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Abstract
This paper presents a novel metaheuristic algorithm named as life choice-based optimizer (LCBO) developed on the typical

decision-making ability of humans to attain their goals while learning from fellow members. LCBO is investigated on 29

popular benchmark functions which included six CEC-2005 functions, and its performance has been benchmarked against

seven optimization techniques including recent ones. Further, different abilities of LCBO optimization algorithm such as

exploitation, exploration and local minima avoidance were also investigated and have been reported. In addition to this,

scalability is tested for several benchmark functions where dimensions have been varied till 200. Furthermore, two

engineering optimization benchmark problems, namely pressure vessel design and cantilever beam design, were also

optimized using LCBO and the results have been compared with recently reported other algorithms. The obtained com-

parative results in all the above-mentioned experimentations revealed the clear superiority of LCBO over the other

considered metaheuristic optimization algorithms. Therefore, based on the presented investigations, it is concluded that

LCBO is a potential optimizer for engineering problems.

Keywords Optimization � Optimization techniques � Metaheuristic algorithm � Metaheuristics-constrained optimization �
Life choice-based optimizer

1 Introduction

Optimization is the process of obtaining optimum results

for a given problem while satisfying certain constraints.

Several requirements in different fields like science,

mathematics, engineering and finance can be framed as

optimization problems. Some of the applications of opti-

mization are training neural networks, tuning of con-

trollers, designing digital filters, etc. Though many

classical optimization algorithms do exist, they are prob-

lem dependent and require gradient information to reach an

optimum solution. Further, in some cases, classical meth-

ods may fail to attain global optima as they get stuck

around local optima making the algorithm unsuitable for

that particular problem.

The present fast-paced engineering world is the result of

continuous improvements over several centuries. Particu-

larly, this has been achieved through inspiration from

numerous intelligent processes that exist in nature. In fact,

understanding and modelling of such processes has led to

the development of many optimization techniques. These

techniques have always been the driving force in solving

large number of complex problems involving several

variables.

For the past few decades, metaheuristic algorithms have

been introduced to solve many complex optimization

problems and such algorithms are gaining popularity

because of the following key reasons:

• Simplicity Most optimization algorithms are based on

simple phenomenon which can be represented and

described by simple mathematical expressions and

methods.
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• Independency from gradient Unlike traditional opti-

mization methods like gradient descent, metaheuristic

algorithms do not use gradient for their implementation.

This feature has been very helpful when the function

under consideration either does not have gradient or it is

difficult to obtain.

• Local optima avoidance Due to randomness and

exploration factor of optimization algorithms, they

have an inherent capability to avoid local optima.

• Problem independence Most optimization algorithms

consider the problems as black boxes and therefore are

treated as universal algorithms.

Further, for an optimizer, the two most desired features

are exploitation and exploration. The overall capability of

an optimization algorithm is highly dependent on these two

features. Exploitation refers to rigorously searching the

promising search space for global optima while exploration

refers to searching for new promising search space. It is

noteworthy that improved exploitation leads to fast con-

vergence to optimal solution and improved exploration

leads to avoidance of local optima. On the other hand, it

may also be noted that very high exploitation leads to

convergence towards local optima before the solutions

could reach near global optima and very high exploration

may lead to slow convergence of solution towards the

global optima. Therefore, for a good optimization algo-

rithm, there must exist a balance between exploitation and

exploration.

2 Related works

As mentioned above, understanding and modelling of

many natural processes and phenomena has led to the

creation of several optimization techniques which have

been very helpful in solving complex scientific problems.

These algorithms can be broadly divided into following

four categories:

Evolutionary algorithms This category is based on

evolutionary processes present in the nature. In this class of

algorithms, firstly, random population is generated and

their fitness is calculated. Following this, new generation is

evolved based on the stated rules of evolutionary algo-

rithm. Genetic algorithm (GA) (Holland 1992) is the most

popular in this category. In this algorithm, new population

is generated by the process of crossover, cloning and

mutation. Further, many algorithms have been developed

in this category. Some of them are Evolutionary Strategy

(François 1998), Genetic Programming (Koza 1994),

Population-Based Incremental Learning (Baluja 1994),

Fast Evolutionary Programming (Yao and Liu 1996), Dif-

ferential Evolution (Storn and Price 1997), Grammatical

Evolution (Ryan and Collins 1998), Enhanced GA (Coello

and Montes 2002), Gene Expression Programming (Fer-

reira 2006), Co-Evolutionary Differential Evolution

(CEDE) (Huang et al. 2007), Biogeography-Based Opti-

mizer (Simons 2008), Asexual Reproduction Optimization

(Farasat et al. 2010), States of Matter (Cuevas et al. 2014),

Adaptive Dimensional Search (Hasançebi and Azad 2015),

Stochastic Fractal Search (SFS) (Salimi 2015) and Multi-

Verse Optimizer (MVO) (Mirjalili et al. 2016).

Swarm-based optimization algorithms This class of

algorithms are based on social behaviour of animals. Col-

lectively these are called swarms and are inspired from

how swarms interact with each other in order to get their

food. Particle Swarm Optimization (PSO) (Kennedy and

Eberhart 1995) is the most popular algorithm in this cate-

gory. In PSO, each particle changes its position based on

personal best, global best, previous velocity and inertia.

Following this, there had been several algorithms which

make use of swarm-based optimization algorithm. Some of

the examples are Ant Colony Optimization (Dorigo and Di

Caro 1999), Marriage in Honey Bees Optimization Algo-

rithm (Abbass 2002), Wasp Swarm Optimization (Pinto

et al. 2005), Bees Algorithm (Pham et al. 2006), Cat

Swarm Optimization (Chu et al. 2006), Co-Evolutionary

Particle Swarm Optimization (CEPSO) (Krohling and Dos

santos coelho 2006), Glow-Worms Optimization (Krish-

nanand and Ghose 2006), Artificial Bee Colony (Karaboga

and Basturk 2007), Monkey Search Algorithm (Zhao and

Tang 2008), Bee Collecting Pollen (Lu and Zhou 2008),

Dolphin Partner Optimization (Yang et al. 2009), Group

Search Optimizer (He et al. 2009), Cuckoo Search Algo-

rithm (CSA) (Yang 2009b), Termite Colony Optimization

(Hedayatzadeh et al. 2010), Firefly Algorithm (Yang

2009a), Bat Algorithm (BA) (Yang 2010), Hunting search

(Oftadeh et al. 2010), Enhanced PSO (Gao and Hailu

2010), Krill Herd Algorithm (Gandomi and Alavi 2012),

Migrating Birds Optimization (Duman et al. 2012), Fruit

Fly Algorithm (Pan 2012), Flower Pollination Algorithm

(Yang 2012), Enhanced CSA (Gandomi et al. 2013), Dol-

phin Echolocation Algorithm (Kaveh and Farhoudi 2013),

Social Spider Optimization (Cuevas et al. 2013), Symbiotic

Organisms Search (Cheng and Prayogo 2014), Grey Wolf

Optimizer (Mirjalili et al. 2014), Bird Mating Optimizer

(Askarzadeh 2014), Animal Migration Optimization (Li

et al. 2014), Chicken Swarm Optimization (Meng et al.

