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Abstract
The remarkable increases in life expectancy observed over the last decades have posed a major challenge to pension funds
and annuity providers because of the related systematic longevity risk. This article proposes a variable payout life annuity
where benefits have to follow the observed mortality and the interest rates obtained. This scheme is effective and efficient
for annuity providers, who always have a fund that matches exactly the undertaken commitments to annuitants. On the other
hand, potential reductions in the benefit payments can be felt by annuitants more bearable than those that include a safety
loading. Specifically, the concept of observed survival probabilities is introduced and applied to: (a) translate a demographic
change into the related financial adjustment; (b) decompose a demographic change into two effects, one stemming from the
survival probability observations and the other from life table updates; (c) show that the financial compensation mechanism
should run for single cohorts to avoid creating inequalities for older and smaller cohorts.
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1 Introduction

Over the last few decades, remarkable increases in life
expectancy have been experienced worldwide, particularly
in most industrialized countries. In Europe, for example, life
expectancy at birth has increased, on average for both males
and females, by around 10 years between 1960 and 2015
(EuropeanCommission 2017), that is, an increase in just over
two months per annum, on average, over the last 55 years.
Although the debate on whether there is a natural biologi-
cal limit to longevity is still open (Oeppen and Vaupel 2002;
Christensen et al. 2009; Vaupel 2010), such a historical trend
does not seem to be slowing down. Indeed, the last projec-
tions provided by the European Committee show a further
increase in life expectancy at birth for Europe as a whole, for
both males (7.8 years) and females (6.6 years), from 2016
to 2070. The same pattern is projected for life expectancy at
65, which is expected to increase by roughly 5 years for both
males and females (European Commission 2017). Note that
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such a projected increase depends on the underlying assump-
tions which, generally, do not assume that the reduction in
mortality would continue at the same pace in the long run
(European Commission 2017; Debonneuil et al. 2018) and,
therefore, the gains in life expectancy could prove to have
been underestimated.

Such a phenomenon, albeit a desirable one for individ-
uals, seriously affects annuity providers and pension funds:
the longer an individual lives, the longer is the payment phase
duration, and the larger is the capital required to cover the lia-
bility (see, among many others, Blake and Burrows (2001),
Brown et al. (2001), Hari et al. (2008)). Consider, for exam-
ple, the case of Italy, where for amale aged 65 the age at death
was 77.93 years in 1965, whereas fifty years later, in 2014,
it had become 84.01 years (European Commission 2017),
undergoing an increase of about 1.2 years per decade. Under
the assumption of a real interest rate equal to 2%, the expected
present value of a whole life annuity of 1 per year payable in
arrears for an Italian 65-year-old male would have increased
from 10.49 in 1965 to 14.87 in 2014, that is an increase of
roughly 42%. This means that to finance a life annuity for an
Italian male aged 65 the annuity provider would have needed
42% more capital in 2014 than in 1965.

Therefore, the empirical evidence of longer life expectan-
cies, which entails the risk of underestimating the financial
coverage for annuities and pensions, poses a challenge on
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how annuity providers and pension funds should address the
longevity risk, namely the risk that an individual or a group of
individualswill live a longer life than expected (seeBravo and
de Freitas (2018), Börger (2010), Coughlan et al. (2007), and
alsoDenget al. (2012),Donnelly et al. (2013),MacMinnet al.
(2006), Visco (2006)). Note that part of the literature uses the
term longevity risk to refer to any uncertainty in future devel-
opment of mortality, regardless of whether it leads to longer
or shorter life expectancies than expected lifetime (see Bar-
rieu et al. (2012), Brown et al. (2001), Dus et al. (2005), Hari
et al. (2008), Pitacco (2004)), whereas other authors use the
term mortality risk to refer to “. . . the risk of underestimat-
ing mortality improvements. . . ”, p. 339, Blake and Burrows
(2001).

However, the importance of the longevity risk lies in its
very nature. Indeed, it constitutes a systematic risk because
it affects all individuals in the same way, hence affecting the
whole annuity provider portfolio and cannot be reduced by
increasing the insurance portfolio size. Hence, it is a ‘non-
pooling’ risk (Börger 2010; Visco 2006; Olivieri 2001).

A very extensive literature is available on this topic in
the actuarial framework. A very sound classification of the
main research patterns as well as a comprehensive review
of the scholarly literature is provided by Milevsky (2013),
which also analyzes in detail the specific role of annuities in
the ‘optimal’ retirement portfolio. An exhaustive survey on
the main current developments in longevity-risk modeling
or on some important potential developments for longevity-
riskmanagement from a financial perspective can be found in
Barrieu et al. (2012), Pitacco (2013). Furthermore, Bernhardt
and Donnelly (2018) provide an extremely up-to-date report
on the state of art on this topic.

In the large framework of the literature on this topic, the
issue of sharing longevity risk between the annuity provider
and annuitants has been analyzed by many authors. This is
not such a new concept as can be seen in Ogborn and Wal-
las (1955), which suggested a profit-participation scheme
for deferred annuities. In more recent literature, the risk
sharing group self-annuitizationmechanism is studied in Pig-
gott et al. (2005) and Qiao and Sherris (2013), whereas the
mechanism for linking the annuity benefits to the mortality
that is actually experienced, the so-called mortality-indexed
annuities, is considered in Richter and Weber (2011). Fur-
thermore, an extensive literature refers to the pooled annuity
funds proposed by Stamos (2008), which focused on opti-
mization problems within such pools. Related to this topic,
the authors in Donnelly et al. (2013) focused on the stabil-
ity of income streams in these schemes and compared them
with mortality-linked funds, and successively in Donnelly
et al. (2014) they introduced a new type of pooled annu-
ity funds, referred to as annuity overlay funds, which is
actuarially fair at each instant and where participants can
leave the fund before death without any financial penalty

and have individual investment freedom. In this regard, the
more recent paper of Bräutigam et al. (2017) considers the
annuity overlay funds, where the individual annuity is pro-
portional to the initial wealth invested and the corresponding
mortality rate, and compares them with the equitable income
tontines of Milevsky and Salisbury (2016). This latter is
related to the very interesting research stream that reconsid-
ers the eighteenth-century scheme of tontine annuities and
proposes related arrangements for annuities, Sabin (2010),
Milevsky (2015), Milevsky and Salisbury (2015), and also
Weinert and Gründl (2016), which examines how the policy-
holders can partially invest their retirement wealth in tontines
to supplement the existing pension products, or Chen et al.
(2019), which presents a new retirement product, called tonu-
ity, deriving from the combination between a tontine at early
retirement ages and an annuity at a predetermined later age.

