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Abstract
In the past few decades, researchers have extensively investigated the applications of quantum computation and quantum
information to machine learning with remarkable results. This, in turn, has led to the emergence of quantum machine learning
as a separate discipline, whose main goal is to transform standard machine learning algorithms into quantum algorithms
which can be implemented on quantum computers. One further research programme has involved using quantum information
to create new quantum-like algorithms for classical computers (Sergioli et al. in Int J Theor Phys 56(12):3880–3888, 2017;
PLoS ONE 14:e0216224, 2019. https://doi.org/10.1371/journal.pone.0216224; Int J Quantum Inf 16(8):1840011, 2018a;
Soft Comput 22(3):691–705, 2018b). This brief survey summarises and compares both approaches and also outlines the main
motivations behind them.
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1 Introduction

The current exponential growth of data in a wide variety
of contexts has led scientists and researchers to deal with
very large datasets from which to extract all potentially
useful information. But in what cases, and how, can one
confidently assert that a specific dataset containing a cer-
tain (large) amount of data provides more useful information
than another one containing fewer data? In general, one can-
not provide answers to these questions, as, unfortunately, the
size of a dataset does not generally match the size of the
(useful) information which can be extracted from it. What
one may only guess is that a big dataset ‘potentially’ con-
tains much information, but the process of extracting it is not
easy, anyway.

Generally speaking, the process of extraction comes in
two steps: the first step consists in choosing the appropriate
data which are deemed to be useful for retrieving the infor-
mation onewants to extract, whereas the second step consists
in analysing such data as accurately as possible. It is not dif-
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ficult to see that executing both operations ‘manually’ would
require a huge amount of time. (It is absolutely not manipu-
lable in the case of a consistent number of data.) Therefore,
creating languages to train machines to extract information,
initially fromamodest amount of data, and then fromdatasets
of any size, is seen as indispensable. This is precisely what
has motivated the rise of machine learning, which, since its
inception around the 1950s, has been implemented using dif-
ferent methods and strategies (Duda et al. 2000).

In the 1970s, Feynamn (1982) showed that a Turing
machine capable of simulating some particular physical pro-
cess cannot exist without incurring an exponential slowdown
of its performances. Finally, in 1985, Deutsch (1985) created
the first formal model of a quantumTuringmachine. The the-
ory of quantum computing (Nielsen and Chuang 2010) has
since become an autonomous discipline, which has, over the
years, received increasing attention from the scientific com-
munity.

The advantages of quantum computation over classical
computation are well known and widely discussed (Nielsen
and Chuang 2010), but the difficulties that scientists have
encountered during the physical realisation of quantum com-
puters (mostly related to the problem of decoherence) are
alsowell known. However, in recent years, huge progress has
been made in the direction of producing quantum comput-
ers (Castelvecchi 2017), and the prospect of using quantum
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computers in the near future for running everyday calcula-
tions is not far fetched. Arguably, the most evident advantage
of using a quantum computer instead of a classical one is
the resulting speed up of computations. As is well known,
many algorithms, which require exponential or high-degree
polynomial time to be run (or are unsolvable) on classical
computers, can be solved on quantum computers with a dras-
tic reduction in the time complexity.

But let us go back to machine learning, for a moment.
Over the past decades, the sizes of the datasets which sci-
entists have had to deal with have progressively increased,
while the techniques used for extracting information have
been underperforming, mostly because of the large amount
of time required to manipulate huge quantities of data. It
is precisely then that ‘big data science’ has emerged as a
response to this issue (Hilbert and Lopez 2011), at a time
when, moreover, the theory of quantum computation was
already showing that the performances of quantum comput-
ers can be much faster those of classical ones. Therefore, in
the context of machine learning, the merging of big data sci-
ence and quantum computation really stands out as the most
suitable and natural approach to the problems posed by the
manipulation of huge quantities of data.

In turn, such a merging might be carried out, fundamen-
tally, in two ways:

(1) by running standard machine learning algorithms on
quantum computers. In order to do this, it is neces-
sary to translate classical algorithms into the language
of quantum computation (quantum circuits) and after-
wards physically implement the quantum circuits on a
real quantum computer. This procedure is precisely what
is usually called quantum machine learning (QML, Qiu
2007; Lloyd et al. 2013; Schuld and Petruccione 2018;
Schuld et al. 2014a; Wittek 2014).