2014), Firework Algorithm (Tan and Zhu 2015), Moth

Flame Optimization (Mirjalili 2015a), Ant Lion Optimizer

(Mirjalili 2015b), Elephant Herding Optimization (Wang

et al. 2016a), Monarch Butterfly Optimization (Wang et al.

2016b), Dragon-Fly Algorithm (Mirjalili 2016a, b), Whale

Optimization Algorithm (Mirjalili and Lewis 2016), Lion

Optimization Algorithm (2016) (Yazdani and Jolai 2016),
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Spotted Hyena Optimizer (SHO) (Dhiman and Kumar

2017) and Salp Swarm Algorithm (Mirjalili et al. 2017).

Physics-inspired optimization These methods draw

inspiration from physical processes present in the nature.

One of the oldest algorithms in this category is Simulated

Annealing (SA) (Van Laarhoven and Aarts 1987).

Annealing means heating a solid and then slowly letting it

to cool down. In SA, the process of annealing is used

mathematically to solve problems. Other examples of

physics-based optimization algorithm are as follows. Har-

mony search (Woo Geem et al. 2001), Big Bang–Big

Crunch (Erol and Eksin 2006), Colonizing Weeds

(Mehrabian and Lucas 2006), Gravitational Search Algo-

rithm (Rashedi et al. 2009), Intelligent Water Drops

(Hosseini 2009), Charged System Search (Kaveh and

Talatahari 2010), Grenade Explosion Method (Ahrari and

Atai 2010), Chemical-Reaction-Inspired Metaheuristic

(Lam and Li 2010), Artificial Chemical Reaction Opti-

mization Algorithm (Alatas 2011), Galaxy-Based Search

Algorithm (Hosseini 2011), Curved Space Optimization

(Moghaddam et al. 2012),Water Cycle Algorithm (Eskan-

dar et al. 2012), Black Hole Algorithm (Hatamlou 2013),

Mine Blast Algorithm (Sadollah et al. 2013), Colliding

Bodies Optimization (Kaveh and Mahdavi 2014), Forest

Optimization Algorithm (Ghaemi and Feizi-Derakhshi

2014), Optics Inspired Optimization (Husseinzadeh Kashan

2014), Ecogeographic-Based Optimization (Zheng et al.

2014), Ray Optimization Algorithm (Kaveh 2014b), Tree

Seed Algorithm (Kiran 2015), Water Wave Optimization

(Zheng 2015), Lightning Search Algorithm (Shareef et al.

2015), Ions Motion Algorithm (Hatamlou et al. 2015),

Runner-Root Algorithm (Merrikh-Bayat 2015), Electro-

magnetic Field Optimization (Abedinpourshotorban et al.

2016), Water Evaporation Optimization (Kaveh and

Bakhshpoori 2016), Vibrating Particles System (Kaveh and

Ilchi Ghazaan 2017) and Thermal Exchange Optimization

(Kaveh and Dadras 2017).

Human-based optimization This optimization class

draws inspiration from behaviour and activities performed

by humans. It may be noted that humans are the most

intelligent species in this world, and this very fact offers

good inspiration for developing optimization algorithms.

One of the recent algorithms in this class is Jaya algorithm

(Venkata 2016) which takes inspiration from human

behaviour of following best and avoiding worst. Other

examples of human-based algorithm are as follows. Tabu

Search (Glover 1989), Seeker-Based optimization (Dai

et al. 2006), Imperialist Competitive Algorithm (Atashpaz-

Gargari and Lucas 2007), Teaching Learning-Based Opti-

mization (Rao et al. 2007), Interior Search (Gandomi

2014), Soccer League Competition Algorithm (Moosavian

and Kasaee Roodsari 2014), Exchange Market Algorithm

(Ghorbani and Babaei 2014), Group Counselling

Optimization Algorithm (Eita and Fahmy 2014), Tug of

War Optimization (Kaveh and Zolghadr 2016), Most

Valuable Player Algorithm (Bouchekara 2017) and Vol-

leyball Premier League Algorithm (Moghdani and Salim-

ifard 2018).

In addition to the above major classes, there have been

several algorithms which are inspired from mathematics

concepts like geometry, algebra, etc. The Method of

Moving Asymptotes (Svanberg 1987), Nonlinear Integer

and Discrete Programming (NIDP) (Sandgren 1990),

Generalized Convex Approximation (Chickermane and

Gea 1996) and Sin Cosine Algorithm (Mirjalili 2016b) are

such algorithms.

From the above-presented survey, one can easily infer

that different metaheuristic algorithms have been devel-

oped to target different problems. Therefore, in the interest

of technical development, there is always a need for a new

algorithm to be developed and evaluated for particular

problem so as to obtain superior results than the existing

algorithms. The new algorithm introduced in this paper,

life choice-based optimizer (LCBO), comes under the

category of human-based algorithm. It is based on how a

person makes a decision in life to attain his/her goal.

Generally, a person makes decision based on different

parameters which are dependent upon his colleagues. This

very fact has been the key motivation of this work. Further,

according to no free lunch (NFL) theory (Wolpert and

Macready 1997), no algorithm performs best for all prob-

lems. Though several optimization algorithms, as men-

tioned above, already exist, NFL says that no algorithm is

uniformly perfect and therefore there is always a need to

develop superior methods. Furthermore, superior tech-

niques are always required to be developed and tested for

different scientific problems as they will save the time and

effort of the scientific community, thereby making a sig-

nificant contribution to the domain.

The paper is organized into five sections. Following

introduction and survey in Sect. 1 and 2, respectively, in

Sect. 3, inspiration, mathematical formulation and repre-

sentation of LCBO are presented. In Sect. 4, the details of

the used 29 benchmark functions, which consist of uni-

modal, multimodal and six CEC-2005 composite functions

(Liang et al. 2005; Suganthan et al. 2005), are provided. In

Sect. 5, LCBO is tested on optimization of benchmark

functions and the comparative study of the obtained results

with other recently reported popular algorithms has been

presented in this section. Further, this section also includes

the investigations of scalability and convergence tests for

enhanced dimensions. LCBO is also investigated for

solving two engineering benchmark problems, namely,

pressure vessel design (PVD) and cantilever beam design

(CBD), and the comparative performance results have been

reported in this section. Finally, Sect. 6 draws the
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conclusion and presents the future scope of research for

LCBO. The mathematical descriptions of the investigated

engineering problems are given in ‘‘Appendix’’ section.