Other participating annuity designs have also been investi-
gated: for example, Luthy et al. (2001) proposed the adaptive
algorithmic annuities, Denuit et al. (2011, 2015) consid-
ered indexing annuity payments to a reference population
in longevity-indexed life annuities, or to the length of the
deferment period in longevity-contingent life annuities; and
Maurer et al. (2013) dealt with so-called variable investment-
linked deferred annuities (VILDAs).

The present paper, in the author’s view, is strictly related
to the above-mentioned research line. It derives from the
original idea proposed in Angrisani and Di Palo (2006), and
from its subsequent development inDiPalo (2016),where the
authors modeled a new scheme for revaluing life annuities
thereby immunizing the longevity risk in an effective and
efficient way. Basically, this scheme considers life annuities,
whose benefit payments are paid in arrears and are financially
revalued, with the demographic changes being compensated
for bymeans of financial revaluation. Unlike the other papers
in the literature, this scheme has proved to be effective and
efficient in dealing with the longevity risk.

Therefore, the proposed scheme could be introduced in the
actuarial practice for two main reasons. Firstly, note that in
this model the interest rate, which is actually returned on the
benefits, makes the balance between the fund and the reserve
when longevity changes have taken into account. Hence, in
the point of view of the insurer, the management of these
products avoids the risk of default as a result of the systematic
re-balance between the fund and the reserve. Secondly, this
rate can act favorably or unfavorably on the revaluation of the
benefit payments if the observed mortality is higher or lower
than that expected, respectively. Thus, the possible positive
compensations on benefits, or also the comparison with life
annuity benefits including a safety loading for longevity risk,
could disarm the little attractive feeling to this product, likely
due to the fact that the systematic longevity risk is borne by
the group of annuitants and no minimum warrantees are pro-
vided. In this regard, note that products such as unit-linked
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annuities have gained a considerable share of themarket even
though the investment risk is not borne by the insurer but by
the policyholder. In comparison with possible adjustments
reflecting the investment experience, the impact of annual
mortality adjustments is relatively modest as, for example,
reported by the Teachers Insurance and Annuity Association
(TIAA), one of the most important life insurance compa-
nies in the USA, which introduced variable annuities where
payments reflected the actual mortality experienced (Piggott
et al. 2005).

The theoretical core of our paper is presented in Sects. 2
and 3. The former defines the concepts of observed, esti-
mated, and evaluated survival probabilities and derives the
related definitions of life expectancy, which are necessary
for modeling the life annuity revaluing scheme under demo-
graphic compensation (LADeC). The latter briefly describes
the LADeC model in the case of a unique homogeneous
cohort, as inAngrisani andDiPalo (2006) andDiPalo (2016),
thus extending the model to the cases of a unique cohort or
more cohorts of individuals who pay varying lump sums and
who are all the same age when they join the scheme (as could
be the case for pension annuities). Section 4 contains the
basic theorem on the effectiveness and efficiency (TEE) of
the LADeC scheme, whereas Sect. 5 provides an illustrative
numerical application of the LADeC model.

2 The structure of the observed, estimated
and evaluated probabilities of
survivorship

In light of Angrisani and Di Palo (2006), the definitions of
observed, estimated, and evaluated survival probabilities for
individuals belonging to a fixed generation are herein intro-
duced.

Let sequence {0, 1, 2, 3 . . . } be the time line, where the
unitary time increment is equal to one year.Here and through-
out the paper, for each h ∈ N, we refer to year h + 1 as the
year beginning in h and ending in h + 1, including h + 1,
i.e., (h, h + 1].

Let us consider a group of individuals aged x0, but not yet
x0 + 1, at 0, referred to as collectivity or cohort 1. Further-
more, the following assumptions are set:

(a) Cohort 1 is a closed group;
(b) Death is the only cause of exit from the group;
(c) A limiting attainable age exists, although its possible

outcome is not known in advance, namely h ∈ N exists
such that there is at least one individual still alive at age
x0 + h, whereas no-one is alive at age x0 + h + 1.

Furthermore, the set of individuals in cohort 1 alive at time
h and aged x0 + h is denoted by Nx0+h , with h ∈ N,

and their number, namely the cardinality of set Nx0+h , is
denoted by |Nx0+h |. Therefore, by assumptions (a–c), cohort
1 is identified by the sequence of sets {Nx0+h} such that
Nx0+h ⊇ Nx0+h+1, where {Nx0+h} �= ∅ with h ≤ h and
{Nx0+h} = ∅ otherwise.

2.1 Observed and estimated survival probabilities

All the following definitions are provided for each h ∈ N

and with specific reference to cohort 1. Hence, for ease of
notation, we do not specify the cohort index.

Definition 1 The one-year observed probability that an indi-
vidual aged x0 + h survives to at least age x0 + h + 1 is
denoted by px0+h and is defined as

px0+h =
{ |Nx0+h+1|

|Nx0+h | if h = 0, 1, . . . , h

0 otherwise.
(1)

Note that this value is known only at the end of year h+1.
At any time m < h + 1, the survival probability for one year
at age x0 + h can only be estimated according to a fixed
life table available at time m and will be denoted by p̃mx0+h .
Since the value of the one-year survival probability depends
on evaluation time m, the following definition is provided.

Definition 2 Theone-year probability that an individual aged
x0 + h survives to at least age x0 + h + 1 evaluated at time
m is denoted by pmx0+h and is defined as

pmx0+h =
{
p̃mx0+h if m ≤ h

px0+h otherwise.

The previous definitions can be extended to the case of a
k year survivorship.

Definition 3 The observed k-year probability that an individ-
ual aged x0 + h survives to at least age x0 + h + k is denoted
by k px0+h and is defined as

k px0+h =
{ |Nx0+h+k |

|Nx0+h | if h + k ≤ h

0 otherwise.