(2) by creating new algorithms which are not quantum-
computational translations of classical algorithms, but
are, rather, inspired by the very principles of quan-
tum computation and quantum information (e.g. paral-
lelism, entanglement, entropy, etc.). It should be noted
that, although inspired by quantum theory, these algo-
rithms are still coded in the ‘classical’ language and
could also be run on classical computers. We refer to
this second strategy as quantum-like machine learn-
ing or, sometimes, quantum-inspired machine learning
(QiML) (Manju and Nigam 2014; Santucci 2017; San-
tucci and Sergioli 2018; Sergioli et al. 2017, 2018b).

The purpose of this paper is to briefly discuss and compare
QML and QiML, by pointing to fundamental similarities and
differences between the two.

2 Machine learning

Machine learning can be defined as that branch of artificial
intelligence which deals with methods for isolating specific
properties of a given dataset. The idea of creating algorithms
capable of learning by experience was first conceived of by
several scientists (such as Turing, Samuel, Rosenblatt, and
Minsky) at the same time in the 1950s (Wittek 2014) and,
quickly, several approaches and strategies emerged, which
cannot be exhaustively summarised here. However, it is pos-
sible to identify two main different approaches to machine
learning:

• Supervised Machine Learning
In this approach, one deals with sets of ‘labelled objects’,
which means that particular properties of each object
(such as to be a cat or to be a red point) in a dataset are
assigned labels. Moreover, objects are uniquely defined
by (some of their) features (such as the length of the
tail or the position in a plane). Very often, such features
are of numerical nature and, in this case, each object is
simply represented by a labelled vector. The aim of the
supervised approach is to process features of objects and
provide efficient algorithms able to identify all and only
those objects that possess a given—pre-established—
property.

• Unsupervised Machine Learning
In the unsupervised approach, objects in the dataset are
not labelled. The aim of the unsupervised approach is to
identify the common ‘structure’ shared by all objects.

As is clear, the two approaches, respectively, generate two
different kinds of outputs: while the supervised approach
aims to isolate algorithms, the unsupervised approach aims
to isolate structures. Frequently, though, the two approaches
are used in combination to extract more information from
specific datasets. This counts as a third approach, which is
commonly referred to as semi-supervised machine learning,
and one of the goal of this last approach is precisely that of
searching for the best strategy to merge the supervised and
the unsupervised approach to extract useful information.

Several techniques for the supervised approach (Artificial
Neural Network, Bayesian Methods, Kernel Method, K-
Nearest Neighbours, Least-Squares Formulation, Instances
Based, Regression Based, Tree Based Method, etc.) and for
the unsupervised approach (Dimensionality Reduction, K-
Means Clustering, Hierarchical Clustering, etc.) have been
developed, and a detailed description of these (which may
be found in Duda et al. 2000) is beside the scope of this
work. As we will see in the next section, the specific aim
of the quantum-theoretic approach to machine learning is to
find quantum algorithms for the supervised approach; there-
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fore, from now on, we will mostly focus on the supervised
approach.

2.1 Classification

As an example of a specific application of the supervised
approach, we illustrate the following classification process
(Duda et al. 2000).

Suppose we have different sets (sometimes called classes)
of objects which share some property (for instance, ‘to be a
dog’); the aim of a supervised classification process is to
obtain an optimal algorithm able to analyse the features of
each object in the dataset so as to be able to establish what
set the object belongs to (in other terms, so as to be able to
say for instance that ‘object x is a dog’).

For the sake of simplicity (and without loss of general-
ity), let us consider two sets of objects S1 and S2 (e.g. ‘cats’
and ‘dogs’, respectively). Each object is described by pick-
ing some of its pre-established features which, in this case,
we take to be of numerical nature. For instance, each object
(pattern) can be described as a labelled vector, where the
label represents the set (the class) the object belongs to, and
each component of the vector is expressed by the numeri-
cal value of some feature of the object. Formally, a pattern
X can be denoted as: X = (x, l), where x is the vector
x = (x1, . . . , xn) (xi denotes the i th feature of x) and l is
the label that denotes the class the objects belongs to. As an
example, take the very simple case of a binary classification
(i.e. the case when the number of different classes is equal
to two): the dataset is a set of patterns D = {Xi } such that
the label l can just take two values, say l ∈ {+,−}. We can
then denote the classes of patterns with a positive or negative
label as C+ and C−, respectively. Obviously, C+ and C− are
different partitions of D. Following the mentioned strategy,
let us consider the set D randomly partitioned into two sub-
sets: DTr and DTs; the first subset is called training dataset
and the second test dataset. (Generally, the cardinality of DTr