3 Life choice-based optimizer

In this section, the inspiration and mathematical details of the

LCBO algorithm are presented. Mathematical modelling of

the LCBO algorithm has been presented highlighting all the

background formulations and their expressions.

3.1 Inspiration

The LCBO algorithm is inspired by carefully observing the

life cycle of an human being and his work ethics during

active life where a person is motivated and has several

different aims and targets to achieve. It is noteworthy that

human is truly the most intellectual species and is thus far

smarter and strategic. Humans always took inspiration

from nature and thereby learnt new things. For example,

certain Yogasanas like Gomukhasana (Cow-Face Pose) and

Simhasana (Lion Pose) are practised for healthy lifestyle

world over. The ability to learn from our fellow creatures

and species has always been a crucial factor that has helped

humans to emerge as far more superior than any other

species. Humans have understood the significance of food

chain and lifecycle that nature has enforced upon all spe-

cies. Humans are able to realize the significance of each

species and roles played by them for sustenance of life, so

instead of focusing on complete extinction of other species,

they have considered animals and plants as a part of a big

family and focused on mutual survival. Humans have also

built restricted zones for animals, created wildlife reserve

throughout and are highly resolute to protect the endan-

gered species from extinction. They have tamed animals,

adopted them as pets and hence focused on mutual sur-

vival. Thus, humans have the capability to understand

things better than any other species; that’s why a lot of

focus and investment has been made for creating machines

that are able to think and act like humans, for example

recently built humanoid robots. Recently, Sophia, a

humanoid robot, became the first robot to receive citizen-

ship in a country (Saudi Arabia) and was also named the

United Nations Development Program Innovation Cham-

pion, also the first humanoid to hold a United Nations title

(https://www.hansonrobotics.com/sophia/). Therefore,

there exists lot of scope to develop new and future tech-

nologies which are based on human behaviour and thus the

novel algorithm LCBO is also inspired from the choices

and thinking pattern of humans to accomplish a target.

Inspiration from Jaya optimization technique The

algorithm proposed in this work is also inspired from the

already established recent algorithm Jaya which makes use

of selective influence. It may be noted that in Jaya (Ven-

kata 2016), only the best and worst search agent affects the

current search agent, whereas in the proposed optimizer,

Eq. 6, which is only a particular/optional branch in the

proposed algorithm according to random number genera-

tion, the best and better search agents (explained later in

Sect. 3.2.2) also affect the current search agent resulting in

better exploitation.

3.2 LCBO algorithm

In the proposed LCBO, the following three concepts can be

used to completely describe it. These are presented in the

following subsections.

3.2.1 Learning from the common best group

Human is always inspired by one thing or the other, whe-

ther it is his/her senior, some celebrity or fellow mates.

When a person has some target in sight, he/she ponders and

studies about how the best people in that field work to

create a strategy in order to achieve targets. He/she always

tries to take something resourceful from the best in the

fields to achieve the target and derive a pattern or param-

eter by observing the superior person’s efficiency and work

on it so that he/she can develop some skills to achieve the

target or solve the problem under consideration. For a

given population X with sorted fitness values/cost func-

tions, Eq. 1 represents the learning from the best feature of

the LCBO algorithm:

X0
j ¼

Xn

k¼1

rand kð Þ � Xk½ �=n ð1Þ

Here, in summation, k varies from 1 to n, where n is a

parameter in the algorithm and is equal to the ceil of the

square root of the population considered to solve the

problem. Parameter Xj is the jth or the current search agent

in process, and X0
j represents that Xj will be updated only if

X0
j has better fitness than Xj. Figure 1 depicts this feature of

the algorithm. The search agent in the centre of the circles

represents the current search agent in the process. The

search agent is affected only by the position of the common

best n search agents, and the level of influence is decided

by the random numbers as shown in Fig. 1 by arrows of

variable lengths.

3.2.2 Knowing very next best

Everyone wants to achieve his/her target, like achieving the

dream job or purchasing a dream car but to accomplish

large targets or dream, it takes lot of time and
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perseverance. Instead of completely focusing onto massive

targets, one must be able to realize the current position and

the very nearest target in sight. Further, one also needs to

understand how to move to a better position from the

current position. So, the current target should also be pri-

oritized. Therefore, there is a requirement to focus both on

final destination as mentioned above and on the very next

destination to achieve future goals. This operation is

implemented with the help of the following algorithm:

f1 ¼ 1� currentChances� 1ð Þ= numberOfChances� 1ð Þ
ð2Þ

f2 ¼ 1� f1 ð3Þ

bestDiff ¼ f1 � r1 � X1 � Xj

� �
ð4Þ

betterDiff ¼ f2 � r1 � Xj�1 � Xj

� �
ð5Þ

X
0

j ¼ Xj þ randðÞ � betterDiff þ randðÞ � bestDiff ð6Þ

Here, f1 and f2 vary linearly from 0 to 1 and 1 to 0,

respectively. The value of r1 is constant 2.35, and Xj�1

refers to the position of the search agent whose fitness was

just better than current search agent till the previous iter-

ation. Further, X1 refers to the best position of search agent

that has been achieved till the previous iteration. The

position of Xj will only be updated to X0
j if X

0
j has better

fitness than Xj. From Fig. 2, one can see that the current

search agent is only affected by the search agents which

have the best fitness value and agent that has just better

fitness value and the level of influence is determined by

Eqs. 3–6.

3.2.3 Reviewing mistakes

If humans are stuck somewhere or the technique they have

been using to solve the problem under consideration is not

working, they have the natural intelligence to review things

and do proper analysis of the technique which is being used

to solve the problem and try alternate methods. They are

also capable of doing things in reverse to evaluate and

approach the problem in a completely different manner,

and it also increases the exploration part in the algorithm

by trying to look at things from a completely different

perspective.

X0
j ¼ Xmax� ðXj � XminÞ � randðÞ ð7Þ

The technique described by Eq. 7 is named as Avi

escape technique and has been used as generalized tech-

nique to increase the exploration of algorithm. Here, in the

algorithm, Xmax and Xmin are the upper and lower bound

values, respectively. It is similar to GA (Holland 1992) and

CSA (Yang and Deb 2009) where new agents are created to

solve the problem by using upper bound and lower bound

values. Here, Xj is the current agent in the process of

evaluation.

As usual with all the optimization methods, the LCBO

will start with population size, lower and upper bounds and

number of iterations. For the first iteration, population is

generated and corresponding fitness is evaluated and

ordered along with the agents. Now, the positions of the

agents and their fitness are updated iteratively till the target

fitness has been obtained or the number of iterations is

Fig. 1 Learning from the common best group

Fig. 2 Knowing presently best
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exhausted. It may be noted that only one of the three

operations as described above will be executed for updat-

ing of the agents depending on the value of random num-

ber. The pseudocode presented in the next section describes

the operations in an orderly manner.

