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Abstract
Due to the increasing complexity and uncertainty in green supplier selection, there would be some hesitations for decision

makers (DMs) to provide evaluation information of suppliers. Hesitant fuzzy set is a suitable tool to model such hesitations.

This paper develops a hesitant fuzzy Preference Ranking Organization Method for Enrichment Evaluations (PRO-

METHEE) for multi-criteria group decision-making and applies to green supplier selection. First, a new hesitancy index of

hesitant fuzzy element (HFE) is defined. Then, a generalized hesitant fuzzy Hausdorff distance is proposed considering the

individual deviation of membership values and the hesitancy index simultaneously. A combined hesitant fuzzy entropy is

presented integrating the defined fuzziness entropy and hesitancy entropy of HFEs. Subsequently, a linear programming

model is established to derive DMs’ weights objectively. To determine the criteria weights for each DM, a nonlinear

programming model is built through minimizing the relative entropy. The PROMETHEE is employed to obtain individual

ranking of alternatives for each DM. To obtain the collective ranking of alternatives, a multi-objective assignment model is

constructed and transformed into a single-objective assignment model for resolution. Thereby, a hesitant fuzzy PRO-

METHEE method is presented. A green supplier selection example is demonstrated to validate the proposed method.

Keywords Multi-criteria group decision-making � Hesitant fuzzy elements � PROMETHEE � Information measures �
Green supplier selection

1 Introduction

Over the past few decades, the environment pollution has

become more and more serious. Environment sustainable

development has attracted much attention. Pressure from

customers and societies is dramatic (Govindan et al. 2014).

Many companies have focused on the environmental

impact of their production operations. To equilibrate the

economic profits and the environment sustainable devel-

opment, companies conducted the green supply chain

management (GSCM) on their productions (Sarkis 1999).

The green supplier selection is very important in the

GSCM (Blome et al. 2014). Since the green supplier

selection involves various criteria and lots of decision

makers (DMs), it is always treated as a type of multi-cri-

teria group decision-making (MCGDM) problems (Qin

et al. 2017). In practical green supplier selection, the sup-

plier and manufacturer cannot share enough information of

suppliers (Zarandi and Moghadam 2017). Thus, the prac-

tical green supplier selection process is filled with uncer-

tainty and DMs usually hesitate to give evaluation among

several values. The traditional fuzzy sets are insufficient to

model the green supplier selection problem because the

hesitancy and uncertainty always occur in green supplier

selection practice. Hesitant fuzzy set (HFS) (Torra 2010) is

viewed as a strong tool to characterize the DM’s hesitancy

and subjective uncertainty.

In 1982, Brans proposed the PROMETHEE (Preference

Ranking Organization Method for Enrichment Evaluation)

(Brans 1982), which is a useful method to deal with the

decision-making problems. Compared with other MCGDM

methods, there exist three merits: (1) The PROMETHEE

does not require to aggregate different kinds of criteria
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values of an alternative into a comprehensive value; (2)

Different from ELECTRE (ELimination Et Choix Tradui-

sant la REalite) (Chen and Xu 2015), it is unnecessary for

DMs to provide the relative parameter a priori, which can

reduce DMs’ subjective randomness; (3) Relative to

QUALIFLEX (qualitative flexible multiple criteria

method) (Zhang and Xu 2015), the PROMETHEE is easy

to compute and is more time-saving. Recently, many

studies have extended PROMETHEE to the fuzzy envi-

ronments (Li and Li 2010; Liao and Xu 2014; Yilmaz and

Dağdeviren 2011). However, only few investigations were

reported on extending the PROMETHEE to the hesitant

fuzzy environment (Mahmoudi et al. 2016; Feng et al.

2015).

Due to the uncertainty and hesitancy inherent in green

supplier selection problems, the HFS is a suitable tool to solve

such problems.Meanwhile, the PROMETHEE can handle the

conflicting criteria and has some merits stated as above.

Hence, it is necessary and worthwhile to extend PRO-

METHEE to accommodate the hesitant fuzzy environment

and applied to green supplier selection. Noticeably, to extend

PROMETHEE forMCGDMwithHFSs, some difficulties and

challenges need to be solved: (1) To measure the deviation of

two hesitant fuzzy elements (HFEs), the distance between two

HFEs needs to be defined considering hesitancy index of HFE

and the deviation of values in intersectional position between

two HFEs; (2) a new hesitant fuzzy entropy measure must be

defined tomeasure the fuzziness and uncertainty of HFEs; (3)

some new methods should be investigated to determine the

criteria weights and the DMs’ weights objectively. Therefore,

this paper develops some new information measures of HFEs

to extend PROMETHEE forMCGDMwithHFSs and applies

to green supplier selection.

The structure of this paper is organized as follows.

Section 2 reviews green supplier evaluation and selection

methods as well as some related literature about HFSs.

Section 3 recalls the concept of HFEs and the classical

PROMETHEE. Section 4 proposes a generalized hesitant

fuzzy Hausdorff distance and a combined hesitant fuzzy

entropy of HFEs. In Sect. 5, DMs’ weights and the criteria

weights are determined. Then, an extended PROMETHEE

method is presented for MCGDM with HFSs. In Sect. 6, an

example of green supplier selection is demonstrated to

verify the validity and feasibility of the proposed method.

Section 7 presents the conclusions.

2 Literature review

This section reviews the evaluation criteria and selection

methods for green supplier selection as well as the infor-

mation measures of HFSs. Then, the main work and fea-

tures of this paper are outlined.

2.1 Evaluation criteria for green supplier
selection

A variety of quantitative and qualitative criteria have

appeared in the supplier selection problems. Lots of

researchers studied the evaluating criteria including eco-

nomic criteria and green criteria (Govindan et al. 2015;

Govindan and Jepsen 2016). For the economic criteria,

Dickson (1966) deemed that price, quality and delivery

were the most popular criteria by an investigation. After

surveying supplier selection at 1966–1990, Webber (1991)

summarized that quality, delivery, price, production facil-

ities and capacity were the most relevant criteria. Other

literature (Yang and Tzeng 2011; Thiruchelvam and Too-

key 2011; Banaeian et al. 2018) revealed that the price,

service performance and quality were the most frequently

used criteria. For the green criteria, the recent review in

(Govindan et al. 2015; Nielsen et al. 2014) identified the

environment management system as the most comprehen-

sive and flexible environmental criteria. Recently, refer-

ences (Banaeian et al. 2018; Ghorabaee et al. 2016; Kannan

et al. 2014) performed the supplier selection of different

industries, in which the environment management system

is an important evaluating factor. In addition, environ-

mental competences have been widely used in many green

supplier selection problems (Grisi et al. 2010; Awasthi

et al. 2010; Darabi and Heydari 2016). For the detailed

description on environment management system and

competences, please refer to Table 1. Table 1 presents a

combination of economic criteria and green criteria to

evaluate the green supplier selection.

2.2 Green supplier selection methods

Up to now, a large number of methods have been proposed

to deal with green supplier selection problems. They are

simply categorized as three groups.

The first group is multi-criteria decision-making

(MCDM) techniques. Based on fuzzy AHP (Analytical

hierarchy process), Grisi et al. (2010) applied a seven-step

approach to dealing with green supplier selection. Hashemi

et al. (2015) utilized ANP (analytic network process) to

drive the criteria weights and improved GRA (grey rela-

tional analyse) to rank the suppliers. Roshandel et al. (2013)

proposed hierarchical fuzzy TOPSIS (Technique for Order

of Preference by Similarity to Ideal Solution) for supplier

selection in detergent production industry. Based on GSCM

practices, Kannan and Jabbour (2014) applied fuzzy TOP-

SIS to select the green supplier for a Brazilian electronics

company. Hsu et al. (2013) utilized the DEMATEL (De-

cision-making Trial and Evaluation Laboratory) to propose

a carbon management method of supplier selection. Based
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on PROMETHEE, Govindan et al. (2017) constructed a

group compromise ranking method for green supplier

selection in food supply chain. Gupta and Barua (2017)

used BWM (Best and Worst Method) and fuzzy TOPSIS to

select supplier among small and medium enterprises on the

basis of their green innovation ability. Awasthi and Kannan

(2016) investigated green supplier development program

selection using NGT (Nominal Group Technique) and

VIKOR (Vlsekriterijumska Optimizacija I Kompromisno

Resenje) under fuzzy environment. Chou and Chang (2008)

studied a decision support system for supplier selection

based on a strategy-aligned fuzzy SMART (strategy-

aligned fuzzy simple multi-attribute rating technique)

approach. Li and Li (2010) extended PROMETHEE II to

generalized fuzzy numbers. Liao and Xu (2014) extended

PROMETHEE to intuitionistic fuzzy sets for multi-criteria

decision-making. Yilmaz and Dağdeviren (2011) proposed

a combined approach for equipment selection: F-PRO-

METHEE method and zero–one goal programming.

Although references (Li and Li 2010; Liao and Xu 2014;

Yilmaz and Dağdeviren 2011) have extended PRO-

METHEE to the fuzzy environments, these extensions are

invalid for hesitant fuzzy environment. Up to now, only two

references (Mahmoudi et al. 2016; Feng et al. 2015)

extended the PROMETHEE to the hesitant fuzzy environ-

ment. Mahmoudi et al. (2016) extended PROMETHEE in

the context of the typical hesitant fuzzy sets to solve multi-

attribute decision-making problem. Feng et al. (2015)

developed a PROMETHEE method for hesitant fuzzy

multi-criteria decision-making based on possibility degree.

However, methods in Mahmoudi et al. (2016) and Feng

et al. (2015) are only suitable for single-person decision-

making. They cannot be used to solve MCGDM. In addi-

tion, Govindan et al. (2017) failed to consider the uncer-

tainty and hesitancy. They just directly employed

PROMETHEE to rank the suppliers.

The second group is the mathematical programming

(MP) techniques. Integrating the CMS (Carbon Market

Sensitive) and DEA (Data Envelopment Analysis), Jain

et al. (2016) developed a CMS and a green decision

making approach based on DEA called CMS–GDEA. To

determine the environmental factors, Dobos and Vör-

ösmarty (2014) combined DEA and CWA (common

weights analysis) to investigate a weight system. Kannan

et al. (2013) constructed some FMOP (fuzzy multi-objec-

tive programming) models and applied them to green

supplier selection problems in automobile manufacturing

company. Integrating ABC (activity-based costing) and

performance evaluation, Tsai and Hung (2009) developed a

FGP (fuzzy goal programming) approach to selecting

optimal green supplier in a value-chain structure. Jauhar

and Pant (2017) integrated DEA with DE and MODE for

sustainable supplier selection. Hamdan and Cheaitou

(2017) put forward a MCDM and multi-objective opti-

mization approach for supplier selection and order alloca-

tion with green criteria. Du et al. (2015) designed a Pareto

supplier selection algorithm for minimum the life cycle

cost of complex product system.

The third group is artificial intelligence (AI) techniques.

To solve supplier selection problems, lots of AI methods

have been developed. Kuo et al. (2010) proposed an ANN

(artificial neural network) method. Yan (2009) integrated

GA (genetic algorithm) and AHP to select green supplier.

Yeh and Chuang (2011) used multi-objective genetic

algorithm for partner selection in green supply chain

problems. In order to assess environmental management

performance of suppliers, Humphreys et al. (2003) devel-

oped CBS (case-based reasoning) method. Hosseini and

Barker (2016) built a BN (Bayesian network) model to

select resilience-based suppliers.

A summary of existing methods for green supplier

selection is listed in Table 2.

The MCDM techniques are the most frequently used

methods. Especially, AHP, ANP and TOPSIS are very

popular among theses green supplier selection methods.

Meanwhile, it can be seen that many fuzzy methods have

been employed to solve green supplier selection. However,

little attention has been paid to deal with green supplier

selection problems in hesitant fuzzy environment. In

addition, the extensive literature review shows that

Table 1 Evaluating criteria of green supplier selection

Literature Evaluating criteria Description

Economic

criteria

Price It covers all kinds of prices needed in the supply chain and determines the total cost

Service performance It includes the service quality in the supply process. For instance, supply capacity, after-sales service

and on time delivery

Quality It indicates the quality of the product provided to the customer

Green

criteria

Environmental

management system

It is referred to the effectiveness of the policy to protect environment, organizational structure for

environmental management

Environmental

competences

It shows the capability to reduce the impact to environment in the process of production. It can be

expressed by use of ecological materials, availability of ‘‘clean’’ technologies, ability to respond

adequately, etc.
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comparatively little research has focused on employing the

outranking method to green supplier selection although

they have been proven to be very effective in other appli-

cations (Govindan and Jepsen 2016; Behzadian et al.

2010).

2.3 Review of information measures of HFSs

DMs usually express hesitation when evaluating alterna-

tives, criteria, variables, etc. Based on such thinking, Torra

(2010) introduced the hesitant fuzzy set (HFS). There are

many fruits on HFSs (Zhu and Xu2013; Xu and Xia 2011a,

b; Peng et al. 2016; Li et al. 2015; Farhadinia 2014; Hu

et al. 2016; Beg and Rashid 2017; Zhang et al. 2018; Xu

and Xia 2012; Farhadinia 2013; Jin et al. 2016; Quirós

et al. 2015; Wei et al. 2016; Torra et al. 2014; Xia and Xu

2011; Zhang and Xu 2014; Bedregal et al. 2014b, c; Xu and

Zhang 2013; He et al. 2016; Zhang 2013), and some new

concepts combining HFS with linguistic terms were pro-

posed by Dong et al. (2016), Wu et al. (2018), Dong et al.

(2015, 2018), Liu et al. (2018, 2019). Especially, the dis-

tance and entropy measures are two important focuses for

HFSs (Xu and Xia 2011a, b; Peng et al. 2016; Li et al.