Note that 0 px0+h = 1, 1 px0+h = px0+h , and

k px0+h = px0+h px0+h+1 . . . px0+h+k−1 with k > 1;

we also have

k+n px0+h = k px0+h n px0+h+k with k, n ∈ N.

As for the one-year case, k px0+h is known only starting
from timem = h+k. At any timem such that h < m < h+k,
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the k-year survival probability at age x0 + h is partially
observed, for the number of years between h and m and esti-
mated for the remaining years.Differently, at any timem such
that m ≤ h, the k-year survival probability at age x0 + h is
totally estimated according to a fixed life table available at
m. Therefore, the following definition is provided.

Definition 4 The k-year probability that an individual aged
x0 + h survives to at least age x0 + h + k evaluated at time
m is denoted by k pmx0+h and is defined as

k p
m
x0+h =

⎧⎪⎨
⎪⎩

k p̃mx0+h if m ≤ h

(m−h) px0+h (h+k)−m p̃mx0+m if h< m< h + k

k px0+h if m ≥ h + k.

By means of Definition 4, the definition of the (curtate)
life expectancy at age x0 + h evaluated at m can be set: it
is the number of whole years that a cohort 1 individual aged
x0 + h, according to the evaluation at time m, can expect to
live.

Definition 5 The (curtate) life expectancy for an individual
aged x0 + h evaluated at time m is denoted by emx0+h and is
defined by

emx0+h =
∞∑
k=1

k p
m
x0+h .

Consistently with the adopted notation, ẽmx0+h denotes the
(curtate) life expectancy at age x0 + h estimated at m, given
by

ẽmx0+h =
∞∑
k=1

k p̃
m
x0+h with m ≤ h.

By means of Definition 4, it easy to verify that

emx0+h =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẽmx0+h if m ≤ h∑m−h−1
k=1 k px0+h+

+(m−h) px0+h(1 + ẽmx0+m) if h < m ≤ h∑∞
k=1 k px0 if m > h.

(2)

For example, if h = 0 and m = 1

e1x0 =
∞∑
k=1

k p
1
x0 = 1 p

1
x0 + 2 p

1
x0 + 3 p

1
x0 + ...

= px0 + px0 p̃
1
x0+1 + px0 2 p̃

1
x0+1 + ...

= px0(1 + p̃1x0+1 +2 p̃1x0+1 + ...),

and hence

e1x0 = px0(1 + ẽ1x0+1). (3)

3 Revaluing life annuities under
demographic compensation

In this section, following Angrisani and Di Palo (2006) and
Di Palo (2016), the LADeC scheme is briefly reviewed in the
case of a unique homogeneous cohort. Hence, this scheme is
extended to the cases of: (a) a unique cohort of individuals
paying varying lump sums when they join the scheme; and
(b) multiple cohorts of individuals who all have all the same
age and pay varying lump sums when they join the scheme.

Throughout the paper, it is assumed that: the expected
present value of life annuities is at a zero interest rate, so that
the annuity divisor coincides with the life expectancy value;
and also that the reserves allocated for covering benefits earn
an annually compounded risk-free interest rate.

3.1 The case of a unique homogeneous cohort

Let us consider that all individuals belong to the same cohort,
referred to as cohort 1, and assume that all conditions set
in Sect. 2 are satisfied. In addition, it is assumed that each
individual in cohort 1 pays the same lump sum, M0, to buy
a whole life annual annuity whose benefits are payable in
arrears.
The following notation is used for the model:

Rh+1 is the benefit payment actually paid to a cohort 1
individual alive at the end of year h + 1;
V h is the individual reserve available at h, namely at the
beginning of year h + 1;
rh+1 is the rate of interest to be returned on the reserve
in year h + 1;
eh+1
x0+h is the life expectancy for an individual aged x0 +h
evaluated at h + 1.

The annuity benefit paid at h + 1 is given by

Rh+1 = V h(1 + rh+1)

eh+1
x0+h

h = 0, 1, . . . h − 1. (4)

Note that formula (4) does not hold if eh+1
x0+h = 0, that is

starting from h+1when px0+h is the first observed null value.

In any case, starting from h+1 no individual in cohort 1 is still
alive, and no annuity benefit has to be paid, that is Rh+1 = 0
for h ≥ h. For the detailed description of the mechanism to
achieve (4), refer to Angrisani and Di Palo (2006).

Note that

V h = Rhẽhx0+h h = 0, 1, . . . h − 1, (5)

where ẽhx0+h is the life expectancy at age x0 + h estimated
according to the life table available at h. The recursive
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formula for the benefit payments is obtained by means of
(5) and (4), and it is

Rh+1 = Rh
ẽhx0+h

eh+1
x0+h

(1 + rh+1) h = 0, 1, . . . , h − 1. (6)

Life annuities, whose benefit payments are expressed by (6),
are referred to as LADeC, that is life annuities under demo-
graphic compensation. Their basic feature is that annuity
benefits have to be revalued on a yearly basis either by the
observed change in the life expectancy and by the realized
interest rate, both of them known a posteriori.

With reference to formula (6), the following definitions
are set.

Definition 6 The demographic correction factor for the ben-
efit payment to individuals aged x0+h at time h+1 is denoted
by cdh+1

x0+h and is defined as

cdh+1
x0+h =

ẽhx0+h

eh+1
x0+h

h = 0, 1, . . . h − 1.

Under the assumption of non-negative interest rates, it
follows that the individual in cohort 1 receives a yearly
annuity benefit increase if cdh+1

x0+h > 1, namely if his/her
life expectancy is evaluated, at the end of the year, to be
shorter than the estimated value, based on the life table used
at the beginning of the year. On the contrary, if his/her life
expectancy, evaluated at the end of the year, is longer than
that estimated at the beginning of the year, the cohort 1 indi-
vidual has to bear a benefit decrease deriving from the change
between the estimated and the evaluated values. Clearly, if
no change occurs, no demographic correction is applied to
the annuity payment.