3.3 Pseudocode

The following is the pseudocode of the LCBO.

4 Details of the used benchmark functions

In order to determine the optimization efficiency of an algo-

rithm, its critical testing is required. The importance of explo-

ration and exploitation has already been stated in Introduction

section, and thus for checking the overall performance of the

algorithm, the benchmark test functions have been carefully

chosen and have been presented in the following subsections.

For systematic evaluation of the LCBO algorithm, the 29

chosen functions are divided into following three parts.

4.1 Unimodal functions (functions 1 to 7)

In the chosen unimodal functions (1 to 7), there exists only

a single local optima value and hence it is the global

minimum value of the respective function. These functions

are used to test the exploitation affinity of the algorithm.

Algorithms which are able to optimize these functions have

great exploitation ability. As there is only a single mini-

mum value, the LCBO algorithm should be able to reach

quickly towards the global minima. The details of these

functions are presented in Table 1.

4.2 Multimodal benchmark functions (functions
8 to 23)

These functions consist of many local optima and therefore

are difficult to solve than unimodal functions. The search

agents sometimes get stuck in the local optima and are unable

to escape. It is noteworthy that functions 8 to 13 are of

variable dimension and 14 to 23 are of fixed-dimension

multimodal benchmark functions. The mathematical details

of these functions are tabulated in Tables 2 and 3. It may be

noted that the difficulty level of these functions increases

with the search area, number of local optima and number of

dimensions. The ability to explore new search region plays a

vital role in evaluation of these functions, and hence they are

good for determining the exploration ability of the algorithm.

Table 1 Unimodal benchmark functions

Function no. Function Dimension Range Optimal minima

1. F1 xð Þ ¼
PN

i¼1 x
2
i

30, 200 [- 100, 100] 0

2. F2 xð Þ ¼
PN

i¼1 xij j þ
QN

i¼1 xij j 30, 200 [- 10, 10] 0

3.
F3 xð Þ ¼

PN
i¼1

Pi
j¼1 xi

� �2 30, 200 [- 100, 100] 0

4. F4 xð Þ ¼ max xij j; 1� i�Nð Þ 30, 200 [- 100, 100] 0

5. F5 xð Þ ¼
PN

i¼1 100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i
30, 200 [- 30, 30] 0

6. F6 xð Þ ¼
PN

i¼1 xi þ 0:5j jð Þ2 30, 200 [- 100, 100] 0

7. F7 xð Þ ¼
PN

i¼1 ix
4
i þ random 0; 1½ Þ 30, 200 [- 1.28, 1.28] 0
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4.3 CEC composite benchmark functions
(functions 24 to 29)

These are six composite benchmark functions taken from

CEC-2005. These are rotated and shifted classical variants

of standard functions and are of greatest complexity among

all benchmark functions in terms of difficulty. They have a

large number of local optima values which are very diffi-

cult to escape from. The functions are available in Table 4.

The detailed equations and expression of the benchmark

function are available in the CEC-2005 technical reports

(Liang et al. 2005; Suganthan et al. 2005).

5 Results and discussions

In this section, the experimental setup used to conduct

various tests and the details regarding the evaluation of

tests and obtained results of the used benchmark functions

are presented. In subsection 5.1, experimental setup

arrangement is presented which includes details regarding

function testing such as population, iteration and system

software version. In subsection 5.2, the study of the results

of LCBO and other algorithms has been carried out. In

subsection 5.3, the analysis of results of functions 1 to 13

having very high dimension (200) shows the adaptability

of LCBO for dealing with high-complexity problems. In

subsection 5.4, the convergence curve patterns are anal-

ysed. Engineering problem solving is an important com-

ponent for the testing of any proposed optimization

method. Therefore, two important design benchmark

problems, namely PVD and CBD, are investigated for

LCBO in subsection 5.5.

5.1 Experimental setup

For investigating the optimization capability of LCBO,

each of the functions described earlier was optimized 30

times independently and the results in terms of average

fitness value of 30 runs along with the standard deviations

for each function or application have been recorded. The

optimization technique offering least average fitness and

deviation is considered as the winning technique. The

software used for all the investigation was MATLABTM on

Windows 10 and 64 bits i-5 Processor 7th Generation,

2.5 GHz and 8 GB RAM.

5.2 Benchmark functions’ testing results

In this section, comparative study of LCBO algorithm with

the other popular and latest algorithms has been presented.

The presentation has been organized into three different
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subsections: Sects. 5.2.1, 5.2.2 and 5.2.3, for detailed and

complete analysis of the performance of LCBO algorithm.

For comparative performance analysis, optimization of 29

benchmark functions using seven potential reported opti-

mization techniques, namely SHO, GWO, PSO, MFO,

MVO, SCA and GA, has been used. It may be noted that

SHO, GWO, MFO, MVO and SCA are the most recent ones

as they were reported in 2017, 2014, 2014, 2016 and 2016,

respectively. The results and parameters of these algorithms

were already reported in SHO (Dhiman and Kumar 2017)

for the above-mentioned benchmark functions. It is note-

worthy that the population and iteration used for benchmark

function optimization in (Dhiman and Kumar 2017) were 30

and 1000, respectively, for each algorithm. In order to offer

a fair competition, same population and iteration values

were chosen for LCBO algorithm.

5.2.1 Functions 1–7 (unimodal)

Table 5 presents the obtained results in terms of the average

fitness values and the standard deviations for the optimized

unimodal functions. As mentioned above along with the

LCBO, the results of seven other optimization methods as

reported by Dhiman and Kumar (2017) are also presented.

Based on the average fitness values and the deviations

obtained, one can clearly infer that LCBO offered least

values. Therefore, for optimization of unimodal benchmark

functions, it is concluded that LCBO is a superior opti-

mization method as compared to the seven other methods.

LCBO algorithm offers the best results for functions 1 to 5

and second best results for functions 6 and 7.

5.2.2 Functions 8–23 (multimodal)

In line with the unimodal function optimization, functions

8 to 23 were investigated under multimodal function

optimization. Table 6 presents the obtained results wherein

it can be inferred that for functions 8, 9, 10, 11, 13, 15, 18,

19, 20, 21 and 23, LCBO is the clear winner. On the other

hand, for functions 12, 14, 16, 17 and 22, it is the second or

third best. Therefore, for optimization of multimodal

benchmark functions also, it can be concluded that LCBO

is a superior optimization method as compared to the seven

other methods.

5.2.3 Functions 24–29 (composite CEC benchmark
functions)

In order to further test the capability of the LCBO, the next

experiment was to test the complex function optimization.

