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Abstract
In this paper, a novel hybrid algorithm is implemented for the system modelling and the optimal management of the micro-

grid (MG)-connected systems with low cost. The increasing number of renewable energy sources and distributed gener-

ators requires new strategies for their operations in order to maintain the energy balance between the renewable sources and

MG. Therefore, an efficient hybrid technique is proposed in the paper. The main objective of the process was the optimum

operation of micro-sources for decreasing the electricity production cost by hourly day-ahead and real-time scheduling.

The proposed hybrid technique is to manage the power flows between the energy sources and the grid. To achieve this

point, demand response and minimum cost of energy are determined. The proposed hybrid technique is the combined

performance of both the gravitational search algorithm (GSA)-based artificial neural network (ANN) and squirrel search

algorithm (SSA), and it is named as SOGSNN. This technique is involved with the mathematical optimization problems

that necessitate more than one fitness function to be optimized simultaneously. By using the inputs of MG-like wind

turbine, photovoltaic array, fuel cell, micro-turbine, diesel generator and battery storage with corresponding cost functions,

the GSA-based ANN learning phase is employed to predict the load demand. SSA clarifies the squirrel in optimizing the

configuration of MG based on the load demand. The proposed hybrid technique is implemented in MATLAB/Simulink

working platform and compared with other solution techniques like ANFASO method. The comparison result reveals that

the superiority of the proposed technique confirms its ability to solve the problem.

Keywords Battery � Cost function � DG � FC � Load demand � MG � MT � PV � SOGSNN � WT

1 Introduction

Electric power distribution systems are considered as the

promising concepts for the next generation (Kaundinya

et al. 2009). Constantly delivering power and extending

nature of demand is the difficult and challenging task for

the developed and developing countries. Usage of power,

exhaustible nature of petroleum derivatives and the

increasing state of environment have made interest in

renewable energy sources (RESs) (Dali et al. 2010;

Ahmed et al. 2008). The RESs like solar and wind energy

are non-depletable and non-polluting, are littler in esti-

mate, and can be installed nearer to load centres and

attainable (Deshmukh and Deshmukh 2008). The growth

of wind and photovoltaic (PV) power generation systems

has exceeded the most optimistic estimation. For con-

sumers, a multi-source hybrid alternative energy system is

higher than a single resource based on the higher relia-

bility and power quality in multi-source hybrid alternative

energy system (Dursun and Kilic 2012; Hajizadeh and

Golkar 2007). The integrated approach makes a hybrid

system more appropriate for isolated communities, for

example remote islands (Bajpai and Dash 2012; Palizban

et al. 2014). In the upcoming generation, the distribution

network will need smart grid ideas (Figueiredo and Mar-

tins 2010). Flexible micro-grids (MGs) are able to work in

all the ecological conditions. For both grid-connected and
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stand-alone applications, controllers are more suitable for

being developed and implemented in inverters (Gu et al.

2014).

Both grid-associated and stand-alone applications are

being created and executed in inverters which could sup-

port the hybrid system operation. Different control tech-

niques guarantee MG systems operation which also

explores the topologies of high-end converter and inverter.

The conventional droop-based, centralized and master–

slave controllers are utilized for the demand of high-

bandwidth communication system (Vasquez et al. 2010;

Prakash and Sinha 2014, Pavan Kumar and Ravikumar

2016; Roy et al. 2016). Execution of weak transient, when

load dynamic is included, results in stability lack and

black-start ability lack which are the drawbacks in the

controllers (Elsied et al. 2016). Different strategies are

executed to overcome the previously mentioned chal-

lenges. The methods are fuzzy-logic-based controller

(Thao and Uchida 2016), hierarchical control scheme (Na-

jafzadeh and Heydari 2012), sliding mode control and

neuro-fuzzy control (Golsorkhi and Lu 2015; Moradi et al.

2017). The previously mentioned systems do not totally

bring about less steady-state tracking error and better

robustness. Furthermore, when large-signal disturbances

happen, these procedures are not worth for constraining the

current, i.e. starting condition of motor or fault occurs in

SC that may trip out unit of DER or harm the components

(Prakash and Sinha 2014). The proposed strategy is obvi-

ously portrayed in detail. The rest of this article is listed as

follows: the recent research work and the background of

the research work are discussed in Sect. 2. The proposed

technique is carefully clarified in Sect. 3. The proposed

technique’s achievement results and the related discussions

are given in Sect. 4, and the paper is concluded in Sect. 5.

2 Recent research works: a brief review

Different research works have already existed in the liter-

ature which depended on the unit commitment with a

renewable system utilizing different methods and different

viewpoints. A portion of the works is reviewed here.