By means of (3), it is easy to verify that

cdh+1
x0+h =

p̃hx0+h

px0+h

(1 + ẽhx0+h+1)

(1 + ẽh+1
x0+h+1)

h = 0, 1, . . . h − 1,

that is the demographic correction factor includes the effects
of a twofold change, the first one stemming from the shift
in survival probability from estimated to observed, and the
second one from the possible updating of survival probabili-
ties estimated at the beginning and at the end of the year. Of
course, if the same life table is used, then

cdh+1
x0+h = p̃hx0+h

px0+h
h = 0, 1, . . . h − 1,

where the reader can identify the definition of the Mortality
Experience Adjustment, provided in Piggott et al. (2005),
which can therefore be considered as a particular case of the
more general definition of the demographic correction factor.

Definition 7 The demographic correction rate of the benefit
payment to individuals aged x0 + h at time h + 1 is denoted
by dh+1

x0+h and is defined as

dh+1
x0+h = cdh+1

x0+h − 1 h = 0, 1, . . . h − 1.

From Definition 7, it follows that

dh+1
x0+h = ẽhx0+h − eh+1

x0+h

eh+1
x0+h

= −Δeh+1
x0+h

eh+1
x0+h

h = 0, 1, . . . h − 1,

namely the demographic correction rate is equal to the rel-
ative change in life expectancy, at the beginning and at the
end of the year, with respect to its value at the end of the
year, in opposite sign. Thismeans that a systematic longevity,
involving an increase in life expectancy, can be rendered as
a negative demographic correction rate, which decreases the
revaluation of the benefit payment for the year considered.
If no change in life tables occurs at the end of the year, then
we have

dh+1
x0+h = p̃hx0+h − ph+1

x0+h

ph+1
x0+h

= −Δph+1
x0+h

ph+1
x0+h

h = 0, 1, . . . h − 1.

Definition 8 The interest rate under the demographic com-
pensation for the benefit payment to individuals aged x0 + h
at time h + 1 is denoted by rh+1

x0+h and is defined as the value
so that

1 + rh+1
x0+h = (1 + dh+1

x0+h)(1 + rh+1) h = 0, 1, . . . h − 1.

In first approximation, we have

rh+1
x0+h ≈ dh+1

x0+h + rh+1 h = 0, 1, . . . h − 1.

Using Definition 7, the LADeC benefit payment can be
written in recursive terms as

Rh+1 = Rh(1 + dh+1
x0+h)(1 + rh+1) h = 0, 1, . . . h − 1,

which is a homogeneous linear difference equation of the
first order, with variable coefficients. With the initial value
calculated at the beginning of the contract, R0, being fixed,
there exists a unique solution given by

Rh+1 = R0
h+1∏
j=1

(1 + d j
x0+ j−1)(1 + r j ).
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Following Angrisani and Di Palo (2006), the LADeC
scheme is proved to be an effective and efficient strategy
to tackle longevity risk; in this regard, to aid the reader, the
theorem on the effectiveness and efficiency (TEE) is recalled
hereinafter.

For each h = 0, 1, . . . h − 1, let us denote by

Rh the total expenditure for annuity benefits actually paid
out to the cohort 1 individuals alive at time h, i.e.,Rh =
|Nx0+h |Rh , with h ≥ 1;
Mh the total fund after the benefit payments at time h ;
Vh the total reserve allocated for the cohort 1 indi-
viduals alive at time h, i.e., Vh = |Nx0+h |V h =
|Nx0+h |Rhẽhx0+h = Rhẽhx0+h .

Theorem 1 (on effectiveness and efficiency) In the LADeC
scheme, where benefit payments are given by (6), the annuity
provider is able to meet its obligations at every expiry date,
namely it is

Mh = Vh h = 0, 1, . . . , h + 1.

Proof See Appendix. 
�

3.2 The case of a unique cohort with varying lump
sums

In this subsection, the LADeC scheme is extended to the case
of a unique cohort whose individuals pay varying initial lump
sums to join the scheme.

To this aim, we consider cohort 1, satisfying the assump-
tions indicated in Sect. 2, and hence constituted by n0 =
|Nx0 | individuals alive at time 0.

Let us assume that each individual in cohort 1 can be
identified with natural number j , with j = 1, 2, . . . n0, and
hence is referred to as the j-th annuitant. Hence, a one-to-one
correspondence between the set of individuals, Nx0 , and the
subset of the natural numbers from 1 to n0 is established at
time0, that is set Nx0 is identifiedwith the subset of thefirstn

0

natural numbers. Because of this correspondence, throughout
the paper, we refer to Nx0 as the set of the natural numbers
identifying the individuals alive at 0. In addition, the one-to-
one correspondence, established at 0, is assumed to be also
preserved at the subsequent dates h = 1, 2, . . . h, namely
each individual in cohort 1 alive at h remains identified by
the same natural number fixed at time 0. This means that set
Nx0+h is the subset of Nx0 , whose elements are the natural
numbers corresponding to the cohort 1 individuals still alive
at time h.

Furthermore, it is assumed that at time 0 the j-th annuitant
pays an initial amount, denoted by M0

j , to join the scheme,

and to receive in return annuity benefit R0
j paid in arrears,

that is

M0
j = R0

j ẽ
0
x0 ∀ j ∈ Nx0 ,

where ẽ0x0 is the life expectancy at age x0 estimated at 0. This
means that at time 0 the LADeC scheme is actuarially fair as
the individual lump sum paid equals the individual reserve,
thus

M0
j = V 0

j ∀ j ∈ Nx0 .

At the end of the first year, that is at h = 1, and at the end of
any other year h + 1, the annuity payment has to be adjusted
for the survival probability updates and the actual return on
the reserve, as established in theLADECscheme. In addition,
the amounts paid by annuitants, who have died during year
h + 1, are assumed to be redistributed to those who are still
alive in parts that are proportional to their own initial pay-in
amount. Hence, the individual fund that is obtained at time
h + 1, before the payment of the annuity benefit, denoted by
ˆ̂Mh+1
j , is given by

ˆ̂Mh+1
j = Mh

Mh |L(h+1)
Mh

j (1 + rh+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1,

(7)

where Mh denotes the total fund at h, namely Mh =∑
j∈Nx0+h

Mh
j , and Mh |L(h+1) denotes the total fund at h

restricted for the only individuals alive at h + 1, namely
Mh |L(h+1) = ∑

j∈Nx0+h+1
Mh

j . The annuity benefit to be
certainly paid to the annuitants alive at h + 1 is given by

Rh+1
j =

ˆ̂Mh+1
j

(1 + ẽh+1
x0+h+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1.