For the same, six composite benchmark functions were

taken from CEC 2005. These are rotated and shifted clas-

sical variants of standard functions and therefore offer

greatest complexity among all the benchmark functions.

They also have multiple local optima values, and it is

usually difficult to escape from these local optima. From

the results given in Table 7, one can clearly observe that

LCBO algorithm gives the best result for four out of the six

functions (24, 25, 26 and 28). This confirms the LCBO’s

ability to easily escape local minima and move towards

global minima. It also ensures superior balance between

exploration and exploitation ability as exhibited by LCBO.

Table 3 Fixed-dimension multimodal benchmark functions

Function no. Function Dimension Range Optimal minima

14.
F14 xð Þ ¼ 1

500
þ
P25

j¼1
1

jþR2
i¼1 xi�aijð Þ6

	 
�1 2 [- 65, 65] 1

15.
F15 xð Þ ¼

P11
i¼1 ai �

x1 b2i þbix2ð Þ
b2
i
þbix3þx4

� �2 4 [- 5, 5] 0.0003

16. F16 xð Þ ¼ 4x21 � 2:1x41 þ 1
3
x61 þ x1x2 � 4x22 þ 4x42 2 [- 5, 5] - 1.0316

17. F17 xð Þ ¼ x2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6
� �2þ10 1� 1

8p

� �
cos x1 þ 10 2 [- 5, 5] 0.398

18. F18 xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� �h i

�

30þ 2x1 � 3x2ð Þ2� 18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22
� �h i

2 [- 2, 2] 3

19. F19 xð Þ ¼ �
P4

i¼1 ci exp �
P3

j¼1 aij xj � pij
� �2� �

3 [1, 3] - 3.86

20. F20 xð Þ ¼ �
P4

i¼1 ci exp �
P6

j¼1 aij xj � pij
� �2� �

6 [0, 1] - 3.32

21. F21 xð Þ ¼ �
P5

i¼1 X � aið Þ X � aið ÞTþci
� ��1 4 [0, 10] - 10.1532

22. F22 xð Þ ¼ �
P7

i¼1 X � aið Þ X � aið ÞTþci
� ��1 4 [0, 10] - 10.4028

23. F23 xð Þ ¼ �
P10

i¼1 X � aið Þ X � aið ÞTþci
� ��1 4 [0, 10] - 10.536
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5.3 Scalability test

Scalability test is an important component of evaluation of

any optimization technique. It assesses the ability of an

optimization technique to handle higher dimensions’ test

functions. The complexity of an optimization problem

increases exponentially with increase in the number of

dimensions, and solving any problem set with large number

of unknown variables is always a challenge. In this test,

functions 1 to 13, defined in Tables 1 and 2, were used

wherein the dimensions were increased from 30 to 200. For

scalability performance, population and iterations were

kept as 30 and 1000, respectively. In line with previous

subsection, 30 independent trials were executed and the

results in terms of average and standard deviation were

recorded. For comparison purpose, scalability results of

seven techniques, namely ALO, PSO, SMS, BA, FPA,

CSA and GA, as reported in (Mirjalili 2015b) were used. It

may be noted that in this work the population and iteration

values of 100 and 5000 were used by competing methods

against the 30 and 1000 for LCBO. The setting of these

parameters is a real challenge to LCBO. The results of

scalability test are presented in Table 8 wherein it can be

confirmed that LCBO algorithm gives the best result for all

functions from 1 to 13 except function 6. This proves the

dominance of the LCBO algorithm in dealing with func-

tions with large dimensions and clearly shows that LCBO

is superior as it gives better results in significantly lower

number of function calls. The performance of other algo-

rithms is considerably poorer than LCBO. Dull perfor-

mance of the rest of the algorithms also highlights the fact

that large dimensions’ problem solving is quite difficult.

5.4 Convergence analysis

Having dealt with the scalability analysis, the next activity

was to study the convergence. Convergence pattern is

useful for understanding the exploration and exploitation

ability of an optimization algorithm. For the same, in this

section, a total of 16 scalable functions were tested and

their convergences were recorded for varying dimensions.

The investigated dimensions were 30, 50, 80, 100 and 200.

Figures 3 and 4 depict the convergence plots of LCBO for

the 16 functions considered for varying dimensions. It may

be noted that Figs. 3 and 4 represent the plots for unimodal

and multimodal functions, respectively. As evident from

these plots, LCBO survives the test of scalability and

passes it with flying colours.

Figure 5 shows the convergence of the LCBO for CEC

test functions. Again in all the presented cases, LCBO

convergence can be clearly observed.

Based on the above-presented results, the following

remarks about LCBO can be inferred.

Table 5 Result of unimodal benchmark functions

Method

?
Function

;

LCBO SHO GWO PSO

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

1. 0.00E?00 0.00E?00 0.00E?00 0.00E?00 4.69E-59 7.30E-59 4.98E-09 1.40E-08

2. 0.00E?00 0.00E?00 0.00E?00 0.00E?00 1.20E-34 1.30E-34 7.29E-04 1.84E-03

3. 0.00E?00 0.00E?00 0.00E?00 0.00E?00 1.00E-14 4.10E-14 1.40E?01 7.13E?00

4. 4.26E-307 0.00E?00 7.78E-12 8.96E-12 2.02E-14 2.43E-14 6.00E-01 1.72E-01

5. 2.66E?00 7.9641E?00 8.59E?00 5.53E-01 2.79E?01 1.84E?00 4.93E?01 3.89E?01

6. 1.13E-06 3.44E-06 2.46E-01 1.78E-01 6.58E-01 3.38E-01 9.23E-09 1.78E-08

7. 1.15E-04 1.22E-04 3.29E-05 2.43E-05 7.80E-04 3.85E-04 6.92E-02 2.87E-02

Method

?
Function

;

MFO MVO SCA GA

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

1. 3.15E-04 5.99E-04 2.81E-01 1.11E-01 3.55E-02 1.06E-01 1.95E-12 2.01E-11

2. 3.71E?01 2.16E?01 3.96E-01 1.41E-01 3.23E-05 8.57E-05 6.53E-18 5.10E-17

3. 4.42E?03 3.71E?03 4.31E?01 8.97E?00 4.91E?03 3.89E?03 7.70E-10 7.36E-09

4. 6.70E?01 1.06E?01 8.80E-01 2.50E-01 1.87E?01 8.21E?00 9.17E?01 5.67E?01

5. 3.50E?03 3.98E?03 1.18E?02 1.43E?02 7.37E?02 1.98E?03 5.57E?02 4.16E?01

6. 1.66E-04 2.01E-04 3.15E-01 9.98E-02 4.88E?00 9.75E-01 3.15E-01 9.98E-02

7. 3.22E-01 2.93E-01 2.02E-02 7.43E-03 3.88E-02 5.79E-02 6.79E-04 3.29E-03
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• The exploitation ability of LCBO algorithm is very

impressive as can be seen from results of unimodal

functions optimization.