amounts to the 80% of the cardinality of the original dataset
D.) The DTr dataset is, then, used to define what is called a
classifier, i.e. a function which assigns, with the highest pos-
sible level of accuracy, a unique label to each vector x. Once
the classifier has been defined, then it is possible to proceed
to apply it to each vector of the test dataset in order to mea-
sure its level of accuracy. The ratio between the number of
vectors of DTs which have been correctly classified and the
cardinality of DTs is a measure of the accuracy of the classi-
fier. Obviously, the successfulness of this process is strongly
dependent on the lucky/unlucky choice of the partition of
D into the training and the test set, and this motivates the
additional use of a statistical method. In simple terms, this
consists in repeating the same procedure described above
several times, each time making a different random choice
of the training and the test datasets. At the end of the process,

it is possible to obtain an average value of the accuracy of the
classifier defined over all outcomes of all different runnings
of the classifier itself.

However, accuracy is not the only statistical parameter
useful to evaluate the performance of a classifier. All other
relevant parameters (such as true/false positive/negative
rates, balanced accuracy, sensitivity, specificity, and F-
measure) are summarised in the well-known confusion
matrix (Duda et al. 2000) and should all be seen as inte-
gral parts of the standard analysis of a classification context.
Therefore, the bulk of the strategy of the supervised approach
with regard to classification problems consists in finding the
best-performing classifier, that is, a classifier which makes
the fewest possible mistakes.

It should be noted that machine learning is, due to its own
nature, a very empirical kind of study. In particular, as shown
by the celebrated ‘no free lunch theorem’ (Duda et al. 2000),
we should be aware of the fact that there is no classifier which
outperforms all other classifiers in all possible cases, that is,
independently of the nature of the datasets it is applied to and,
in fact, the only way to measure the efficiency of a newly
found classifier, and compare it to that of other classifiers,
involves setting up a large-scale experiment, wherein one
may compare the performance of the new classifier to that of
many other classifiers by applying all of them to as many as
possible different datasets.

For instance, a very intuitive (arguably, the simplest) clas-
sifier within machine learning is the Nearest Mean Classifier
(NMC), which can be described as follows.

Let us consider the case of a binary classification, and let us
choose a partition of DTr into two subsets, DTr+ = DTr∩C+
and DTr− = DTr ∩ C− (i.e. the patterns of the training set
with positive and negative labels, respectively). Now, imple-
menting NMC consists in finding the M+ and M− centroids
of the vectors (expressed by n-coordinates points) belonging
to, respectively, DTr+ and DTr− . Formally, the centroids are
obtained by using the standard n-dimensional Euclidean dis-
tance. The line between these two points is the geometrical
representation of the classifier, and all vectors closer to M+
(i.e. all the points on one side of the line) will be labelled by
l = +, whereas all vectors closer to M− (i.e. all the points
located on the opposite side of the line) will be labelled by
l = −. Now, when this classifier is applied to DTs, obviously
some vectors (points) will come out as correctly classified,
and some others as incorrectly classified (see Fig. 1).

This procedure ultimately allows us to obtain all the quan-
tities included in the confusionmatrix, and after repeating the
same experiment by making alternative, random choices of
DTr and DTs, we will also be able to carry out the required
statistical analysis.

The NMC is very simple and intuitive, but many more
(and, in general, even better performing) classifiers, such as
LinearDiscriminantAnalysis,QuadraticDiscriminantAnal-
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Fig. 1 The original dataset (left)
and the dataset containing only
the objects correctly classified
by using the NMC (right)

ysis, Gradient Boosting Classifier, K-Neighbours Classifier,
Random Forest Classifier, and Logistic Regression, are also
available. In fact, on theWeb, one can easily find large repos-
itories of datasets and (already implemented) classifiers (the
GitHub andWeka applicatives being two relevant examples).