A hybrid methodology for the cost of production mini-

mization, renewable energy resources’ better use and pro-

gramming ideal operation of electrical systems has been

executed by Roy et al. (2018). Here, BFOA (bacterial

foraging optimization algorithm) and ANN (artificial neu-

ral network) techniques were employed in their research

methodology. Moradi et al. (2018) have represented a

stand-alone micro-grid with optimal energy scheduling

under uncertainties of the system. So as to get energy

resource use efficiently, a battery storage system was pre-

sented for the management of energy. In the plan of online

management of power flow, a design and experimental

validation of system energy management were contributed

by Luna et al. (2018). In micro-grid, MOPSO methods for

the management of energy and optimal energy resources’

distribution have been displayed by Aghajani and Ghadimi

(2018). To demonstrate the exhibited strategy adequacy,

the strategy was contrasted by the NSGA-II system.

Sharma et al. (2018) have set up a 2-m point estimate

method (PEM) which is connected to model the load

demand uncertainties, prices in the market and RES

available power in MG to limit the MG’s aggregate oper-

ation cost in the presence of BES by considering MG

uncertainties. To limit the MG operation cost, SIMBO-Q

(swine influenza model-based optimization with quaran-

tine) and WOA (whale optimization algorithm) have been

connected. Indragandhi et al. (2018) have considered

solving the problems such as the price of the system and

QoS (quality of service) with the hybrid micro-grid con-

figuration. These primarily focused on the management of

power flow in AC/DC micro-grid, and its optimization has

been examined using a multi-objective particle swarm

optimization (MOPSO) algorithm. Goroohi Sardou et al.

(2018) have illuminated a robust model of particle swarm

optimization (PSO), and PDIP (primal-dual interior point)

method was introduced for optimal management of micro-

grid energy flow considering PV inverters with VAR

compensation mode. To respond to various necessities, a

hybrid energy storage system (HESS) containing both

high-energy and power density storage battery bank and

ultra-capacitor unit was established by Aktas et al. (2018).

For a hybrid energy storage system (HESS) supplied from

3-phase 4-wire grid-connected photovoltaic (PV) power

system, a new smart energy management algorithm

(SEMA) was presented by Aktas et al. (2019). In an AC

micro-grid, a new convex model predictive control strategy

for dynamic optimal power flow between battery energy

storage systems distributed was elucidated by Thomas

Morstyn et al. (2018). Comprehensive control and power

management system (CAPMS) for PV-battery-based

hybrid micro-grids with both AC and DC buses, for both

grid-connected and islanded modes, was introduced by Yi

et al. (2018).

2.1 Background of the research work

The recent research work shows that the management of

distributed energy with micro-grid is one of the multi-ob-

jective problems in energy management. Because perfect

economic model of energy source of micro-grid units is

needed to describe the operating cost taking into report the

output power generated, the constraints of the multi-ob-

jective optimization problem are transformed into an easier

sub-problem that can be solved and used as the basis of an
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iterative process. From the previous works, it has been

found that the optimum dispatch strategy is affected by

various parameters, such as fuel cost, fuel conversion

efficiency of the generator, operation and maintenance

(O&M) costs, renewable penetration, and battery and

generator capacity. Moreover, various techniques are used

for energy management strategies, such as bacterial for-

aging optimization algorithm (BFOA), artificial neural

network (ANN), whale optimization algorithm (WOA),

swine influenza model-based optimization with quarantine

(SIMBO-Q) and so on. Utilizing BFOA gives better out-

comes; however, it easily suffers from the partial optimism

and it cannot work out the scattering problems. ANN can

model difficult functions and can be imposed on any

application. But it exhibits some limitations like large

complexity of structure. The neural network needs the

training to operate. Then again, WOA has easier imple-

mentation and has a tendency to produce solutions near the

best individual value for every objective. But the limitation

in WOA is that each solution is evaluated only with respect

to one objective. To track the power demand, a renewable

energy system control strategies are mainly designed

optimally to use energy sources. To overcome these chal-

lenges, an incorporated MG system is required for a

promising arrangement. In the literature, not many strate-

gies-based works are displayed to deal with this issue;

these disadvantages and issues have motivated to do this

research work. The proposed method with MG architecture

is illustrated in the accompanying segment 3.

3 Architecture of MG-connected system
with the proposed controller

The proposed controller is actualized to the MG-connected

system architecture which is delineated in Fig. 1. The MG-

connected system contains a collection of radial feeders;

the feeders are associated with the sensitive and non-sen-

sitive loads and PCC (point of common coupling), i.e.

single connection point, power and voltage (P&V)

controller.

