see in Fig. 3, the accuracy of edge network
on Polbooks, Football, Cornell and Washington is certainly
better than the original network. But, the accuracy of edge
network on Texas, Wisconsin and ColiInter is not so good.
Maybe because edge network only preserves the first-order
and second-order similarities in the original network instead
of higher order similarity.

Table 2 shows accuracy on Polbooks with different mod-
els.Aswecan see, accuracyof the edgenetworkonDeepwalk
and GraRep is the same as original network (100% both).
Accuracy of LINE model in edge network is better than
original network (100% and 64%, respectively). Accuracy
of edge network under Node2vec is the same as original
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Table 2 Classification accuracy
on Polbooks dataset with
different network representation
models

Deepwalk LINE SDNE Node2vec GraRep

Original network 100% 64% 100% 91% 100%

Edge network 100% 100% 73% 91% 100%

The best values are presented in bold

Table 3 Node clustering on
different datasets with LINE
model

Cluster number Original network Edge network Increase

Polbooks 3 0.0084 0.0578 0.0494

Football 12 −0.0016 0.1912 0.1928

Cornell 5 0.0066 0.0233 0.0167

Texas 5 0.0071 0.0327 0.0256

Wisconsin 5 0.0082 0.0681 0.0599

Washington 5 0.0030 0.0605 0.0575

ColiInter 3 0.0087 0.0438 0.0351

Protein 2 0.0096 0.5248 0.5152

The best values are presented in bold

network (91%), maybe because random walk sequences in
Node2vec do not capture the structure of edge network well.
In the SDNE model, the accuracy of the original network
is better than edge network. This maybe because SDNE is
a deep-learning model, which can better preserve the high-
order nonlinear relationship between nodes.

4.4 Node clustering

Node clustering is also one of the important issues in network
analysis. It divides the nodes into several clusters, so that
nodes in the same cluster are similar and nodes in different
clusters are different. We use K -means, a classical clustering
method, to perform results and Silhouette Coefficient is used
as evaluation indicator. Silhouette Coefficient ranges from -1
to 1, and a larger value indicates better clustering result. We
also set different cluster numbers among different datasets.
Experimental settings are seen in Table 3.

Table 3 shows the clustering performance of different
inputs in the different networks under LINE model. On Pol-
books, Cornell, Texas,Wisconsin,Washington andColiInter,
compare to original network, the increase in Silhouette Coef-
ficient of the edge network is approximately 0.05, 0.02, 0.03,
0.06, 0.06 and 0.04, respectively, which indicates that the
edge network preserves the network structure better. Foot-
ball’s Silhouette Coefficient of original network is negative,
which maybe because the number of clusters is too large so
K -means cannot distinguish the difference between nodes
well. However, Silhouette Coefficient of the edge network
(0.1912) is significantly better than the original network (-
0.0016). This maybe because the edge network preserves
rich edge information in the original network, so that K -
means can better distinguish the differences between the

Fig. 4 Node clustering of Polbooks’s edge network with different
dimensions under LINE model

nodes. On Protein, Silhouette Coefficient of the edge net-
works is greater than original network (increasing 0.5152).
This maybe because the number of nodes is large, so edge
network contains richer structure and edge information.

4.5 Parameter analysis

In order to verify the sensitivity of parameters, edge net-
works are input into LINE model with different dimensions.
Figure 4 shows the impact of different dimensions on node
clustering.

As dimension increases, Protein’s Silhouette Coefficient
decreases, which shows that Protein can achieve good results
by using low-dimensional representation vectors. As the
dimension increases, Football’s Silhouette Coefficient fluc-
tuates continuously, but it shows a slow upward trend.
Silhouette Coefficient of ColiInter fluctuates greatly with
the increase in the dimension, and gets the best perfor-
mance when dimension is 130. The trends of Polbooks and
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Table 4 Comparison among
original network and five
different edge networks
constructed by using five
similarity measuring methods

Original network Edge network

Salton AA HPI HDI Sorenson

Accuracy 64% 100% 72% 100% 100% 100%

The best values are presented in bold

four subnetworks ofWebKB (Texas, Cornell, Wisconsin and
Washington) are similar. As the dimension increases, Sil-
houette Coefficient fluctuates slightly, which indicates that
Polbooks and WebKB are less sensitive to the dimensions.

4.6 Different similarity measuringmethods analysis

In the process of transforming an original network G into
an edge network G1, different similarity measuring meth-
ods lead to different edge networks. In order to verify the
effect of similarity measuring methods, five different simi-
larity indices, as shown in Eqs. 1, 3–6, are compared under
LINE model on Polbooks dataset. We use the LR as classi-
fier and accuracy as indicator. Table 4 shows the classification
performance of original network and five different edge net-
works constructed by using five different similarity methods.

AA: spq =
∑

vz∈N (vi )∩N (v j )

1

log |N (vz)| (3)

HPI: spq =
∣
∣N (vi )

⋂N (v j )
∣
∣

min{|N (vi )| ,
∣
∣N (v j )

∣
∣} (4)

HDI: spq =
∣
∣N (vi )

⋂N (v j )
∣
∣

max{|N (vi )| ,
∣
∣N (v j )

∣
∣} (5)

Sorenson: spq =
∣
∣N (vi )

⋂N (v j )
∣
∣

|N (vi )| + ∣
∣N (v j )

∣
∣

(6)

Node pair (vi , vk) is connected by edge ep, and (v j , vk) is
connected by edge eq . Equation 3 (Salton 1970) is Adamic–
Adar index(AA). Equation 4 (Ravasz et al. 2002) is Hub
Promoted Index(HPI). Equation 5 (Leicht et al. 2006) is
Hub Depressed Index(HDI). Equation 6 (Li et al. 2014) is
Sorensen index.

As shown in Table 4, the performance of edge network
constructed by using Salton, HPI, HDI and Sorenson is
great(100%) with increasing rate of 56.25% compared to
original network (64%). While accuracy of edge network
constructed by using AA is 72% with increasing rate of
12.5% compared to original network (64%). This maybe
because Salton, HPI, HDI and Sorensen consider the com-
mon neighbors, and AA also considers degree information
of common neighbors, while nodes vi and v j have a few
common neighborhoods in the dataset; therefore, AA cannot
obtain enough valuable information.

5 Conclusion

Weproposed anetwork representation learningmethodbased
on edge information extraction, which not only can pre-
serve the structure and edge information in the original
network, but also alleviate the sparseness. First, an origi-
nal network is transformed into an edge network, and then,
input edge network into an existing network representa-
tion model. Finally, edge representation vectors of original
network can be obtained directly. Evaluation on real-world
datasets demonstrates that edge network can achieve better
performance than original network in most cases.

In the future, we will explore the following directions:

1. It can be seen in the experimental part that high-order
similarity plays an important role in learning representa-
tion of sparse networks, but our method fails to preserve
high-order similarity between nodes in the original net-
work. So, how to better preserve the network structure is
one of our future work directions.

2. We mainly analyze the undirected and unweighted net-
work in this paper, but there are also a large number of
directed and weighted real-world networks. Therefore,
the analysis of those networks is necessary to understand
complex networks.

3. Heterogeneous networks have more complex structures,
and many real-world networks are heterogeneous. These
networks also contain rich information, such as attribute
information, tag information, text information and so on.
How to save complex structural information and other
information in heterogeneous networks is also an impor-
tant issue to be considered.
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