At this stage, and in view of the purposes in the next sec-
tion, it is important to stress that most standard classifiers are
distance-based classifiers, that is, classifiers which involve
using a notion of distance. For instance, the NMC uses the
Euclidean distance, but other definitions of distance, such as
the squared distance, the cosine distance, and the Hamming
distance, may also be used.

As a final remark, it should also be noted that, already at
the level of binary classification, several, alternative methods
for addressing multi-class classification are available. For a
state-of-the-art survey of all these methods, see Duda et al.
(2000).

3 Quantummachine learning

Searching for meaningful interactions among different dis-
ciplines is always a fascinating, but also potentially risky,
undertaking not always crowned by success. However, sev-
eral external applications of quantum theory are viewed today
as being very useful, and we watch ‘quantum approaches’
making their way through the most various contexts and dis-
ciplines, such as psychology, economics, and music (Dalla
Chiara et al. 2015; Freytes and Sergioli 2014; Melkikh et al.
2019). Now, trying to merge quantum information theory
and machine learning seems to be an especially safe, and,
in addition, promising, task for a very simple reason: both
disciplines deal with information.

As briefly argued in the Introduction, quantum informa-
tion and machine learning were independently developed
during the second part of the last century. The continuous
advance in technology has given rise to the practical necessity

of handling an ever-increasing amount of data,which include,
just to make some down-to-earth examples, the photographs
we keep in our PC, the messages we store in our smartphone,
etc. Extracting useful information from such a huge collec-
tion of data has really become a daunting task, which, as is
clear, requires a huge amount of time to be processed.

Now, the natural question arises: may quantum computers
help speed up the processing of all such data by exploiting the
well-knownprinciples of quantumcomputation and quantum
information theory (such as parallel calculations and others)?
As argued before, the need to answer this very natural ques-
tion has recently led to the emergence of quantum machine
learning as a new, autonomous discipline. The term ‘quan-
tum machine learning’ (QML) was first used by Lloyd et al.
(2013); since then, the interest of the scientific community
in this area of research has enormously increased, as shown
by the rapid growth in the number of scientific publications
devoted to it (Lloyd et al. 2014; Lu and Braunstein 2014;
Manju and Nigam 2014; Schuld et al. 2014a, b; Sergioli et al.
2017; Wiebe et al. 2015).

Researchers’ interest in this discipline is not only moti-
vated by the fact that QML is able to successfully combine
two areas which seem to be far apart; in recent years,
also advances in the creation of the first quantum com-
puter (Castelvecchi 2017) have increased the chances of
implementing quantummachine learning processes on ‘real’
quantum computers. [Some toy experiment going in this
direction has already been carried out (Schuld and Petruc-
cione 2018)].

Now, what has emerged is that there is not a unique cor-
rect way tomerge quantum computing andmachine learning:
Aimeur, Brassard, and Gambs at first (Aïmeur et al. 2006),
and Schuld and Petruccione (2018) later, have described
four different approaches, whose features we now proceed
to review.

The first one is the Classical–Classical approach, whereby
quantum-like classical algorithms are implemented on clas-
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sical computers. This approach is interesting not only as a
theory, but has also been shown to impact on actual compu-
tational processes. More on this approach will be discussed
in the next section.

A second approach is the Quantum–Classical one. It con-
sists in employing standardmachine learningmethodswithin
a quantum-computational framework. In simple terms, this
approach aims to find optimal procedures to allow quan-
tum computers to learn from data (Aaronson 2007; Bisio
et al. 2010; Carrasquilla and Melko 2017; Sasaki and Carlini
2002).

Probably, the most explored approach, so far, has been
the Classical–Quantum approach, which is the one rightfully
referred to as QML. This approach features the translation
of classical machine learning processes into the language of
quantum computation. In other words, QML is designed to
replace classical machine learning algorithms with quantum
ones (to be run on quantum computers). As argued in Schuld
and Petruccione (2018), two alternative strategies have been
pursuedbyQMLdevelopers: (i) translating standardmachine
learning algorithms into quantum-computational algorithms
(Lloyd et al. 2013, 2014); (ii) using existing quantum-
theoretic algorithms to solve problems related to machine
learning (Schuld et al. 2014a, b).