2015; Farhadinia 2014; Hu et al. 2016; Beg and Rashid

2017; Zhang et al. 2018; Xu and Xia 2012; Farhadinia

2013; Jin et al. 2016; Quirós et al. 2015; Wei et al. 2016;

Torra et al. 2014).

The distance measure is mainly used to discriminate the

diverse information. Xu and Xia (2011a, b) provided the

axiom definitions of distance and similarity measures of

HFSs. Peng et al. (2016) developed the generalized hesitant

fuzzy synergetic weighted distance measure. Considering

the DM’s hesitancy, Li et al. (2015) investigated some new

distance formulas for HFSs containing hesitance degrees of

HFEs. They presented a hesitancy index of HFEs and

proposed the distance and similarity measures for HFSs. It

is noticed that these distance measures of HFSs have some

limitations: (1) The length of different HFEs must be the

same by adding some accurate values. However, it is not

easy to avoid subjective randomness for DM when deter-

mining which values to be added; (2) sorting the elements

in each HFE is an extra burden work. To overcome these

deficiencies, Farhadinia (2014) applied Hausdorff metric to

the distance measures of HFSs and proposed various dis-

tance measures for higher order HFSs. Hu et al. (2016)

proposed a variety of distance formulas of HFEs and HFSs

without need to rearrange the elements in HFEs and add

values. Based on the Hausdorff metric, Peng et al. (2016)

defined the Hamming–Hausdorff and Euclidean–Hausdorff

distance measures. Beg and Rashid (2017) proposed the

Hausdorff-based distance. These studies (Peng et al. 2016;

Li et al. 2015; Hu et al. 2016; Beg and Rashid 2017)

effectively circumstanced the aforesaid two shortcomings.

However, their distance measures overlook the DM’s

hesitancy in decision-making, which is an important factor

in distance measures. Recently, Zhang et al. (2018) pro-

posed an interesting distance measure for HFSs by con-

sidering the cardinal number of HFEs. It provides a new

perspective to uniform the length of different HFSs.

However, such a method makes the length of HFSs too

large, which is more complicated. Meanwhile, they also

ignored the hesitancy occurred in decision-making.

Entropy is the measure of uncertainty related to a

specific fuzzy set. Recently, the entropy measure of HFSs

Table 2 Summary of existing green supplier selection methods

Category Methods Literature

MCDM techniques AHP Grisi et al. (2010), Kannan et al. (2013)

ANP Hashemi et al. (2015)

TOPSIS Roshandel et al. (2013), Kannan and Jabbour (2014), Gupta and Barua (2017)

VIKOR Awasthi and Kannan (2016)

PROMETHEE Govindan et al. (2017)

DEMATEL Hsu et al. (2013)

SMART Chou and Chang (2008)

TODIM Qin et al. (2017)

MP techniques DEA Jain et al. (2016), Jauhar and Pant (2017)

FGP Tsai and Hung (2009).

FMOP Pareto algorithm Kannan et al. (2013), Hamdan and Cheaitou (2017), Du et al. (2015)

ANN Kuo et al. (2010).

AI techniques GA Chou and Chang (2008), Yeh and Chuang (2011), Du et al. (2015)

CBS Humphreys et al. (2003)

BN Hosseini and Barker (2016)
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has attracted much attention. Xu and Xia (2012) first pre-

sented the concept of entropy and cross entropy of HFEs

and meanwhile constructed some formulas for them.

However, Farhadinia (2013) deemed that the definition of

hesitant fuzzy entropy proposed in Xu and Xia (2012) is

unable to distinguish a part of HFEs. Then, he discussed

the relationship among distance, similarity and entropy

measures and thus proposed a distance-based entropy

measure of HFSs. Hu et al. (2016) proposed various

entropy measures of HFSs, such as similarity measures-

based entropy, distance measures-based entropy and hesi-

tant-operation-based entropy. Using the continuous ordered

weighted averaging operators, Jin et al. (2016) constructed

some information measure formulas in the context of

interval-valued HFSs (IVHFSs). It is noticed that most of

the existing definitions of hesitant fuzzy entropy only

reflect the information from one aspect, namely ‘‘fuzzi-

ness.’’ Quirós et al. (2015) defined an entropy measure of

IVHFSs based on three measures, including ‘‘fuzziness,’’

‘‘hesitancy’’ and ‘‘lack of knowledge.’’ Wei et al. (2016)

proposed an entropy formula considering both the fuzzi-

ness and hesitancy of HFEs. Literature review reveals that

little attention has been focused on the hesitancy of the

HFEs although it is an important aspect of the entropy

measures of the HFSs (Bedregal et al. 2014).

2.4 Main work and features of this paper

To avoid the shortcomings of existing methods on green

supplier selection and information measures of HFEs, this

paper first develops some new information measures of

HFEs, including a generalized hesitant fuzzy Hausdorff

distance considering hesitancy index of HFEs, a combined

hesitant fuzzy entropy and relative closeness degree. Then,

by minimizing group inconsistency, a new linear pro-

gramming model is established to derive DMs’ weights

explicitly. Through minimizing the relative entropy of the

criteria weights, a nonlinear optimization model is estab-

lished to obtain the criteria weights for each DM. Subse-

quently, the individual ranking of alternatives for each DM

is derived under the framework of PROMETHEE. To

obtain the collective ranking of alternatives, we establish a

multi-objective assignment model and transform it into a

single-objective assignment model for resolution. Thus, a

hesitant fuzzy PROMETHEE method is put forward for

MCGDM. The major contributions and features of this

work are simplified as four aspects:

1. A new hesitancy index for HFEs is defined. It can

effectively describe the hesitancy of HFEs and possess

some desirable properties. Then, a generalized hesitant

fuzzy Hausdorff distance is defined considering the

hesitancy degree of HFEs and the deviation of values

in intersectional position between two HFEs simulta-

neously. It does not need to extend HFEs into the same

length and can overcome the limitations of existing

distance definitions. Hence, the generalized hesitant

fuzzy Hausdorff distance is more reasonable and

comprehensive. This contribution can solve the first

challenge aforesaid in Introduction (i.e., (1) To mea-

sure the deviation of two hesitant fuzzy elements

(HFEs), the distance between two HFEs needs to be

defined considering hesitancy index of HFE and the

deviation of values in intersectional position between

two HFEs).

2. The fuzziness entropy and hesitancy entropy of HFEs

are developed, respectively. Then, taking these two

kinds of measures into account, a combined hesitant

fuzzy entropy measure is further presented. Compared

with existing entropy of Farhadinia (2013), the pro-

posed combined hesitant fuzzy entropy integrates the

fuzziness and hesitancy of HFS. It incorporates the

BUM function and DM’ risk attitude simultaneously.

Therefore, it can provide more flexibility for DM in

practical applications. This contribution can solve the

second challenge aforesaid in Introduction (i.e., (2) A

new hesitant fuzzy entropy measure must be defined to

measure the fuzziness and uncertainty of HFEs).

3. By minimizing the relative entropy of the criteria

weights, a nonlinear optimization model is constructed

to determine the criteria weights for each DM.

Moreover, through minimizing the group inconsis-

tency, a linear program model is constructed to derive

DMs’ weights objectively. This contribution can solve

the third challenge aforesaid in Introduction (i.e., (3)

Some new methods should be investigated to determine

the criteria weights and the DMs’ weights objectively.).

4. The individual ranking order of alternatives for each

DM is generated by extending PROMETHEE. Then, to

obtain the group ranking order of alternatives, a multi-

objective assignment model is established. Although

Mahmoudi et al. (2016) and Feng et al. (2015) also

extended the PROMETHEE to the hesitant fuzzy

environment, there exist remarkable differences

between their methods and the proposed method of

this paper: (i) Their methods only consider the single

decision-making problems, whereas this paper

addresses MCGDM problems. Moreover, the proposed

method can also be applied to deal with the single

decision-making problems. (ii) In their methods, the

criteria weights are given a priori. However, we set up

a nonlinear optimization model to objectively derive

the criteria weights for each DM.
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3 Preliminary

This section briefly recalls some concepts of HFEs and

introduces the classical PROMETHEE.

3.1 Concept and operations of HFEs

Definition 3.1 Torra (2010): A hesitant fuzzy set A on a

fixed set X ¼ fx1; x2; . . .; xng is defined by a function hAðxÞ
when applied to X returns a subset of ½0; 1�.

Xia and Xu (2011) mathematically represented a HFS A

as follows:

A ¼ f\x; hAðxÞ[ jx 2 Xg; ð1Þ

where hAðxÞ is a set, possessing several possible values in

½0; 1� and representing the degree of an element x to a given

set A. Xia and Xu 2011called hAðxÞ a hesitant fuzzy ele-

ment (HFE) denoted by h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg, where
lðhÞ is the number of membership values in a HFE. Zhang

and Xu (2014) called HFE hAðxÞ ¼ 0 a hesitant empty

fuzzy element and hAðxÞ ¼ 1 a hesitant full fuzzy element.

The complement of HFE h is hc ¼ [c2hf1� cg.
Recently, Bedregal et al. (2014b, c) defined typical

hesitant fuzzy set, which merely focuses on those finite and

nonempty subsets of interval [0,1]. The existing studies on

hesitant fuzzy sets almost consider the typical HFSs and

HFEs. Hence, HFSs and HFEs used in this paper are all

referred to as typical HFSs and HFEs, respectively. It is

noticed that the ideal of HFS is similar to the fuzzy multiset

(Bedregal et al. 2014) and the concept of n-dimensional

fuzzy set put forward by Shang et al. (2010).

Xu and Zhang (2013) provided the principle of

extending the length for shorter HFEs until all HFEs have

the same length. Assume hþ and h� are the maximum and

minimum values in h, respectively. Then, the adding value

is h0 ¼ ghþ þ ð1� gÞh�, where parameter g reflects DM’s

risk preference. If g ¼ 1, i.e., the DM is risk-seeking and

optimistic, then the maximum value hþ is added to h. If

g ¼ 0:5, i.e., the DM is risk-neutral, then the middle value

of h is added to h. If g ¼ 0, i.e., the DM is risk-averse and

pessimistic, then the minimum value h� is added to h.

Definition 3.2 Xu and Xia 2011: For any two HFEs hi ¼
fcsi js ¼ 1; 2; . . .; lðhiÞg ði ¼ 1; 2Þ, the generalized hesitant

fuzzy normalized distance, hesitant fuzzy normalized

Hamming distance, hesitant fuzzy normalized Euclidean

distance, hesitant fuzzy Hamming–Hausdorff distance and

hesitant fuzzy Euclidean–Hausdorff distance are defined,

respectively, as follows:

d1ðh1; h2Þ ¼ 1

l

Xl

j¼1

jcrðjÞ1 � crðjÞ2 j; ð2Þ

d2ðh1; h2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xl

j¼1

jcrðjÞ1 � crðjÞ2 j2
vuut ; ð3Þ

d3ðh1; h2Þ ¼ max
j

jcrðjÞ1 � crðjÞ2 j; ð4Þ

d4ðh1; h2Þ ¼ max
j

jcrðjÞ1 � crðjÞ2 j2; ð5Þ

where crðjÞ1 and crðjÞ2 are the jth smallest values in h1 and h2,

respectively, and l is the maximum number between lðh1Þ
and lðh2Þ.

Although Definition 3.2 is wonderful and pioneering,

there exist some limitations. In Eqs. (2)–(5), HFEs h1 and

h2 should be extended into the same length based on DM’s

risk attitude. During the decision-making process, it is not

easy for a DM to evaluate his/her risk preference by a

precise numerical value. Thus, influenced by DM’s risk

preference, the distances of Definition 3.2 would be not

accurate or unreasonable to some degree. On the other

hand, when extending the length of shorter HFE, the

number of the values in the HFE is altered. The informa-

tion about the length of a HFE would be ignored and dis-

torted in the distance measures of Definition 3.2. What’s

more important, these distance measures only consider the

deviations between elements from the same position in two

HFEs and ignore those from intersectional position in two

HFEs.

3.2 Classical PROMETHEE

The PROMETHEE, initiated by Brans (1982), is one of the

outranking methods. It often takes place when two alter-

natives are not comparable on particular criterion. PRO-

METHEE II consists of two phases: Calculate the net flow

and obtain a complete ranking of alternatives. Denote the

set of alternatives by A ¼ fA1;A2; . . .;Amg and the set of

the criteria by C ¼ fc1; c2; . . .; cng. The evaluation of Ai on

cj is represented as cjðAiÞ which is a positive real number.

The main steps of PROMETHEE are involved as:

Step 1 Compute the deviation by comparing the pair-wise

alternatives as

djðAi;AlÞ ¼ cjðAiÞ � cjðAlÞ; ð6Þ

where djðAi;AlÞ reflects the deviation between the evalua-

tions of alternatives Ai and Al on criterion cj:

Step 2 Calculate the preference degree of Ai over Al on

criterion cj by the function as:
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PjðAi;AlÞ ¼ f ðdjðAi;AlÞÞ; ð7Þ

where f is a preference function which transforms devia-

tion djðAi;AlÞ into preference degree PjðAi;AlÞ satisfying

0�PjðAi;AlÞ� 1. Generally, if djðAi;AlÞ ¼ 0, then

PjðAi;AlÞ ¼ 0; if djðAi;AlÞ is big enough, then PjðAi;AlÞ
tends to be 1:

Step 3 Calculate the total preference degree of Ai over Al

pðAi;AlÞ ¼
Xn

j¼1
xjPjðAi;AlÞ; ð8Þ

where xj is the weight of criterion cj, satisfying the con-

ditions 0�xj � 1 and
Pn

j¼1 xj ¼ 1:

Step 4 Calculate the outgoing flow UþðAiÞ and the

incoming flow U�ðAiÞ, respectively, as

UþðAiÞ ¼ 1

m� 1

X
l2M;l 6¼i

pðAi;AlÞ ði 2 MÞ; ð9Þ

U�ðAiÞ ¼ 1

m� 1

X
l2M;l 6¼i

pðAl;AiÞ ði 2 MÞ: ð10Þ

Step 5 The net flow UðAiÞ can be calculated as follows:

UðAiÞ ¼ UþðAiÞ � U�ðAiÞ: ð11Þ

Then, a complete ranking of alternatives is derived by

the net flows of all alternatives.