The feeders additionally have micro-sources, for

example, wind turbine (WT), photovoltaic (PV), diesel

generator (DG), fuel cell (FC) and micro-turbine (MT)

(Roy and Mandal 2014). Moreover, the micro-sources in

the feeder, for example, DG, MT and FC, need fuel for

generating the power. Other than the WT and PV, there is

no need for any other fuels; the power generation process is

carried out from nature, because these sources are renew-

able energy sources. Static switch is utilized to island the

feeder from the utility if any event occurs. Whenever

unexpected contingences occur, the breaker is utilized to

avoid the system reparation. With the utilization of MGs

and the battery storage, the entire structure is used to solve

the power demand issue. To limit the depth of discharging,

the battery requires a charge controller. It additionally

limits the charging current supply to the battery and pre-

vents the battery from overcharging. The power generated

from all the MGs is utilized to serve the load as well as to

charge the battery. With the use of the WT and PV, the

required load demand is mostly utilized due to the free

generation cost. Whenever it does not fulfil the condition,

the DG, FC and MT are utilized for solving the problem.

Figure 1 demonstrates that the power generated from all

the micro-sources can be directed to serve the load and to

charge the battery (Mohamed and Koivo 2007). The gen-

eral form of these relationships is expressed below:

pi ¼ pi;load þ pi;battery; 8i ¼ 1; 2; . . .;N; ð1Þ

where pi represents the output power from generator unit i,

pi;load represents the power from generator unit i to serve

the load, pi;battery represents the power from generator unit

i to charge the battery, and N is the number of generators.

3.1 Multi-objective function of the proposed
methodology

The selected configuration of the MG should fulfil the load

demand with a minimum fuel cost, operation and mainte-

nance cost. So the DG, FC and MT fuel cost functions are

considered as the multi-objective function. The multi-ob-

jective function is determined as (2):

Fobj ¼ min
4

i¼1
FiðcÞf g; ð2Þ

where Fobj is the multi-objective function to minimize the

fuel cost, operation and maintenance cost of the MG-con-

nected system and Fi cð Þ represents the total fuel cost of

MG models:

F1ðcÞ ¼
XN

i¼1

ai þ bi PDG;i þ ci P
2
DG;i; ð3Þ

where F1ðcÞ is the fuel cost of DG,ai, bi and ci are the fuel

coefficients with i = 1, 2… n, N is the number of genera-

tors, and PDG;i is the output power of the generator.

F2ðcÞ ¼ cNG
X

FC

PFC

gFC
; ð4Þ

where F2ðcÞ is the fuel cost of FC, PFC is the output power

of the FC, gFC is the efficiency of the FC, and cNG is the

natural gas price of the FC. The efficiency of the FC is

gFC = 0.47.
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F3ðcÞ ¼
X

MT

fNGPMT

gMT

; ð5Þ

where F3ðcÞ is the fuel cost of MT, PMT is the output power

of the MT, gMT is the efficiency of the MT, and fNG is the

natural gas price of the MT. The efficiency of the MT is

gMT ¼ 0:47.

F4ðcÞ ¼
XN

i¼1

cifi þ omið Þ þ
XN

i¼1

XM

j¼1

aj efijPj

� �
; ð6Þ

where ci represents the fuel cost of the generating unit in

Rs/L for the diesel and Rs/kW for the natural gas, fi indi-

cates the fuel consumption rate of a generating unit, omi

represents the operation and maintenance cost of a gener-

ating unit, aj is the externality cost of emission type j, N is

the number of generating units,M represents the number of

generating units, and efij is the emission factor of the

generating unit.

Fig. 1 Architecture of MG-connected systems with the proposed controller
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3.2 Load demand prediction using gravitational
search algorithm (GSA)-based artificial
neural network (ANN) technique

The first stage of the proposed hybrid technique is depicted

in this section. The hybrid technique is the joined execution

of both GSA and ANN techniques. The proposed hybrid

technique is utilized here to meet the renewable available

energy power and to keep up the grid power demand from

the grid operator. ANN is a universal method to portray the

processes in a logical form. The motivation beyond the

algorithm is the elementary components called ‘‘neurons’’.

With the corresponding input time intervals, here we are

training the ANN using the target power demand. GSA is

utilized for ANN learning phase (Muralitharan et al. 2018).

Gravitational search algorithm is a recently and a meta-

heuristic optimization algorithm created by Rashedi et al.

(2009). This algorithm, which is motivated by the New-

ton’s famous law of gravity and the law of motion, has a

great potential to be a breakthrough optimization method.

By the gravity force, all these objects are attracted each

other and towards the objects with the heavier masses; this

force causes a global movement of all objects. To predict

the load demand, the GSA-based ANN learning phase is

employed here. And furthermore it compares the local best

and global best solution. The ANN network model is made

out of input layer, hidden layer and output layer. Each layer

is provided with a feedforward connection. The network is

trained with the historical data set which is the previous

year demand data set. The demand variation for every hour

is represented as input data set which trains the network of

ANN. Subsequently, it generates the optimal demand out-

put, according to the load; the demand for each hour is

varied. The GSA is adopted for training the neural network

which is given as below.