(8)

We show that the annuity benefit calculated with (8) can
be expressed in recursive terms using the definition of the
observed survival probability. Indeed, if we consider average
values

M
h =

∑
j∈Nx0+h

Mh
j

|Nx0+h | M
h |L(h+1) =

∑
j∈Nx0+h+1

Mh
j

|Nx0+h+1| ,

we can easily show that

Mh |L(h+1)

Mh
= px0+h

M
h |L(h+1)

M
h

. (9)
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Therefore, it follows that

ˆ̂Mh+1
j = M

h

M
h |L(h+1)

1

px0+h
Mh

j (1 + rh+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1,

and the annuity benefit certainly paid to the annuitants alive
at h + 1 is given by

Rh+1
j = M

h

M
h |L(h+1)

Mh
j (1 + rh+1)

px0+h(1 + ẽh+1
x0+h+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1.

(10)

By means of (3), it follows that

Rh+1
j = M

h

M
h |L(h+1)

Mh
j (1 + rh+1)

eh+1
x0+h

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1.

(11)

It is easy to verify that if the annuity benefit is calculated
according to (10), or equivalently to (11), then the individual
fund, after the benefit payment, equals the individual reserve,
namely

Mh+1
j = Rh+1

j ẽh+1
x0+h+1 = V h+1

j

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1.
(12)

Therefore, using (12) and Definition (6), the annuity benefit,
in recursive form, is given by

Rh+1
j = M

h

M
h |L(h+1)

Rh
j cd

h+1
x0+h(1 + rh+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1.

(13)

Hence, we find out that the annuity benefit is equal to
that considered in the previous case, see (6), further adjusted

by factor
M

h

M
h |L(h+1)

stemming from the inheritance due to

yearly deaths in cohort 1 in year h + 1. Therefore, the fol-
lowing definition is provided.

Definition 9 The inheritance correction factor to the benefit
payment at time h + 1 is denoted by chh+1 and is defined as

chh+1 = M
h

M
h |L(h+1)

h = 0, 1, . . . , h − 1.

Note that if the deaths observed in year h+1 are related to
individuals who held funds that were, on average, larger than
the average value of the total fund at h, then it is chh+1 > 1,

otherwise the factor of the inheritance correction is lower or
equal to one. Clearly, if all annuitants have paid the same ini-
tial lump sum, then it is chh+1 = 1, and formula (6) results
in being a particular case of (13).
ByDefinition 9, the annuity benefit can be expressed in recur-
sive terms as

Rh+1
j = Rh

j cd
h+1
x0+hch

h+1(1 + rh+1)

∀ j ∈ Nx0+h+1, h = 0, 1, . . . , h − 1,
(14)

namely the annuity benefit to be paid at the end of year h+1
is equal to the annuity benefit paid at the end of year h, dou-
bly adjusted for the demographic and inheritance correction
factors and revalued by the yearly interest rate. Note that both
correction factors are specific for the fixed cohort, and that

cdh+1
x0+hch

h+1 = ẽhx0+h

(1 + ẽh+1
x0+h+1)

Mh

Mh |L(h+1)
,

that is the overall correction can be split into the product
of two factors, the first one exclusively depending on the
life tables adopted, and the second one strictly related to the
observed evolution of the capitals held by participants.

The TEE of the LADeC scheme also holds in the case
considered in this subsection. However, firstly we extend the
LADeC scheme to the more general case of multiple cohorts,
and then we prove that the TEE holds in both the cases con-
sidered.

3.3 The case of multiple cohorts

In this subsection, the LADeC scheme is extended to the case
of more cohorts of annuitants enter the scheme at the same
fixed initial age but at subsequent times and with varying
initial lump sums.

As in previous subsections, cohort 1 is the cohort of indi-
viduals aged x0 who join the scheme at time 0. Let us assume
that each other cohort of individuals aged x0, referred to as
cohort k, with k = 2, 3, . . . , join the scheme at the later times
of h = k − 1. To specify the cohort, index k is added to the
upper left side of the variable’s name.

For individuals in each cohort k, the annuity benefit is
calculated according to rule (14) set in the LADeC scheme,
namely

k Rh+1
j = k Rh

j
kcdh+1

x0+ f (h,k)
kchh+1(1 + rh+1) (15)

where function f (h, k) = (h−k)+1 provides the number of
years passed in the scheme up to h for individuals in cohort
k. If f (h, k) < 0, set k Nh

x0+ f (h,k) is assumed to be empty,
that is cohort k has not yet joined the scheme at time h.

If formula (15) is applied, then the effectiveness and the
efficiency of theLADeCscheme are preserved since the addi-
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tive property holds for the calculation of both the fund and
the reserve. However, even though the application of correc-
tion factors specific for each cohort is a feasible strategy, our
aim is to establish whether an adjustment factor, common for
all cohorts, can be determined so that the effectiveness and
efficiency of the LADeC scheme could be preserved, and,
at the same time, annuity benefits for individuals could be
improved. We show that such a common adjustment factor,
even though it preserves the effectiveness and efficiency, is
not fair because it favors younger and larger cohorts at the
expense of older and smaller cohorts.

In order to determine this factor, the principle of the capi-
tal redistribution for all individuals, belonging to any cohorts
and who die in the year considered, is applied, as for exam-
ple in Piggott et al. (2005) and Qiao and Sherris (2013).
Hence, analogously to what has been proposed in the previ-
ous subsection, the annuity benefit to be certainly paid to an
individual in cohort k alive at h + 1 is given by

k Rh+1
j = Mh

Mh |L(h+1)

kMh
j (1 + rh+1)

(1 + ẽh+1
x0+ f (h+1,k))

∀ j ∈ k Nh+1
x0+ f (h+1,k), h = 0, 1, . . . , k = 1, 2 . . . ,

(16)

where Mh is the total fund at h, namely

Mh =
∑
k

⎛
⎜⎝ ∑

j∈k Nh
x0+ f (h,k)

kMh
j

⎞
⎟⎠

andMh |L(h+1) is the total funds at h for the annuitants alive
at h + 1, namely

Mh |L(h+1) =
∑
k

⎛
⎜⎝ ∑

j∈k Nh+1
x0+ f (h+1,k)

kMh
j

⎞
⎟⎠ .

