
METHODOLOGIES AND APPLICATION

Evidential model for intuitionistic fuzzy multi-attribute group decision
making

Qiang Fu1 • Yafei Song1 • Cheng-li Fan1 • Lei Lei1 • Xiaodan Wang1

Published online: 28 September 2019
� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Due to the uncertainty existing in real-world, intuitionistic fuzzy sets (IFSs) are used to model uncertain information in

multi-attribute group decision making (MAGDM). The intuitionistic fuzzy MAGDM problems have gained great popu-

larity recently. But, most of the current methods depend on various aggregation operators that may provide unreasonable

collective intuitionistic fuzzy values of alternatives to be ranked. To solve such problem, a new method is developed based

on evidence theory and IFSs. First, the mathematical relation between IFSs and evidence theory is analyzed, followed by

the transformation from intuitionistic fuzzy evaluation information to basic belief assignment in evidence theory. Then, a

new intuitionistic fuzzy weighted evidential (IFWE) average operator is introduced based on the operation of evidence

discounting and evidence combination rule. We also develop a possibility-based ranking method for intuitionistic fuzzy

values (IFVs) to obtain the linear ordering of IFVs. The proposed evidential model uses the IFWE average operator to

aggregate the decision matrix and the attribute weight that is given by each decision maker, based on which each decision

maker’s aggregated decision matrix can be obtained. Based on the decision matrices of all decision makers and the weights

of the decision makers, the aggregated intuitionistic fuzzy value of each alternative can be obtained by the IFWE average

operator. Finally, the preference order of all alternatives can be obtained by the possibility-based ranking method.

Comparative analysis based on several application examples of MAGDM demonstrates that the proposed method can

overcome the drawbacks of existing methods for MAGDM in intuitionistic fuzzy environments.

Keywords Intuitionistic fuzzy sets � Evidence theory � Multi-attribute group decision making � Intuitionistic fuzzy

aggregation operator

1 Introduction

Based on fuzzy set theory initiated by Zadeh (1965),

Atanassov (1986, 1999) presented the concept of intu-

itionistic fuzzy sets (IFSs) for a more meticulous depiction

on uncertainty. For a fuzzy set, its membership and non-

membership grades are summed to one. Nevertheless, for

an IFS, such constraint is relaxed and the hesitancy grade is

introduced to measure the gap between 1 and the sum of

membership and non-membership grades. Vague sets,

which were proposed by Gau and Buehrer (1993), were

regarded as another extension of fuzzy sets. Bustince and

Burillo (1996) have pointed out that the concept of IFSs

and that of vague sets coincide with each other. Due to its

agility and flexibility in describing uncertainty and

vagueness, intuitionistic fuzzy set theory has been broadly

applied in lots of fields, such as uncertainty reasoning (Fan

et al. 2018b; Song et al. 2018), pattern recognition (Song

et al. 2015, 2019) and decision making in uncertain envi-

ronments (Fan et al. 2018a; Memari et al. 2019).

As an important research area of decision making,

multi-attribute group decision making (MAGDM) prob-

lems have attracted much interest. Since information from

the real world is usually incomplete, the attributes in

decision making problems may not be expressed by crisp

numbers. It is more suitable to represent some of them in

an uncertain way. Fuzzy sets and their extensions including

intuitionistic fuzzy sets, valued–valued fuzzy sets and

interval-valued intuitionistic fuzzy sets have been used to
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model uncertainty in MAGDM problems (Liu and Wang

2018a, b; Liu 2014, 2018; Liu et al. 2018; Liu and Zhang

2018; Liu and Tang 2018; Liu and Liu 2018). Hence,

increasing attention has been focused on the problem of

multi-attribute group decision making in intuitionistic

fuzzy environments.

In recent years, intuitionistic fuzzy sets have been

applied to the problem of MAGDM under uncertainty.

Some methods (Boran 2009; Chai and Liu 2010; Chen

et al. 2015, 2016; Li 2009; Ouyang and Pedrycz 2016;

Szmidt and Kacprzyk 2002; Tan et al. 2009; Wang and

Song 2018; Wang et al. 2009; Wei 2010; Wen 2010; Xu

2007a, 2010, 2011; Xu and Yager 2008; Yue 2014; Zeng

and Su 2011) have been proposed for uncertain multi-at-

tribute group decision making based on intuitionistic fuzzy

sets. Based on the intuitionistic fuzzy Technique for Order

Performance by Similarity to an Ideal Solution (TOPSIS)

method, a fuzzy MAGDM method was presented by Boran

(2009) for solving supplier selection problems. Chai and

Liu (2010) proposed an approach for MAGDM to address

the problem of selecting supply chain partners in an envi-

ronment with uncertainty. In Chai and Liu (2010), the

Intuitionistic Fuzzy Superiority and Inferiority Ranking

(IF-SIR) method is applied for decision making. Using

intuitionistic fuzzy sets to express ratings of alternatives

with respect to attributes and weights of attributes, Li

(2009) proposed a methodology for solving MAGDM

problems, where the fractional programming model was

utilized to rank all alternatives. Szmidt and Kacprzyk

(2002) developed solution concepts that are related to

group decision making problems under intuitionistic (in-

dividual and social) fuzzy preference relations. An intu-

itionistic fuzzy geometric aggregation (IFGA) operator was

defined by Tan et al. (2009) on the basis of a fuzzy mea-

sure. The IFGA operator was used to aggregate decision

matrices, which are represented by intuitionistic fuzzy

values, in fuzzy group decision making problems. On the

basis of the projection method, Wang and Song (2018)

presented an approach for MAGDM in intuitionistic fuzzy

environments. Wei (2010) proposed an induced intuition-

istic fuzzy ordered weighted geometric operator for

aggregating intuitionistic information in group decision

making. Aiming at the practical scenario of information

collaboration partner selection, Wen (2010) proposed a

method for solving fuzzy multi-criteria group decision

making problems based on intuitionistic fuzzy sets.

In the MAGDM models that were proposed by Xu

(2007a) for intuitionistic fuzzy conditions, the intuitionistic

fuzzy hybrid geometric operator is applied to aggregate

individual intuitionistic fuzzy decision matrices and score

functions are used to rank all alternatives. In Xu (2010), a

deviation-based fuzzy MAGDM model is constructed

based on the deviation measure between two intuitionistic

fuzzy values (IFVs), with the help of intuitionistic fuzzy

hybrid geometric operator, score functions and accuracy

functions. In Xu (2011), a series of intuitionistic fuzzy

aggregation operators were proposed by Xu and their

properties were described. He then used these operators to

propose MAGDM approaches in intuitionistic fuzzy con-

dition (Xu 2011). Xu and Yager (2008) investigated the

multi-attribute decision making (MADM) problems in

dynamic conditions with intuitionistic fuzzy information.

They defined a dynamic weighted averaging operator and

an uncertain dynamic weighted averaging operator for

IFVs (Xu and Yager 2008). Taking the time factor into

consideration, they applied these operators to propose a

procedure for handling fuzzy MAGDM problems, where

all intuitionistic fuzzy decision information was collected

sequentially.

Yue (2014) put forward a new group decision making

methodology for solving these problems under intuition-

istic fuzzy environments. In the model that was proposed in

Yue (2014), the weight of each decision maker was

determined by an extended TOPSIS technique. The

weighted average operator for intuitionistic fuzzy values is

used to aggregate the individual decision matrix of each

decision maker into a group decision. The alternatives are

ranked by using an extended TOPSIS technique.

Zeng and Su (2011) proposed an intuitionistic fuzzy

ordered weighted distance (IFOWD) operator. A wide

scope of aggregation operators and distance measures is

included in the IFOWD operator. Based on the proposed

IFOWD operator, they proposed a new approach for

solving group decision making problems in intuitionistic

fuzzy conditions.

Chen et al. (2016) put forward a new approach for fuzzy

MAGDM problems based on IFSs and evidential reasoning

methodology (Xu and Yager 2006; Yang et al. 2006).

Ouyang and Pedrycz (2016) proposed a new approach for

intuitionistic fuzzy MADM problems based on a new

intuitionistic fuzzy weighted arithmetic (IFWA) average

operator. In this IFWA average operator, two weight vec-

tors are considered to describe the uncertainty more

accurately.

However, since the methods that were proposed in Xu

(2010) and Yue (2014) both use intuitionistic fuzzy

weighted average operators to aggregate intuitionistic

fuzzy information, they may rank all alternatives in an

unreasonable way and counterintuitive preference orders

may be obtained in some situations. Moreover, the method

proposed by Zeng and Su (2011) can only address cases in

which the attribute weights assigned by all decision makers

are equal to each other. In the aggregation stage, the

method proposed in Zeng and Su (2011) may lead to

unreasonable ranking order for all alternatives in some

situations because of the limitations of the intuitionistic
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fuzzy weighted average operator. In the method that was

proposed by Chen et al. (2016), transformations from IFV

to belief degree and from belief degree to basic probability

mass are needed. Additional transformations, together with

the reasoning process, will increase the computational

burden. Moreover, in Chen et al. (2016), alternatives are

ranked based on their distance from the ideal positive

alternative. The choice of distance measure will influence

the preference order. In Ouyang and Pedrycz (2016), the

model is constructed based on two weight vectors, which

are not always available. To overcome the limitations of

these methods, we need to develop an effective method for

solving intuitionistic fuzzy MAGDM problems.

To provide a new perspective of solving MAGDM

problems with intuitionistic fuzzy information, and avoid

unreasoning results obtained by current methods, MAGDM

problems will be addressed in this paper in the framework

of IFSs and evidence theory. We will construct a new

model to solve intuitionistic fuzzy MAGDM problems with

the help of evidence theory (Dempster 1967; Shafer 1976).

In an MAGDM problem, all attributes are mutually inde-

pendent. Each alternative’s evaluation results with respect

to each attribute can be considered as the evaluation result

that is provided by this attribute. Hence, in the decision

matrix that is proposed by a decision maker, all alternatives

are evaluated for every attribute. Thus, we can aggregate

all attributes into the framework of evidence theory. In the

stage of group decision making, all decision makers are

independent. Their decisions on each alternative can be

fused by evidence theory. First, the evaluation results that

are expressed by IFVs are transformed into basic belief

assignments (BBAs). The original BBAs are modified

according to the weighting factors of the attributes and the

evidence discounting operation. Then, the assessments of

each alternative under all attributes are aggregated by

Dempster’s combination rule. Based on the comprehensive

view of all decision makers, a decision matrix can be

constructed for group decision making. Similarly, the IFVs

in the group decision matrix are transformed to BBAs,

which are discounted according to the importance weights

of each decision maker. In the decision making stage, we

propose a possibility-based ranking method for IFVs.

Illustrative examples show that the proposed evidential

model outperforms the methods that were proposed in Xu

(2010), Yue (2014) and Zeng and Su (2011) by overcoming

their drawbacks for fuzzy MAGDM problems under intu-

itionistic fuzzy condition. Moreover, it is demonstrated that

the proposed model is more convenient and much easier to

implement than the method that was proposed by Chen

et al. (2016).

We note that evidential reasoning method and IFSs have

been used to develop a decision making method for fuzzy

MAGM problems in Chen et al. (2016). In the method

proposed in Chen et al. (2016), an evidential reasoning

method is applied to aggregate the decision matrices of all

decision makers and their provided attribute weights to

generate an aggregated decision matrix that corresponds to

each decision maker. Then, they used the evidential rea-

soning method to integrate the obtained aggregated all

decision makers’ decision matrices and the weight of each

decision maker to get the aggregated evaluation results of

all alternatives, which are expressed by IFVs. Finally,

decisions can be made according to the value that is

transformed from the obtained intuitionistic fuzzy value

that corresponds to each alternative. The difference

between our method and the method that was presented in

Chen et al. (2016) is that our method is based on original

evidence theory and Dempster’s (1967) combination rule,

whereas the method that was presented in Chen et al.