Now, the main rationale behind the use and implemen-
tation of QML is to have quantum computers manipulate
classical data. For this, the crucial preliminary steps are: (i)
data pre-processing and (ii) encoding of classical data into
quantum data. This second step, in particular, needs to be
addressed in more detail.

Several ways to encode classical data (e.g. basis encoding,
amplitude encoding, Qsample encoding, dynamic encoding,
Hamiltonian encoding, see Schuld and Petruccione 2018)
to quantum states are discussed in the literature, and each of
these has been used in a specific applicative context. Again, it
is not possible, in general, to establish which of these encod-
ings performs best, as performances are strongly dependent
on the chosen dataset, on the process involved, and other
factors.

For example, in Schuld and Petruccione (2018), the
authors show how to implement a distance classifier in a
supervised scenario by using a quantum computer. The pro-
cedure involves normalising all data through a preliminary
pre-processing and, afterwards, encoding classical data to
qubits. In this specific case, the authors use the so-called
amplitude encoding. (For a detailed description of this,
see Schuld et al. 2017.) In order to translate the square
distance between two vectors in a quantum-computational
setting, the authors use a Hadamard gate and, then, proceed
to perform the required measurement.

This is just one example, which, however, already shows
how to translate a standard machine learning process into
the language of quantum computing. In recent years, sev-

eral sophisticated techniques have been developed which
allow quantum computers to solve lots of different ‘classi-
cal’ machine learning processes (Gambs 2008; Trugenberg
2002; Wiebe et al. 2015; Wittek 2014). The advantages of
using this methodology have already come to the fore, but
the most remarkable results in this area are probably yet to
come.

As for the fourth, and last, approach, the Quantum–
Quantum approach, this features the use of quantum algo-
rithms to manipulate quantum, not classical, data. Therefore,
in this approach, data need not be encoded, as the goal of the
process is precisely to address purely quantum-mechanical
phenomena. Only very tentative results have been attained so
far (Audenaert et al. 2017; Bergou et al. 2004; Chefles 2000;
Guta and Kotlowski 2010; Hayashi et al. 2005; Qiu 2007),
but also this approach, overall, seems to be very promising.

4 Quantum-like machine learning

In the previous section, we have briefly mentioned the
Classical–Classical approach as oneof the fourmainquantum-
theoretic approaches to machine learning. In this approach,
one deals with classical objects and also uses classical com-
puters. So, precisely what is the role of quantum mechanics
in it? In what sense does quantum mechanics play an ‘inspi-
rational’ role for it? Finally, what does one gain by following
this approach?

These questions have recently been addressed by differ-
ent authors, who have formulated several ‘quantum-like’
(or ‘quantum-inspired’) methods for computational intel-
ligence. (For an exhaustive survey of these methods, see
Manju and Nigam 2014.) These methods are generally moti-
vated by the need to deal with problems which have turned
out to be intractable in standard machine learning (Santucci
2017; Santucci and Sergioli 2018; Sergioli et al. 2017, 2019,
2018b).

In very general terms, the Classical–Classical approach
(henceforth, just QiML) features the following four steps: (i)
data pre-processing; (ii) encoding; (iii) creation of quantum-
inspired algorithms; and (iv) decoding. In Sergioli et al.
(2019), the authors have proposed a new approach to QiML
(referred to as NQiML), which is meant to apply to a very
general kind of binary classification problems, and in what
follows we will just be focussing on NQiML.1

1 It should be stressed that quantum-like algorithms implemented by
the NQiML approach are not a mere translation of classical algorithms.
For instance, in Sergioli et al. (2018b, Section 2.1), the author introduces
a quantum-like version of the NMC, which is very different from amere
quantum-theoretic translation of the NMC.
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Let us now describe it in a little more detail. Later, in the
second part of this section, we will compare the QML with
the NQiML approach.