4 Some new information measures of HFEs

In this section, a new hesitant fuzzy distance measure, a

relative closeness degree and a new hesitant fuzzy entropy

of HFEs are proposed. Some desirable properties are also

discussed in detail.

4.1 A new distance measure of HFEs

To conquer the aforementioned shortcomings of the dis-

tances of Definition 3.2, Beg and Rashid (2017) proposed a

hesitant fuzzy Hausdorff distance below.

Definition 4.1 For two HFEs h1 ¼ fcs1js ¼ 1; 2; . . .; lðh1Þg
and h2 ¼ fct2jt ¼ 1; 2; . . .; lðh2Þg, a hesitant fuzzy Haus-

dorff distance is defined as

dnhdðh1; h2Þ ¼ maxfd�ðh1; h2Þ; d�ðh2; h1Þg; ð12Þ

where d�ðh1; h2Þ ¼ max
cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j and

d�ðh2; h1Þ¼max
ct
2
2h2

min
cs
1
2h1

jct2 � cs1j.

Theorem 4.1 For three HFEs hi ¼ fcsi js ¼ 1; 2; . . .; lðhiÞg
ði ¼ 1; 2; 3Þ, the distance of Definition 4.1 possesses some

properties as follows:

1. 0� dnhdðh1; h2Þ� 1;

2. dnhdðh1; h2Þ ¼ 0 iff h1 ¼ h2;

3. dnhdðh1; h2Þ ¼ dnhdðh2; h1Þ.

Proof 1. Since 0� jcs1 � ct2j � 1, one has

0� d�ðh1; h2Þ� 1 and 0� d�ðh2; h1Þ� 1. Because

dnhdðh1; h2Þ ¼ maxfd�ðh1; h2Þ; d�ðh2; h1Þg, it is concluded

that 0� dnhdðh1; h2Þ� 1.

2. If dnhdðh1; h2Þ ¼ 0, we have d�ðh1; h2Þ¼
maxcs

1
2h1 min

ct
2
2h2

jcs1 � ct2j ¼ 0 and

d�ðh2; h1Þ ¼ max
ct
2
2h2

min
cs
1
2h1

jct2 � cs1j ¼ 0. Then, for any value

cs1 in h1, there exists a value ct2 in h2 such that cs1 ¼ ct2, and
vice versa. Thus, h1 ¼ h2. If h1 ¼ h2, it can be easily

calculated that dnhdðh1; h2Þ ¼ 0. Hence, it holds that

dnhdðh1; h2Þ ¼ 0 if and only if h1 ¼ h2.

3. By Eq. (12), one has

dnhdðh1; h2Þ ¼ maxfd�ðh1; h2Þ; d�ðh2; h1Þg
¼ maxfd�ðh2; h1Þ; d�ðh1; h2Þg ¼ dnhdðh2; h1Þ

It holds that dnhdðh1; h2Þ ¼ dnhdðh2; h1Þ.
This completes the proof. h

Compared with Definitions 3.2, 4.1 does not need to

extend the length, which can not only preserve the original

information and but also reduce the uncertainty in decision-

making. On the other hand, Definition 4.1 focuses on the

intersectional information in two HFEs and considers the

deviation between the values in different positions.

Definition 4.2 For a HFE h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg, a

new hesitancy index of h is defined as:

uðhÞ ¼
1

lðhÞ

XlðhÞ
s¼1

jcs � �hj; lðhÞ[ 1

0; lðhÞ ¼ 1

8
<

: ð13Þ

where �h ¼ 1
lðhÞ

PlðhÞ
s¼1 c

s represents the mean value of h.

The mean value �h of a HFE represents the collective

rating because it is the maximum compromise and signifies

the highest decision level for a decision organization.

While for individual, the mean value is a balance for his or

her own preference, which is most possibly accepted by

DM. The deviations between the several possible values in

HFE and the mean value of the HFE can well depict the

hesitancy of the HFE. Therefore, the new hesitancy index

uðhÞ has reasonability from the point of view of a decision

organization or individual.

Property 4.1 For a HFE h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg, let hc
be the complement of h. Then, the hesitancy indexes of h

and hc satisfy the following properties:

(1) 0� uðhÞ� 1
2
; (2) uðhÞ ¼ uðhcÞ.

Proof (1) It is straightforward.
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(2) If lðhÞ ¼ 1, one has uðhÞ ¼ 0 ¼ uðhcÞ. If lðhÞ[ 1,

we have

uðhÞ ¼ 1

lðhÞ

XlðhÞ

s¼1

cs � 1

lðhÞ

XlðhÞ
j¼1

c j
����

����

¼ 1

lðhÞ

XlðhÞ

s¼1

1

lðhÞðc
slðhÞ �

XlðhÞ
j¼1

c jÞ
����

����:

Moreover, for any value cs in h, it yields that

1

lðhÞðc
slðhÞ�

XlðhÞ
j¼1

c jÞ
����

����¼
1

lðhÞ½c
sðlðhÞ� 1Þ

���� �
XlðhÞ

j¼1;j 6¼s
c j�

���;

uðhcÞ ¼ 1

lðhÞ

XlðhÞ
s¼1

jð1� csÞ� 1

lðhÞ

XlðhÞ
j¼1

ð1� c jÞj

¼ 1

lðhÞ

XlðhÞ
s¼1

1

lðhÞ½ð1� csÞlðhÞ
���� �

XlðhÞ
j¼1

ð1� c jÞ�
����

Additionally, for any value cs in h, one has

1

lðhÞ½ð1� csÞlðhÞ �
XlðhÞ

j¼1
ð1� c jÞ�

����

����

¼ 1

lðhÞ½c
sð1� lðhÞÞ þ

XlðhÞ
j¼1;j6¼s

c j�
����

����:

It is obvious that 1
lðhÞ½csðlðhÞ � 1Þ �

PlðhÞ
j¼1;j 6¼s c

j�
���

���
¼ 1

lðhÞ½csð1� lðhÞÞ þ
PlðhÞ

j¼1;j6¼s c
j�

���
���, and thus, uðhÞ ¼

uðhcÞ. h

Example 4.1 In practical decision-making, assume that an

organization which is comprised of several DMs assesses

an alternative. The DMs hesitate among 0.3, 0.7 and 0.8.

Such a rating can be represented by a HFE {0.3, 0.7, 0.8}.

Then, by Eq. (13), the hesitancy index of the organization

is calculated as:

uðhÞ ¼ 1

3
ðj0:3� 0:6j þ j0:7� 0:6j þ j0:8� 0:6jÞ ¼ 0:2

Thus, the hesitancy degree of the organization is 0.2,

which is described by the deviation between the possible

value and the mean value. Totally, the larger the departure

from all the possible values to the mean value of a HFE, the

bigger the hesitancy degree of the HFE.

The hesitancy degree of the HFE is a critical index in

hesitant fuzzy decision-making. It should be considered in

the distance of HFEs; otherwise, an unreasonable result

will be caused.

Example 4.2 Assume there are two patterns h1 and h2
represented by two HFEs h1 ¼ f0:8; 0:75; 0:7g and

h2 ¼ f0:4; 0:5g, respectively. Consider which pattern an

object h3 ¼ f0:65; 0:63; 0:55g should belong to. By using

Eq. (12), one gets dnhdðh3; h1Þ ¼ 0:15 and

dnhdðh3; h2Þ ¼ 0:15. Obviously, it is difficult to judge the

pattern of h3 by using the hesitant fuzzy Hausdorff distance

of Definition 4.1, i.e., the value-based Hausdorff distance

cannot recognize the patterns of HFEs whose deviation of

value is the same.

Motivated by the idea of (Li et al. 2015), a new gen-

eralized hesitant fuzzy Hausdorff distance is defined by

taking the hesitancy degree of HFE into account below.

Definition 4.3 For two HFEs h1 ¼ fcs1js ¼ 1; 2; . . .; lðh1Þg
and h2 ¼ fct2jt ¼ 1; 2; . . .; lðh2Þg, a generalized hesitant

fuzzy Hausdorff distance considering hesitancy index is

defined as:

dghhdðh1; h2Þ

¼ 1

2
ðmaxfmax

cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j
k;max

ct
2
2h2

min
cs
1
2h1

jct2 � cs1j
kg

�

þjuðh1Þ � uðh2ÞjkÞ
i1

k

;

ð14Þ

where k is a parameter satisfying k[ 0.

If k ¼ 1, Eq. (14) reduces to a hesitant fuzzy Hamming–

Hausdorff distance:

dhhhdðh1; h2Þ ¼ 1

2

maxfmax
cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j;max
ct
2
2h2

min
cs
1
2h1

jct2 � cs1jg þ juðh1Þ � uðh2Þj
� �

:

ð15Þ

If k ¼ 2, Eq. (14) degenerates to a hesitant fuzzy

Euclidean–Hausdorff distance:

dehhdðh1; h2Þ

¼ 1

2
ðmaxfmax

cs
1
2h1

min
ct
2
2h2

ðcs1 � ct2Þ
2;max

ct
2
2h2

min
cs
1
2h1

ðct2 � cs1Þ
2g þ ðuðh1Þ � uðh2ÞÞ2Þ

� �1
2

:

ð16Þ

Theorem 4.2 The distance dghhdðh1; h2Þ satisfies the

desirable properties:

1. 0� dghhdðh1; h2Þ� 1;

2. dghhdðh1; h2Þ ¼ 0 if and only if h1 ¼ h2;

3. dghhdðh1; h2Þ ¼ dghhdðh2; h1Þ.

Proof (i) Since 0� jcs1 � ct2j � 1, one has

0� d�ðh1; h2Þ� 1 and 0� d�ðh2; h1Þ� 1. According to

Property 4.1, one has 0� juðh1Þ � uðh2Þj � 1
2
. Thus, it is

concluded that 0� dghhdðh1; h2Þ� 1.

(ii) If dghhdðh1; h2Þ ¼ 0, we have

d�ðh1; h2Þ¼max
cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j ¼ 0,

d�ðh2; h1Þ ¼ max
ct
2
2h2

min
cs
1
2h1

jct2 � cs1j ¼ 0, and juðh1Þ � uðh2Þj¼

0. h

Then, for any value cs1 in h1, there exists a value ct2 in h2
such that cs1 ¼ ct2, and vice versa. Thus, h1 ¼ h2.
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If h1 ¼ h2, it can be easily calculated that

dghhdðh1; h2Þ ¼ 0. Hence, it can be concluded that

dghhdðh1; h2Þ ¼ 0 if and only if h1 ¼ h2.

(iii) By Eq. (14), one has

dghhdðh1; h2Þ

¼ 1

2
ðmaxfmax

cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j
k;max

ct
2
2h2

min
cs
1
2h1

jct2 � cs1j
kg þ juðh1Þ � uðh2ÞjkÞ

� �1
k

¼ 1

2
ðmax
ct
2
2h2

min
cs
1
2h1

jct2 � cs1j
k;maxfmax

cs
1
2h1

min
ct
2
2h2

jcs1 � ct2j
kg þ juðh2Þ � uðh1ÞjkÞ

� �1
k

¼ dghhdðh2; h1Þ:

It holds that dnhdðh1; h2Þ ¼ dnhdðh2; h1Þ.
This completes the proof of Theorem 4.2.

Example 4.3 Consider Example 4.2. By Eq. (15), one has

dhhhdðh3; h1Þ ¼ 0:153 and dhhhdðh3; h2Þ ¼ 0:155. Since

dhhhdðh3; h1Þ\dhhhdðh3; h2Þ, the object h3 should belong to

the pattern h1.

Remark 4.1 If the hesitancy degree is not considered, then

the generalized hesitant fuzzy Hausdorff distance of Defi-

nition 4.3 reduces to dghhdðh1; h2Þ ¼ ½1
2
ðmaxfmax

cs
1
2h1

min
ct
2
2h2

j

cs1 � ct2j
k;max

ct
2
2h2

min
cs
1
2h1

jct2 � cs1j
kgÞ�1k, which generalizes the

hesitant fuzzy Hausdorff distance of Definition 4.1. Thus,

the generalized hesitant fuzzy Hausdorff distance inherits

the advantage of the hesitant fuzzy Hausdorff distance. In

addition, compared with Definition 3.2, Definition 4.3 does

not need to extend HFEs into the same length. Moreover,

Definition 4.3 simultaneously considers the individual

deviation of membership values and the hesitancy degree

of HFEs, which overcomes the limitations of Definition

3.2. Therefore, the generalized hesitant fuzzy Hausdorff

distance is more reasonable and comprehensive.

4.2 Relative closeness degree of HFEs

Let the full HFE h� ¼ f1g be a positive ideal HFE, and the

null HFE h� ¼ f0g be a negative ideal HFE. Using

Eq. (16), the hesitant fuzzy Euclidean–Hausdorff distance

between HFE h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg and positive ideal

HFE h� ¼ f1g is calculated as

dehhdðh; h�Þ ¼ 1

2
ðmax
cs2h

ðcs � 1Þ2 þ uðhÞ2Þ
� �1

2

; ð17Þ

the hesitant fuzzy Euclidean–Hausdorff distance between

HFE h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg and negative ideal HFE

h� ¼ f0g is calculated as

dehhdðh; h�Þ ¼ 1

2
ðmax
cs2h

ðcsÞ2 þ uðhÞ2Þ
� �1

2

: ð18Þ

Motivated by the idea of TOPSIS, the closer a HFE h to

positive ideal HFE h� and the farther from negative ideal

HFE h�, the better the HFE h. Thus, a relative closeness

degree of h is given below.