• The exploration ability of LCBO algorithm is great as

can be seen from its superior result than the other

algorithms. In none of the multimodal functions, it

offered unsatisfactory result and was always in top 3 in

about 95% of the benchmark functions.

• In multimodal composite CEC functions, which are

extremely difficult to handle, it gave best result in four

out of six functions.

• LCBO has a very good balance between exploration

and exploitation and thus has a very wide scope for

modification and future work.

Further, the optimization techniques are usually applied

for real-life problem solving and they are expected to be a

Table 6 Result of multimodal benchmark functions

Method

?
Function

;

LCBO SHO GWO PSO

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

8. - 1.25E?04 9.11E-06 - 1.16E?03 2.72E?02 - 6.14E?03 9.32E?02 - 6.01E?03 1.30E?03

9. 0.00E?00 0.00E?00 0.00E?00 0.00E?00 4.34E-01 1.66E?00 4.72E?01 1.03E?01

10. 2.66E-15 1.81E-15 2.48E?00 1.41E?00 1.63E-14 3.14E-15 3.86E-02 2.11E-01

11. 0.00E?00 0.00E?00 0.00E?00 0.00E?00 2.29E-03 5.24E-03 5.50E-03 7.39E-03

12. 2.95E-08 8.18E-08 3.68E-02 1.15E-02 3.93E-02 2.42E-02 1.05E-10 2.06E-10

13. 2.60E-03 4.70E-03 9.29E-01 9.52E-02 4.75E-01 2.38E-01 4.03E-03 5.39E-03

14. 2.40E?00 3.35E?00 9.68E?00 3.29E?00 3.71E?00 3.86E?00 2.77E?00 2.32E?00

15. 3.37E-04 5.39E-05 9.01E-04 1.06E-04 3.66E-03 7.60E-03 9.09E-04 2.38E -04

16. - 1.03E?00 6.71E-16 - 1.06E?01 2.86E-011 - 1.03E?00 7.02E-09 - 1.03E?00 0.00E?00

17. 3.98E-01 1.39E-07 3.97E-01 2.46E-01 3.98E-01 7.00E-07 3.97E-01 9.03E-16

18. 3.00E?00 1.67E-15 3.00E?00 9.05E?00 3.00E?00 7.16E-06 3.00E?00 6.59E-05

19. - 3.86E?00 2.71E-15 - 3.75E?00 4.39E-01 - 3.86E?00 1.57E-03 3.90E?00 3.37E-15

20. - 3.32E?00 1.36E-15 - 1.44E?00 5.47E-01 - 3.27E?00 7.27E-02 - 3.32E?00 2.66E-01

21. - 1.02E?01 1.10E-03 - 2.08E?00 3.80E-01 - 9.65E?00 1.54E?00 - 7.54E?00 2.77E?00

22. - 1.04E?01 1.10E-02 - 1.61E?01 2.04E-04 - 1.04E?01 2.73E-04 - 8.55E?00 3.08E?00

23. - 1.05E?01 3.78E-01 - 1.68E?00 2.64E-01 - 1.05E?01 1.81E-04 - 9.19E?00 2.52E?00

Method

?
Function

;

MFO MVO SCA GA

Average value Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

8. - 8.04E?03 8.80E?02 - 6.92E?03 9.19E?02 - 3.81E?03 2.83E?02 - 5.11E?03 4.37E?02

9. 1.63E??02 3.74E?01 1.01E?02 1.89E?01 2.23E?01 3.25E?01 1.23E-01 4.11E?01

10. 1.60E?01 6.18E?00 1.15E?00 7.87E-01 1.55E?01 8.11E?00 5.31E-11 1.11E-10

11. 5.03E-02 1.74E-01 5.74E-01 1.12E-01 3.01E-01 2.89E-01 3.31E-06 4.23E-05

12. 1.26E?00 1.83E?00 1.27E?00 1.02E?00 5.21E?01 2.47E?02 9.16E-08 4.88E-07

13. 7.24E-01 1.48E?00 6.60E-02 4.33E-02 2.81E?02 8.63E?02 6.39E-02 4.49E-02

14. 2.21E?00 1.80E?00 9.98E-01 9.14E-12 1.26E?00 6.86E-01 4.39E?00 4.41E-02

15. 1.58E-03 3.50E-03 7.15E-03 1.26E-02 1.01E-03 3.75E-04 7.36E-03 2.39E-04

16. - 1.03E?00 0.00E?00 - 1.03E?00 4.74E-08 - 1.03E?00 3.23E-05 - 1.04E?00 4.19E-07

17. 3.98E-01 1.13E-16 3.98E-01 1.15E-07 3.99E-01 7.61E-04 3.98E-01 3.71E-17

18. 3.00E?00 4.25E-15 5.70E?00 1.48E?01 3.00E?00 2.25E-05 3.01E?00 6.33E-07

19. - 3.86E?00 3.16E-15 - 3.86E?00 3.53E-07 - 3.86E?00 2.55E-03 - 3.30E?00 4.37E-10

20. - 3.23E?00 6.65E-02 - 3.23E?00 5.37E-02 - 2.84E?00 3.71E-01 - 2.39E?00 4.37E-01

21. - 6.20E?00 3.52E?00 - 7.38E?00 2.91E?00 - 2.28E?00 1.80E?00 - 5.19E?00 2.34E?00

22. - 7.95E?00 3.20E?00 - 8.50E?00 3.02E?00 - 3.99E?00 1.99E?00 - 2.97E?00 1.37E-02

23. - 7.50E?00 3.68E?00 - 8.41E?00 3.13E?00 - 4.49E?00 1.96E?00 - 3.10E?00 2.37E?00
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strong tool in this aspect also. For the same, two bench-

mark engineering problems have been taken up as descri-

bed in the following section.

5.5 Engineering applications

Engineering problems are generally constraint based, and

the optimization algorithms are required to be modified

accordingly so as to apply in these applications. Different

types of penalty functions are used for handling constraints.

The basic idea behind using these penalty functions is that

when the search agents go out of range or violate given

constraints, then some form of penalty is imposed to the

cost function so that these agents are modified. The fol-

lowing are the popular types of penalty functions.

• Static penalty This type of penalty function is com-

pletely independent of the number of iterations, and this

type of penalty varies with the square of magnitude of

amount of violation.

• Dynamic penalty In this type of penalty function, the

penalty value varies with time and may increase or

decrease with the current iteration value. Usually, it

increases with time.

• Annealing penalty In this type of penalty function, the

penalty coefficients are changed with iteration when-

ever the algorithm gets stuck in the local optima and

only the active constraints are considered in each

iteration that is generally increased with iteration.

• Death penalty Whenever any constraint is violated by

the search agent, it is assigned zero fitness and there is

no need to compute extent of violation of constraints.