(2016) is based on the evidence reasoning methodology

Table 1 BBAs generated from

D1

a1 a2 a3

x1 m1
1;1ðfH1gÞ ¼ 0:36

m1
1;1ðfH2gÞ ¼ 0:27

m1
1;1ðHÞ ¼ 0:37

m1
1;2ðfH1gÞ ¼ 0:53

m1
1;2ðfH2gÞ ¼ 0:28

m1
1;2ðHÞ ¼ 0:19

m1
1;3ðfH1gÞ ¼ 0:57

m1
1;3ðfH2gÞ ¼ 0:22

m1
1;3ðHÞ ¼ 0:21

x2 m1
2;1ðfH1gÞ ¼ 0:72

m1
2;1ðfH2gÞ ¼ 0:28

m1
2;1ðHÞ ¼ 0

m1
2;2ðfH1gÞ ¼ 0:91

m1
2;2ðfH2gÞ ¼ 0:07

m1
2;2ðHÞ ¼ 0:02

m1
2;3ðfH1gÞ ¼ 0:80

m1
2;3ðfH2gÞ ¼ 0:10

m1
2;3ðHÞ ¼ 0:10

x3 m1
3;1ðfH1gÞ ¼ 0:63

m1
3;1ðfH2gÞ ¼ 0:19

m1
3;1ðHÞ ¼ 0:18

m1
3;2ðfH1gÞ ¼ 0:88

m1
3;2ðfH2gÞ ¼ 0:12

m1
3;2ðHÞ ¼ 0

m1
3;3ðfH1gÞ ¼ 0:86

m1
3;3ðfH2gÞ ¼ 0:14

m1
3;3ðHÞ ¼ 0

x4 m1
4;1ðfH1gÞ ¼ 0:65

m1
4;1ðfH2gÞ ¼ 0:33

m1
4;1ðHÞ ¼ 0:02

m1
4;2ðfH1gÞ ¼ 0:72

m1
4;2ðfH2gÞ ¼ 0:23

m1
4;2ðHÞ ¼ 0:05

m1
4;3ðfH1gÞ ¼ 0:77

m1
4;3ðfH2gÞ ¼ 0:23

m1
4;3ðHÞ ¼ 0
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that was proposed by Yang (Xu and Yager 2006; Yang

et al. 2006). In our proposed method, preference orders are

ranked by the possibility-based ranking method, which also

differs from the method that was presented in (Chen et al.

2016).

The rest of this paper starts by a brief review on the

basic concepts of IFSs, intuitionistic fuzzy aggregation

operators and some information about evidence theory. In

Sect. 3, we analyze several existing methods for MAGDM

problems and discuss their main drawbacks. In Sect. 4, the

intuitionistic fuzzy weighted evidential average operator

and possibility-based ranking method for IFVs are pre-

sented. Then, we propose a procedure for solving MAGDM

problems based on intuitionistic fuzzy sets and evidence

theory. In Sect. 5, some application examples are used to

facilitate the comparison between the proposed method and

the methods that were presented in Chen et al. (2016; Xu

2010; Yue 2014; Zeng and Su 2011). Some conclusions of

this paper and future research directions are presented in

Sect. 6.

2 Preliminaries

2.1 Intuitionistic fuzzy sets

The concept of IFS is developed from Zadeh’s fuzzy set.

Hence, the definition of a fuzzy set proposed by Zadeh

(1965) will be firstly reviewed. Then, we present some

basic concepts related to the theory of IFS.

Definition 2.1 (Zadeh 1965). Let a non-empty set X be the

universe of discourse. A is a fuzzy set defined in X. Then,

A can be expressed as:

A ¼ x; lAðxÞh i x 2 Xjf g ð1Þ

Table 3 BBAs generated from

D3

a1 a2 a3

x1 m1
1;1ðfH1gÞ ¼ 0:36

m1
1;1ðfH2gÞ ¼ 0:27

m1
1;1ðHÞ ¼ 0:37

m1
1;2ðfH1gÞ ¼ 0:53

m1
1;2ðfH2gÞ ¼ 0:28

m1
1;2ðHÞ ¼ 0:19

m1
1;3ðfH1gÞ ¼ 0:57

m1
1;3ðfH2gÞ ¼ 0:22

m1
1;3ðHÞ ¼ 0:21

x2 m1
2;1ðfH1gÞ ¼ 0:72

m1
2;1ðfH2gÞ ¼ 0:28

m1
2;1ðHÞ ¼ 0

m1
2;2ðfH1gÞ ¼ 0:91

m1
2;2ðfH2gÞ ¼ 0:07

m1
2;2ðHÞ ¼ 0:02

m1
2;3ðfH1gÞ ¼ 0:80

m1
2;3ðfH2gÞ ¼ 0:10

m1
2;3ðHÞ ¼ 0:10

x3 m1
3;1ðfH1gÞ ¼ 0:63

m1
3;1ðfH2gÞ ¼ 0:19

m1
3;1ðHÞ ¼ 0:18

m1
3;2ðfH1gÞ ¼ 0:88

m1
3;2ðfH2gÞ ¼ 0:12

m1
3;2ðHÞ ¼ 0

m1
3;3ðfH1gÞ ¼ 0:86

m1
3;3ðfH2gÞ ¼ 0:14

m1
3;3ðHÞ ¼ 0

x4 m1
4;1ðfH1gÞ ¼ 0:65

m1
4;1ðfH2gÞ ¼ 0:33

m1
4;1ðHÞ ¼ 0:02

m1
4;2ðfH1gÞ ¼ 0:72

m1
4;2ðfH2gÞ ¼ 0:23

m1
4;2ðHÞ ¼ 0:05

m1
4;3ðfH1gÞ ¼ 0:77

m1
4;3ðfH2gÞ ¼ 0:23

m1
4;3ðHÞ ¼ 0

Table 2 BBAs generated from

D2

a1 a2 a3

x1 m2
1;1ðfH1gÞ ¼ 0:53

m2
1;1ðfH2gÞ ¼ 0:26

m2
1;1ðHÞ ¼ 0:21

m2
1;2ðfH1gÞ ¼ 0:54

m2
1;2ðfH2gÞ ¼ 0:35

m2
1;2ðHÞ ¼ 0:11

m2
1;3ðfH1gÞ ¼ 0:68

m2
1;3ðfH2gÞ ¼ 0:32

m2
1;3ðHÞ ¼ 0

x2 m2
2;1ðfH1gÞ ¼ 0:85

m2
2;1ðfH2gÞ ¼ 0:15

m2
2;1ðHÞ ¼ 0

m2
2;2ðfH1gÞ ¼ 0:86

m2
2;2ðfH2gÞ ¼ 0:13

m2
2;2ðHÞ ¼ 0:01

m2
2;3ðfH1gÞ ¼ 0:69

m2
2;3ðfH2gÞ ¼ 0:30

m2
2;3ðHÞ ¼ 0:01

x3 m2
3;1ðfH1gÞ ¼ 0:83

m2
3;1ðfH2gÞ ¼ 0:16

m2
3;1ðHÞ ¼ 0:01

m2
3;2ðfH1gÞ ¼ 0:76

m2
3;2ðfH2gÞ ¼ 0:24

m2
3;2ðHÞ ¼ 0

m2
3;3ðfH1gÞ ¼ 0:73

m2
3;3ðfH2gÞ ¼ 0:13

m2
3;3ðHÞ ¼ 0:14

x4 m2
4;1ðfH1gÞ ¼ 0:90

m2
4;1ðfH2gÞ ¼ 0:07

m2
4;1ðHÞ ¼ 0:03

m2
4;2ðfH1gÞ ¼ 0:91

m2
4;2ðfH2gÞ ¼ 0:03

m2
4;2ðHÞ ¼ 0:06

m2
4;3ðfH1gÞ ¼ 0:66

m2
4;3ðfH2gÞ ¼ 0:12

m2
4;3ðHÞ ¼ 0:22

7618 Q. Fu et al.

123



where lAðxÞ : X ! ½0; 1� is the membership degree.

Definition 2.2 (Atanassov 1986, 1999) An intuitionistic

fuzzy set A in X described by Atanassov can be written as:

A ¼ x; lAðxÞ; vAðxÞh i x 2 Xjf g ð2Þ

where lAðxÞ : X ! ½0; 1� and vAðxÞ : X ! ½0; 1� are the

membership degree and non-membership degree,

respectively.

For any x 2 X, the sum of lAðxÞ and vAðxÞ is no more

than 1, such that:

0� lAðxÞ þ vAðxÞ� 1 ð3Þ

For an IFS A in X, 8x 2 X, the difference between 1 and

the sum of the membership degree and non-membership

degree is called as the hesitancy degree, which is denoted

by pAðxÞ. It can be expressed by:

pAðxÞ ¼ 1 � lAðxÞ � vAðxÞ ð4Þ

It is indicated that pAðxÞ 2 ½0; 1�, 8x 2 X.

For an IFS A in X and x 2 X, pAðxÞ is also considered as

the intuitionistic index of x with respect to A. Greater pAðxÞ
indicates higher uncertainty in x with respect to A. If

8x 2 X, pAðxÞ ¼ 0, the IFS A reduces to Zadeh’s classical

fuzzy set. Furthermore, for a fuzzy set B defined in X, since

vBðxÞ ¼ 1 � lBðxÞ, 8x 2 X, the hesitancy degree of x with

respect to B is 0. Thus, Zadeh’s classical fuzzy set can be

regarded as a special case of the intuitionistic fuzzy set.

Besides Definition 2.2, there are also other possible

expressions of IFSs. It was proposed by Hong and Kim

(1999) that the interval lAðxÞ; 1 � vAðxÞ½ � can be used to

represent the membership degree of x in intuitionistic fuzzy

set A defined in X, x 2 X. This interval expression is

identical to that of interval-valued fuzzy set (IVFS), where

lAðxÞ is the lower bound of membership degree, and 1 �
vAðxÞ is the upper bound of the membership degree of x.

Since lAðxÞ þ vAðxÞ� 1 always implies lAðxÞ� 1 � vAðxÞ,
the interval lAðxÞ; 1 � vAðxÞ½ � is valid. This also indicates

the equivalence relation between IFSs and IVFSs from a

mathematical perspective.

For clarity, we use IFSsðXÞ to denote the set of all IFSs

defined in X. In the case where only one element x is

contained in the universe of discourse X, the IFS A defined

in X can be written as A ¼ lA; vAh i for short. A ¼ lA; vAh i
is also called an IFV. For an IFV A ¼ lA; vAh i, its hesitancy

degree is also denoted as pA ¼ 1 � lA � vA. Furthermore,

considering the equivalence relation between IVFSs and

IFSs, we can get an interval value lA; 1 � vA½ � from the IFV

A ¼ lA; vAh i. There is a one-to-one correspondence

between IFV and interval value. For an IFV A ¼ lA; vAh i, it

degrades to a real number when lA ¼ 1 � vA. The space

constituted by all intuitionistic fuzzy values can be denoted

as L� (Li and He 2013).

From the perspective of application, IFSs also have

specific practical meanings, i.e., we can interpret an IFS

from a physical point of view. For example, an IFS defined

in X = {x} is given as A ¼ lAðxÞ; vAðxÞh i ¼ 0:2; 0:3h i, and

its hesitancy degree pAðxÞ can be derived as 0.5. This sit-

uation can be interpreted as ‘‘the degree of x belonging to A

is 0.2, the degree of x not belonging to A is 0.3, and the

degree of element x belonging indeterminately to A is 0.5.’’