Definition 4.4 Let h ¼ fcsjs ¼ 1; 2; . . .; lðhÞg be a HFE. A

relative closeness degree of HFE h is defined as

rðhÞ ¼ dehhdðh; h�Þ
dehhdðh; h�Þ þ dehhdðh; h�Þ

: ð19Þ

The larger the relative closeness degree rðhÞ, the better

the HFE h. The relative closeness degree will be employed

to the hesitant fuzzy PROMETHEE in subsection 5.4.

4.3 A new entropy measure of HFEs

In this section, a new entropy measure for HFEs is put

forward from the perspective of the fuzziness and hesitancy

of HFEs.

(1) Fuzziness entropy measure of HFEs

The fuzziness entropy measure of HFEs should manifest

the deviations between HFEs and numerical values. The

distance between HFEs and numerical values can be

applied to calculate the fuzziness entropy measure. By

extending the axioms of interval-valued intuitionistic fuzzy

entropy in (Zhang et al. 2014), the axioms of fuzziness

entropy of HFEs are defined in what follows.

Definition 4.5 Let h be a HFE. A function EF is called a

fuzziness entropy of a HFE, if it meets the following

properties:

1. 0�EFðhÞ� 1;

2. EFðhÞ ¼ 0, if h is a crisp set, i.e., h ¼ f0gor h ¼ f1g;
3. EFðhÞ ¼ 1,h ¼ f1

2
g;

4. EFðhÞ ¼ EFðhcÞ;
5. If dnhdðh1; f1

2
gÞ� dnhdðh2; f1

2
gÞ, then EFðh1Þ�EFðh2Þ.

where dnhd is the hesitant fuzzy Hausdorff distance of

Definition 4.1.

The first property indicates that the fuzziness entropy is

nonnegative. The second property indicates that HFE h has

no fuzziness if h is a real number 0 or 1. The third property

shows that the maximum fuzziness appears when HFE h is
1
2
. The fourth property implies that a HFE h and its com-

plement have the same fuzziness. The last property means

that the farther from f1
2
g a HFE h, the smaller the fuzziness

entropy EF of h.

Remark 4.2 It is noticed that the fuzziness entropy of HFE

only focuses on the fuzziness of HFEs (i.e., the deviation

between HFEs and real numbers) instead of the hesitancy

of HFEs. Thus, the distance used in Definition 4.5 only

considers the value-based hesitant fuzzy Hausdorff dis-

tance of Definition 4.1 instead of the generalized Hausdorff

distance of HFEs of Definition 4.3.
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Theorem 4.3 Let EFðhÞ be a mapping: HFEðhÞ ! ½0; 1�.
Fuzziness entropy EFðhÞ related to the hesitant fuzzy

Hausdorff distance can be symbolized by the following

formula:

EFðhÞ ¼ 1� 2dnhdðh; f1
2
gÞ; ð20Þ

where dnhd is the hesitant fuzzy Hausdorff distance by

Eq. (12).

Proof It is sufficient to prove that EFðhÞ of Eq. (20) sat-

isfies the properties in Definition 4.5.

1. It is straightforward that 0�EFðhÞ ¼ 1� 2dnhd
ðh; f1

2
gÞ� 1.

2. If h is a crisp set, i.e., h ¼ f0g or h ¼ f1g , then using

Eq. (12), we conclude that EFðhÞ ¼ 1�
2dnhdðf0g; f1

2
gÞ ¼ 1� 2dnhdðf1g; f1

2
gÞ ¼ 0.

3. Given that EFðhÞ ¼ 1, then 1� 2dnhd
ðh; f1

2
gÞ ¼ 1 , dnhdðh; f1

2
gÞ ¼ 0. It is no doubt that

h ¼ f1
2
g . If h ¼ f1

2
g, then 1� 2dnhdðh; f1

2
gÞ ¼ 1, i.e.,

EFðhÞ ¼ 1. Thus, EFðhÞ ¼ 1,h ¼ f1
2
g.

4. According to Eq. (12), it has dnhdðh; f1
2
gÞ ¼

dnhdðhc; f1
2
gÞ. Thus, EFðhÞ ¼ 1� 2dnhdðh; f1

2
gÞ ¼ 1�

2dnhdðhc; f1
2
gÞ ¼ EFðhcÞ is satisfied.

5. Since dnhdðh1; f1
2
gÞ� dnhdðh2; f1

2
gÞ, it yields that

1� 2dnhdðh1; f1
2
gÞ� 1� 2dnhdðh2; f1

2
gÞ. Thus, one has

Eðh1Þ�Eðh2Þ. h

This completes the proof of Theorem 4.3.

(2) Hesitancy entropy measure of HFEs

Hesitancy is an important index to express the uncer-

tainty, which is ignored in existing entropy measures of

HFEs. In what follows, a hesitancy entropy is defined by

the deviation between several possible values in a HFE and

the mean value in the HFE, i.e., the hesitancy degree

defined in Definition 4.2.

Definition 4.6 Let h be a HFE and EH be a mapping:

HFEðhÞ ! ½0; 1�. Then, EH is called a hesitancy entropy of

HFE h if EH satisfies:

1. EHðhÞ ¼ 0 , uðhÞ ¼ 0;

2. EHðhÞ ¼ 1 , uðhÞ ¼ 1
2
;

3. EHðhÞ ¼ EHðhcÞ;
4. EHðh1Þ�EHðh2Þ, if and only if uðh1Þ� uðh2Þ.

The first property states that the hesitancy entropy

appears to be zero when the hesitancy degree is zero (i.e.,

the number of values in h is only one). The second property

implies when the hesitancy degree of h is equal to 0.5,

EHðhÞ is 1. The third property indicates that HFE h and its

complement hc have the same hesitancy entropy. The last

property shows that the larger the deviation between the

several possible values in a HFE and the mean value in the

HFE, the larger the hesitancy entropy of h.

Theorem 4.5 For a HFE h, if there exists a mapping

y:N!½0; 1� such that

EHðhÞ ¼ yð2uðhÞÞ; ð21Þ

then EHðhÞ is a hesitancy entropy, where y is a BUM

function satisfying three conditions: (1)

yðaÞ ¼ 0 , a ¼ 0;, (2) yðaÞ ¼ 1 , a ¼ 1; and 3) y is

monotone increasing. N denotes the set of nonnegative real

numbers.

Proof It is sufficient to prove that EHðhÞ of Eq. (21) meets

the properties in Definition 4.6.

1. If EFðhÞ ¼ 0, i.e., yð2uðhÞÞ ¼ 0, one gets 2uðhÞ ¼ 0. In

other words, EHðhÞ ¼ 0 ) uðhÞ ¼ 0, and vice versa.

Thus, EHðhÞ ¼ 0 , uðhÞ ¼ 0 is satisfied.

2. If EFðhÞ ¼ 1, i.e., yð2uðhÞÞ ¼ 1, then one gets

uðhÞ ¼ 1
2
. Thus, EFðhÞ ¼ 1 ) uðhÞ ¼ 1

2
. If uðhÞ ¼ 1

2
,

then EFðhÞ ¼ yð2uðhÞÞ ¼ 1. Hence, EHðhÞ ¼
1 , uðhÞ ¼ 1

2
.

3. For uðhÞ ¼ uðhcÞ, it has EHðhÞ ¼ EHðhcÞ.
4. Given uðh1Þ� uðh2Þ and y is monotone increasing, one

has yð2uðh1ÞÞ� yð2uðh2ÞÞ, i.e., EHðh1Þ�EHðh2Þ. h

This completes the proof of Theorem 4.5.

(3) Combined hesitant fuzzy entropy of HFEs

Considering the fuzziness entropy and the hesitancy

entropy of HFEs simultaneously, a combined hesitant

fuzzy entropy measure is defined as follows:

Definition 4.7 Combined the fuzziness entropy with the

hesitancy entropy, a combined hesitant fuzzy entropy of

HFE h is defined as:

EðhÞ ¼ aEFðhÞ þ ð1� aÞEHðhÞ; ð22Þ

where a reflects DM’s risk attitude satisfying 0� a� 1.

DM’s risk attitude parameter a can be determined

according to the need and characteristics of real-life deci-

sion-making problem. If a¼ 0, it means that the combined

hesitant fuzzy entropy is reduced to the hesitancy entropy

in Definition 4.6. If a¼ 1, then the combined hesitant fuzzy

entropy is degenerated to the fuzzy entropy in Definition

3.5. In addition, the combined hesitant fuzzy entropy

possesses properties: (1) 0�EðhÞ� 1; (2) EðhÞ ¼ EðhcÞ.
For a HFS A ¼ f\xi; hAðxiÞ[ jxi 2 Xg, the fuzziness

entropy, hesitancy entropy and combined hesitant fuzzy

entropy are, respectively, defined as follows:
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EFðAÞ ¼ 1

n

Xn

i¼1

EFðhAðxiÞÞ;

EHðAÞ ¼ 1

n

Xn

i¼1

EHðhAðxiÞÞ; EðAÞ ¼ 1

n

Xn

i¼1

EðhAðxiÞÞ

Remark 4.2 Farhadinia (2013) transformed distance or

similarity measures into the entropy of HFS. For a HFS

A ¼ f\xi; hAðxiÞ[ jxi 2 Xg with

hAðxiÞ ¼ fc jxi jj ¼ 1; 2; . . .; lxig, the entropy transformed

from distance is as follows (Farhadinia 2013):

EdhnhðAÞ ¼ 1� 2

n

Xn

i¼1

1

lxi

Xlxi

j¼1

jc jxi �
1

2
j

" #
: ð23Þ

Apparently, the entropy EdhnhðAÞ defined by Farhadinia

(2013) is just similar to the fuzziness entropy EFðAÞ of this
paper. In other words, the entropy defined by Farhadinia

(2013) just considers the fuzziness while neglects the

hesitancy. The combined hesitant fuzzy entropy of Defi-

nition 4.7 considers the entropy measure from the per-

spective of fuzziness and hesitancy simultaneously.

Moreover, the combined hesitant fuzzy entropy takes DMs’

risk attitude into account sufficiently.

Remark 4.3 The links of the above-defined information

measures of HFSs are as follows: The new hesitancy index

uðhÞ is used to define the generated hesitant fuzzy Haus-

dorff distance dghhdðh1; h2Þ, while the latter is utilized to

compute the relative closeness degree rðhÞ. Meanwhile,

uðhÞ is also employed to construct the hesitancy entropy

EHðhÞ, and the hesitant fuzzy Hausdorff distance

dnhdðh1; h2Þ is employed to obtain the fuzziness entropy

EFðhÞ. The combined hesitant fuzzy entropy EðhÞ is the

convex combination of EFðhÞ and EHðhÞ.

Example 4.4 For a HFS A ¼ f\x1; f0:3; 0:7;
0:8g[ ;\x2; f0:1; 0:2; 0:3g[ g, the entropy measure of

HFSs (Farhadinia 2013) is calculated by Eq. (23) as

EdhnhðAÞ = 0.4667.

In the sequel, different BUM functions y are selected,

and the corresponding fuzziness entropy EFðAÞ, hesitant
entropy EHðAÞ and combined hesitant fuzzy entropy EðAÞ
are computed and presented in Tables 3, 4 and 5.

From Tables 3, 4 and 5, it is easily seen that the hesitant

entropy can be changedwith the parameter t ofBUMfunctions,

and the combined hesitant fuzzy entropy can be changed with

the parameter t and the risk attitude a. DMcan choose different

BUM functions to compute the combined hesitant fuzzy

entropy of HFS according to his (her) risk attitude. This shows

that the combined hesitant fuzzy entropy proposed in this paper

can provide more flexibility for DM in actual applications.

5 A hesitant fuzzy PROMETHEE method
for MCGDM

In this section, a hesitant fuzzy PROMETHEE is developed

for MCGDM.

5.1 Problem description for MCGDM with HFSs

Let E ¼ fe1; e2; . . .; etg be a set of DMs, A ¼
fA1;A2; . . .;Amg be a set of alternatives, and C ¼
fc1; c2; . . .; cng be a set of all criteria. Denote the rating of

alternative Ai on criterion cj given by DM ek by a HFE hkij.

Hence, a hesitant fuzzy decision matrix Hk ¼ ðhkijÞm�n is

elicited. Therefore, MCGDM problems can be concisely

described by matrices Hk ¼ ðhkijÞm�n ðk ¼ 1; 2; . . .; tÞ.
Since the criteria consist of benefit criteria and cost

criteria, the individual matrix Hk ¼ ðhkijÞm�n is transformed

into the normalized matrix Fk ¼ ðf kij Þm�nðk ¼ 1; 2; . . .; tÞ
where

f kij ¼
hkij; if cj is a benefit criterion

ðhkijÞ
c; if cj is a cost criterion

(
ð24Þ

Let be w ¼ ðw1;w2; . . .;wtÞT be DMs’ weight vector,

where 0�wk � 1 ðk ¼ 1; 2; . . .; tÞ and
Pt

k¼1 wk ¼ 1.

Owing to the increasing complexity and uncertainty of the

real-life decision-making problems, it is always hard to

measure the importance of DMs accurately. In general, the

information of DMs’ weights is usually incompletely

known. It has five basic forms:

Form 1 A weak ranking: fwi �wjg;
Form 2 A strict ranking: fwi � wj � aig ðai [ 0Þ;
Form 3 A ranking of differences: fwi � wj �wk � wlg,

for j 6¼ k 6¼ l;

Form 4 A ranking with multiples: fwi � aiwjg
f0� ai � 1g;

Form 5 An interval form: fai �wi � ai þ eig
ð0� ai � ai þ ei � 1Þ.

Let X be a set of the incomplete information of DMs’

weights which may consist of several basic forms.