3.2.1 Steps of GSA

GSA, as a meta-heuristic algorithm, is generated by the

concepts of gravity. Here, the random generation of posi-

tions of agents is initialized within the given search inter-

val. To solve the issue, GSA is utilized. The best found

solution is adjusted by the local search process, i.e. pattern

search. The GSA operators are implied, and agents move in

the search space at the start of each iteration. For some

iteration, this serial combination is repeated.

Step 1: Initialization

In this step, initialize the population array of particles

with input as time interval and the output as the power

demand.

Step 2: Random Generation

After the initialization process, randomly generate the

initialized input parameters of the system.

randomi ¼

p11d p12d . . . p1nd
p21d p22d . . . p2nd

..

. ..
. ..

. ..
.

pm1d pm2d . . . pmnd

2

6664

3

7775: ð7Þ

Here, pd represents the power demand.

Step 3: Fitness

In order to predict the optimal load demand, the fitness

functions for all agents are done. The fitness is computed

and described as follows:

Error; e ¼ 1

2

X
tD � dDð Þ; ð8Þ

where dD is the desired output demand and tD is the

target output demand.

Step 4: Gravitational Constant Computation

Using the t iteration by ensuing Eq. (11), the gravita-

tional constant g tð Þ is computed.

g tð Þ ¼ g0 exp �a
t

I

h i
; ð9Þ

where g0 represents the gravitational constant chosen

randomly, a is the constant, t is the current era, and

I indicates the total iteration number.

Step 5: Inertial Mass Updation

The inertial mass and the gravitational constant are

updated by subsequent iteration, and it is derived as

follows:

Mgj tð Þ ¼
Fitj tð Þ �W tð Þ
B tð Þ �W tð Þ : ð10Þ

The following equation shows the mass of the jth agent:

mgj tð Þ ¼
mgj tð ÞPn
i¼1 mgj tð Þ

: ð11Þ

Step 6: Total Mass Calculation

The evaluation of the total force acting on the jth agent at

iteration t is given as follows:

Fd
j tð Þ ¼

X
i2kBi6¼j

randi F
d
ji tð Þ; ð12Þ

where randi represents the random number between

interval [0, 1] and the set of first K agents is kB with the

best fitness value and biggest mass. Fd
ji tð Þ is the force

acting on the jth mass from the ith mass.

Step 7: Acceleration and Velocity

Through the law of gravity and law of motion, the

acceleration Ad
j tð Þ at iteration t and the velocity

Vd
j t þ 1ð Þ of the jth agent at next iteration t þ 1 in dth

dimension are updated.

Energy management of the energy storage-based micro-grid-connected system: an SOGSNN… 8485

123



Ad
j tð Þ ¼

Fd
j tð Þ

mgdj tð Þ
ð13Þ

Vd
j t þ 1ð Þ ¼ randj � Vd

j tð Þ þ Ad
j tð Þ: ð14Þ

Step 8: Agent’s Position Updation

Then, the next positions of jth agents in dth dimension of

the agents are updated using the accompanying equation:

Xd
j t þ 1ð Þ ¼ Xd

j tð Þ þ Vd
j t þ 1ð Þ: ð15Þ

Step 9: Termination

Until the iteration achieves their maximum limit, the

steps from 3 to 9 are repeated. At the final iteration, the

best solutions of algorithm are computed as a global

fitness function of the problem and at specified dimen-

sions the position of the corresponding agent as the

global solution of that problem. The best solution is

selected in the termination stage based on the fitness

function. The best value of the optimization process is

represented as ebest and pbestd . The best data set of the

optimization parameters is defined as follows:

e11 e12 � � � e1n

e21 e22 � � � e2n

..

. ..
. ..

. ..
.

em1 em2 � � � emn

2
6664

3
7775 ¼

p11d p12d . . . p1nd
p21d p22d . . . p2nd

..

. ..
. ..

. ..
.

pm1d pm2d . . . pmnd

2
6664

3
7775

ð16Þ

Therefore, the best combination of error signals and

the power demand can be demonstrated.

3.2.2 Steps of ANN

Step 1: The input vector b is applied in the network input

layer. Then, the equation for the input vector b can be

expressed as:

b ¼ b1; b2; b3. . .bnf gt: ð17Þ

The net input for the jth hidden unit is given by

Nh
j ¼

Xn

i¼1

wjibi þ bhj ; ð18Þ

where wji is the weight on the connection from the ith

input unit and bhj is the bias for neuron’s hidden layer for

j ¼ 1; 2. . .h.
Step 2: The output of the neurons in the hidden layer is

written as follows:

Hh
j ¼ f

Xn

i¼1

wjibi þ bhj

 !
: ð19Þ

The net input to the neurons in the output layer becomes

Oo
k ¼

Xmh

j¼1

wjibi þ boj : ð20Þ

Step 3: Finally, the output neurons, i.e. actual output of

the feedforward loop va in the output layer, are equated

as follows:

Ho
k ¼ f

Xnh

j¼1

wjibi þ boj

 !
: ð21Þ

Step 4: The ANN learning stage is performed by

updating the weights and biases using back-propagation

algorithm in order to minimize a mean-squared-error

(MSE) performance index which is given as

e ¼ min
1

2
vo � vtð Þ2

� �
; ð22Þ

where vt is the target output value and va is the actual

output value of ANN.