In the model of voting, this result can be further interpreted

as ‘‘the vote for the resolution is two in favor and three

against, with five abstentions’’ (Gau and Buehrer 1993).

Definition 2.3 (Atanassov 1986) For A 2 ðXÞ and

B 2 ðXÞ, these relations between them can be defined:

(R1) A � B , lAðxÞ� lBðxÞ; vAðxÞ� vBðxÞ; 8x 2 X;

(R2) A ¼ B , lAðxÞ ¼ lBðxÞ; vAðxÞ ¼ vBðxÞ;8x 2 X;

(R3) AC ¼ x; vAðxÞ; lAðxÞh i x 2 Xjf g, where AC is the

complement of A

Definition 2.4 (Atanassov 1986, 1999). For two IFVs a ¼
l1; v1h i and b ¼ l2; v2h i, the following expressions are

defined to depict the partial order relation between

them:a� Ab , l1 � l2; v1 � v2. Based on above partial

order relation, it can be inferred that IFV 0; 1h i is the

smallest one in the space L�, and the largest one is 1; 0h i.

Definition 2.5 (Atanassov 1986, 1999; Xu and Yager

2006)For A 2 ðXÞ and B 2 ðXÞ, some operational laws

between them are defined as following:

A \ B ¼ x;min lAðxÞ; lBðxÞð Þ;max vAðxÞ; vBðxÞð Þh i x 2 Xjf g;
A [ B ¼ x;max lAðxÞ; lBðxÞð Þ;min vAðxÞ; vBðxÞð Þh i x 2 Xjf g;
Aþ B ¼ x; lAðxÞ þ lBðxÞ � lAðxÞ � lBðxÞ; vAðxÞ � vBðxÞh i x 2 Xjf g;
A � B ¼ x; lAðxÞ � lBðxÞ; vAðxÞ þ vBðxÞ � vAðxÞ � vBðxÞh i x 2 Xjf g;
c � A ¼ x; 1 � 1 � lAðxÞð Þc; vAðxÞð Þch i x 2 Xjf g;
Ac ¼ x; lAðxÞð Þc; 1 � 1 � vAðxÞð Þch i x 2 Xjf g:

Similarly, for two IFVs a ¼ la; vah i and b ¼ lb; vb
� �

,

the following operational laws between them can be

obtained:

Table 4 The ranking orders of lead group in Example 5.1

Methods Ranking order

The method in Xu (2010) x2 	 x3 	 x4 	 x1

The method in Yue (2014) x2 	 x3 	 x4 	 x1

The method in Chen et al. (2016) x2 	 x3 	 x4 	 x1

The proposed method x2 	 x3 	 x4 	 x1
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aþ b ¼ la þ lb � la � lb; va � vb
� �

;

ab ¼ la � lb; va þ vb � va � vb
� �

;

ca ¼ 1 � ð1 � laÞc; ðvaÞch i; ac ¼ ðlaÞc; 1 � ð1 � vaÞch i:

2.2 Intuitionistic fuzzy aggregation operators

Based on these intuitionistic fuzzy operational laws, Xu

(2007b) and Xu and Yager 2006 have developed the

weighted arithmetic average operator and weighted geo-

metric average operator for IFVs to aggregate intuitionistic

fuzzy information.

Definition 2.6 (Xu 2007b; Xu and Yager 2006) For IFVs

ai ¼ \li; vi [ with i ¼ 1; 2; . . .; n and the weighting

vector w ¼ðw1;w2; . . .;wnÞT
, 0�wi � 1,

Pn
i¼1 wi ¼ 1, the

intuitionistic fuzzy weighted arithmetic (IFWA) average

operator and the intuitionistic fuzzy weighted geometric

(IFWG) averaging operator are, respectively, defined by:

IFWAwða1; a2; . . .; anÞ ¼
Xn

i¼1

wiai ð5Þ

IFWGwða1; a2; . . .; anÞ ¼
Yn

i¼1

awi

i ð6Þ

Based on the operational laws between IFVs which are

mentioned above, we can further get:

IFWAwða1; a2; . . .; anÞ ¼ 1 �
Yn

i¼1

1 � lið Þwi ;
Yn

i¼1

vwi

i

* +

ð7Þ

IFWGwða1; a2; . . .; anÞ ¼
Yn

i¼1

lwi

i ; 1 �
Yn

i¼1

1 � við Þwi

* +

ð8Þ

The IFWA and IFWG operators have been widely

applied to solve MAGDM problems with intuitionistic

fuzzy information (Li 2011; Yang and Chen 2012). How-

ever, they are troubled by some difficulties in application,

Table 5 The ranking orders of

six projects in Example 5.2
Method Ranking order

The method in Xu (2010) x2 	 x6 	 x3 	 x4 	 x5 	 x1

The method in Yue (2014) x2 	 x6 	 x3 	 x4 	 x5 	 x1

The method in Zeng and Su (2011) using the Max operator x2 	 x6 	 x3 	 x5 	 x4 	 x1

The method in Zeng and Su (2011) using the Min operator x5 	 x6 	 x1 	 x2 	 x4 	 x3

The method in Zeng and Su (2011) using the IFWHD operator x2 	 x6 	 x3 	 x5 	 x4 	 x1

The method in Zeng and Su (2011) using the IFWED operator x2 	 x6 	 x3 	 x5 	 x4 	 x1

The method in Zeng and Su (2011) using the IFOWHD operator x6 	 x2 	 x5 	 x4 	 x3 	 x1

The method in Zeng and Su (2011) using the IFOWED operator x2 	 x6 	 x5 	 x4 	 x3 	 x1

The method in Zeng and Su (2011) using the IFOWGD operator x2 	 x6 	 x5 	 x4 	 x3 	 x1

The method in Chen et al. (2016) x2 	 x6 	 x3 	 x4 	 x5 	 x1

The proposed method x2 	 x6 	 x3 	 x4 	 x5 	 x1

Table 6 The ranking orders of

three factories in Example 5.3
Method Ranking order

The method in Xu (2010) x3 	 x1 	 x2

The method in Yue (2014) x1 	 x3 	 x2

The method in Zeng and Su (2011) using the Max operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the Min operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the IFWHD operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the IFWED operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the IFOWHD operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the IFOWED operator x3 	 x2 	 x1

The method in Zeng and Su (2011) using the IFOWGD operator x3 	 x2 	 x1

The method in Chen et al. (2016) x3 	 x2 	 x1

The proposed method x3 	 x2 	 x1
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since the IFWA and IFWG operators are not competent in

some extreme situations. We will use the following

example to show that we may obtain totally different

results when, respectively, applying the IFWA and the

IFWG operators in the same case (Beliakov et al. 2011).

Example 2.1 Let fA1;A2; . . .;Amg be the set of all alter-

natives and X ¼ fx1; x2; . . .; xng be the set of all considered

attributes. Suppose A1 is described by {a1,a2,. . .,an}, which

satisfy a1 =\0,1[ and a2 =\ 1, 0[ , and w ¼ðw1;w2;

. . .; wnÞT
is an arbitrary weighting vector with 0�wi � 1

and
Pn

i¼1 wi ¼ 1.

If we use the IFWA operator to aggregate the evaluation

values of A1 with regard to all attributes, then we obtain

IFWAw(a1,a2,. . .,an) =\1,0[ , which indicates that A1 is

the best choice. This result is independent of other values.

However, if the IFWG operator is used, we obtain

IFWGw(a1,a2,. . .,an) =\0,1[ , which indicates that A1 is

the worst choice.

These observations demonstrate that the IFWA operator

is easily influenced by extremely large intuitionistic fuzzy

values, while the IFWG operator is easily influenced by

extremely low intuitionistic fuzzy values. To overcome this

deficiency, Beliakov et al. (2011) and Xia et al. (2012)

introduced new averaging operators for IFVs by applying a

continuous Archimedean t-norm and its dual t-conorm,

which is defined as:

IFWAM
w ða1; a2; . . .; anÞ ¼ h�1

Xn

i¼1

wihðliÞ
 !

; g�1
Xn

i¼1

wigðviÞ
 !* +

ð9Þ

where g and h are the additive generator of a continuous

Archimedean t-norm and its dual t-conorm, respectively.

Beliakov et al. (2011) pointed out that (9) is identical to the

operation which is defined on classical fuzzy sets if the t-

norm is Łukasiewiczone. In such case, (9) can be written

as:

IFWAM2
w ða1; a2; . . .; anÞ ¼

Xn

i¼1

wili;
Xn

i¼1

wivi

* +

ð10Þ

The operator shown in (10) was also analyzed in Chen

and Tan (1994) and Xu and Yager (2009). The operator

IFWAM2
w can reduce computation complexity since it is

easy to implement by calculating the weighted arithmetic

averages of membership and non-membership grades.

Following this way, Ouyang and Pedrycz (2016) intro-

duced the following intuitionistic fuzzy operator named

intuitionistic fuzzy pseudo-weighted geometric (IFPWG)

average operator. It is expressed as:

IFPWGwða1; a2; . . .; anÞ ¼
Xn

i¼1

lwi

i ;
Xn

i¼1

vwi

i

* +

ð11Þ

We can see that this operator is carried out by geo-

metrically weighted averaging the membership and non-

membership grades. The IFPWG operator is monotonic

with respect to the partial order relation that was introduced

in Definition 2.4. That is, if ai ¼ \li; vi [ and

a�i ¼ \l�i ; v
�
i [ , for i ¼ 1; 2; . . .; n, are IFVs such that

both li � l�i and vi � v�i for any i, then

IFPWGwða1; a2; . . .; anÞ� IFPWGwða�1; a�2; . . .; a�nÞ for any

weight vector w. Due to the idempotency of the weighted

geometric average, we conclude that

IFPWGwða; a; . . .; aÞ ¼ a for any IFV a. Moreover, from

the monotonicity and the idempotency of the IFPWG

operator, we know that IFPWG is bounded, that is,

a� IFPWGwða1; a2; . . .; anÞ� �a, where a ¼ \n
i¼1ai ¼

min
i
flig;max

i
fvig

� �
and

�a ¼ [n
i¼1ai ¼ max

i
flig;min

i
fvig

� �
.

Note that the IFPWG operator cannot be inferred from

(9). Moreover, the IFPWG operator is also sensitive to

extreme data.

2.3 D-S evidence theory

Dempster–Shafer evidence theory (Dempster 1967; Shafer

1976), which is usually shortened as D–S evidence theory

or evidence theory, is a popular approach for uncertainty

modeling and reasoning. We can use evidence theory to

combine uncertain information from different evidence

sources and obtain an aggregated belief degree. Since its

inception, evidence theory has developed into an important

tool for information fusion (Fan et al. 2018b; Wang and

Song 2018). For convenience of discussion, basic concepts

that are related to evidence theory, evidence combination

rule and counterintuitive issues that may be encountered

are first briefly reviewed in this subsection. Then, we

introduce the strategy of discounting unreliable evidence

sources.

D-S evidence theory was theoretically modeled in the

framework of a finite set whose elements are mutually

exclusive. This finite set is called the discernment frame

and expressed by X. Its power set, which is denoted as 2X,

contains all subsets of X including X itself. Subsets of X
which contains only one element are called as atomic sets

since they contain no non-empty subsets. If one set in the

power set of X is believed to be true in some degree, we

can assign some belief masses to this set. Based on above
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analysis, the following significant definitions in evidence

theory can be developed.

Definition 2.7 (Dempster 1967) Let X ¼ fA1; . . .;Ang be

the frame of discernment. A basic belief assignment (BBA)

is a function m : 2X ! ½0; 1� that satisfies (1) mð;Þ ¼ 0 and

(2)
P

A�X mðAÞ ¼ 1, where ; denotes the empty set.