Ratio Ah+1 = Mh

Mh |L(h+1)
is the total correction factor to

be applied to the individual fund before the benefit payment,
as a result of the inheritance in year h + 1.

Referring to the average values of the capital, it is easy to
show that the reciprocal of Ah+1 is given by

Mh |L(h+1)

Mh
= M

h |L(h+1)

M
h

∑
k

k px0+ f (h,k)
kwh

h = 0, 1, . . . , k = 1, 2 . . .

with kwh = |k Nh
x0+ f (h,k)|∑

k |k Nh
x0+ f (h,k)|

, and
∑

k
kwh = 1. Quantity∑

k
k px0+ f (h,k)

kwh is the weighted average of the observed

survival probabilities with non-negative weights kwh , each
of them equal to the weight that each cohort has over the total
group of annuitants. Clearly, if only one cohort participates in
the LADeC scheme, then the reciprocal of the total correction
factor coincides with that defined in (9).

It follows that the annuity benefit to be certainly paid to a
cohort k individual alive at h + 1 is given by

k Rh+1
j

= M
h

M
h |L(h+1)

1∑
k
k px0+ f (h,k)

kwh

kMh
j (1 + rh+1)

(1 + ẽh+1
x0+ f (h+1,k))

∀ j ∈ k Nh+1
x0+ f (h+1,k), h = 0, 1, . . . , k = 1, 2 . . . .

(17)

Using property (2), the annuity benefit is given by

k Rh+1
j

= M
h

M
h |L(h+1)

k px0+ f (h,k)∑
k
k px0+ f (h,k)

kwh

kMh
j (1 + rh+1)

keh+1
x0+ f (h,k)

∀ j ∈ k Nh+1
x0+ f (h+1,k), h = 0, 1, . . . , k = 1, 2 . . .

Since kMh
j = k Rh

j ẽ
h
x0+ f (h,k) = kV h

j and by means of both
Definition 9, the (total) inheritance correction factor here
extended to the whole of cohorts in the LADeC scheme, and
Definition 6, the demographic correction factor, the benefit
payment can also be expressed in recursive terms as

k Rh+1
j = k Rh

j
kcdh+1

x0+ f (h,k) ch
h+1

k px0+ f (h,k)∑
k
k px0+ f (h,k)

kwh
(1 + rh+1)

∀ j ∈ k Nh+1
x0+ f (h+1,k), h = 0, 1, . . . , k = 1, 2 . . . ,

(18)

where, in comparison with (15), there is a further factor,
k px0+ f (h,k)∑

k
k px0+ f (h,k)

kwh , that expresses the weight of cohort k over

all cohorts, in terms of observed survival probabilities.

Remark 1 When the pooling among cohorts is considered,
that is Ah+1 is used as the (total) fund correction factor, then
the individual benefit payment is constrained to follow the
observed trend in survival probabilities specific for the cohort
considered, see relationship (18). This implies that the cor-
rection to the individual benefit payments for older cohorts
will be lower than that applied to those for younger cohorts.
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Remark 2 It should be noted that

Ah+1 =
∑
k

kMh

Mh |L(h+1)
=

∑
k

kMh

kMh |L(h+1)

kMh |L(h+1)

Mh |L(h+1)

=
∑
k

kchh+1
x0+ f (h,k)

kMh |L(h+1)

Mh |L(h+1)

h = 0, 1, . . . , k = 1, 2 . . .

which is the linear convex combination of the inheritance
correction factors for each cohort. This means that cohorts
with higher capitals, that is the younger and larger ones, con-
tribute more to the weighted average than do cohorts with
low weights, that is the older and smaller ones.

4 The theorem on the effectiveness and
efficiency of the LADeC scheme

The TEE of the LADeC scheme holds in the general case
of multiple cohorts of individuals who join the scheme at
the same initial age at subsequent times and contribute with
varying initial lump sums.

For ease of reading, the notations used throughout the
paper are as follows. For each cohort k = 1, 2, . . ., and for
each time h = 0, 1, . . .

1. k Nh
x0+ f (h,k) denotes the set of the cohort k annuitants

alive at time h, and aged x0 + f (h, k), with f (h, k) =
(h−k)+1; if f (h, k) < 0, set k Nh

x0+ f (h,k) is assumed to
be empty, that is cohort k has not yet joined the scheme
at time h;

2. knh denotes the number of annuitants in cohort k who
are alive at time h and aged x0 + f (h, k), namely the
cardinality of set k Nh

x0+ f (h,k);
3. dependingon cohort k, at timeh there are observedproba-

bilities of survival if and only if h ≥ k; if so, their number
is f (h, k), and it is knh = (knh−1)k px0+ f (h−1,k);

4. kMh , kRh , and kVh denote the total fund, the total expen-
diture, and the total reserve allocated for the cohort k
annuitants, whereas Mh , Rh , and Vh denote the total
fund, the total expenditure, and the total reserve, respec-
tively, namely

Mh =
∑
k

kMh =
∑
k

⎛
⎜⎝ ∑

j∈k Nh
x0+ f (h,k)

kMh
j

⎞
⎟⎠ ,

Rh =
∑
k

kRh =
∑
k

⎛
⎜⎝ ∑

j∈k Nh
x0+ f (h,k)

k Rh
j

⎞
⎟⎠ , (19)

Vh =
∑
k

kVh =
∑
k

⎛
⎜⎝ ∑

j∈k Nh
x0+ f (h,k)

kV h
j

⎞
⎟⎠ .

Since kV h
j = k Rh

j ẽ
h
x0+ f (h,k) for each j ∈ k Nh

x0+ f (h,k),
then it also follows that

Vh =
∑
k

⎛
⎜⎝ ∑

j∈k Nh
x0+ f (h,k)

k Rh
j

⎞
⎟⎠ ẽhx0+ f (h,k)

=
∑
k

kRhẽhx0+ f (h,k).

Theorem 2 In the LADeC scheme, where the benefit pay-
ments are given by (16), the annuity provider is able to meet
its obligations at every expiry date, namely

Mh = Vh h = 0, 1, . . .