In this work, death penalty has been imposed for both

the following design problems. This was done by assigning

zero fitness to the search agents violating the constraints.

5.5.1 Pressure vessel design

In this problem, it is required to reduce the cost of fabri-

cation of the vessel. The mathematical description of the

PVD problem has been taken the same as in (Salimi 2015),

and mathematical expressions are provided in ‘‘Appendix’’

section. There are four constraint conditions apart from

cost function minimization. The population and iteration,

for optimizing PVD, were kept as 30 and 400, respectively.

The performance of LCBO algorithm has been compared

with other algorithms, namely GA, CEPSO, CEDE, PSO,

NIDP and SFS, as reported in (Salimi 2015). Table 9

presents the best results obtained out of 30 trials of LCBO

and compares the results reported in (Salimi 2015). From

Table 9, it can be concluded that LCBO offers the least

cost function and therefore, is the most suitable technique

for presser vessel design. It is able to maintain all the given

constraints while leading to the optimal solution.

In addition to the above, statistical analysis of the 30

cost function values was also performed and the results are

presented in Table 10. From Table 10, one can infer that

Table 7 Result of composite benchmark functions

Method

?
Function

;

LCBO SHO GWO PSO

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

24. 36.6667 10.358 2.30E?02 1.37E?02 8.39E?01 8.42E?01 6.00E?01 8.94E?01

25. 78.9951 28.0369 4.08E?02 9.36E?01 1.48E?02 3.78E?01 2.44E?02 1.73E?02

26. 153.2114 36.5364 3.39E?02 3.14E?01 3.53E?02 5.88E?01 3.39E?02 8.36E?01

27. 710.1354 183.2439 7.26E?02 1.21E?02 4.23E?02 1.14E?02 4.49E?02 1.42E?02

28. 6.1171 1.0227 1.06E?02 1.38E?01 1.36E?02 2.13E?02 2.40E?02 4.25E?02

29. 877.5392 27.6731 5.97E?02 4.98E?00 8.26E?02 1.74E?02 8.22E?02 1.80E?02

Method

?
Function

;

MFO MVO SCA GA

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

24. 1.18E?02 7.40E?01 1.40E?02 1.52E?02 1.20E?02 3.11E?01 5.97E?02 1.34E?02

25. 9.20E?01 1.36E?02 2.50E?02 1.44E?02 1.14E?02 1.84E?00 4.09E?02 2.10E?01

26. 4.19E?02 1.15E?02 4.05E?02 1.67E?02 3.89E?02 5.41E?01 9.30E?02 8.31E?01

27. 3.31E?02 2.09E?01 3.77E?02 1.28E?02 4.31E?02 2.94E?01 4.97E?02 3.24E?01

28. 1.13E?02 9.27E?01 2.45E?02 9.96E?01 1.56E?02 8.30E?01 1.90E?02 5.03E?01

29. 8.92E?02 2.41E?01 8.33E?02 1.68E?02 6.06E?02 1.66E?02 6.65E?02 3.37E?02
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the best, mean and worst values of cost function of LCBO

are the least among the investigated methods. The number

of function evaluations (FE) gives the computation load of

a given method. As seen from Table 10, LCBO makes use

of very small number of FE and therefore is a very light

optimization technique.

5.5.2 Cantilever beam design

CBD is one of the most widely tackled engineering prob-

lems. The mathematical description of the CBD problem

has been the same as in (Wolpert and Macready 1997), and

brief expressions are given in ‘‘Appendix’’ section. In this

problem, one needs to find the optimum values of the five

parameters of the beam within the given bounds. The

designed parametric values should be so as to yield the

minimum cost function while obeying the given constraint.

The population and iteration, for optimizing CBD, were

kept as 30 and 1000, respectively. The performance of

LCBO algorithm has been compared with other algorithms

such as MFO, MMA, GCA_1, GCA_2, CSA and SOS

which is the same as considered in (Mirjalili 2015a).

Table 11 presents the best results obtained of 30 trials of

LCBO and compares them with the results reported in

(Mirjalili 2015a). From Table 11, it can be concluded that

LCBO offers the least cost function and hence is the most

suitable technique for CBD. It is able to maintain the given

constraint while leading to the optimal solution.

Table 8 Scalability results for 200-dimensions

Method

?
Function

;

LCBO ALO PSO SMS

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

1. 0.00E?00 0.00E?00 7.89E-07 1.10E-07 23.799 11.721 1039.213 0.4243

2. 2.7687E-313 0.00E?00 530.82 222.67 237.87 22.432 1832.44 0.0122

3. 0.00E?00 0.00E?00 2331.4 507.18 4693.34 503.57 2034.88 0.3780

4. 1.31E-300 0.00E?00 30.58 1.1446 40.111 0.5879 300.265 0.0023

5. 1.0677 0.2054 167.04 49.746 911.2342 95.245 3863.53 0.5329

6. 1.33E?01 0.4279 7.60E-07 7.39E-08 43.421 14.206 2494.43 0.0003

7. 9.20E-05 1.87E-05 0.050546 0.014407 17.321 4.0133 28.359 1.99E-05

8. - 8.38E?04 0.0681 - 44,426 1442.5 - 18,136 4962.4 - 35,969 0.8765

9. 0.00E?00 0.00E?00 613.89 66.795 748.58 24.301 480.01 0.2365

10. 3.85E-15 1.06E-15 2.3058 0.25542 15.183 0.57627 17.293 0.0974

11. 0.00E?00 0.00E?00 0.007424 0.00651 3241.2 137.49 4801.5 0.8532

12. 9.56E-02 0.0059 5.3982 0.59591 4.07E?05 4.77E?05 1.00E?08 1.99E-05

13. 1.09E-02 0.0032 0.13915 0.22199 1.24E?06 5.82E?05 1.00E?08 1.99E-05

Method

?
Function

;

BA FPA CSA GA

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

Average

value

Standard

deviation

1. 1117.34 20731 55.989 32. 678 3.80E-05 1.85E-05 227.75 186.56

2. 3842.82 468.28 280.6 6.9384 400.10 0.8656 6322.6 1092.7

3. 1090.75 475.06 24,219 8540 12,957 633.75 11,206 3986.1

4. 65.667 2.8293 37.689 2.4572 30.936 1.6877 101.54 2.5321

5. 1410.80 591.07 3150.7 1490.6 332.67 159.88 964.49 748.76

6. 51.2056 12.005 166.99 41.109 8.17E-05 4.55E-05 482.56 278.61

7. 2.4344 0.12756 4.8391 1.5354 0.40131 0.008707 116.56 60.161

8. - 25,632 869.47 - 45,771 3097.8 - 52,600 156.04 - 28,660 1011

9. 723.38 100.96 702.95 69.653 541.58 41.889 1645.8 37.155

10. 18.159 0.067775 17.544 0.16684 17.654 2.982 20.361 0.14256

11. 4937 268.42 180.74 36.084 0.001191 0.001148 3306.8 113.3

12. 1.69E?09 4.28E?08 4.37E?07 3.22E?07 1.00E?10 0.0045 8.14E?09 9.54E?08

13. 2.25E?09 8.85E?08 9.87E?07 3.80E?07 1.00E?10 0.0568 1.38E?10 1.45E?09
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Fig. 3 Convergence plots of

unimodal test functions under

varying dimension
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Fig. 4 Convergence plots of

multimodal test functions under

varying dimension
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Objective Space: 24 Objective Space: 25

Objective Space: 26 Objective Space: 27

Objective Space: 28 Objective Space: 29

Fig. 5 Convergence plots of composite benchmark functions
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Based on the detailed investigations presented in both

the case studies reported above, it can be clearly concluded

that LCBO has performed extremely well.