Step 5: Expressions of updating for the synaptic weights

are given as follows:

wjiðnþ 1Þ ¼ wjiðnÞ � 1
oe

owjiðnÞ

� �
þ nDwjiðnÞ ð23Þ

DwjiðnÞ ¼ wjiðnÞ � wjiðn� 1Þ ð24Þ

where 1 is the learning factor and momentum factor is n.
The controller can be utilized to determine the optimum

configuration of the MG combinations based on the load

demand once the above-mentioned process is completed.

The GSA-based ANN technique is used to predict the

load demand in the MG-connected systems; it can be

briefly described in Sect. 3.3.

3.3 Optimal configuration of MG-connected
system using squirrel search algorithm (SSA)

This section clarifies the squirrel in optimizing the con-

figuration of micro-grid in the light of load demand. For

optimizing the configuration of MG-connected system with

minimum of fuel cost, i.e. MT, FC and DG fuel cost

functions, the multi-objective function is required. In SSA,

load demand is taken as the input and the output is the

combination of MG-connected systems. SSA is a new

simple and powerful nature-inspired searching algorithm

for unconstrained numerical optimization problems created

by Jain et al. (2018). The dynamic foraging behaviour of

southern flying squirrels is simulated using this algorithm.

The efficient way of locomotion of this algorithm is known

as gliding. This algorithm totally clarifies each and every

feature of its food search. The algorithm steps to optimize

the configuration of the MG-connected systems are quickly

clarified as follows.
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3.3.1 Layers of SSA algorithm

Layer 1: Initialization

Initialize the load demand as the input and MG-con-

nected systems such as WT, PV, DG, FC, MT, cost

functions and corresponding generation limits as output.

Layer 2: Random Generation

In this layer, randomly generate the n number of

flying squirrels in a forest and location of ith flying

squirrel can be indicated by a vector. The location of all

flying squirrels can be represented as follows:

fs ¼

fs1;1 fs1;1 � � � � � � fs1;1
fs1;1 fs1;1 � � � � � � fs1;1

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.

fs1;1 fs1;1 � � � � � � fs1;1

2
666664

3
777775
; ð25Þ

where fsi;j indicates the jth dimension of ith flying

squirrel. To allocate the initial location of each flying

squirrel in the forest, a uniform distribution is utilized.

fsi ¼ fsl þ U 0; 1ð Þ � fsu � fslð Þ; ð26Þ

where fsl and fsu are lower and upper bounds, respec-

tively, of ith flying squirrel in jth dimension and U 0; 1ð Þ
is a uniformly distributed random number in the range of

[0, 1].

Layer 3: Fitness Function

Location of each flying squirrel is figured and

estimated through the fitness function. The multi-objec-

tive function is inferred as follows:

Fitness Function ¼ Min cf1; cf2; cf3; cf4f g ð27Þ

where cf1 is the cost function of DG, cf2 is the fuel cell

cost function, cf3 is the MT cost function, and cf4 rep-

resents the operation and maintenance cost.

Layer 4: Sorting Declaration and Random selection

The array is sorted in ascending order after storing the

fitness values of each flying squirrel’s location. The

flying squirrel with minimum fitness value is declared on

the hickory nut tree. Then, the next best flying squirrels

are contemplated to be on the acorn nut trees and are

supposed to move towards hickory nut tree. The

remaining flying squirrels are expected to be on normal

tree. Some squirrels are examined to move towards

hickory nut tree, expecting that they have fulfilled their

daily food requirements. The remaining squirrels will

proceed to acorn nut trees to meet their daily energy

need. By the presence of predators, the foraging

behaviour of flying squirrels is always affected. By

employing the location updating mechanism with

predator presence probability (PDP), the natural beha-

viour is modelled.