Proof At time 0, the theorem is banally satisfied by the actu-
arial fairness principle.
At time h, with h ≥ 1, the total fund held by the annuity
provider after the payment of the annuity benefits can be
written as

Mh = Rh
(Mh−1(1 + rh)

Rh
− 1

)
. (20)

The total expenditure for annuity benefits, given by (19), can
be expressed by means of the annuity benefit formula in the
LADeC scheme, see (16), as

Rh = Ah
∑
k

∑
j∈k Nh

x0+ f (h,k)

kMh−1
j (1 + rh)

1 + ẽhx0+ f (h,k)

,

with Ah = Mh−1

Mh−1|L(h)
. Note that:

(a) divisor 1 + ẽhx0+ f (h,k) depends on time h and cohort k
and not on the single j-th annuitant; and

(b)
∑

j∈k Nh
x0+ f (h,k)

kMh−1
j = kMh−1|L(h).

Set k xh = kMh−1|L(h)

1+ẽhx0+ f (h,k)
; it follows that

Rh = Ah(1 + rh)
∑
k

k xh, (21)
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and substituting (21) in (20), at the denominator, by means
of algebraic calculation, it follows that

Mh = Rh

(
Mh−1|L(h) − ∑

k
k xh∑

k
k xh

)
.

Since

Mh−1|L(h) −
∑
k

k xh

=
∑
k

kMh−1|L(h) −
∑
k

kMh−1|L(h)

1 + ẽhx0+ f (h,k)

=
∑
k

kMh−1|L(h)

1 + ẽhx0+ f (h,k)

ẽhx0+ f (h,k) =
∑
k

k xhẽhx0+ f (h,k),

it follows that

Mh = Rh

(∑
k
k xhẽhx0+ f (h,k)∑

k
k xh

)
(22)

that is the total fund, after the payment of the annuity benefits,
is equal to the total expenditure times the weighted average
of the life expectancies estimated at h at ages x0 + f (h, k),
with weights kxh . Using (21), then it follows that

Mh = Ah(1 + rh)
∑
k

k xhẽhx0+ f (h,k)

=
∑
k

kRhẽhx0+ f (h,k) =
∑
k

kVh = Vh,
(23)

and hence the thesis. 
�
Remark 3 Note that in the LADeC scheme, the fund evo-
lution does not depend on the trend observed in survival
probabilities. Indeed, from (23), it follows that

Mh = Mh−1

Mh−1|L(h)

(1 + rh)
∑
k

kMh−1|L(h)

ẽhx0+ f (h,k)

(1 + ẽhx0+ f (h,k))

= Mh−1(1 + rh)

∑
k
kMh−1|L(h)(1 − 1

1+ẽhx0+ f (h,k)
)∑

k
kMh−1|L(h)

, (24)

where we find out the weighted average of terms (1 −
1

1+ẽhx0+ f (h,k)
) with non-negative weights kMh−1|L(h).

5 Numerical illustration

In this section, to illustrate the proved theory, a numerical
example is provided to show the effectiveness and efficiency
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Fig. 1 Survival functions, estimated and observed in the four scenarios considered, for years 2013, 2020, 2030, 2040
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of the LADeC scheme. The obvious choice is to parallel
the fund, and the related annuity benefits, from the LADeC
scheme with those from a conventional life annuity whose
benefits are revalued annually at the same interest rate.

To perform the simulation, the following choices were
made.

The mortality rates in EUROPOP2013 (European Popu-
lation Projections, base year 2013) for Italy—male popula-
tion, main scenario, see Eurostat (data downloaded 2016)
(2016), were chosen as the mortality basis for the life
annuity contracts. They were selected because the tables
contain information on mortality rates until 2080 and the
underlying assumptions account for future increases in life
expectancy. The set of these life tables on calendar years
z = 2013, 2014, . . . 2080 is used for valuing the estimated
survival probabilities.

In order to simulate trends in the observed survival prob-
abilities, we considered four different scenarios where the
mortality rates, provided by the EUROPOP2013 life tables,
for each calendar year z = 2013, 2014, . . . 2080, are adjusted
by a factor 1 − α, with α = 0,+ 0.10,+ 0.20,− 0.40,
respectively, for the first projected 25 years, and α =
0,+ 0.02,+ 0.04,− 0.08 for the remaining years. Adjusted

mortality rates that were negative or greater than one are
replaced with the original values provided by the tables. The
effects of the adopted adjustments onmortality rates are illus-
trated in Fig. 1, where the estimated survival function and the
observed survival functions in the four scenarios considered
are shown at different calendar years.

All simulations in the four scenarios assume:

1. The first cohort joins the scheme at the beginning of year
2014, which corresponds to time t = 0; hence, the table
life for year 2013 is used to perform the initial calculation
of the annuity benefit;

2. The initial age is x0 = 65, and the maximum age
attainable is 110; these values are set for all cohorts par-
ticipating in the scheme;

3. All cohorts start with the same number of individuals
which is set to 10,000. This choice was made to reduce
variations in the benefit payments at older ages;

4. The interest rate is r = 2 percent per annum, equal to
the average interest rate of Treasury Securities in Italy
in year 2013, see MEF Dipartimento del Tesoro (2018).
Even though the assumption of a constant risk-free rate
of interest can be criticized as being unrealistic, it has no
relevance for the purpose of illustrating our theory.
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Fig. 2 Case a: One cohort, the same lump sum. Fund evolution and benefit payments in the LADeC scheme and in the conventional life annuity,
for the four scenarios considered
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Under the adopted assumptions, the result of the TEE is
illustrated showing the evolution of the fund in the three cases
considered in the previous sections:

(a) One cohort of individuals with the same initial lump
sum, which is chosen to be equal to 400 money units;

(b) One cohort of individuals with different initial lump
sums; these values are chosen from a normal distribution
with a mean of 400 and a standard deviation of 200, in
money units;

(c) Two cohorts of individuals entering the scheme at t = 0
and t = 1, respectively, and paying different starting
lump sums. For both cohorts, these values are outcomes
from a normal distribution with the first cohort having a
mean of 400 and a standard deviation of 200, in money
units, and the second cohort having a mean of 450 and
a standard deviation of 250, in money units.