DMs differ in their experience and knowledge. They are

often good at some subjects, but not at the others. In their

views, different criteria have diverse importance degrees.

Thus, it is reasonable to assign different criteria weights for

different DMs. Denote the criteria weight vector for DM ek

by xk ¼ ðxk
1;x

k
2; . . .;x

k
nÞ

T
, where xk satisfies 0�xk

j � 1

ðj ¼ 1; 2; . . .; nÞ and
Pn

j¼1 x
k
j ¼ 1.
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5.2 Determination of DMs’ weights

Inspired by method (He et al. 2016), the DM whose rating is

close to the mean rating of decision group would be assigned

larger weight, while the DM whose rating is far from the

mean rating would be given lower weight. Group inconsis-

tency measures the deviation between the individual rating

and the mean rating on each criterion. It can be used to

determine DMs’ weights. The mean rating also represents

the collective rating because it is the maximum compromise

for all DMs. Moreover, it represents the highest decision

level of the group which is most possibly received by DMs

(He et al. 2016). With this understanding in mind, a new

method is put forward to derive DMs’ weights below.

According to the normalized matrices Fk ¼ ðf kij Þm�n

ðk ¼ 1; 2; . . .; tÞ, a matrix F0 j with respect to criterion cj is

defined as:

ð25Þ

where f kij signifies the degree to which DM ek is satisfied

with alternative Ai on criterion cj.

The mean rating �fij of alternative Ai on criterion cj is

defined as follows:

�fij ¼
1

t

Xt

k¼1
f kij ð26Þ

The group inconsistency #ij represents the deviation

between the individual rating and the mean rating of

alternative Ai on criterion cj. It is defined as

#ij ¼
Xt

k¼1

wkdehhdðf kij ; �fijÞ ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ

ð27Þ

where dehhd is the hesitant fuzzy Euclidean–Hausdorff

distance calculated by Eq. (16).

Hence, the group inconsistency # j on criterion cj is

defined as

# j ¼
Xm

i¼1

Xt

k¼1

wkdehhdðf kij ; �fijÞ ðj ¼ 1; 2; . . .; nÞ; ð28Þ

which denotes the deviation between the individual rating

and the mean rating on criteria cj.

Therefore, the total group inconsistency # can be

defined by

# ¼
Xm

i¼1

Xn

j¼1

Xt

k¼1
wkdehhdðhkj; hijÞ; ð29Þ

which represents the total deviation between the individual

rating and the mean rating.

Generally, the lower the group inconsistency #, the

more reliable the decision result. Thus, to determine the

DMs’ weights, a linear programming model of minimizing

the group inconsistency # is established:

Table 3 Computation results

for BUM function yðsÞ ¼ st

with different values of

parameter t

t EFðAÞ EHðAÞ EðAÞ with a¼ 0 EðAÞ with a¼ 0:5 EðAÞ with a¼ 1

0 0.3 1 1 0.65 0.3

0.5 0.3 0.4988 0.4988 0.3994 0.3

1 0.3 0.2667 0.2667 0.2833 0.3

2 0.3 0.0889 0.0889 0.1944 0.3

? 1 0.3 0 0 0.15 0.3

Table 4 Computation results

for BUM function QðsÞ ¼
ð1�e�s

1�e�1Þt with different values of

parameter t[ 0

t EFðAÞ EHðAÞ EðAÞ with a¼ 0 EðAÞ with a¼ 0:5 EðAÞ with a¼ 1

0 0.3 1 1 0.65 0.3

0.5 0.3 0.5833 0.5833 0.4416 0.3

1 0.3 0.3595 0.3595 0.3298 0.3

2 0.3 0.1555 0.1555 0.2278 0.3

? 1 0.3 0 0 0.15 0.3

Table 5 Computation results

for BUM function QðsÞ ¼
ðsinð1

2
psÞÞt with different values

of parameter t

t EFðAÞ EHðAÞ EðAÞ with a¼ 0 EðAÞ with a¼ 0:5 EðAÞ with a¼ 1

0 0.3 1 1 0.65 0.3

1 0.3 0.3978 0.3978 0.3489 0.3

2 0.3 0.1944 0.1944 0.2472 0.3

? 1 0.3 0 0 0.15 0.3
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min h ¼
Xm

i¼1

Xn

j¼1

Xt

k¼1

wkdehhdðf kij ; �fijÞ

s:t:

Pt

k¼1

wk ¼ 1;wk � 0 ðk ¼ 1; 2; . . .; tÞ

w 2 X

8
<

:

ð30Þ

Solving Eq. (30) by the simplex method, the DMs’

weight vector w ¼ w1;w2; . . .;wtð ÞT can be obtained.

5.3 Determination of criteria weights for each
DM

In most of the literature (Xu and Zhang 2013; Wei et al.

2011), the criteria weights through different DMs are

viewed as the same. However, DMs differ in their own

capabilities of knowledge and experience and may be

professional in some criteria, but not in other criteria. This

paper determines the criteria weights for each DM from the

perspective of the relative entropy.

Definition 5.1 Dong and Wan 2016 Let X ¼
ðx1; x2; . . .; xnÞT and Y ¼ ðy1; y2; . . .; ynÞT be two vectors

which satisfy xi � 0; yi � 0, and
Pn

i¼1 xi �
Pn

i¼1 yi. Then,

the relative entropy from X to Y is defined as

RðX;YÞ ¼
Xn

i¼1
xi lnðxi=yiÞ: ð31Þ

It holds that:

(1) RðX;YÞ� 0; (2) RðX;YÞ ¼
Pn

i¼1 xi lnðxi=yiÞ ¼ 0, if

and only if xi ¼ yi for all i.

It can be easily seen that RðX;YÞ is an appropriate

consistent measure that depicts the consistency between the

vectors X and Y. The larger the relative entropy RðX;YÞ,
the smaller the consistency between X and Y. Especially,

the vectors X and Y are completely consistent if X ¼ Y,

i.e., RðX;YÞ ¼ 0 iff X ¼ Y.

According to Eq. (22), the individual normalized matrix

Fk ¼ ðf kij Þm�n for DM ek can be converted to a combined

hesitant fuzzy entropy matrix:

Ek ¼ ðEk
ijÞm�n ¼

Ek
11 Ek

12 . . . Ek
1n

Ek
21 Ek

22 . . . Ek
2n

. . . . . . . . . . . .
Ek
m1 Ek

m2 . . . Ek
mn

0
BB@

1
CCA ð32Þ

where Ek
ij indicates the combined hesitant fuzzy entropy of

alternative Ai on criterion xj for DM ek. Normalize the

vector Ek
i ¼ ðEk

i1;E
k
i2; . . .;E

k
inÞ

T
into Ek0

i ¼
ðEk0

i1;E
k0
i2; . . .;E

k0
inÞ

T
by

Ek0
ij ¼ Ek

ij=
Pm

i¼1 E
k
ij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ. The

criteria weight vector xk can be objectively obtained by the

amount of information provided by DM ek which is

implied in the combined hesitant fuzzy entropy matrix Ek.

Thus, it is reasonable that the criteria weight vector xk ¼
ðxk

1;x
k
2; . . .;x

k
nÞ

T
should be consistent with the combined

hesitant fuzzy entropy vectors Ek0
i ¼ ðEk0

i1;E
k0
i2; . . .;E

k0
inÞ

T

ði ¼ 1; 2; . . .;mÞ. Therefore, the more consistent between

xk and Ek0
i ði ¼ 1; 2; . . .;mÞ, the smaller the relative

entropy Rðxk;Ek0
i Þ ði ¼ 1; 2; . . .;mÞ.

According to Eq. (31), the relative entropy from xk to

Ek0
i is derived as

Rðxk;Ek0
i Þ ¼

Xn

j¼1
xk

j lnðxk
j =E

k0
ij Þ ði ¼ 1; 2; . . .;m;

k ¼ 1; 2; . . .; tÞ

If Rðxk;Ek0
i Þ ¼ 0, then xk is completely consistent with

Ek0
i . Thus, it is reasonable to derive the criteria weights

through making the relative entropy between xk and Ek0
i as

small as possible. With this idea in mind, a nonlinear

optimization model is established for DM ek as:

min f
Xm

i¼1

Xn

j¼1
xk

j lnðxk
j

.
Ek0
ij Þg

s:t:

Xn

j¼1
xk

j ¼ 1

xk
j [ 0 ðj ¼ 1; 2; . . .; nÞ

8
<

:
ð33Þ

To solve Eq. (33), a Lagrange function is established as

Lðxk; kÞ ¼
Xm

i¼1

Xn

j¼1
xk

j lnðxk
j =e

k0
ij Þ þ kð

Xn

j¼1
xk

j � 1Þ;

ð34Þ

where k is the Lagrange multiplier. The global optimal

solution can be derived by taking partial derivatives of xk
j

and k such that

oLðxk; kÞ
.
oxk

j ¼
Xm

i¼1
½lnðxk

j =e
k0
ij Þ þ 1� þ k ¼ 0; ð35Þ

oLðxk; kÞ
�
ok ¼

Xn

j¼1
xk

j � 1 ¼ 0: ð36Þ

Solving the above equalities, the solution can be

obtained:

xk
j ¼ expf1

m

Xm

i¼1
lnEk0

ij � ð1þ kÞg; ð37Þ

k ¼ lnf
Xn

i¼1
expð1

m

Xm

i¼1
lnEk0

ij � 1Þg: ð38Þ

Then, one has

xk
j ¼

expð1
m

Pm
i¼1 lnE

k0
ij � 1Þ

Pn
j¼1 expð1m

Pm
i¼1 lnE

k0
ij � 1Þ ðj ¼ 1; 2; . . .; nÞ ð39Þ

Thus, the criteria weight vectors xk ¼ ðxk
1;x

k
2; . . .;x

k
nÞ

T

ðk ¼ 1; 2; . . .; tÞ are obtained for all DMs.
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5.4 A hesitant fuzzy PROMETHEE for MCGDM

This section describes the steps of the proposed hesitant

fuzzy PROMETHEE for MCGDM.

Step 1 Form the individual hesitant fuzzy decision

matrix Hk ¼ ðhkijÞm�n and transform it into the normalized

matrix Fk ¼ ðf kij Þm�n ðk ¼ 1; 2; . . .; tÞ by Eq. (24).

Step 2 Derive DMs’ weights w ¼ ðw1;w2; . . .;wtÞT
using Eq. (30).

Step 3 Utilize Eq. (39) to derive the criteria weights

xk ¼ fxk
1;x

k
2; . . .;x

k
ng

T
for DM ek ðk ¼ 1; 2; . . .; tÞ.

Step 4 A weighted normalized individual matrix Gk ¼
ðgkijÞm�n is derived from the normalized matrix

Fk ¼ ðf kij Þm�n, where gkij ¼ wkf
k
ij ¼ [c2f k

ij
fwkcg.

Step 5 A deviation dkj ðAi;AlÞ between the evaluations of

alternative Ai and Al on criterion cj for DM ek is calculated

as

dkj ðAi;AlÞ ¼ rkj ðAiÞ � rkj ðAlÞ; ð40Þ

where rkj ðAiÞ indicates the relative closeness degree cal-

culated by Eq. (19).

Step 6 A preference function is defined as:

Pk
j ðAi;AlÞ ¼

dkj ðAi;AlÞ; if rkj ðAiÞ[ rkj ðAlÞ
0; if rkj ðAiÞ\rkj ðAlÞ

(
ð41Þ

If rkj ðAiÞ[ rkj ðAlÞ, alternative Ai is superior to alterna-

tive Al on criterion cj and the value of preference degree

Pk
j ðAi;AlÞ is equal to dkj ðAi;AlÞ. Otherwise, the preference

degree is zero.

Step 7 Calculate the total preference degree of Ai over Al

for DM ek:

pkðAi;AlÞ ¼
Xn

j¼1
xk

j PjðAi;AlÞ: ð42Þ

Step 8 Calculate the outgoing flow Uþ
k ðAiÞ and the

incoming flow U�
k ðAiÞ for DM ek, respectively:

Uþ
k ðAiÞ ¼ 1

m� 1

X
l2M;l 6¼i

pkðAi;AlÞ ði 2 MÞ; ð43Þ

U�
k ðAiÞ ¼ 1

m� 1

X
l2M;l 6¼i

pkðAl;AiÞ ði 2 MÞ: ð44Þ

Step 9 The net flow UkðAiÞ is calculated as follows:

UkðAiÞ ¼ Uþ
k ðAiÞ � U�

k ðAiÞ: ð45Þ

By descending the net flow UkðAiÞ, the individual

ranking of alternatives for DM ek is obtained.

Step 10 Using matrix Xk ¼ ðxkijÞm�m to describe the

ranking permutation for DM ek, where

xkij ¼
1; if DM ek ranks alternative Ai in the jth position

0; otherwise

�
:

ð46Þ

For instance, xk41 ¼ 1 means that DM ek ranks alterna-

tive A4 the first.

Step 11 Denote the collective ranking matrix by

X ¼ ðxijÞm�m, which needs to be derived, where

xij ¼
1; if the decision group ranks alternative Ai in the jth position

0; otherwise

�

ð47Þ

By minimizing the deviation between the individual

order and the collective one, a multi-objective assignment

model is set up:

minZk ¼
Xm

i¼1

Xm

j¼1
jxkij � xijj ðk ¼ 1; 2; . . .; tÞ

s:t:

Xm

i¼1
xij ¼ 1 ðj ¼ 1; 2; . . .;mÞ

Xm

j¼1
xij ¼ 1 ði ¼ 1; 2; . . .;mÞ

xij ¼ 0 or 1 ði; j ¼ 1; 2; . . .;mÞ

8
>>><

>>>:

ð48Þ

where the constraints
Pm

i¼1 xij ¼ 1 ðj ¼ 1; 2; . . .;mÞ assure
that each alternative is sorted in only one position and the

constraints
Pm

j¼1 xij ¼ 1 ði ¼ 1; 2; . . .;mÞ guarantee that

each position is placed by one alternative.