Layer 5: New Location Generation

Three situations may occur during the dynamic

foraging of flying squirrels as discussed previously. In

each situation, it is assumed that in the absence of

predator, flying squirrels glide and search efficiently

throughout the forest for their favourite food. Otherwise,

if the predator is present, flying squirrels use small

random walk to search a nearby hiding location. The

mathematical model for the dynamic foraging behaviour

is calculated as follows: it consists of three cases:

Case 1: Flying squirrels on acorn nut trees (fsat) may

move towards hickory nut tree. In this case, new

locations of squirrels can be given as follows:

fstþ1
at ¼ fstat þ dG � gc � fstht � fstat

� �
r1 �PDP

Random Location Otherwise

�
;

ð28Þ

where dG represents the random gliding distance. With

the help of gliding constant gc in the mathematical

model, the balance between exploration and exploita-

tion is achieved, fstht represents the location of flying

squirrel that reached hickory nut tree, t denotes the

current iteration, and r1 is the random number in the

range of ½0; 1�.
Case 2: Flying squirrels on acorn nut trees (fsnt) may

move towards acorn nut trees to fulfil their daily

energy needs. In this case, new locations of squirrels

can be calculated as follows:

fstþ1
nt ¼ fstnt þ dG � gc � fstat � fstnt

� �
r2 �PDP

Random Location Otherwise

�
;

ð29Þ

where r2 is the random number in the range of ½0; 1�.
Case 3: Some squirrels on normal trees and already

utilized acorn nuts may move to hickory nut tree in

order to store hickory nuts at the time of scarcity. In

this case, new locations of squirrels can be determined

as follows:

fstþ1
nt ¼ fstnt þ dG � gc � fstht � fstnt

� �
r3 �PDP

Random Location Otherwise

�
;

ð30Þ

where r3 is the random number in the range of ½0; 1�.
PDP is the predator presence probability, and the value

of PDP in all cases is 0.01.

Layer 6: Aerodynamics of Gliding

By equilibrium gliding in which the sum of lift (L)

and drag (D) force produces a resultant force (R) whose

magnitude is equal and opposite to the direction of flying
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squirrel’s weight, gliding mechanism of flying squirrels

is explained. The approximated gliding distance dG is

derived as follows:

dG ¼ hG

tan/

� �
; ð31Þ

where hG ¼ 8 m which is the loss in height occurred

after gliding.

Layer 7: Seasonal Monitoring Condition

In SSA, seasonal monitoring condition prevents it

from being in local optimal solutions. The following

equation shows the seasonal monitoring condition, i.e.

sc\smin.

smin ¼
10E�6

365ð Þ
t

tm=2:5

; ð32Þ

where sc is the seasonal constant, smin represents the

minimum value of seasonal constant, and t and tm are the

current and maximum iteration values, respectively. The

value smin affects the exploration and exploitation

capabilities. The larger value of smin promotes explo-

ration, and the lower value of smin enhances the

exploitation capability. Due to these actions, the gliding

constant is utilized. If seasonal monitoring condition is

found true, relocation of flying squirrels can be updated.

Layer 8: Random Relocation

The relocation of such flying squirrels is modelled

through the following equation:

fsnewnt ¼ fsL þ Le‘vyðnÞ � fsu � fslð Þ ð33Þ

where Levy distribution encourages better and efficient

search space exploration.

Layer 9: Stopping Criterion

Check the stopping criterion is satisfied. If it is not

satisfied go to step 5, else terminate the search.

Therefore, the system is able to provide the optimal

MG configuration with minimum fuel cost, operation and

maintenance cost once the above process is completed.

The proposed hybrid technique structure is depicted in

Fig. 2. Section 4 explains that the proposed method is

implemented in MATLAB/Simulink platform, and the

obtained results are compared with the existing

techniques.

4 Results and discussion

In this paper, a hybrid technique is presented for mini-

mizing the total generation cost and maximizing the power.

To meet the system load demand, PV, WT and battery

sources have been utilized. From the proposed technique,

the increased demand has been met using the optimal

configuration of MG sources. The GSA-based ANN tech-

nique is utilized to predict the load demand in the MG-

connected systems. SSA illuminates the squirrel in opti-

mizing the configuration of micro-grid based on the load

demand. This technique is actualized in MATLAB/Simu-

link, and their performance level is tested with other

solution techniques. The parameters of energy resources

are given in Table 1.

4.1 Analysis of power generation

The MG’s combination of optimal configuration and the

corresponding total cost using existing techniques is shown

in Table 2. Figure 3 shows the analysis of generated power

by battery, MT, PV and WT.

As it is observed from Fig. 3a during the initial period,

in the time period 1–12 h, the battery is charged. In the

discharge mode of battery, at the time moment 12–16 h,

the battery power is utilized. In any case, MT is utilized for

the power needed for charging the battery. Figure 3b

demonstrates that the generated power of MT is analysed in

24 h. It reaches the maximum power of 12 kW in the

specific time moment of t = 8–17 h. Figure 3c demon-

strates that the generated power of PV is executed in 24 h.

The PV has achieved the maximum power of 2.5 kW in the

time moment of t = 1–7 h. In the peak hours at the time

moment t = 8–17 h, it is raised up to 5.8 kW. After the

moment of time, t = 18–24 h, the power produced by PV

decreased up to 0.65 kW. Figure 3d shows that the pene-

trated power of WT is examined in 24 h. In the time

moment t = 1–7 h while analysing the wind power, the

generated power is decreased from 3.5 to 2.5 kW. At the

time moment t = 8–17 h, the power is increased to 7.6 kW.