As far as step (i) above is concerned, let us consider the
two sets of patterns X+ ∈ DTr+ and X− ∈ DTr− , where
Xi = (xi , li ). After carrying out a suitable pre-processing,
which is strongly dependent on the cardinality of the dataset,2

in NQiML, one proceeds to encode real vectors to quantum
states [step (ii)]. Generally, in NQiML, the encoding is a map
e:Rn �→ ⊗(n+1)D. As is clear, e maps each n-dimensional
vector v into an (n + 1)-dimensional pure density operator
ρv (which is called density pattern). Let D+ and D− be the
sets of pure density operators originating from, respectively,
X+ and X−. For each class (+ or −), a quantum centroid is
defined as ρ̃+ = n

n+
∑n+

i=1(ρ+)i and ρ̃− = n
n−

∑n−
i=1(ρ−)i ,

where (ρ+)i ∈ D+ and (ρ−)i ∈ D−.
We now proceed to describe step (iii). For this, several

‘quantum-inspired’ algorithms may be formulated. These, in
turn, as already seen in the cases described in the previous
section, will employ the notion of a distance between the
quantum centroids and the density patterns belonging to the
test set. The choice of a notion of distance is made using
quantum information: for example, the trace distance and
Helstrom’s metric are frequently used to this end (Helstrom
1976).

Finally, after applying the classification algorithm, all the
results are decoded (step (iv)) so as to be rendered as real
patterns. The experiment is, then, repeated several times,
by picking up random training and test datasets, and by
following the standard procedure as described in Sect. 2.
Now, the main reason why the resulting algorithm is a real
quantum-like algorithm is the fact that the higher the degree
of distinguishability among the quantum centroids, the more
accurate the chosen classifier.

In some cases, the NQiML approach also employs two
additional pre-processings of the data: rescaling and copy.
Rescaling consists in multiplying all the components (fea-
tures) of each vector by a constant (real) factor, which results
in a complete modification of the formulation of the quantum
centroids (notice that the quantum centroid of the quantum
density patterns obtained by rescaling the original dataset by
a constant parameter does not correspond to the quantum pat-
tern obtained by rescaling the centroid of the original dataset)
which considerably (and positively) affects the whole clas-
sification process.

Copy works as follows: after one has carried out the pro-
cess of encoding vectors to density operators, and before
applying the classification process, one can produce one or
more tensor copies of each quantum pattern. In other words,
through using copy, each density pattern ρ obtained by the

2 For instance, a very usual pre-processing consists in the normalisation
of all the vectors of the dataset.

encoding is replaced by ρ ⊗ ρ ⊗ · · · ⊗ ρ. A suitable use of
both pre-processing procedures can further enhance the level
of accuracy of the classification process.

In conclusion, it should be noted that, unlike the standard
Classical–Classical approach, and because of its very natural
and flexible internal structure, the NQiML approach is, in
principle, applicable to any kind of classification problem.

4.1 A comparison

As discussed in Sect. 3, the main goal of QML is to
replace classical machine learning processes with quantum-
computational ones and implement the latter on quantum
computers, thus obtaining a considerable speed up of the
computation process.

QiML and, in particular, NQiML seem to adopt a classical
approach but, in fact, are also very quantum-like in their
essence, even though they are run on classical computers.
We now proceed to compare features of QML with those of
NQiML in more detail.

4.1.1 The quantum centroid

A few lines above, we claimed that, both in the QML and in
the NQiML approaches, a fundamental initial step consists
in encoding classical (formal) objects (i.e. patterns or, sim-
ply, vectors) into quantum (formal) objects (vectors in the
Hilbert space or density operators). In NQiML, each vector
is encoded to a density operator (the aforementioned density
pattern)which is always, andby construction, a pure quantum
state. By the standard formulation of quantum mechanics,
pure states are those states which convey maximal informa-
tion; for this reason, when we have to encode a real object
all of whose components (features) are known, the choice of
encoding it through a pure state turns out to be quite natural.
However, if one looks at the mathematical formulation of the
quantum centroid provided above, it is easy to see that, in
general, the latter is no longer a pure state. Therefore, the
quantum centroid is not the counterpart of any real object,
which means that it is not the quantum-mechanical transla-
tion of any (originally) classical object, and that its positing
makes sense only within a pure quantum-theoretic scenario.
Proof of this is the fact that the density pattern obtained by
encoding the classical centroid is totally different from the
quantum centroid.

4.1.2 The notion of distance

We have seen that several machine learning methodologies
adopt a suitable notion of distance between vectors. The
standard QML approach is based on the use of quantum
gates which simulate the behaviour of ‘classical’ distances.
Now, NQiML differs from QML also with regard to this. In
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NQiML, one uses the trace distance and Helstrom’s metric,
which are standard quantum information metrics which may
not be viewed as quantum translations of any classical met-
ric; indeed, they make sense only within a quantum scenario
(Helstrom 1976).