As proved in the TEE, the fund never falls below the zero
level in the LADeC scheme in all cases considered (see the
upper left box for cases a and b, respectively, in Figs. 2 and
3, and the star line for case c in Fig. 4).

Conversely, in the conventional life annuity scheme, the
fundgoes into default in the case of assumed improvements in

mortality rates in the first three scenarios, whereas it overcap-
italizes in the case of worsening mortality rates in Scenario
4 (see the lower left box for cases a and b, respectively, in
Figs. 2, 3, and Fig. 4 for case c).

In addition, to illustrate the impact of the demographic
compensation on annuity benefits to individuals in the
LADeC scheme, the mean values of the simulated outcomes,
at each age in the four scenarios taken into account, are shown
and compared with those of a conventional re-valuable life
annuity. In the LADeC scheme, versus a fund that is always
sustainable, the benefit payments are negatively adjusted to
take into account the gained improvement inmortality rates in
the first three scenarios, whereas they are positively adjusted
in the fourth scenario (see the upper right box for cases a and
b, respectively, in Figs. 2 and 3, and the boxes related at each
scenario for case c in Fig. 5). Compare these with the bene-
fit payments revalued at the fixed interest rate of 2% in the
conventional annuity, against a non-sustainable fund in the
first three scenarios or an overcapitalized fund in the fourth
scenario (see the right lower box for cases a, b, respectively,
in Figs. 2, 3, Fig. 5 for case c).

In Fig. 5, benefit payments are shown for all the four
scenarios and the two cohorts considered in the cases of a
demographic compensation working for: (a) a single cohort;
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Fig. 3 Case b: One cohort, varying lump sums. Fund evolution and benefit payments in the LADeC scheme and in the conventional life annuity,
in the four scenarios considered
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Fig. 4 Case c: Two cohorts, varying lump sums. Fund evolution in the LADeC scheme (star line) and in the conventional re-valuing life annuity
in the four scenarios considered
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Fig. 5 Case c. Two cohorts, varying lump sums. The benefit payments in the LADeC scheme with and without the pool between the two cohorts

and (b) for pooling cohorts. As proved by (18), the demo-
graphic compensation among pooling cohorts acts favorably
for younger and larger cohorts, namely cohort 2 in our sim-
ulation, at the expense of older and smaller cohorts, namely
cohort 1 in our simulation.

6 Conclusions

This paper has dealt with the problem of designing life
annuities with the aim of providing an effective and effi-
cient strategy to tackle the longevity risk. Indeed, although
the improvement in life expectancy is a desirable process,
influenced by socioeconomic, biological, and environmen-
tal developments, the low but persistent increase in life
expectancy, which is the longevity phenomenon, gives rise to

123



8596 C. Di Palo

the longevity risk, that is the risk borne by annuity providers
and pension funds when an individual or a group lives longer
than expected.

In the framework of a large and authoritative literature
on this topic, the basic idea to link annuity benefits to actual
longevity has already been considered by many authors, who
have designed attractive new arrangements for life annu-
ities. This paper has extended and generalized the LADeC
scheme, as proposed by Angrisani and Di Palo (2006) and
Di Palo (2016), to the case of multiple cohorts. It can be
suggested that this new annuity model can provide a con-
crete hedge against longevity risk for annuity providers and
pension funds since was proved to be effective and efficient.
Indeed, as the result of the TEE, it was found that at each time
recurrence of the life annuity contract the annuity provider
holds a fund that exactly matches its commitments, namely
the reserve allocated for the future benefit payments. On
the other hand, under the LADeC scheme, benefit payments
are constrained to follow the observed trends in survival
probabilities, and hence in life expectancy: they decrease or
increase according to possible falls or rises in mortality rates,
thus compensating for possible deficits suffered by the annu-
ity provider or sharing possible profits earned by the annuity
provider. Hence, from the point of view of the annuitants, this
product could appear less attractive because of the possible
decrease in future benefit payments. However, this aspect can
be cushioned if the LADeC annuity benefits are compared to
those of products that include a safety loading.

In addition, the paper has shown that the strategy for pool-
ing among several cohorts is not a feasible one in terms
of intergenerational fairness. Indeed, the LADeC scheme
proved to provide more favorable benefits for younger or
larger cohorts to the disadvantage of older and smaller
cohorts.
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Appendix

In this appendix, the proof of the TEE is provided in the
case of a unique cohort of annuitants homogeneous in their
features, as in Angrisani and Di Palo (2006).

Proof The proof uses the principle of the finite induction.
Firstly, we prove that at time h = 1, the thesis is true. Indeed,
at time 1, the annuity provider, after having paid out the

annuity benefits to all individuals alive in 1, has a total fund,
M1, given by

M1 = |Nx0 |M0(1 + r1) − |Nx0+1|R1

= |Nx0+1|R1
( |Nx0 |
|Nx0+1|

M0(1 + r1)

R1 − 1
)
,

(25)

where M0 is the initial lump sum paid at the beginning of
the contract such that M0 = V 0 = R0ẽ0x0 . Hence, by (4), it
follows that

M1 = |Nx0+1|R1
( 1

px0
e1x0 − 1

)
. (26)

Using (3) in (26), it is obtained

M1 = |Nx0+1|R1ẽ1x0+1 = V1, (27)

namely the total fund at 1 equals the total reserve at 1, and
the thesis is true.
Secondly, we prove that if Mh = Vh , then Mh+1 = Vh+1.
At time h+1, after having paid out the life annuity payments,
the total fund of the annuity provider, Mh+1, is given by

Mh+1 = Mh(1 + rh+1) − Rh+1

= Rh+1
(Mh(1 + rh+1)

Rh+1 − 1
)
.

As it is Mh = Vh , and being Vh = |Nx0+h |V h , it follows
that

Mh+1 = Rh+1
( |Nx0+h |V h(1 + rh+1)

|Nx0+h+1|Rh+1 − 1
)
,

and by (1) and (4) it is also

Mh+1 = Rh+1
( 1

px0+h
eh+1
x0+h − 1

)
= Rh+1ẽh+1

x0+h+1

= Vh+1.

Therefore, for the finite induction principle it follows that
Mh = Vh for each h ∈ N, and hence for h = 0, 1, . . . , h+1.


�
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