Equation (48) is converted into a single-objective

assignment mode:

minZ ¼
Xt

k¼1
ðwk

Xm

i¼1

Xm

j¼1
jxkij � xijjÞ

s:t:

Xm

i¼1
xij ¼ 1 ðj ¼ 1; 2; . . .;mÞ

Xm

j¼1
xij ¼ 1 ði ¼ 1; 2; . . .;mÞ

xij ¼ 0 or 1 ði; j ¼ 1; 2; . . .;mÞ

8
>>><

>>>:

ð49Þ

After solving Eq. (49) by Hungarian method, we can

derive the collective ranking matrix which is used to rank

the alternatives and choose the best one.

Remark 5.1 In the classical PROMETHEE (Brans and

Vincle 1985), the evaluation values are real numbers, the

criteria weights are known a priori, and the criteria weights

are the same for different DMs. The deviation between

pair-wise alternatives on criterion is the subtraction of the

evaluation values (see Eq. (6)). Thus, the classical PRO-

METHEE is only suitable for the single decision-making

problems with crisp evaluation values. However, the

evaluation values are HFEs in this paper. The criteria

weights for each DM and DMs’ weights are determined

objectively. Then, the PROMETHEE is generalized to

hesitant fuzzy environment. Furthermore, the deviation

between pair-wise alternatives on criterion is calculated by

the subtraction of the relative closeness degree of HFEs
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(see Eq. (40)). The individual ranking of alternatives for

each DM is derived by the net flow in Eq. (45) and the

corresponding individual ranking matrix is generated.

Then, a multi-objective assignment model is set up to

obtain the group ranking of alternatives. Therefore, the

classical PROMETHEE is extended to solve the HF-

MCGDM problems. If the evaluation values degenerate to

numerical numbers, the proposed method is reduced to the

classical PROMETHEE.

The proposed hesitant fuzzy PROMETHEE for

MCGDM is depicted in Fig. 1.

6 Green supplier selection example
and comparative analyses

In this section, an example of green supplier selection is

implemented using the proposed method. The comparative

analyses are also conducted.

6.1 Green supplier selection example

Shuanghui Group Co., Ltd is a large-scale food company

mainly engaged in meat processing. It has built many

processing bases throughout the nationwide 18 provinces

of China. The subsidiaries of the company include meat

processing, bioengineering, chemical packaging, Shuan-

ghui logistics, etc. Shuanghui Group Co., Ltd possesses

Chinese largest meat processing, the total assets of which

Specify DMs, candidate alternatives, and criteria

Form individual matrix ( )k k

ij m n
h

×
=H ( 1, 2,..., )k t= and 

derive normalized matrix ( )k k

ij m n
f

×
=F by Eq. (24)

Derive the criteria weights T

1 2
{ , , ..., }k k k k

n
ω ω ω=ω for

DM 
k
e by Eq. (39)

Derive weighted normalized individual matrix ( )k k

ij m n
g

×
=G

Use the PROMETHEE to obtain individual ranking

Derive the individual ranking of alternatives by Eq. (46)

Build a multi-objective assignment model by Eq. (48)

Calculate the deviation of the relative 
closeness degree ( , )k

j i l
d A A by Eq. (40)

Calculate total preference degree 
( , )k

i lA Aπ of alternative 
i

A over
l

A for

DM 
k
e by Eq. (42)

Calculate outgoing flow ( )
k i
A+Φ of

alternative 
i

A for DM 
k
e by Eq. (43)

Calculate incoming flow ( )
k i
A−Φ of 

alternative 
i

A for DM 
k
e by Eq. (44)

Calculate net flow ( )k

i
AΦ of alternative 

i
A for DM 

k
e by Eq. (45)

Derive DMs’ weights T

1 2
( , , ..., )

t
w w w=w by Eq. (30)

Transform into single-objective assignment model Eq. (49)

Derive the collective ranking of alternatives solving Eq. (49)

Fig. 1 Hesitant fuzzy PROMETHEE for MCGDM
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are approximately 200 billion Yuan and 65,000 employees.

In 2010, Shuanghui Group Co., Ltd ranked 160 in Chinese

top 500 enterprises and its brand value reached 19.652

billion Yuan.

With the continuous development of environment pro-

tection and commercial competitions, Shuanghui Group

Co., Ltd has to improve the quality of GSCM and reduce the

cost of the product. To achieve such requirements, the

managers of company plan to change its green equipment

suppliers for new product processing. After preliminary

screening, five potential green suppliers fA1;A2;A3;A4;A5g
remain to be further evaluated. These green suppliers are

Zhucheng Zhongyun Industry and Trade Co., Ltd. (A1,

ZZIT for short), Sichuan Provincial Agricultural and Side-

line Products Processing Technology Development Com-

pany in Chengdu (A2, SPAS for short), Hangzhou

Hangsheng Machinery Equipment Co., Ltd. (A3, HHME for

short), Shandong Kaile Feng Food Machinery Co., Ltd. (A4,

SKFFM for short) and Zhaoqing Yonghui Machinery Co.,

Ltd. (A5, ZYMC for short). The ZZIT (A1) is an old-fash-

ioned food machinery manufacturer with a history of more

than 20 years. It is a high-tech enterprise integrating R&D

(Research & Development), design, production, sales and

after-sales services. Especially, its smoke furnace is famous

for its good quality to control the smoke volume and tem-

perature in the furnace, which sufficiently considers the

environment protection. The SPAS (A2) is a nationalized

business engaged in the agricultural research and sideline

product processing technology. Over the years, the com-

pany has been devoted to the research of deep meat pro-

cessing equipment considering the ecological restoration

and energy saving. It is currently the most complete enter-

prise that provides agricultural and sideline products pro-

cessing projects in China. The HHME (A3) is a

comprehensive large-scale mechanical equipment group

company. The main business of this company is to operate a

variety of meat equipment, integrating environmental

monitoring, data services and comprehensive management.

The SKFFM (A4) possesses strong technical force, excellent

machine processing equipment, advanced production pro-

cess, complete inspection facilities and after-sales service

teams. Also, its organizational structure for environmental

management is outstanding. The ZYMC (A5) is a technol-

ogy-based enterprise integrating R&D, manufacturing and

sales. The company focuses on all kinds of meat processing

and has a good capability to clean production waste. Due to

the excellent performances, good reputations and spe-

cialties in environmental protection of these five companies,

we choose these companies as potential alternatives.

Five criteria have been identified through literature

review (see Table 1), which are c1: price, c2: service per-

formance, c3: quality, c4: environmental management

system and c5: environmental competences. Note that these

five criteria are all benefit criteria. A committee for sup-

plier selection consists of three DMs E ¼ fe1; e2; e3g
coming from the purchase department, production depart-

ment and food safety department, respectively. The ratings

on each supplier are represented by HFEs, which are listed

in Table 6. The incomplete information of DMs’ weights X

is furnished as: X = f w ¼ ðw1;w2; . . .;wtÞTjw1 �
w3; 0:2� w2 � 0:4; w3 � 0:3g.

Step 1 Form the individual hesitant fuzzy decision

matrix given by each DM as shown in Table 6. Since all

criteria are benefit criteria, the normalized matrix Fk ¼
ðf kij Þm�n is still the individual hesitant fuzzy decision matrix

in Table 6.

Step 2 Applying Eqs. (29) and (30), the following model

is obtained:

Table 6 Decision matrices for

DMs e1, e2, and e3
DM supplier c1 c2 c3 c4 c5

e1 A1 {0.1,0.3} {0.3,0.5,0.7} {0.1,0.5,0.6} {0.3,0.4} {0.5,0.7}

A2 {0.3,0.4,0.5} {0.1,0.2,0.4} {0.5,0.7,0.8} {0.3,0.5} {0.5,0.7}

A3 {0.5,0.6} {0.2,0.3} {0.4,0.7} {0.5,0.6,0.7} {0.4,0.5,0.7}

A4 {0.3,0.4} {0.5,0.6,0.7} {0.2,0.5} {0.4,0.6,0.7} {0.7,0.8}

A5 {0.2,0.5,0.6} {0.5,0.8,0.9} {0.6,0.7,0.8} {0.8,0.9} {0.5,0.6,0.8}

e2 A1 {0.1,0.2} {0.2,0.3,0.6} {0.1,0.4,0.5} {0.1,0.3,0.4} {0.4,0.5}

A2 {0.5,0.6} {0.7,0.8} {0.6,0.7,0.8} {0.75,0.8,0.9} {0.75,0.8,0.9}

A3 {0.2,0.6,0.7} {0.5,0.6,0.8} {0.5,0.7,0.8} {0.4,0.5,0.7} {0.5,0.7,0.8}

A4 {0.4,0.6,0.8} {0.2,0.6,0.7} {0.2,0.5,0.8} {0.6,0.7,0.9} {0.1,0.2}

A5 {0.1,0.5,0.6} {0.1,0.4,0.5} {0.3,0.4,0.5} {0.1,0.2,0.5} {0.3,0.4}

e3 A1 {0.35, 0.6,0.75} {0.5,0.6} {0.5,0.6} {0.7,0.85} {0.4,0.5,0.6}

A2 {0.4,0.5} {0.1,0.3,0.4} {0.3,0.4} {0.1, 0.3,0.5} {0.2,0.5,0.7}

A3 {0.5,0.6} {0.2,0.4,0.6} {0.5,0.6} {0.2,0.4} {0.4,0.5}

A4 {0.1,0.4,0.5} {0.3,0.4,0.5} {0.3,0.4,0.5} {0.4,0.5,0.6} {0.1,0.2}

A5 {0.5,0.9} {0.5,0.6,0.8} {0.5,0.6,0.8} {0.6,0.7} {0.4,0.5}
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min # ¼ 6:27w1 þ 6:67w2 þ 6:12w3

s:t:
w1 þ w2 þ w3 ¼ 1; wk � 0 ðk ¼ 1; 2; 3Þ

w1 �w3; 0:2�w2 � 0:4; w3 � 0:3

(

The DMs’ weight vector is derived as w ¼
ð0:5; 0:2; 0:3ÞT by solving the above model.

Step 3 For simplicity, set yðaÞ ¼ a and a ¼ 0:8. By

Eq. (23), three combined hesitant fuzzy entropy matrices

for all DMs are obtained in Table 7.

Then, the normalized entropy matrices for all DMs are

derived in Table 8.

By Eq. (39), the criteria weight vectors for different

DMs are calculated as follows:

x1 ¼ ð0:196; 0:195; 0:204; 0:196; 0:207ÞT;
x2 ¼ ð0:195; 0:211; 0:208; 0:197; 0:189ÞT

x3 ¼ ð0:194; 0:201; 0:212; 0:199; 0:194ÞT:

Step 4 The weighted normalized matrices for all DMs

are obtained in Table 9.

Step 5 The relative closeness matrices are obtained by

Eq. (19) as shown in Table 10.

The deviations between the evaluations for each DM are

calculated and shown in Tables 11, 12 and 13.

Step 6 As per Eq. (41), the preference degrees Pk
j ðAi;AlÞ

for each DM are obtained as shown in Tables 14, 15 and

16.

Step 7 By Eq. (42), the total preference degrees

pkðAi;AlÞ for different DMs are calculated and listed in

Table 17.

Step 8 The outgoing flows of alternatives for different

DMs are computed by Eq. (43) and listed in Table 18.

By Eq. (44), obtain the incoming flows of alternatives

for different DMs shown in Table 19.

Step 9 Derive the net flows of alternatives for different

DMs by Eq. (45) shown in Table 20.

Thus, the individual ranking orders of five suppliers

are:A5 	 A4 	 A3 	 A2 	 A1 for DM

e1,A2 	 A3 	 A4 	 A5 	 A1 for DM e2, A1 	 A5 	 A3 	
A4 	 A2 for DM e3.