The BBA function is also named the belief structure or

basic mass assignment (BMA). For any set A � X, the

value that the BBA function takes on A is named as the

basic belief mass of A, which is written as mðAÞ. This

definition indicates that the belief mass on the empty set is

0 and the masses on all subsets of X are summed to 1. The

0 belief mass indicates total nonsupport a hypothesis, while

the belief mass of 1 indicates total support. The mass of X,

which is denoted as mðXÞ, indicates the amount of uncer-

tainty, which is called ignorance.

Definition 2.8 (Dempster 1967). For any subset A � X
and a BBA m defined in X, if mðAÞ[ 0, then A is the focal

element of m.

In addition to BBA, two belief measures are associated

with the evidence theory. They play important roles in

information fusion. One is the belief function, which is

expressed by Bel. The belief function is a mapping Bel :

2X ! ½0; 1� that measures the total belief mass that will be

distributed, according to a certain rule, among all elements

of the subset of X. The belief function is defined as follows:

Definition 2.9 (Shafer 1976) Given a BBA m on X, the

belief function corresponding to m is expressed by:

BelðAÞ ¼
X

B�A

mðBÞ ð12Þ

Particularly, the belief function with respect to A can be

interpreted as the sum of the probability masses on all

proportions that involve A.

The plausibility function, which is denoted as Pl, is

another important measure in evidence theory. This mea-

sure is a mapping Pl : 2X ! ½0; 1�. For a BBA, the plau-

sibility function quantifies the maximal belief mass that

may be distributed to each element in a certain subset of X.

The plausibility function that corresponds to a belief

structure is defined as follows:

Definition 2.10 (Shafer 1976) Given a BBA m defined on

X, the value of the plausibility function on the subset A is:

PlðAÞ ¼
X

B\A6¼;
mðBÞ ð13Þ

The values of BelðAÞ and PlðAÞ can be regarded as the

lower bound and upper bound, respectively, of the belief

level for hypothesis A. The belief function of hypothesis A

is regarded as the minimal uncertainty regarding A, and its

plausibility function is regarded as the maximal uncertainty

regarding A. The relation between them is:

PlðAÞ ¼ 1 � Belð�AÞ ð14Þ
PlðAÞ�BelðAÞ ð15Þ

where �A is the classical complement of hypothesis A.

Interval value ½BelðAÞ; PlðAÞ� constitutes the confidence

interval that describes the uncertainty regarding A and

PlðAÞ � BelðAÞ represents the ignorance level of A. If the

difference between BelðAÞ and PlðAÞ increases, the avail-

able information for fusion decreases or becomes unreli-

able. The difference between BelðAÞ and PlðAÞ also

provides an uncertainty measure for the belief level in

decision making.

The range of belief degree delimits the upper bound and

lower bound for the belief degree in hypothesis A. Some

special belief ranges with specific meanings are given as

follows:

(i) belief range [1, 1] indicates that hypothesis A is

definitely true;

(ii) belief range [0, 0] indicates that hypothesis A is

definitely false;

(iii) belief range [0, 1] indicates that hypothesis A is

completely unknown.

To facilitate decision making based on evidence theory,

it is necessary to transform the BBA into a probability

distribution on the discernment frame. One of the most

widely used probability transformations is the pignistic

transformation, which was proposed by Smets 35. The

pignistic transformation maps the BBA m to a pignistic

probability function on the elements that of all focal sets.

The pignistic transformation is defined by Smets 35 as

follows:

Definition 2.11 (Smets 2005). A BPA m that is defined on

X ¼ fA1; . . .;Ang can be transformed into the pignistic

probability according to the following expression:

BetPðAÞ ¼
X

B�X

A \ Bj j
Bj j

mðBÞ
1 � mð;Þ; 8A � X ð16Þ

where j � j represents the cardinality of a set.

Particularly, when mð;Þ ¼ 0, for Ai 2 X, i ¼ 1; 2; . . .; n,

we can obtain the pignistic probability of fAig as:

BetPðfAigÞ ¼
X

A2B

mðBÞ
Bj j ; i ¼ 1; 2; . . .; n;B � X ð17Þ
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Definition 2.12 (Dempster 1967). If two independent

belief structures m1 and m2 defined on X are available, the

belief structure that results from the application of Demp-

ster’s combination rule, which is denoted as m1 
 m2, or

m12 for short, is given by:

m12ðAÞ ¼

P
B\C¼A m1ðBÞm2ðCÞ

1 �
P

B\C¼; m1ðBÞm2ðCÞ
; 8A � X;A 6¼ ;

0 ;A ¼ ;

8
><

>:

ð18Þ

If multiple independent belief structures are available,

they can be combined following Dempster’s combination

rule as:

mðAÞ ¼

P
\Ai¼A

Qn
i¼1 miðAiÞ

1 �
P

\Ai¼;
Qn

i¼1 miðAiÞ
; 8A � X;A 6¼ ;

0 ;A ¼ ;

8
><

>:

ð19Þ

Here, n is the number of belief structures in the com-

bination process, i denotes the ith piece of BPA, and miðAiÞ
is the basic belief mass of hypothesis Ai that is supported

by evidence mi. The value of mðAÞ reflects the integrated

support degree, which is equal to the joint mass, from n

mutually independent evidence sources, which correspond

to m1;m2; . . .;mn. The quantity k, which is defined in (20),

is the conflict degree among n mutually independent evi-

dence sources. The conflict degree is equal to the belief

mass that is assigned to the empty set by the conjunctive

combination without the normalization step.

k ¼
X

\Ai¼;

Yn

i¼1

miðAiÞ ð20Þ

The value k ¼ 0 implies that there is no contradiction

among the information provided by different evidence

sources, while k ¼ 1 corresponds to complete conflict

among these evidence sources. Indeed, k ¼ 0 indicates that

combining all BBAs creates no empty set, and k ¼ 1 means

that the sets generated by the combination process are all

empty sets.

Despite its convenience in evidence combination,

Dempster’s combination rule has an innate drawback:

when k ¼ 1, i.e., the information that is provided by all

evidence sources is completely contradictory, Dempster’s

combination rule is undefined. Thus, it cannot be used to

combine uncertain information. If evidence sources are

highly in conflict, i.e., k ! 1, Dempster’s combination rule

may generate unsatisfactory results that do not accord with

the actual situation. Worse still, some results may be

counterintuitive. We will quote the example in Zadeh

(1986) to demonstrate this.

Example 2.2 Assume that the discernment frame is

X ¼ fA;B;Cg. Two BBAs, namely, m1 and m2, in dis-

cernment frame X are considered, which are given as

follows:

m1 : m1ðAÞ ¼ 0:9;m1ðBÞ ¼ 0:1; m2 : m2ðBÞ ¼ 0:1;m2ðCÞ
¼ 0:9:

If we use Dempster’s combination rule to combine these

BBAs, we will obtain mðAÞ ¼ 0, mðBÞ ¼ 1 and mðCÞ ¼ 0.

We notice that both m1 and m2 assign low levels of support

to hypothesis B. However, the combination result com-

pletely supports hypothesis B. In contrast, m1 and m2 have

high support levels for hypotheses A and C, respectively;

however, A and C are completely refuted by the combi-

nation result, which is counterintuitive.

This counterintuitive result shows that Dempster’s

combination rule is not suitable for evidence sources with

high conflict. This problem can be solved from two aspects.

If it is believed that unreliable evidence sources lead to

the counterintuitive phenomenon, the evidence sources

should be modified. However, if such a counterintuitive

result is caused by the combination rule itself, modification

of the combination process is necessary, as proposed in

existing studies (Florea et al. 2009; Yang et al. 2013).

When an evidence source is considered partially reliable

and is assigned a reliability factor k 2 ½0; 1�, the discount-

ing operation can be implemented on the BBA that corre-

sponds to the unreliable evidence source (Florea et al.

2009). One widely used discounting rule is the operation

that was proposed by Shafer (1976). This discounting

operation is defined as follows:

m0ðAÞ ¼ kmðAÞ;A � X

m0ðXÞ ¼ 1 � kþ kmðXÞ

(

ð21Þ

where k is interpreted as the reliability degree of the evi-

dence source. k ¼ 1 indicates that the evidence source is

totally reliable. In this case, the associated BBA will

remain unchanged after discounting. k ¼ 0 indicates that

the evidence source is entirely unreliable. In this case, the

original BBA will be changed to mðXÞ ¼ 1 after dis-

counting, which indicates that this evidence source pro-

vides no information that supports decision making.
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3 Review of existing methods for MAGDM

Xu’s method (Xu 2010) is defined based on the IFWA

operator, as is expressed in (7). In Xu (2010), R ¼ ðrijÞm�n

denotes the collective decision matrix with intuitionistic

fuzzy values of all individual decision makers’ evaluations

on alternative xi with respect to attribute aj. It is defined as:

R ¼ ðrijÞm�n

¼ 1 �
Yt

k¼1

1 � l
_r
rðkÞð Þ
ij

� �-k

;
Yt

k¼1

v
_r
rðkÞð Þ
ij

� �-k

* + !

m�n

ð22Þ

where -1;-2; . . .;-t are the weights of the intuitionistic

fuzzy evaluation values l1
ij; v

1
ij

D E
; l2

ij; v
2
ij

D E
; . . .; ltij; v

t
ij

D E
,

respectively. The weights -1;-2; . . .;-t satisfy 0�-p � 1,

p ¼ 1; 2; . . .; t. lkij; v
k
ij

D E
is the intuitionistic fuzzy value

that is given by decision maker Ek to denote the evaluation

value of alternative xi with respect to attribute aj.

r1; r2; . . .; rt is a descending permutation of 1; 2; . . .; t,
where t is the number of decision makers. Hence, the

intuitionistic fuzzy value _r
rðkÞð Þ
ij ¼ l

_r
rðkÞð Þ
ij

; v
_r
rðkÞð Þ
ij

� �
is the

kth largest value among all intuitionistic fuzzy values

_r1
ij; _r

2
ij; . . .; _r

t
ij. _rkij ¼ 1 � 1 � lkij

� 	txk

vkij

� 	txk
D E

is an intu-

itionistic fuzzy value and xk denotes the weighting factor

of decision maker Ek. All parameters satisfy the following

relations: l
_r
rðk�1Þð Þ
ij

�v
_r
rðk�1Þð Þ
ij

[ l
_r
rðkÞð Þ
ij

� v
_r
rðkÞð Þ
ij

, 0� lkij � 1,

0� vkij � 1, 0� lkij þ vkij � 1, 1� i�m, 1� j� n, and

1� k� t. If vkij ¼ 0 for some 1� i�m, 1� j� n and

1� k� t, then
Qt

k¼1

v
_r
rðkÞð Þ
ij

� �-k

in (22) is 0 and we will

obtain an incorrect collective decision matrix R, which

ranks all alternatives in an unreasonable preference order.

Thus, the method that was proposed by Xu (2010) has

the limitation that an improper preference order for all

alternatives will be obtained if there is at least one intu-

itionistic fuzzy evaluation value with zero non-membership

degree. This is caused by the aggregation operator that it

uses.