Again, the power decreased in the time moment of

t = 18–24 h; the power value varies from 5.2 to 1.8 kW.

Figure 4 clearly shows the analysis of power generation

for various sources. Figure 4a illustrates that during the

initial period, in the time period 1–12 h, the battery is

charged. In the discharge mode of battery, at the moment of

time 12–16 h, the battery power is utilized. However, MT

is utilized for the power required for charging the battery.

Figure 4b demonstrates that the generated power of MT is

analysed in 24 h. It reaches the maximum power of 12 kW

in the particular time moment of t = 8–17 h. Figure 4c

shows that the generated power of PV is executed in 24 h.

The PV has attained the maximum power of 2.5 kW in the

time moment of t = 1–7 h. In the peak hours at the time

moment t = 8–17 h, it is raised up to 5.8 kW. After the

moment of time, t = 18–24 h, the power generated by PV

decreased up to 0.65 kW. Figure 4d displays that the

penetrated power of WT is analysed in 24 h. In the time

moment t = 1–7 h while analysing the wind power, the

generated power is decreased from 3.5 to 2.5 kW. At the
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time moment t = 8–17 h, the power is increased to 7.6 kW.

Again, the power reduced in the time moment of

t = 18–24 h; the power value varies from 5.2 to 1.8 kW.

The overall analysis of power generated from the sources

utilizing the proposed technique is more proficient than that

the utilizing the ANFASO method.

4.2 Analysis of SOC

In Fig. 5, the analysis of state of charge (SOC) using the

proposed and ANFASO methods is discussed. During the

normal operation, the system can meet all the power

demands by the load the proposed algorithm MT is assis-

ted. If the MG is not able to completely supply the load

demand, battery is fully discharged. During the time instant

18–24 h, battery is operated in discharging mode reaching

SOC. At the specific time intervals, the battery operates in

the charging mode. By proper selection of MT, battery is

operated in the charging mode with the proposed algorithm

and the SOC is reached about 85%.

4.3 Analysis of cost

The cost of operation is identified with the renewable

energy sources, and the battery under charging and dis-

charging mode is watched for 24 h keeping in mind the end

goal to deal with the MG-connected system. Figure 6

shows the comparison analysis of the cost of the proposed

technique with existing techniques. It clearly elucidates

that the proposed method gives low cost when compared

with existing techniques. In all the current methods, the

aggregate cost of the MG-connected system is high which

is seen from the figure. In charging mode, the BS is worked

in more often than not and in the time scope of 1 to 12 h it

Fig. 2 Flow chart of GSA-ANN

and SSA
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is primarily focused. BS is generally discharging, amid

whatever is left of the period. On comparing with ABC,

BFA and ANFASO strategy, the aggregate cost is abun-

dantly lessened on using the proposed approach.

In order to evaluate the effectiveness of the proposed

method, the elapsed time is evaluated and compared with

ANFASO which is displayed in Table 3. It is seen from the

table that the proposed techniques achieve less computa-

tion time when compared with ANFASO. In order to show

the capability of the proposed approach, the MCP of the

proposed technique is analysed with ANFASO technique.

The mean, median and standard deviation of the proposed

technique are 1.991, 1.998 and 0.735, respectively, which

are lower than those of the ANFASO technique displayed

in Table 4. Figure 6 shows the comparison analysis of the

cost of the proposed technique with existing techniques. It

clearly elucidates that the proposed method gives low cost

when compared with existing techniques. The proposed

method adequacy can be computed in the light of the

estimation of cost accuracy percentage (ECAP), and the

condition is detailed as takes after (27):

ECAP ¼ best-worst

best
� 100 ð27Þ

In the light of the condition (27), the percentage accu-

racy of the proposed and various techniques is resolved.

Table 5 demonstrates the execution comparison of the

proposed technique with various techniques.

From Table 5, we have observed that the percentage

accuracy of the different techniques has low ECAP. Be that

as it may, the proposed technique is high and more optimal

than the different techniques. The ECAP estimation of the

proposed technique is 10.25%. A different existing tech-

nique, for example, ABC, BFO, ANFASO and the com-

parable load demand, is connected, and the total cost is

resolved. The proposed method’s viability has been

demonstrated in the comparative results. Comparison

analysis of SoC using various methods is shown in Table 6.

The percentage of SoC of the proposed technique is higher

than that of the existing techniques. The SoC of the pro-

posed technique is 82%, ABC is 78%, BFO is 70% and

ANFASO is 63%.