Step 10 Then, the individual ranking matrices for dif-

ferent DMs are obtained as follows:

X1 ¼

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

2
6666664

3
7777775
; X2

¼

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

2
6666664

3
7777775
; X3

¼

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

2

6666664

3

7777775
:

Table 7 Combined hesitant fuzzy entropy matrices for DMs e1, e2 and e3

DM supplier c1 c2 c3 c4 c5

e1 A1 0.2 0.53 0.24 0.50 0.52

A2 0.51 0.20 0.36 0.52 0.52

A3 0.66 0.34 0.54 0.51 0.52

A4 0.50 0.51 0.38 0.52 0.34

A5 0.38 0.22 0.35 0.18 0.36

e2 A1 0.18 0.38 0.22 0.20 0.66

A2 0.66 0.34 0.35 0.18 0.18

A3 0.40 0.36 0.36 0.52 0.36

A4 0.37 0.40 0.40 0.20 0.18

A5 0.24 0.22 0.51 0.22 0.50

e3 A1

A2

A3

A4

0.46 0.66 0.66 0.27 0.67

0.66 0.20 0.50 0.21 0.39

0.66 0.37 0.66 0.36 0.66

0.22 0.51 0.51 0.67 0.18

A5 0.24 0.36 0.37 0.50 0.66
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Step 11 By Eq. (49), the assignment model is con-

structed as follows:

min ¼ 0:5ðx11 þ x12 þ x13 þ x14 þ 1� x15 þ x21

þ x22 þ x23 þ 1� x24 þ x25 þ x31 þ x32

1� x33 þ x34 þ x35 þ x41 þ 1� x42 þ x43

þ x44 þ x45 þ 1� x51 þ x52 þ x53 þ x54 þ x55Þ
þ 0:2ðx11 þ x12 þ x13 þ x14 þ 1� x15 þ 1� x21

þ x22 þ x23 þ x24 þ x25 þ x31 þ 1� x32

þ x33 þ x34 þ x35 þ x41 þ x42 þ 1� x43 þ x44

þ x45 þ x51 þ x52 þ x53 þ 1� x54 þ x55Þ
þ 0:3ð1� x11 þ x12 þ x13 þ x14 þ x15 þ x21

þ x22 þ x23 þ x24 þ 1� x25 þ x31 þ x32

þ 1� x33 þ x34 þ x35 þ x41 þ x42 þ x43

þ 1� x44 þ x45 þ x51 þ 1� x52 þ x53 þ x54 þ x55Þ

ð50Þ

Table 8 Normalized entropy matrices for DMs e1, e2 and e3

DM supplier c1 c2 c3 c4 c5

e1 A1 0.09 0.30 0.13 0.22 0.23

A2 0.23 0.11 0.19 0.23 0.23

A3 0.29 0.19 0.29 0.23 0.23

A4 0.22 0.28 0.20 0.24 0.15

A5 0.17 0.12 0.19 0.08 0.16

e2 A1 0.10 0.22 0.12 0.15 0.35

A2 0.36 0.20 0.19 0.14 0.10

A3 0.22 0.21 0.20 0.39 0.19

A4 0.20 0.23 0.22 0.15 0.10

A5 0.13 0.13 0.28 0.17 0.27

e3 A1 0.20 0.31 0.24 0.13 0.26

A2 0.29 0.10 0.19 0.11 0.15

A3 0.29 0.18 0.24 0.18 0.26

A4 0.10 0.24 0.19 0.33 0.07

A5 0.11 0.17 0.14 0.25 0.26

Table 9 Weighted normalized matrices for DMs e1, e2 and e3

DM supplier c1 c2 c3 c4 c5

e1 A1 {0.05,0.15} {0.15,0.25,0.35} {0.05,0.25,0.3} {0.15,0.2} {0.25,0.35}

A2 {0.15,0.2,0.25} {0.05,0.1,0.2} {0.25,0.35,0.4} {0.15,0.25} {0.25,0.35}

A3 {0.25,0.3} {0.1,0.15} {0.2,0.35} {0.25,0.3,0.35} {0.2,0.25,0.35}

A4 {0.15,0.2} {0.25,0.3,0.35} {0.1,0.25} {0.2,0.3,0.35} {0.35,0.4}

A5 {0.1,0.25,0.3} {0.25,0.4,0.45} {0.3,0.35,0.4} {0.4,0.45} {0.25,0.3,0.4}

e2 A1 {0.02,0.04} {0.04,0.06,0.12} {0.02,0.08,0.1} {0.02,0.06,0.08} {0.08,0.1}

A2 {0.1,0.12} {0.14,0.16} {0.12,0.14,0.16} {0.15,0.16,0.18} {0.15,0.16,0.18}

A3 {0.04,0.12,0.14} {0.1,0.12,0.16} {0.1,0.14,0.16} {0.08,0.1,0.14} {0.1,0.14,0.16}

A4 {0.08,0.12,0.16} {0.04,0.12,0.14} {0.04,0.1,0.16} {0.12,0.14,0.18} {0.02,0.04}

A5 {0.02,0.1,0.12} {0.02,0.08,0.1} {0.06,0.08,0.1} {0.02,0.04,0.1} {0.06,0.08}

e3 A1 {0.11,0.18,0.23} {0.15,0.18} {0.15,0.18} {0.21,0.255} {0.12,0.15,0.18}

A2 {0.12,0.15} {0.03,0.09,0.12} {0.09,0.12} {0.03,0.09,0.15} {0.06,0.15,0.21}

A3 {0.15,0.18} {0.06,0.12,0.18} {0.15,0.18} {0.06,0.12} {0.12,0.15}

A4 {0.03,0.12,0.15} {0.09,0.12,0.15} {0.09,0.12,0.15} {0.12,0.15,0.18} {0.03,0.06}

A5 {0.15,0.27} {0.15,0.18,0.24} {0.12,0.18,0.24} {0.18,0.21} {0.12,0.15}
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Table 10 Relative closeness degree matrices for DMs e1, e2 and e3

DM supplier c1 c2 c3 c4 c5

e1 A1 0.266 0.500 0.407 0.365 0.581

A2 0.420 0.314 0.612 0.419 0.581

A3 0.548 0.275 0.537 0.582 0.537

A4 0.419 0.582 0.391 0.537 0.725

A5 0.424 0.636 0.664 0.814 0.612

e2 A1 0.186 0.432 0.364 0.314 0.455

A2 0.545 0.725 0.664 0.779 0.779

A3 0.469 0.612 0.612 0.537 0.612

A4 0.569 0.469 0.500 0.686 0.186

A5 0.407 0.364 0.418 0.364 0.365

e3 A1 0.534 0.545 0.545 0.734 0.500

A2 0.455 0.314 0.365 0.363 0.468

A3 0.545 0.431 0.545 0.338 0.455

A4 0.364 0.418 0.418 0.500 0.186

A5 0.631 0.612 0.569 0.635 0.455

Table 11 Deviations between the evaluations for DM e1

DM e1 c1 c2 c3 c4 c5 DM e1 c1 c2 c3 c4 c5

dðA1;A2Þ - 0.154 0.186 - 0.205 - 0.054 0.000 dðA3;A4Þ 0.128 -0.307 0.146 0.045 - 0.188

dðA1;A3Þ - 0.282 0.225 - 0.130 - 0.217 0.044 dðA3;A5Þ 0.124 - 0.361 -0.128 - 0.232 - 0.075

dðA1;A4Þ - 0.153 -0 .082 0.016 - 0.173 -0.144 dðA4;A1Þ 0.153 0.082 - 0.016 0.173 0.144

dðA1;A5Þ - 0.158 -0 .136 - 0.258 - 0.449 - 0.031 dðA4;A2Þ -0.001 0.268 - 0.221 0.118 0.144

dðA2;A1Þ 0.154 -0.186 0.205 0.054 0.000 dðA4;A3Þ - 0.128 0.307 - 0.146 -0.045 0.188

dðA2;A3Þ - 0.127 0.039 0.075 - 0.163 0.044 dðA4;A5Þ - 0.005 - 0.053 - 0.274 -0.276 0.113

dðA2;A4Þ 0.001 - 0.268 0.221 - 0.118 - 0.144 dðA5;A1Þ 0.158 0.136 0.258 0.449 0.031

dðA2;A5Þ - 0.004 -0.322 -0.052 - 0.395 - 0.031 dðA5;A2Þ 0.004 0.322 0.052 0.395 0.031

dðA3;A1Þ 0.282 -0.225 0.130 0.217 - 0.044 dðA5;A3Þ - 0.124 0.361 0.128 0.232 0.075

dðA3;A2Þ 0.127 -0.039 -0.075 0.163 - 0.044 dðA5;A4Þ 0.005 0.053 0.274 0.276 - 0.113

Table 12 Deviations between the evaluations for DM e2

DM e2 c1 c2 c3 c4 c5 DM e2 c1 c2 c3 c4 c5

dðA1;A2Þ -0.359 -0.293 - 0.300 -0.465 -0.324 dðA3;A4Þ -0.100 0.143 0.112 -0.149 0.426

dðA1;A3Þ - 0.283 - 0.180 - 0.248 - 0.223 -0.157 dðA3;A5Þ 0.062 0.248 0.194 0.173 0.247

dðA1;A4Þ - 0.383 - 0.037 - 0.136 - 0.372 0.269 dðA4;A1Þ 0.383 0.037 0.136 0.372 -0.269

dðA1;A5Þ -0.221 0.068 - 0.053 - 0.050 0.090 dðA4;A2Þ 0.148 - 0.052 0.015 0.004 - 0.492

dðA2;A1Þ 0.359 0.293 0.300 0.465 0.324 dðA4;A3Þ 0.100 - 0.143 - 0.112 0.149 - 0.426

dðA2;A3Þ - 0.089 - 0.004 - 0.003 0.136 0.066 dðA4;A5Þ 0.162 0.104 0.082 0.322 - 0.179

dðA2;A4Þ - 0.148 0.052 - 0.015 - 0.004 0.492 dðA5;A1Þ 0.221 - 0.068 0.053 0.050 - 0.090

dðA2;A5Þ - 0.021 0.197 0.211 0.267 0.353 dðA5;A2Þ 0.021 - 0.197 - 0.211 - 0.267 - 0.353

dðA3;A1Þ 0.283 0.180 0.248 0.223 0.157 dðA5;A3Þ - 0.062 - 0.248 - 0.194 - 0.173 - 0.247

dðA3;A2Þ 0.089 0.004 0.003 - 0.136 - 0.066 dðA5;A4Þ - 0.162 - 0.104 - 0.082 - 0.322 0.179
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After solving Eq. (50) by Hungarian method, the opti-

mal solution is generated as x15 ¼ 1; x24 ¼
1; x33 ¼ 1; x42 ¼ 1; x51 ¼ 1. Hence, the collective ranking

is obtained as A5 	 A4 	 A3 	 A2 	 A1, and the best

supplier is A5. Since the derived DMs’ weight vector in

Step 2 is w ¼ ð0:5; 0:2; 0:3ÞT, the DM e1 has the highest

importance. Thus, the collective ranking A5 	 A4 	 A3 	
A2 	 A1 should be in accordance with the individual

ranking A5 	 A4 	 A3 	 A2 	 A1 for DM e1. It can be

seen from Table 9 that most of the criteria values of A5 are

the biggest relative to other alternatives. Meanwhile, most

of the criteria values of A4 are larger than those of alter-

natives A3,A2 and A1. Therefore, it is reasonable to obtain

that the best supplier is A5, and the sub-optimal supplier is

A4.

6.2 Sensitivity analysis

This subsection conducts the sensitive analysis through

altering the values of a (the DMs’ risk attitude parameter in

Table 13 Deviations between the evaluations for DM e3

DM e3 c1 c2 c3 c4 c5 DM e3 c1 c2 c3 c4 c5

dðA1;A2Þ 0.079 0.231 0.180 0.371 0.032 dðA3;A4Þ 0.181 0.013 0.127 - 0.162 0.269

dðA1;A3Þ - 0.011 0.114 0.000 0.396 0.045 dðA3;A5Þ - 0.086 - 0.181 - 0.024 - 0.297 0.000

dðA1;A4Þ 0.170 0.127 0.127 0.234 0.314 dðA4;A1Þ - 0.170 - 0.127 - 0.127 - 0.234 - 0.314

dðA1;A5Þ - 0.097 - 0.067 - 0.024 0.099 0.045 dðA4;A2Þ - 0.091 0.104 0.053 0.137 - 0.282

dðA2;A1Þ - 0.079 - 0.231 - 0.180 - 0.371 - 0.032 dðA4;A3Þ - 0.181 - 0.013 - 0.127 0.162 - 0.269

dðA2;A3Þ - 0.090 - 0.117 - 0.180 0.024 0.014 dðA4;A5Þ - 0.267 - 0.194 - 0.151 - 0.135 - 0.269

dðA2;A4Þ 0.091 - 0.104 - 0.053 - 0.137 0.282 dðA5;A1Þ 0.097 0.067 0.024 - 0.099 - 0.045

dðA2;A5Þ - 0.176 - 0.298 - 0.204 - 0.273 0.014 dðA5;A2Þ 0.176 0.298 0.204 0.273 - 0.014

dðA3;A1Þ 0.011 - 0.114 0.000 - 0.396 - 0.045 dðA5;A3Þ 0.086 0.181 0.024 0.297 0.000

dðA3;A2Þ 0.090 0.117 0.180 - 0.024 - 0.014 dðA5;A4Þ 0.267 0.194 0.151 0.135 0.269

Table 14 Preference degrees

for DM e1
DM e1 c1 c2 c3 c4 c5 DM e1 c1 c2 c3 c4 c5

PðA1;A2Þ 0.000 0.186 0.000 0.000 0.000 PðA3;A4Þ 0.128 0.000 0.146 0.045 0.000

PðA1;A3Þ 0.000 0.225 0.000 0.000 0.044 PðA3;A5Þ 0.124 0.000 0.000 0.000 0.000

PðA1;A4Þ 0.000 0.000 0.016 0.000 0.000 PðA4;A1Þ 0.153 0.082 0.000 0.173 0.144

PðA1;A5Þ 0.000 0.000 0.000 0.000 0.000 PðA4;A2Þ 0.000 0.268 0.000 0.118 0.144

PðA2;A1Þ 0.154 0.000 0.205 0.054 0.000 PðA4;A3Þ 0.000 0.307 0.000 0.000 0.188

PðA2;A3Þ 0.000 0.039 0.075 0.000 0.044 PðA4;A5Þ 0.000 0.000 0.000 0.000 0.113

PðA2;A4Þ 0.001 0.000 0.221 0.000 0.000 PðA5;A1Þ 0.158 0.136 0.258 0.449 0.031

PðA2;A5Þ 0.000 0.000 0.000 0.000 0.000 PðA5;A2Þ 0.004 0.322 0.052 0.395 0.031

PðA3;A1Þ 0.282 0.000 0.130 0.217 0.000 PðA5;A3Þ 0.000 0.361 0.128 0.232 0.075

PðA3;A2Þ 0.127 0.000 0.000 0.163 0.000 PðA5;A4Þ 0.005 0.053 0.274 0.276 0.000

Table 15 Preference degrees

for DM e2
DM e2 c1 c2 c3 c4 c5 DM e2 c1 c2 c3 c4 c5

PðA1;A2Þ 0.000 0.000 0.000 0.000 0.000 PðA3;A4Þ 0.000 0.143 0.112 0.000 0.426

PðA1;A3Þ 0.000 0.000 0.000 0.000 0.000 PðA3;A5Þ 0.062 0.248 0.194 0.173 0.247

PðA1;A4Þ 0.000 0.000 0.000 0.000 0.269 PðA4;A1Þ 0.383 0.037 0.136 0.372 0.000

PðA1;A5Þ 0.000 0.068 0.000 0.000 0.090 PðA4;A2Þ 0.148 0.000 0.015 0.004 0.000

PðA2;A1Þ 0.359 0.293 0.300 0.465 0.324 PðA4;A3Þ 0.100 0.000 0.000 0.149 0.000

PðA2;A3Þ 0.000 0.000 0.000 0.136 0.066 PðA4;A5Þ 0.162 0.104 0.082 0.322 0.000

PðA2;A4Þ 0.000 0.052 0.000 0.000 0.492 PðA5;A1Þ 0.221 0.000 0.053 0.050 0.000

PðA2;A5Þ 0.000 0.197 0.211 0.267 0.353 PðA5;A2Þ 0.021 0.000 0.000 0.000 0.000

PðA3;A1Þ 0.283 0.180 0.248 0.223 0.157 PðA5;A3Þ 0.000 0.000 0.000 0.000 0.000

PðA3;A2Þ 0.089 0.004 0.003 0.000 0.000 PðA5;A4Þ 0.000 0.000 0.000 0.000 0.179
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Eq. (22)). Table 21 lists the corresponding computation

results for different values of parameter a.
It is easily seen that the ranking order of manufacturing

firms is not sensitive to the value of a as far as this example

is concerned. In other words, despite the alteration in the

DMs’ risk attitude a, the ranking order of suppliers remains

unchanged.