In Yue’s method (2014), the positive ideal decision

matrix Y� of alternative xi, which represents the opinions of

completely independent decision makers and corresponds

to attribute aj, is defined as

Y� ¼ 1 �
Yt

k¼1

1 � lkij

� 	wk
j�1

t

;
Yt

k¼1
vkij

� 	wk
j�1

t

* + !

m�n

ð23Þ

lkij; v
k
ij

D E
is an intuitionistic fuzzy value that is proposed

by decision maker Ek for evaluating alternative xi with

respect to attribute aj, with 0� lkij � 1, 0� vkij � 1,

0� lkij þ vkij � 1. wk
j is the weight factor of attribute aj that

is assigned by decision maker Ek with 0�wk
j � 1, 1� j� n,

and
Pn

j¼1 w
k
j ¼ 1. n is the total number of considered

attributes. 1� i�m, where m is the total number of alter-

natives. 1� k� t, where t is the number of decision

makers.

Equation (23) is also defined based on the IFWA oper-

ator, which is expressed in (7). If vkij ¼ 0 for some

1� i�m, 1� j� n and 1� k� t, then
Qt

k¼1 vkij

� 	wk
j�1

t

in

(23) is 0, which leads to an unreasonable positive ideal

decision matrix Y* and an incorrect preference order for all

alternatives. Moreover, if lkij ¼ 1 for some 1� i�m,

1� j� n and 1� k� t, then 1 �
Qt

k¼1 1 � lkij

� 	wk
j�1

t

in (23)

is 1. In this case, the obtained positive ideal decision matrix

Y* will also be incorrect, which will result in a fallacious

preference order of all alternatives.

The method that was proposed by Zeng and Su (2011)

can only address MAGDM problems in which the attribute

weights given by all decision makers are equal. Zeng and

Su’s fuzzy MAGDM method also applies the IFWA

operator, which is defined in (7), to aggregate the intu-

itionistic fuzzy evaluation values from all decision makers

to obtain the general payoff decision matrix D:

D ¼ lij; vij
� �
 �

m�n

¼ 1 �
Yt

k¼1

1 � lkij

� 	xk

;
Yt

k¼1

vkij

� 	xk

* + !

m�n

ð24Þ

where lij; vij
� �

represents an intuitionistic fuzzy value that

denotes the general payoff intuitionistic fuzzy evaluation

value of alternative xj given by all the decision makers,

which corresponds to attribute ai, where 0� lij � 1,

0� vij � 1, 0� lij þ vij � 1, 1� i�m, m is the number of

alternatives, 1� j� n, n is the number of attributes, xk is

the weight factor of decision maker Ek, 0�xk � 1,

1� k� t, t is the number of decision makers, and
Pt

k¼1 xk ¼ 1.

Because of the drawbacks of the IFWA operator, Zeng

and Su’s method will also obtain an unsatisfactory pref-

erence order for all alternatives when we have an intu-

itionistic fuzzy evaluation value whose non-membership

degree is equal to 0. Therefore, the IFWA operator that is

shown in (24) cannot address cases with extreme data. The

expression in (24) will result in unreasonable decisions in

some MAGDM problems.
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To avoid the drawbacks of the methods that were pre-

sented in Xu (2010), Yue (2014) and Zeng and Su (2011), a

new method for fuzzy MAGDM problems was proposed in

Chen et al. (2016). The method in Chen et al. (2016) was

developed based on the evidential reasoning method and

intuitionistic fuzzy sets. The evidential reasoning method

was used to aggregate the evaluation result of each alter-

native with respect to all attributes from each decision

maker. The attribute weights were taken into consideration

in constructing basic belief masses based on the decision

matrix. The integrated evaluation results of all alternatives

from each decision maker were obtained by combining

these basic belief masses. The aggregated intuitionistic

fuzzy value of each alternative was obtained by aggregat-

ing the evaluation results of all decision makers and the

decision makers’ weights based on the evidential reasoning

method. Although the method in Chen et al. (2016) can

solve fuzzy MAGDM problems under intuitionistic fuzzy

condition by avoiding the drawbacks of the methods that

were proposed in Xu (2010), Yue (2014) and Zeng and Su

(2011), the calculation process may bring large computa-

tional burden, which is not helpful for quick decision

making.

In the next section, we will present a new model for

fuzzy multi-attribute group decision making to overcome

the drawbacks of the methods that were presented in Xu

(2010), Yue 2014 and Zeng and Su 2011) and reduce the

computational burden of the method that was proposed in

Chen et al. (2016).

4 Evidential model for IF-MADM

4.1 New IFWE operator

In this section, we take advantage of evidence theory and

the powerful representation capability of intuitionistic

fuzzy sets to propose a new multi-attribute decision making

method. This method overcomes the drawbacks of the

methods that were proposed by Xu (2010), Yue (2014) and

Zeng and Su (2011). Let E be the set of decision makers,

where E ¼ fE1;E2; . . .;Etg; let X be the set of alternatives,

where X ¼ fx1;x2; . . .; xpg; and let A be the set of attributes,

where A ¼ fa1;a2; . . .; aqg. Let Dk be a decision matrix that

is given by decision maker Ek:

Dk ¼

a1 a2 . . . aq
x1

x2

..

.

xp

\lk11; v
k
11 [ \lk12; v

k
12 [ . . . \lk1q; v

k
1q [

\lk21; v
k
21 [ \lk22; v

k
22 [ . . . \lk2q; v

k
2q [

..

. ..
. . .

. ..
.

\lkp1; v
k
p1 [ \lkp2; v

k
p2 [ . . . \lkpq; v

k
pq [

0

BBBB@

1

CCCCA

ð25Þ

In decision matrix Dk, each alternative is evaluated

according to a principle that is based on all attributes. If we

consider the attribute as an evaluation subject, similar to an

evaluator, each alternative is evaluated by all evaluation

subjects. The evaluation result \lk11; v
k
11 [ for alternative

x1 that is given by subject a1 can be translated to a BBA in

evidence theory. The IFV \lk11; v
k
11 [ can be regarded as

the answer to the question, ‘‘Does x1 satisfy the standard of

excellence according to a1 ?’’ The discernment frame of

this problem is H ¼ fH1;H2g, where H1 represents com-

pletely satisfying the concept of ‘‘excellence’’ and H2

represents not satisfying the concept of ‘‘excellence.’’

Accordingly, we can obtain a BBA, namely, mk
11, based on

the evaluation result \lk11; v
k
11 [ . The derived BBA can

be written as:

mk
11ðfH1gÞ ¼ lk11

mk
11ðfH2gÞ ¼ vk11

mk
11ðHÞ ¼ 1 � lk11 � vk11

8
><

>:
ð26Þ

Similarly, the evaluation results that are derived based

on other attributes can be used to obtain corresponding

BBAs. Since all attributes are mutually independent, all

evaluation subjects assess each alternative independently.

This satisfies the assumption that all BBAs are independent

in evidence theory. Thus, we can obtain the comprehensive

evaluation result of alternative x1 by combining all BBAs.

Considering the excellent properties of Dempster’s com-

bination rule, we use it to fuse the evaluation results.

Given two IFVs, namely, V1 ¼ \l1; v1 [ and

V2 ¼ \l2; v2 [ , which represent the assessment results of

alternative x under attributes a1 and a2, respectively, two

BBAs that correspond to them can be obtained as:

m1ðfH1gÞ ¼ l1

m1ðfH2gÞ ¼ v1

m1ðHÞ ¼ 1 � l1 � v1

8
><

>:
;

m2ðfH1gÞ ¼ l2

m2ðfH2gÞ ¼ v2

m2ðHÞ ¼ 1 � l2 � v2

8
><

>:

Then, we can obtain their aggregation as

V1  V2 ¼ m1  m2. If we denote

V ¼ \l; v[ ¼ V1  V2, where m ¼ m1  m2, then we

can obtain:

mðfH1gÞ ¼
l1ð1 � v2Þ þ l2ð1 � l1 � v1Þ

1 � l1v2 � l2v1

mðfH2gÞ ¼
v1ð1 � l2Þ þ v2ð1 � l1 � v1Þ

1 � l1v2 � l2v1

mðHÞ ¼ ð1 � l1 � v1Þð1 � l2 � v2Þ
1 � l1v2 � l2v1

8
>>>>>>><

>>>>>>>:

ð27Þ

In (27), the undefined situation in which 1 � l1v2 �
l2v1 6¼ 0 is not included. Since 1 � l1v2 � l2v1 ¼ 0
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indicates that V1 and V2 are real numbers 0 and 1, this

special situation is outside of the scope of this operation.

According to the correspondence relationship between

IFV and BBA, we can obtain:

V ¼ l1ð1 � v2Þ þ l2ð1 � l1 � v1Þ
1 � l1v2 � l2v1

;
v1ð1 � l2Þ þ v2ð1 � l1 � v1Þ

1 � l1v2 � l2v1

� �

ð28Þ

Then, we can develop a new operation on intuitionistic

fuzzy values as follows:

Definition 4.1 Given two IFVs, namely, V1 ¼ \l1; v1 [
and V2 ¼ \l2; v2 [ , the orthogonal sum operation on

these IFVs can be defined as:

V1  V2¼
l1ð1 � v2Þ þ l2ð1 � l1 � v1Þ

1 � l1v2 � l2v1

;
v1ð1 � l2Þ þ v2ð1 � l1 � v1Þ

1 � l1v2 � l2v1

� �

ð29Þ

This operation can be easily extended to calculate the

orthogonal sum of more than two IFVs. By virtue of the

commutative and associative properties of Dempster’s

combination rule, we have:

(i) V1  V2¼V2  V1

(ii) V1  V2  V3¼V1  V2  V3ð Þ

Thus, the orthogonal summation result of multiple IFVs

is independent of their calculation order. This also provides

us with the freedom to perform parallel computation when

many IFVs are available.

Suppose that the weighting factors of IFVs V1 ¼
\l1; v1 [ and V2 ¼ \l2; v2 [ are w1 and w2, respec-

tively. Based on the evidence discounting operation, we

can obtain the discounted BBAs that correspond to them as

follows:

mw1

1 ðfH1gÞ ¼ w1l1

mw1

1 ðfH2gÞ ¼ w1v1

mw1

1 ðHÞ ¼ 1 � w1l1 � w1v1

8
><

>:
;

mw2

2 ðfH1gÞ ¼ w2l2

mw2

2 ðfH2gÞ ¼ w2v2

mw2

2 ðHÞ ¼ 1 � w2l2 � w2v2

8
><

>:

Considering the relation between BBAs and IFVs, we

propose a new multiplication operation on intuitionistic

fuzzy values.

Definition 4.2 Given an IFV V ¼ \l; v[ and a real

number w, where 0�w� 1, the multiplication operation

between V ¼ \l; v[ and w is defined as:

w � V ¼ wl;wvh i ð30Þ

Following the above two definitions, we can construct a

new intuitionistic fuzzy weighted evidential (IFWE) aver-

age operator.

Definition 4.3 Given IFVs ai ¼ \li; vi [ with i ¼
1; 2; . . .; n and the weighting vector w ¼ðw1;w2; . . .;wnÞT

with 0�wi � 1 and
Pn

i¼1 wi ¼ 1, the intuitionistic fuzzy

weighted evidential average operator (IFWE) with respect

to the weight vector w can be defined as:

IFWEwða1; a2; . . .; anÞ
¼ n

i¼1ðwi � aiÞ
¼ ðw1 � a1Þ  ðw2 � a2Þ  . . . ðwn � anÞ

ð31Þ

4.2 Possibility-based ranking method for IFVs

When solving MAGDM problems, it is necessary to get the

preference order of all alternatives by comparing their

evaluation information. If intuitionistic fuzzy information

is involved, the ranking method of IFVs must be discussed.

The order � A has been proposed by Atanassov (1999)

to compare IFVs, as defined in Definition 2.4. But this is a

partial orderable relation because it is not suitable for all

IFVs. Notice that for the situation of lA � lB; vA � vB, we

cannot rank them according to the partial order. Such

partial orderable relation cannot be used to make a deci-

sion. So a linear order for IFVs is desirable. Several linear

orders for IFVs have been discussed in Liu and Wang

(2007). Next, we will review the most widely used linear

order relation which was developed based on score func-

tion and the accuracy function of IFVs (Chen and Tan

1994; Hong and Choi 2000).