4.1.3 The advantages of, respectively, QML and NQiML over
classical machine learning

We have already made it clear that QML runs, in principle,
on quantum computers, which has the natural advantage of
reducing the time complexity of a computation process. On
the other hand, NQiML runs on classical computers. Hence,
the crucial question is: what sort of advantages does the use
of each of the two, separately, have? The answer to this ques-
tion highlights another remarkable difference between QML
andNQiML: QML aims to translate standard algorithms into
quantum-computational algorithms, so it is more advanta-
geous in terms of computational complexity, not in terms of
accuracy.

NQiML behaves very differently: as shown and discussed
in some recent articles (Holik et al. 2017; Santucci 2017;
Santucci and Sergioli 2018; Sergioli et al. 2016, 2017), the
expressive power of quantum formalism applied to machine
learning positively impacts on the accuracy of the classi-
fication process. In particular, in Sergioli et al. (2019), as
a result of a large-scale experiment, we have shown that a
quantum-inspired classification algorithm based on a Hel-
strom’s metric is able to outperform, on average, all the most
used standard classifiers in terms of accuracy. It must also
be stressed that, unlike QML, NQiML is not a mere trans-
lation of classical machine learning algorithms, and this is
precisely why it can be much more accurate than QML. We
think it is important to emphasise this fact, mostly in view

of the potential applications of quantum machine learning,
since, in some cases, scientists will prefer a higher accuracy
to a lower time complexity. This is, for instance, the case of
biomedical research, wherein a variant of NQiML has been
already appliedwith promising results (Sergioli et al. 2018a).

On the other hand, insofar as it runs on classical comput-
ers, in general, NQiML does not bring any benefit in terms of
time complexity and, on the contrary, in some cases, depend-
ing on the complexity of quantum formalism (which also
involves complex numbers, tensor products, etc.), time com-
plexity is even increased by its use.

4.1.4 Invariance under rescaling

In all most usual scenarios for machine learning, a crucial
role is played by the data pre-processing stage. The ‘non-
invariance under rescaling’ feature discussed above further
exemplifies thewayQMLandNQiMLdiffer fromeach other.
As is clear, in QML, rescaling does not affect the accuracy
or the time complexity of the whole classification process.
On the contrary, in NQiML, the mathematical formulation
of the quantum centroid is not invariant under rescaling, and
this clearly affects the classification process. This fact is used
as an asset in the NQiML context: an empirical investiga-
tion of the optimal rescaling factor can help further improve
the accuracy of the classification process. In Sergioli et al.
(2017), we showed that a different choice of rescaling factors
can further increase the accuracy of the classifier.

4.1.5 Copy

We have seen above that copy involves making one or more
tensor copies of each quantum pattern before carrying out the
classification process. As shown in Sergioli et al. (2019), this

Fig. 2 Comparison between
QML and NQiML
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procedure can also bring substantial benefits to the accuracy
of the classification process. Moreover, this is a unique fea-
ture of quantum machine learning, as, in standard machine
learning, making copies of a state would not provide us with
additional information.

We summarise the main differences between QML and
NQiML in Fig. 2.

5 Conclusions

In this paper, we have briefly surveyed the rationale behind
the merging of two different disciplines, that is, quantum
computation and information, on the one hand, and machine
learning, on the other, and the different ways in which such a
merging may be carried out. In particular, we have discussed
and compared the QML approach with the QiML approach
(in fact, a more recent version of QiML, called NQiML).

We have shown that the QML approach mostly consists
in translating standard algorithms in the language of quan-
tum computation. QML is less accurate than NQiML, but
is preferable in terms of computational complexity. On the
other hand, the main advantage of working with NQiML is
that the latter can be very easily implemented on classical
computers. Moreover, in some cases, NQiML may also be
able to bear significantly on the accuracy of a classification
process.

As a promising further development, one could think of
merging the QML and NQiML approaches: for one thing,
such a merging would allow us to translate what is just a
‘quantum-like’ classification process to an actual quantum-
computational process, and, in addition, it would also provide
uswith all advantages that the two approaches have over clas-
sical machine learning, that is, a relevant increase in both the
time complexity and the accuracy during the same computa-
tional process.
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