Figure 7 shows the percentage deviation of the proposed

technique with ABC, with BFO and with ANFASO

methods. Analysis of power generated by battery, MT, PV

and WT is analysed in the proposed technique as well as in

the ANFASO method. In the proposed method, the maxi-

mum power produced by battery, MT, PV and WT is

8 kW, 9.5 kW, 16 kW and 5 kW. The SOC of the pro-

posed technique reaches about 80%. In ANFASO method,

the power generated by battery, MT, PV and WT is

7.5 kW, 9 kW, 15 kW and 4.5 kW, respectively. It clearly

shows that the proposed method gives maximum power

and the total generation cost is also minimum and more

efficient. Figure 8 depicts the fitness comparison of the

proposed versus existing techniques. The proposed tech-

nique converges at the iteration count of 20, and it gives the

fitness value from 3 to 0.3. ANFASO converges at the

iteration count of 24 and gives the fitness value from 3.4 to

0.4. BFO converges at the iteration count of 36 and gives

the fitness value from 3.5 to 0.5. ABC converges at the

iteration count of 38 and gives the fitness value from 4.2 to

0.6. The computation time and total generation cost are

evaluated and compared with the ABC, BFO and ANFASO

methods to evaluate the proposed method effectiveness.

Finally, it clearly shows that the proposed method gives

better results when compared to ANFASO method.

5 Conclusion

In this paper, a hybrid technique is introduced for system

modelling and management of MG-connected systems with

low cost. The proposed hybrid approach is based on the

Table 1 Parameters of energy resources

Resources Description Ranges

WT Wind speed 5.7

Cut-in speed 3.5

Cut-out speed 18

Rated speed 17.5

PV Irradiance 1000

Temperature 25

Cell temperature 55

Battery System voltage 200

Capacity 6.5

SOC max 100

DG Di 0.4333

Ei 0.2333

Fi 0.0074

FC Cost 0.00175

Table 2 Optimal MG combination selection using different

techniques

Load demand (KW) 3.5 5.5 8.3 10.8 13.5

FC (KW) 0.00 1.50 4.00 4.00 4.00

MT (KW) 3.50 4.00 4.00 4.00 4.00

WT (KW) 0.00 0.00 0.30 2.80 5.50

Total cost ($/h)

ABC 0.72 1.21 2.49 3.25 4.16

BFO 0.63 1.12 2.39 3.04 3.95

ANFASO 0.55 1.10 1.91 2.50 3.70

Proposed 0.31 1.01 1.86 2.12 3.49
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Fig. 3 Analysis of power generated by a battery, b MT, c PV, d WT using the proposed method

Fig. 4 Analysis of power generated by a battery, b MT, c PV (d) WT using the proposed and ANFASO methods
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combination of GSA-ANN and SSA. The objective of the

proposed approach is to minimize the fuel cost, to reduce

the emission and operating and maintenance costs and also

to better utilize the renewable energy resources. The opti-

mization problem includes a variety of energy sources that

are likely to be found in the micro-grid, such as PV system,

MT system, WT system and battery storage. Constraint

functions are added to the optimization problem to reflect

some of the additional considerations often found in a

small-scale generation system. From the results obtained, it

is clear that from the optimal power operating costs and

utilization of energy sources for the MG the optimization

works very well and can give the optimal power strategy to

the generators after taking into account the objective

functions. The proposed hybrid technique is executed in

MATLAB/Simulink working platform, and their perfor-

mance level is tested. The performance of the proposed

hybrid technique is compared with that of other solution

techniques like ANFASO method. The comparison result

reveals the superiority of the proposed technique and

confirms its potential to solve the problem. The proposed

method has less CPU time when compared with other

techniques like ANFASO method. The comparative results

prove that the proposed method is highly competent over

Fig. 5 Analysis of SOC (%) using the proposed and ANFASO

methods

Fig. 6 Cost analysis of the proposed with existing techniques a ABC–proposed, b BFO–proposed, c ANFASO–proposed

Table 3 Comparison analysis of elapsed time of the proposed tech-

nique with ANFASO technique

Solution techniques Time in seconds

ABC 37.11

BFO (Su et al. 2014) 36.96

ANFASO 38.08

Proposed 36.47
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the other existing techniques. The future scope of hybrid

power generation system is to develop huge model by

producing the power in MW or GW to fulfil the electricity

requirement of an urban and rural areas for a day. We can

generate the large amount of power from the renewable

energy sources into future by using the proper location.

Many locations or sites are available in India where a large

potential of wind and solar energy is available. From this

study, we can design the hybrid power system which fulfils

the load requirement of the consumer in rural areas where

electricity is not in approach, i.e. hilly area of the world.

Also, we can reduce the pollution and fulfil the power

demand into the future. The future research includes

implementing more tests on real-time basis. More intelli-

gent instrumentation may be utilized to get optimized

system in terms of efficiency and cost.
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