Definition 4.4 (Chen and Tan 1994; Hong and Choi

2000). For an IFV a ¼ l; vh i, its score function s and

accuracy function h can be expressed as sðaÞ ¼ l� v and

hðaÞ ¼ lþ v, respectively.

From Definition 4.4, we can easily get that sðaÞ 2
½�1; 1� and hðaÞ 2 ½0; 1� for IFV a. Based on the score

aL aUbL bU

AB

(a) 

aL aUbL bU

A
B

(b) 

aL aUbL bU

A

B

(c) 

Fig. 1 Cases of interval relations. a Separation case; b overlapping

case; and c inclusion case
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function and the accuracy function, IFVs can be ranked

into a linear order.

Definition 4.5 (Hong and Choi 2000) For two IFVs a ¼
l1; v1h i and b ¼ l2; v2h i, their score functions are denoted

as s(a) and s(b), respectively. And their accuracy functions

are written as h(a) and h(b), respectively. Then, a and b
can be ranked following these rules:

(i) If sðaÞ[ sðbÞ, then a is bigger than b, expressed

by a[ b;

(ii) If sðaÞ\sðbÞ, then a is smaller than b, expressed

as by a\b;

(iii) If sðaÞ ¼ sðbÞ, then

a) If hðaÞ ¼ hðbÞ, then a is equal to b,

expressed by a ¼ b;

b) If hðaÞ[ hðbÞ, then a is bigger than b,

expressed by a[ b.

c) If hðaÞ\hðbÞ, then a is smaller than b,

expressed by a\b.

Example 4.1 Three IFVs are given as a1 ¼ 0:5; 0:1h i,
a2 ¼ 0:55; 0:2h i, and a3 ¼ 0:6; 0:25h i. According to Defi-

nition 4.4, we can get the score functions of IFVs a1, a2 and

a3 as following:

sða1Þ ¼ 0:5 � 0:1 ¼ 0:4; sða2Þ ¼ 0:55 � 0:2 ¼ 0:35; sða3Þ
¼ 0:6 � 0:25 ¼ 0:35:

Then, we can get a1 [ a2 and a1 [ a3 when their score

functions are merely considered. To rank a2 and a3, their

accuracy functions should be accounted. The accuracy

functions of a2 and a3 can be calculated as follows:

hða2Þ ¼ 0:55 þ 0:2 ¼ 0:75; hða3Þ ¼ 0:6 þ 0:25 ¼ 0:85:

Then, following the ranking rule presented in Definition

4.5, we can get the linear order a1 [ a3 [ a2.

Although the order for IFVs based on the score function

and accuracy function is regarded as admissible, this may

not be an ideal rule for choosing the best alternative. Since

the score function and accuracy function are considered

separately, and in most cases only the score functions are

taken into consideration, this ranking method will produce

counterintuitive results in some situation. Therefore, a

more reasonable linear order for IFVs is desirable. Next,

we will propose a new linear order for IFVs based on

possibility to address the decision making problem in our

evidential model for MAGDM.

We have claimed that there is equivalence relation

between IFVs and interval values. Hence, based on such

equivalence relation, we can rank IFVs by using the pos-

sibility-based ranking method for interval values.

Definition 4.6 (Nakahara 1998; Nakahara et al. 1992).

Suppose that a ¼ ½aL; aU � and b ¼ ½bL; bU � are two interval

values with aL\aU and bL\bU . The possibility degree of

interval value a preceding interval value b, which is

denoted as Pða� bÞ, can be defined as:

Pða�bÞ ¼ min 1;max
aU � bL

ðaU � aLÞ þ ðbU � bLÞ ; 0

� � 

ð32Þ

It is worth mentioning that if a and b both reduce to

precise values, i.e., aL ¼ aU ¼ a and bL ¼ bU ¼ b, (32)

will be undefined since ðaU � aLÞ þ ðbU � bLÞ ¼ 0. In this

special case, we take Pða�bÞ ¼ 1 for a[ b. Particularly,

we assume Pða� bÞ ¼ 0:5 for a ¼ b.

Theorem 4.1 (Facchinetti et al. 1998; Nakahara 1998).

Suppose two interval values are given as a ¼ ½aL; aU � and
b ¼ ½bL; bU �. The possibility degree Pða�bÞ has the fol-

lowing properties:

(i) 0�Pða� bÞ � 1, (ii) Pða� aÞ ¼ 0:5, (iii)

Pða�bÞ ¼ 1 , aL � bU , and (iv) Pða�bÞ þ Pðb� aÞ ¼ 1.

Proof Based on the definition of Pða�bÞ, proving proper-

ties (i) and (ii) is straightforward. (iii) We can obtain the

following relation effortlessly:

Pða�bÞ ¼ 1 ) max
aU � bL

ðaU � aLÞ þ ðbU � bLÞ ; 0

� 
� 1

) aU � bL

ðaU � aLÞ þ ðbU � bLÞ � 1

Since the denominator ðaU � aLÞ þ ðbU � bLÞ is posi-

tive, we can obtain aU � bL [ 0. It follows that

aU � bL �ðaU � aLÞ þ ðbU � bLÞ ¼ aU � bL � ðaL � bUÞ,
which indicates that aL � bU � 0, i.e., aL � bU .

This proof process is reversible, so

Pða�bÞ ¼ 1 , aL � bU .

iv) We need to consider three cases, as listed in Fig. 1.

(a) In the separation case, which is shown in Fig. 1a, we

obtain aL � bU , Pða�bÞ ¼ 1 and Pðb� aÞ ¼ 0. Thus,

Pða�bÞ þ Pðb� aÞ ¼ 1.

(b) For the overlapping case, which is shown in Fig. 1b,

bL � aL � bU � aU , so we have:

Pða�bÞ ¼
aU � bL

ðaU � aLÞ þ ðbU � bLÞ ; Pðb� aÞ

¼ bU � aL

ðaU � aLÞ þ ðbU � bLÞ :
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Thus,

Pða� bÞ þ Pðb� aÞ

¼ aU � bL

ðaU � aLÞ þ ðbU � bLÞ þ
bU � aL

ðaU � aLÞ þ ðbU � bLÞ
¼ 1:

(c) The inclusion case is shown in Fig. 1c,

bL � aL; bU � aU . Then, we obtain:

Pða� bÞ ¼
aU � bL

ðaU � aLÞ þ ðbU � bLÞ ;

Pðb� aÞ ¼
bU � aL

ðaU � aLÞ þ ðbU � bLÞ :

Therefore,

Pða� bÞ þ Pðb� aÞ

¼ aU � bL

ðaU � aLÞ þ ðbU � bLÞ þ
bU � aL

ðaU � aLÞ þ ðbU � bLÞ
¼ 1

:

Hence, all properties in Theorem 4.1 hold. h

Since intuitionistic fuzzy values A ¼ lA; vAh i and B ¼
lB; vBh i can be expressed by interval values A ¼
lA; 1 � vA½ � and B ¼ lB; 1 � vB½ �, respectively, we can also

define the possibility of A�B from Definition 4.6.

Definition 4.7 Suppose that A ¼ lA; vAh i and B ¼
lB; vBh i are two intuitionistic fuzzy values with

pA � pB 6¼ 0. The possibility degree of A�B can be defined

as:

PðA�BÞ ¼ min 1;max
1 � vA � lB
pA þ pB

; 0

� � 
ð33Þ

In the case of pA þ pB ¼ 0, A and B are both associated

with crisp real numbers. Then, PðA�BÞ ¼ 1 if lA [ lB and

PðA�BÞ ¼ 0:5 if lA ¼ lB.

Theorem 4.2 Given two intuitionistic fuzzy values A ¼
lA; vAh i and B ¼ lB; vBh i, we have:

1. 0�PðA�BÞ � 1;

2. PðA�AÞ ¼ 0:5;

3. PðA�BÞ ¼ 1 , lA � 1 � vB;

4. PðA�BÞ þ PðB�AÞ ¼ 1.

Proof All four properties follow directly from Theo-

rem 4.1 and Definition 4.7. h

From the third property in Theorem 4.2, it follows that

PðA�BÞ ¼ 1 ) 1 � vA�lA� 1 � vB �lB ) lA�lB; vA�
vB. However, this is not reversible, i.e., lA �lB; vA � vB )
PðA�BÞ ¼ 1 does not hold. This differs from the ordinary

partial order relation that was presented in Definition 2.4.

Thus, the relation A�B defined in Definition 4.7 is much

more stringent than the ordinary partial order relation in

Definition 2.4.

We suppose that IFVs A1;A2; . . .;An are given as

Ai ¼ lAi
; vAi

� �
, i ¼ 1; 2; . . .; n. To rank all of these intu-

itionistic fuzzy values, we first compare each intuitionistic

fuzzy value Ai with all intuitionistic fuzzy values

A1;A2; . . .;An, i ¼ 1; 2; . . .; n. By Definition 4.7, we have:

PðAi �AjÞ ¼ min 1;max
1 � vAi

� lAj

pAi
þ pAj

; 0

� � 
; i; j

¼ 1; 2; . . .; n ð34Þ

For simplicity, we let Pij ¼ PðAi �AjÞ. Then, we can

construct a complementary comparison matrix as follows:

P ¼

P11 P12 . . . P1n

P21 P22 . . . P2n

..

. ..
. . .

. ..
.

Pn1 Pn2 . . . Pnn

0

BBB@

1

CCCA
ð35Þ

8i; j 2 f1; 2; . . .; ng, we have the following relations:

0�Pij � 1, Pij þ Pji ¼ 1, and Pii ¼ 0:5.

Calculating the column sum of matrix P, we obtain:

Pi ¼
Xn

j¼1

Pij ð36Þ

Then, we can rank these intuitionistic fuzzy values

A1;A2; . . .;An according to the value of Pi,

i 2 f1; 2; . . .; ng.

4.3 New method for MAGDM

The new method for MAGDM is proposed based on intu-

itionistic fuzzy sets and evidence theory. It is now pre-

sented as follows.

Let Dk be the decision matrix that is given by decision

maker Ek:

Dk ¼

a1 a2 . . . aq
x1

x2

..

.

xp

\lk11; v
k
11 [ \lk12; v

k
12 [ . . . \lk1q; v

k
1q [

\lk21; v
k
21 [ \lk22; v

k
22 [ . . . \lk2q; v

k
2q [

..

. ..
. . .

. ..
.

\lkp1; v
k
p1 [ \lkp2; v

k
p2 [ . . . \lkpq; v

k
pq [

0

BBBB@

1

CCCCA

where 0� lkij � 1, 0� vkij � 1,lkij þ vkij � 1, 1� k� t,

1� i� p, and 1� j� q.

The weight of each attribute is assigned as wk
j by deci-

sion maker Ek. Then, based on the IFWE average operator,

the evaluation result of alternative xi, for 1� i� p, with

respect to all attitudes, can be aggregated as:
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\lki ; v
k
i [

¼ IFWEwkð\lki1; v
k
i1 [ ;\lki2; v

k
i2 [ ; . . .;\lkiq; v

k
iq [ Þ

¼ q
j¼1ðwk

j �\lkij; v
k
ij [ Þ

¼ \wk
1l

k
i1;w

k
1v

k
i1 [ \wk

2l
k
i2;w

k
2v

k
i2 [  . . .\wk

ql
k
iq;w

k
qv

k
iq [

ð37Þ

Based on the aggregated decisions of all decision

makers, we can obtain the overall decision making matrix

as:

D ¼

E1 E2 . . . Ek

x1

x2

..