6 Conclusion

In this work, a life choice-based optimizer (LCBO) has

been proposed and investigated. LCBO essentially makes

use of the fundamental choices humans make in life to sort

priorities and always move ahead to improve and achieve

life objectives. The proposed LCBO algorithm has been

described, and its performance has been assessed for

exploration and exploitation on several benchmark func-

tions. The functions used included varieties such as

unimodal, multimodal and composite CEC-2005 bench-

mark functions. Detailed investigations on scalability and

convergence were conducted and presented. Additionally,

application of the LCBO algorithm on two important

practical engineering problems was also investigated. The

performance comparison between LCBO and other popular

algorithms clearly revealed the superiority of LCBO over

other algorithms in dealing with different optimization

problems.

Overall, based on the presented investigations, it is

concluded that LCBO is a competent algorithm which can

compete with recent algorithms such as Spotted Hyena

Optimizer, Moth Flame Optimizer, The Ant Lion Opti-

mizer and Grey Wolf Optimizer as well as the standard

algorithms like Particle Swarm Optimization and Genetic

Table 9 Comparison of the best solution for pressure vessel design with other algorithms

Method ?
Parameter ;

LCBO GA CEPSO CEDE PSO NIDP SFS

Ts 1.2569 0.8125 0.8125 0.8125 0.8125 1.125 0.7781

Th 0.6187 0.4375 0.4375 0.4375 0.4375 0.625 0.3846

R 65.1248 42.097 42.0913 42.0984 42.0984 48.3807 40.319

L 10.433 176.65 176.74 176.74 176.636 11.744 199.99

g1 - 3.21E-06 - 2.00E-05 - 1.37E-06 - 6.67E-07 - 8.80E-07 - 0.1913 - 1.11E-16

g2 - 7.82E-07 - 0.035891 - 3.59E-04 - 3.58E-02 - 0.0359 - 0.1634 - 1.11E-16

g3 - 3.9067 - 27.88607 - 118.7687 - 3.70512 3.1227 - 75.875 0.00E?00

g4 - 229.5667 - 63.34595 - 63.2535 - 63.3623 - 63.3634 128.255 - 40.00

Cost function 5.32E?03 6059.9463 6061.0777 6059.734 6059.7143 8048.619 5885.3327

Table 10 Statistical analysis of cost function values of various algorithms for pressure vessel design problem

Method ?
Parameter ;

LCBO GA CEPSO CEDE PSO NIDP SFS

Best 5.32E?03 6059.9463 6061.0777 6059.734 6059.7143 8048.619 5885.332

Mean 5.35E?03 6177.2533 6147.1332 6085.2303 6066.0311 NA 5885.332

Worst 5.48E?03 6469.322 6363.8041 6371.0455 NA NA 5885.332

Standard deviation 37.3703 130.9297 86.45 43.013 12.2718 NA 0

FE 12,000 80,000 240,000 27,500 60,000 NA 24,000

Table 11 Comparison of the LCBO solution for cantilever beam design with other algorithms

Parameter ?
Optimization Technique ;

x1 x2 x3 x4 x5 Optimum weight

LCBO 6.02367049 5.30083455 4.49769073 3.4892855 2.1558503 1.339959

MFO 5.9848 5.3167 4.4973 3.5136 2.1616 1.339988

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_1 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_2 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CSA 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

SOS 6.01878 5.30344 4.4958 3.4989 2.1556 1.33996
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Algorithm. For future research work, several development

options are available such as multiobjective form of LCBO

and binary version of the algorithm which are a big pos-

sibility and application of this algorithm for various dif-

ferent fields related to optimization and parameter

determination could be looked into.
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Appendix

The engineering problems used in this paper are pressure

vessel design and cantilever beam design. The mathemat-

ical details of these engineering problems have been pre-

sented. The mathematical equations of constraints, range

space and cost function to be minimized are given below.

Pressure vessel design

The objective of this problem is to minimize the total cost

consisting of material, forming and welding of a cylindrical

vessel as in Fig. 6. Both ends of the vessel are capped, and

the head has a hemispherical shape. There are four

variables in this problem, namely thickness of the shell

(Ts), thickness of the head (Th), inner radius (R) and length

of the cylindrical section without considering the head (L).

The function f Ts; Th;R; Lð Þ is to be minimized subjected to

the following four constraints g1, g2, g3 and g4 and vari-

able ranges:

f Ts; Th;R; Lð Þ ¼ 0:6224 TsRLþ 1:7781 ThR
2

þ 3:1661 T2
s Lþ Th þ 19:84 T2

hL

g1 ¼ �Th þ 0:0193 R� 0

g2 ¼ �Th þ 0:0095 R� 0

g3 ¼ �pR2L� 4

3
pR3 þ 1296000� 0

g4 ¼ L� 240� 0

1 � 0:0625� Ts; Th � 99 � 0:0625 and 10�R; L� 200

Cantilever beam design

The cantilever beam shown in Fig. 7 is made of five ele-

ments, each having a hollow cross section with constant

thickness. There is external force acting at the free end of

the cantilever. The weight of the beam is to be minimized

while assigning an upper limit on the vertical displacement

of the free end. The design variables are the heights (or

widths) xi of the cross section of each element. Another

interesting requirement is the lower bounds on these design

variables are very small and the upper bounds very large so

they do not become active in the problem. The problem is

formulated using classical beam theory as follows:

f xð Þ ¼ 0:0624 � x1 þ x2 þ x3 þ x4 þ x5ð Þ

subjected to the following constraint and range of

variables:

g xð Þ ¼ 61

x31
þ 37

x32
þ 19

x33
þ 7

x34
þ 1

x35
� 1� 0

0:01� x1; x2; x3; x4; x5 � 100

Fig. 6 Pressure vessel design problem

Fig. 7 Cantilever beam design

problem
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