Table 16 Preference degrees

for DM e3
DM e3 c1 c2 c3 c4 c5 DM e3 c1 c2 c3 c4 c5

PðA1;A2Þ 0.079 0.231 0.180 0.371 0.032 PðA3;A4Þ 0.181 0.013 0.127 0.000 0.269

PðA1;A3Þ 0.000 0.114 0.000 0.396 0.045 PðA3;A5Þ 0.000 0.000 0.000 0.000 0.000

PðA1;A4Þ 0.170 0.127 0.127 0.234 0.314 PðA4;A1Þ 0.000 0.000 0.000 0.000 0.000

PðA1;A5Þ 0.000 0.000 0.000 0.099 0.045 PðA4;A2Þ 0.000 0.104 0.053 0.137 0.000

PðA2;A1Þ 0.000 0.000 0.000 0.000 0.000 PðA4;A3Þ 0.000 0.000 0.000 0.162 0.000

PðA2;A3Þ 0.000 0.000 0.000 0.024 0.014 PðA4;A5Þ 0.000 0.000 0.000 0.000 0.000

PðA2;A4Þ 0.091 0.000 0.000 0.000 0.282 PðA5;A1Þ 0.097 0.067 0.024 0.000 0.000

PðA2;A5Þ 0.000 0.000 0.000 0.000 0.014 PðA5;A2Þ 0.176 0.298 0.204 0.273 0.000

PðA3;A1Þ 0.011 0.000 0.000 0.000 0.000 PðA5;A3Þ 0.086 0.181 0.024 0.297 0.000

PðA3;A2Þ 0.090 0.117 0.180 0.000 0.000 PðA5;A4Þ 0.267 0.194 0.151 0.135 0.269

Table 17 Total preference

degrees for different DMs
DM e1 DM e2 DM e3 DM e1 DM e2 DM e3

pðA1;A2Þ 0.036 0.000 0.180 pðA3;A4Þ 0.064 0.134 0.097

pðA1;A3Þ 0.053 0.000 0.126 pðA3;A5Þ 0.024 0.185 0.015

pðA1;A4Þ 0.003 0.051 0.175 pðA4;A1Þ 0.110 0.184 0.015

pðA1;A5Þ 0.000 0.031 0.044 pðA4;A2Þ 0.106 0.033 0.075

pðA2;A1Þ 0.083 0.347 0.015 pðA4;A3Þ 0.099 0.049 0.048

pðA2;A3Þ 0.032 0.039 0.023 pðA4;A5Þ 0.023 0.134 0.015

pðA2;A4Þ 0.045 0.104 0.070 pðA5;A1Þ 0.205 0.064 0.034

pðA2;A5Þ 0.000 0.205 0.018 pðA5;A2Þ 0.158 0.004 0.173

pðA3;A1Þ 0.125 0.218 0.015 pðA5;A3Þ 0.158 0.000 0.116

pðA3;A2Þ 0.057 0.019 0.077 pðA5;A4Þ 0.122 0.034 0.166

Table 18 Outgoing flows of alternatives for different DMs

DM UþðA1Þ UþðA2Þ UþðA3Þ UþðA4Þ UþðA5Þ

e1 0.093 0.160 0.270 0.338 0.642

e2 0.082 0.695 0.557 0.400 0.102

e3 0.525 0.127 0.205 0.153 0.488

Table 19 Incoming flows of alternatives for different DMs

DM U�ðA1Þ U�ðA2Þ U�ðA3Þ U�ðA4Þ U�ðA5Þ

e1 0.522 0.357 0.342 0.234 0.048

e2 0.813 0.056 0.088 0.322 0.556

e3 0.080 0.505 0.312 0.508 0.093

Table 20 Net flows of alternatives for different DMs

DM UðA1Þ UðA2Þ UðA3Þ UðA4Þ UðA5Þ

e1 - 0.430 - 0.197 - 0.072 0.104 0.595

e2 - 0.731 0.639 0.468 0.078 - 0.454

e3 0.445 - 0.378 - 0.107 - 0.355 0.395
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6.3 Comparative analyses

To highlight the superiority of the proposed method of this

paper, we make comparisons with the hesitant fuzzy power

operator aggregated method (Zhang 2013), hesitant fuzzy

TOPSIS method (Xu and Zhang 2013) and hesitant fuzzy

QUALIFLEX method (Zhang and Xu 2015).

1. Assume that DMs’ weight vector is

x ¼ ð0:4; 0:3; 0:3ÞT, the criteria weight vector is

adjusted as w ¼ ð0:3; 0:2; 0:2; 0:2; 0:1ÞT and DMs are

pessimistic. Using method (Zhang 2013) to solve the

above green supplier selection example, the ranking

order of suppliers is generated as A5 	 A2 	 A3 	
A4 	 A1.

2. Method (Xu and Zhang 2013) presented a hesitant

fuzzy TOPSIS method and method (Zhang and Xu

2015) developed a hesitant fuzzy QUALIFLEX

method. Both methods only considered only one DM.

Without loss of generality, only the evaluation infor-

mation of DM e3 is used to perform the comparative

analyses. Employing methods (Zhang and Xu 2015; Xu

and Zhang 2013), the ranking order of suppliers is

generated as A5 	 A1 	 A3 	 A2 	 A4 and

A5 	 A3 	 A1 	 A2 	 A4, respectively.

The ranking orders obtained by the above three methods

are significantly different from that obtained by the pro-

posed method of this paper. Compared with these methods

(Zhang and Xu 2015; Xu and Zhang 2013; Zhang 2013),

the proposed method has some desirable merits as follows:

1. Method (Zhang 2013) gave DMs’ weights a priori and

failed to consider the determination of DMs’ weights,

while this paper determines the DMs’ weights objec-

tively by a linear program. On the other hand, methods

(Zhang and Xu 2015; Xu and Zhang 2013; Zhang

2013) assumed that the criteria weights are the same

for diverse DMs. Methods (Zhang and Xu 2015; Zhang

2013) gave the criteria weights a priori. However, this

paper derives the criteria weights for each DM

objectively by a nonlinear program and the criteria

weights have different values for different DMs, which

is more consistent with real-life decision situation.

2. Method (Zhang and Xu 2015) added the minimum

value to extend the length of HFE. The distance

measure defined in this paper does not need to extend

the length, which can well preserve the original

decision information and effectively reduce the uncer-

tainty in decision-making. In addition, the proposed

distance focuses on the intersectional information in

two HFEs and considers the hesitancy degrees of

HFEs.

3. The proposed method is powerful in ranking alterna-

tives with those incomparable criteria, such as the

criteria ‘‘Quality’’ and ‘‘Price’’ in green supplier

selection example. Zhang (Zhang 2013) aggregated

different criteria values into overall values, and Xu and

Zhang (2013) directly aggregated the distances to the

ideal solution with weighted summarization, which is a

little bit unreasonable. Relative to the hesitant fuzzy

QUALIFLEX method (Zhang and Xu 2015), the

proposed PROMETHEE method is easy to compute

and is more time-saving. Method (Zhang and Xu 2015)

must consider all possible permutations of alternatives,

and the computation complexity will increase dramat-

ically with the increase of number alternatives.

7 Conclusions

To equilibrate the economic profits and the environment

sustainable development, more and more companies per-

formed the GSCM on their organizational and technolog-

ical projects. In this paper, the green supplier selection is

formulated as a kind of MCGDM problems with HFSs.

Therefore, this paper developed a hesitant fuzzy PRO-

METHEE method for MCGDM and applied to green

supplier selection.

1. Some new information measures of HFEs are pro-

posed. First, a hesitancy index is proposed to charac-

terize the hesitant degree of HFE. Considering such a

hesitancy index, a generalized hesitant fuzzy Hausdorff

distance is defined. Then, a new combined hesitant

fuzzy entropy is presented to depict the hesitancy and

fuzziness of HFE. Relative closeness degree of HFE is

also introduced.

Table 21 Ranking orders of

manufacturing firms for

different values of parameter a

a Ranking order of alternatives a Ranking order of alternatives

0 A2 	 A5 	 A3 	 A4 	 A1 0.6 A2 	 A5 	 A3 	 A4 	 A1

0.1 A2 	 A5 	 A3 	 A4 	 A1 0.7 A2 	 A5 	 A3 	 A4 	 A1

0.2 A2 	 A5 	 A3 	 A4 	 A1 0.8 A2 	 A5 	 A3 	 A4 	 A1

0.3 A2 	 A5 	 A3 	 A4 	 A1 0.9 A2 	 A5 	 A3 	 A4 	 A1

0.4 A2 	 A5 	 A3 	 A4 	 A1 1 A2 	 A5 	 A3 	 A4 	 A1

0.5 A2 	 A5 	 A3 	 A4 	 A1
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2. Two optimization models are built to obtain the criteria

weights and the DMs’ weights objectively. The DMs’

weights are obtained by a linear programming model of

minimizing the group inconsistency. The criteria

weights for each DM are derived by a nonlinear

optimization model of minimizing the relative entropy.

3. The individual ranking of alternatives for each DM is

derived by the net flow, and the corresponding

individual ranking matrix is then generated. A multi-

objective assignment model is set up to obtain the

collective ranking order of alternatives. Thereby, an

extended PROMETHEE method is developed for

MCGDM with HFSs and applied to green supplier

selection.

This paper provides a novel perspective to handle green

supplier selection problems. Motivated by hesitant lin-

guistic information initiated by Dong et al. (2015, 2016),

Wu et al. (2018), we will propose some new information

measures for hesitant linguistic information and apply them

to the practical MCGDM problems. Furthermore, refer-

ences (Dong et al. 2018), Liu et al. (2018, 2019) pointed

out that DMs are often dishonest in MADM and MCGDM.

Hence, how to involve the strategic weight manipulation in

hesitant fuzzy decision-making is also an interesting issue,

which deserves to be further studied. In addition, this paper

does not consider the heterogeneous information (Li et al.

2016), classification and clustering algorithms (Kou et al.

2012, 2014), preference relations (Zhang et al. 2019; Kou

et al. 2014, 2016; Kou and Lin 2014) in group decision-

making. They are very critical issues that we will investi-

gate them in future.
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Dobos I, Vörösmarty G (2014) Green supplier selection and

evaluation using DEA-type composite indicators. Int J Prod

Econ 157:273–278

Dong JY, Wan SP (2016) Virtual enterprise partner selection

integrating LINMAP and TOPSIS. J Oper Res Soc

67(10):1288–1308

Dong YC, Chen X, Herrera F (2015) Minimizing adjusted simple

terms in the consensus reaching process with hesitant linguistic

assessments in group decision making. Inf Sci 297:95–117

Dong YC, Li CC, Herrera F (2016) Connecting the linguistic

hierarchy and the numerical scale for the 2-tuple linguistic model

and its use to deal with hesitant unbalanced linguistic informa-

tion. Inf Sci 367(368):259–278

Dong YC, Liu YT, Liang HM, Chiclana F, Herrera-Viedma E (2018)

Strategic weight manipulation in multiple attribute decision

making. Omega 75:154–164

Du B, Guo S, Huang X et al (2015) A Pareto supplier selection

algorithm for minimum the life cycle cost of complex product

system. Expert Syst Appl 42(9):4253–4264

Farhadinia B (2013) Information measures for hesitant fuzzy sets and

interval-valued hesitant fuzzy sets. Inf Sci 240(10):129–144

Farhadinia B (2014) Distance and similarity measures for higher order

hesitant fuzzy sets. Knowl Based Syst 55:43–48

Some new information measures for hesitant fuzzy PROMETHEE method and application to green… 9201

123



Feng X, Tan Q, Zhang H (2015) PROMETHEE method for hesitant

fuzzy multi-criteria decision making based on possibility degree.

Sci Technol Rev 33(11):90–93

Ghorabaee MK, Zavadskas EK, Amiri M et al (2016) Multi-criteria

evaluation of green suppliers using an extendedWASPASmethod

with interval type-2 fuzzy sets. J Clean Prod 137:213–229

Govindan K, Jepsen MB (2016) ELECTRE: a comprehensive

literature review on methodologies and applications. Eur J Oper

Res 250(1):1–29

Govindan K, Kalyian M, Kannan D, Haq AN (2014) Barriers analysis

for green supply chain management implementation in Indian

industries using analytic hierarchy process. Int J Prod Econ

145:555–568

Govindan K, Rajendran S, Sarkis J et al (2015) Multi criteria decision

making approaches for green supplier evaluation and selection: a

literature review. J Clean Prod 98:66–83
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