.

xp

\l1
1; v

1
1 [ \l2

1; v
2
1 [ . . . \lk1; v

k
1 [

\l1
2; v

1
2 [ \l2

2; v
2
2 [ . . . \lk2; v

k
2 [

..

. ..
. . .

. ..
.

\l1
p; v

1
p [ \l2

p; v
2
p[ . . . \lkp; v

k
p [

0

BBB@

1

CCCA
ð38Þ

Since all decision makers are in mutual independence,

the IFWE average operator can be used to aggregate the

information that is proposed by all decision makers. Sup-

pose that the weighting factor of decision maker Ek is kk,
1� k� t. We can aggregate the evaluation values of the

decision makers with respect to alternative xi to obtain the

final assessment of xi.

\li; vi [ ¼ IFWEkkð\l1
i ; v

1
i [ ;\l2

i ; v
2
i

[ ; . . .;\lti; v
t
i [ Þ

¼ t
k¼1ðk

k �\lki ; v
k
i [ Þ ¼ \k1l1

i ; k
1v1

i [

\k2l2
i ; k

2v2
i [  � � � \ktlti; k

tvti [

ð39Þ

After obtaining the final assessment of each alternative,

we can order them by the possibility-based ranking method

for IFVs.

Given two alternatives xi and xj with intuitionistic fuzzy

assessments \li; vi [ and \lj; vj [ , respectively, we

can calculate the possibility of xi 	 xj(xi is better than xj):

Pðxi	xjÞ ¼ min 1;max
1 � vi � lj

2 � li � vi � lj � vj
; 0

( )( )

ð40Þ

For alternatives x1;x2; . . .; xp, the comparison matrix can

be constructed as:

P ¼

Pðx1	x1Þ Pðx1	x2Þ . . . Pðx1	xpÞ
Pðx2	x1Þ Pðx2	x2Þ . . . Pðx2	xpÞ

..

. ..
. . .

. ..
.

Pðxp	x1Þ Pðxp	x2Þ . . . Pðxp	xpÞ

0

BBB@

1

CCCA

¼

P11 P12 . . . P1n

P21 P22 . . . P2n

..

. ..
. . .

. ..
.

Pn1 Pn2 . . . Pnn

0

BBB@

1

CCCA
ð41Þ

It follows that 8i; j 2 f1; 2; . . .; pg, 0�Pij � 1,

Pij þ Pji ¼ 1, and Pii ¼ 0:5.

In the matrix P, the values of the ith row reflect the

possibility that xi is better than other alternatives. There-

fore, the column sum can be used to rank all alternatives.

Summing all elements in each row of matrix P, we have:

Pi ¼
Xp

j¼1

Pij ð42Þ

Then, we can order the alternatives x1;x2; . . .; xp by the

value of Pi, i 2 f1; 2; . . .; pg. The larger the value of Pi, the

better the preference order of alternative xi, where

i 2 f1; 2; . . .; pg.

5 Application examples and comparative
analysis

In this section, we will present some illustrative examples

from MAGDM application to analyze the effectiveness and

rationality of our proposed method for solving MAGDM

problems. Comparative analysis will be presented based on

the results obtained based on our proposed method and

other methods proposed in Chen et al. (2016), Xu (2010),

Yue (2014) and Zeng and Su (2011).

Example 5.1 (Yue 2014): The leading group of a college

needs to be assessed in the year-end report. The index of

satisfaction is important to the evaluation. So the satis-

faction degree with the members in the leading group will

be evaluated by consulting masses from each level. One

president and three vice presidents of the college will be

assessed. For clarity, these four members to be assessed are

regarded as four alternatives denoted by x1, x2, x3 and x4,

where x1 represents the president and x2, x3 and x4 repre-

sent the vice presidents, respectively. The masses are

constituted by three teams: teachers {E1}, researchers {E2}

and undergraduate students {E3}. They are considered as

three decision makers (reviewers) for the assess work.

Three attributes, including working performance, academic

performance and personal reputation, are considered by

decision makers E1, E2 and E3 to evaluate the alternatives

x1, x2, x3 and x4. Three attributes to be considered are

denoted as following:

1. a1: working performance,

2. a2: academic performance,

3. a3: personal reputation.

Decision makers E1, E2 and E3 provide decision matri-

ces D1, D2 and D3, respectively. Due to the limit of

expertise, uncertain information expressed by IFVs is

involved in the evaluation. These decision matrices with

intuitionistic fuzzy information are listed as follows:

Evidential model for intuitionistic fuzzy multi-attribute group decision making 7629

123



D1 ¼

a1 a2 a3

x1

x2

x3

x4

0:36; 0:27h i 0:53; 0:28h i 0:57; 0:22h i
0:72; 0:28h i 0:91; 0:07h i 0:80; 0:10h i
0:63; 0:19h i 0:88; 0:12h i 0:86; 0:14h i
0:65; 0:33h i 0:72; 0:23h i 0:77; 0:23h i

0

BB@

1

CCA

D2 ¼

a1 a2 a3

x1

x2

x3

x4

0:53; 0:26h i 0:54; 0:35h i 0:68; 0:32h i
0:85; 0:15h i 0:86; 0:13h i 0:69; 0:30h i
0:83; 0:16h i 0:76; 0:24h i 0:73; 0:13h i
0:90; 0:07h i 0:91; 0:03h i 0:66; 0:12h i

0

BB@

1

CCA

D3 ¼

a1 a2 a3

x1

x2

x3

x4

0:81; 0:18h i 0:76; 0:24h i 0:74; 0:19h i
0:75; 0:16h i 0:84; 0:16h i 0:97; 0:03h i
0:89; 0:11h i 0:78; 0:21h i 0:74; 0:11h i
0:66; 0:18h i 0:63; 0:27h i 0:71; 0:29h i

0

BB@

1

CCA

The weighting factors of three decision makers E1, E2

and E3 are assigned as 0.33, 0.34 and 0.33, respectively,

i.e., k1 ¼ 0:33, k2 ¼ 0:34, and k3 ¼ 0:33. The weighting

factors of attributes a1, a2 and a3 assigned by E1 are 0.4, 0.2

and 0.4, respectively, i.e., w1
1 ¼ 0:4, w1

2 ¼ 0:2, w1
3 ¼ 0:4.

The weighting factors of attributes a1, a2 and a3 that are

given by decision maker E2 are 0.3, 0.3 and 0.4, respec-

tively, i.e., w2
1 ¼ 0:3, w2

2 ¼ 0:3, w2
3 ¼ 0:4. The weighting

factors of attributes a1, a2 and a3 that are given by decision

maker E3 are 0.4, 0.4 and 0.2, respectively, i.e., w3
1 ¼ 0:4,

w3
2 ¼ 0:4, and w3

3 ¼ 0:2.

According to the relationship between IFV and BBA, we

can obtain BBAs in the discernment frame H ¼ fH1;H2g,

where H1 represents complete satisfaction of the concept of

‘‘excellence’’ with respect to the attitude and H2 represents

non-satisfaction of the concept of ‘‘excellence’’ with

respect to the attitude. The BBAs are listed in the following

Tables (1, 2 and 3).

By the IFWE average operator, we can get the com-

prehensive decision matrix that is proposed by all decision

makers.

D ¼

E1 E2 E3

x1

x2

x3

x4

0:3647; 0:1742h i 0:4281; 0:1979h i 0:5609; 0:1160h i
0:5732; 0:0941h i 0:5605; 0:1131h i 0:6015; 0:0738h i
0:5667; 0:0876h i 0:5563; 0:0948h i 0:5780; 0:0753h i
0:5183; 0:1356h i 0:5948; 0:0419h i 0:4822; 0:1451h i

0

BB@

1

CCA

The final assessments of the four leaders can be obtained

by (39):

Vx1
¼ 0:3589; 0:1150h i;Vx2

¼ 0:4565; 0:0608h i;
Vx3

¼ 0:4506; 0:0562h i;Vx4
¼ 0:4240; 0:0713h i:

By (40) and (41), we can obtain the comparison matrix

of these four final assessment IFVs:

P ¼

0:5 0:4247 0:4261 0:4472

0:5753 0:5 0:5007 0:5218

0:5739 0:4993 0:5 0:5209

0:5528 0:4782 0:4791 0:5

0

BB@

1

CCA

The column sums of matrix P can be obtain as

P1 ¼ 1:7981;P2 ¼ 2:0977;P3 ¼ 2:0941;P4 ¼ 2:0101.

Thus, all alternatives can be ranked as preference order:

x2 	 x3 	 x4 	 x1.

The ranking orders of all alternatives can also be

obtained by the method introduced in Chen et al. (2016),

Xu (2010) and Yue (2014). Since the attribute weights

proposed by different decision makers are different, the

method proposed in Zeng and Su (2011) cannot solve this

problem. For comparison, ranking orders from different

methods are presented in Table 4. We note that the meth-

ods proposed in Chen et al. (2016), Xu (2010) and Yue

2014) and our proposed method can get the same ranking

order x2 	 x3 	 x4 	 x1. This indicates that the proposed

method is competent to solving MAGDM problems where

the attribute weights from different decision makers are

different.

Example 5.2 (Zeng and Su 2011): A venture investment

company plans to invest a sum of money in one of six

candidate projects, namely, a chemical industry, an artifi-

cial intelligence company, a food factory, a super market, a

car factory and a pharmaceutical factory. To achieve the

best option, three experts are consulted. These experts will

assess six factories with respect to six attributes: short-term

benefits, midterm benefits, long-term benefits, investment

venture, investment difficulty and influence on

environment.

For clarity, we use six alternatives x1, x2, x3, x4, x5 and x6

to denote six candidate projects. They are listed as

following:

1. x1: a chemical industry,

2. x2: an artificial intelligence company,

3. x3: a food factory,

4. x4: a super market,

5. x5: a car factory,

6. x6: a pharmaceutical factory.

Six evaluation indexes are regarded as six attributes,

namely, a1, a2, a3, a4, a5 and a6, as follows:

1. a1: short-term benefits,

2. a2: midterm benefits,

3. a3: long-term benefits,

4. a4: investment venture,

5. a5: investment difficulty,
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6. a6: influence on environment.

Three consultant experts are denoted as E1, E2 and E3 to

evaluate the alternatives x1, x2, x3, x4, x5 and x6 with respect

to six attributes a1, a2, a3, a4, a5 and a6.

Assume that decision matrices provided by three experts

contain intuitionistic fuzzy information which is expressed

by IFVs. Three decision matrices corresponding to E1, E2

and E3 are, respectively, shown as:

D1 ¼
a1 a2 a3 a4 a5 a6

x1

x2

x3

x4

x5

x6

0:5; 0:4h i 0:5; 0:3h i 0:2; 0:6h i 0:4; 0:4h i 0:5; 0:4h i 0:3; 0:5h i
0:7; 0:3h i 0:7; 0:3h i 0:6; 0:2h i 0:6; 0:2h i 0:7; 0:2h i 0:4; 0:5h i
0:5; 0:4h i 0:6; 0:4h i 0:6; 0:2h i 0:5; 0:3h i 0:6; 0:3h i 0:4; 0:4h i
0:7; 0:2h i 0:7; 0:2h i 0:4; 0:2h i 0:5; 0:2h i 0:4; 0:4h i 0:6; 0:3h i
0:4; 0:3h i 0:5; 0:2h i 0:4; 0:5h i 0:4; 0:6h i 0:3; 0:4h i 0:7; 0:2h i
0:6; 0:2h i 0:4; 0:3h i 0:7; 0:3h i 0:6; 0:3h i 0:5; 0:4h i 0:6; 0:2h i

0

BBBBBBBB@

1

CCCCCCCCA

D2 ¼
a1 a2 a3 a4 a5 a6

x1

x2

x3

x4

x5

x6

0:5; 0:5h i 0:8; 0:2h i 0:6; 0:2h i 0:7; 0:2h i 0:6; 0:3h i 0:5; 0:4h i
0:4; 0:5h i 0:6; 0:2h i 0:7; 0:3h i 0:3; 0:4h i 0:7; 0:1h i 0:8; 0:2h i
0:5; 0:2h i 0:7; 0:2h i 0:8; 0:1h i 0:7; 0:1h i 0:3; 0:4h i 0:6; 0:3h i
0:6; 0:2h i 0:3; 0:4h i 0:5; 0:5h i 0:6; 0:2h i 0:4; 0:5h i 0:5; 0:2h i
0:7; 0:1h i 0:5; 0:1h i 0:3; 0:2h i 0:4; 0:3h i 0:7; 0:2h i 0:4; 0:3h i
0:7; 0:3h i 0:8; 0:2h i 0:6; 0:3h i 0:6; 0:2h i 0:5; 0:3h i 0:7; 0:2h i

0

BBBBBBBB@

1

CCCCCCCCA

D3 ¼
a1 a2 a3 a4 a5 a6

x1

x2

x3

x4

x5

x6

0:5; 0:3h i 0:7; 0:2h i 0:5; 0:3h i 0:5; 0:4h i 0:7; 0:3h i 0:4; 0:3h i
0:6; 0:3h i 0:6; 0:2h i 0:7; 0:2h i 0:8; 0:1h i 0:5; 0:4h i 0:6; 0:2h i
0:7; 0:3h i 0:4; 0:4h i 0:6; 0:3h i 0:4; 0:2h i 0:6; 0:3h i 0:4; 0:4h i
0:4; 0:4h i 0:6; 0:2h i 0:4; 0:2h i 0:7; 0:2h i 0:6; 0:2h i 0:5; 0:3h i
0:7; 0:2h i 0:7; 0:3h i 0:6; 0:1h i 0:7; 0:3h i 0:5; 0:3h i 0:3; 0:4h i
0:5; 0:2h i 0:5; 0:3h i 0:8; 0:2h i 0:6; 0:1h i 0:6; 0:2h i 0:6; 0:2h i

0

BBBBBBBB@

1

CCCCCCCCA

The weights of experts E1, E2 and E3 are assigned as 0.3,

0.3 and 0.4, respectively. Hence, k1 ¼ 0:3, k2 ¼ 0:3, and

k3 ¼ 0:4. The attribute weights given by three experts are

identical. The weighting factors of a1, a2, a3, a4, a5 and a6

are 0.09, 0.17, 0.24, 0.24, 0.17 and 0.09, respectively. So,

we have:w1
1 ¼ w2

1 ¼ w3
1 ¼ 0:09, w1

2 ¼ w2
2 ¼ w3

2 ¼ 0:17,

w1
3 ¼ w2

3 ¼ w3
3 ¼ 0:24, w1

4 ¼ w2
4 ¼ w3

4 ¼ 0:24, w1
5 ¼ w2

5 ¼
w3

5 ¼ 0:17, and w1
6 ¼ w2

6 ¼ w3
6 ¼ 0:09.

Based on the proposed IFWE average operator, we can

yield each expert’s aggregated assessment results of all

alternatives based on his own decision matrix. These

results are presented as:

V1
x1
¼ 0:2495; 0:2937h i;V1

x2
¼ 0:4304; 0:1440h i;

V1
x3
¼ 0:3744; 0:1877h i;

V1
x4
¼ 0:3696; 0:1511h i;V1

x5
¼ 0:2804; 0:2725h i;

V1
x6
¼ 0:3928; 0:1794h i:

V2
x1
¼ 0:4378; 0:1467h i;V2

x2
¼ 0:3920; 0:1688h i;

V2
x3
¼ 0:4482; 0:1095h i;

V2
x4
¼ 0:3255; 0:2280h i;V2

x5
¼ 0:3471; 0:1353h i;

V2
x6
¼ 0:4365; 0:1426h i:

V3
x1
¼ 0:3812; 0:1858h i;V3

x2
¼ 0:4568; 0:1217h i;

V3
x3
¼ 0:3523; 0:1885h i;

V3
x4
¼ 0:3932; 0:1379h i;V3

x5
¼ 0:4217; 0:1469h i;

V3
x6
¼ 0:4446; 0:1114h i:

Then, the decision matrix for group decision making can

be constructed as follows:

D ¼

E1 E2 E3

x1

x2

x3

x4

x5

x6

0:2495; 0:2937h i 0:4378; 0:1467h i 0:3812; 0:1858h i
0:4304; 0:1440h i 0:3920; 0:1688h i 0:4568; 0:1217h i
0:3744; 0:1877h i 0:4482; 0:1095h i 0:3523; 0:1885h i
0:3696; 0:1511h i 0:3255; 0:2280h i 0:3932; 0:1379h i
0:2804; 0:2725h i 0:3471; 0:1353h i 0:4217; 0:1469h i
0:3928; 0:1794h i 0:4365; 0:1426h i 0:4446; 0:1114h i

0

BBBBBBBB@

1

CCCCCCCCA

Considering the independence of each decision maker,

we can aggregate all experts’ assessment on each alterna-

tive by using the IFWE average operator. Aggregating the

IFVs in each row of decision matrix D, we can get the final

evaluation result of each alternative as:

Vx1
¼ 0:2863; 0:1544h i;Vx2

¼ 0:3479; 0:1027h i;
Vx3

¼ 0:3134; 0:1222h i;Vx4
¼ 0:2974; 0:1267h i;

Vx5
¼ 0:2896; 0:1364h i;Vx6

¼ 0:3458; 0:1018h i:

The comparison matrix of these six alternatives is shown

as follows:

P ¼

0:5 0:4489 0:4736 0:4829 0:4906 0:4496

0:5511 0:5 0:5242 0:5331 0:5409 0:5005

0:5264 0:4758 0:5 0:5090 0:5167 0:4764

0:5171 0:4669 0:4910 0:5 0:5076 0:4675

0:5094 0:4591 0:4833 0:4294 0:5 0:4597

0:5504 0:4995 0:5236 0:5325 0:5403 0:5

0

BBBBBB@

1

CCCCCCA

The column sum of each row can be calculated as:

P1 ¼ 2:8457;P2 ¼ 3:1499;P3 ¼ 3:0043;P4 ¼ 2:9500;P5

¼ 2:9039;P6 ¼ 3:1462:
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Since P2 [P6 [P3 [P4 [P5 [P1, we can rank the

six alternatives as preference order x2 	 x6 	 x3 	
x4 	 x5 	 x1.

We note that the attribute weights provided by each

expert are identical. So, the method proposed in Zeng and

Su (2011) can be used to solve the MAGDM problem in

this example. Different operators are combined with the

method in Zeng and Su (2011) to solve this problem. The

ranking preference orders of six projects are presented in

Table 5. It is shown that these methods introduced in Chen

et al. (2016), Xu (2010) and Yue (2014) and the proposed

method can obtain the same ranking order

x2 	 x6 	 x3 	 x4 	 x5 	 x1. From Table 5, we can see

that the results obtained by the combination of different

operators and the method in Zeng and Su (2011) are

slightly different. But the most recommended alternatives

derived by five operators (the Min operator and IFOWED

operator are excluded) are the same as other methods. This

example shows that the proposed method can get reason-

able results as most other methods. The method proposed

in Zeng and Su (2011) is easy to be affected by the

aggregated operator it uses.

Example 5.3 (Chen et al. 2016) A venture investment

company plans to invest a sum of money in the best fac-

tory. Three factories being considered are: a car factory, a

TV factory and a food factory. Three top decision makers

in this investment company will assess these factories from

three attributes. These three top decision makers are: the

chief director (E1), the general manager (E2) and the

director assistant (E3). Three attributes are taken into

account are: the venture index, the growth rate and the

social impact index.

For clarity, the following assumptions are put forward:

Three factories are expressed by alternatives x1, x2 and

x3:

1. x1: a car factory,

2. x2: a TV factory,

3. x3: a food factory.

Three attributes used in the assessment are denoted by

a1, a2 and a3:

1. a1: the venture index,

2. a2: the growth rate,

3. a3: the social impact index.

Three decision makers, namely, E1, E2 and E3 evaluate

these companies by intuitionistic fuzzy values. They pro-

pose three decision matrices: D1, D2 and D3, respectively.

These decision matrices are shown as follows:In the deci-

sion matrices given by decision makers E1, E2 and E3,

uncertain information is represented by IFVs. The decision

matrices associated with E1, E2 and E3 are, respectively,

shown as following:

D1 ¼

a1 a2 a3

x1

x2

x3

0:80; 0h i 0:50; 030h i 0:50; 0:20h i
0:85; 0:01h i 0:85; 0:15h i 0:80; 0:10h i
0:99; 0:01h i 0:90; 0:05h i 0:85; 0:05h i

0

@

1

A

D2 ¼

a1 a2 a3

x1

x2

x3

0:10; 0:90h i 0:15; 070h i 0:20; 0:60h i
0:20; 0:65h i 0:35; 0:60h i 0:30; 0:50h i
0:25; 0:01h i 0:50; 0:40h i 0:40; 0:40h i

0

@

1

A

D3 ¼

a1 a2 a3

x1

x2

x3

0:05; 0:95h i 0:20; 075h i 0:15; 0:65h i
0:15; 0:80h i 0:40; 0:60h i 0:30; 0:60h i
0:35; 0:60h i 0:50; 0:40h i 0:35; 0:50h i

0

@

1

A

The importance weights k1, k2 and k3 of decision

makers E1, E2 and E3 are 0.36, 0.32 and 0.32, respectively.

The weights of attributes a1, a2 and a3 that are given by

decision maker E1 are 0.01, 0.49 and 0.50, respectively,

i.e., w1
1 ¼ 0:01, w1

2 ¼ 0:49, and w1
3 ¼ 0:50. The weights of

attributes a1, a2 and a3 that are given by decision maker E2

are 0.01, 0.49 and 0.50, respectively, i.e., w2
1 ¼ 0:01,

w2
2 ¼ 0:49, and w2

3 ¼ 0:50. The weights of attributes a1, a2

and a3 that are given by decision maker E3 are 0.01, 0.49

and 0.50, respectively, i.e., w3
1 ¼ 0:01, w3

2 ¼ 0:49, and

w3
3 ¼ 0:50.

Based on the decision matrix from each decision maker,

we can obtain each decision maker’s preferences on these

alternatives. They are shown as follows:

V1
x1
¼ 0:4008; 0:1810h i;V1

x2
¼ 0:6343; 0:0727h i;

V1
x3
¼ 0:6747; 0:0278h i:

V2
x1
¼ 0:1159; 0:5163h i;V2

x2
¼ 0:2284; 0:4225h i;

V2
x3
¼ 0:3387; 0:2941h i:

V3
x1
¼ 0:1122; 0:5498h i;V3

x2
¼ 0:2370; 0:4541h i;

V3
x3
¼ 0:3387; 0:2941h i:

Then, the decision matrix for group decision making can

be constructed as:

D ¼

E1 E2 E3

x1

x2

x3

0:4008; 0:1810h i 0:1159; 0:5163h i 0:1122; 0:5498h i
0:6343; 0:0727h i 0:2284; 0:4225h i 0:2370; 0:4541h i
0:6747; 0:0278h i 0:3387; 0:2941h i 0:3387; 0:2941h i

0

@

1

A

By the proposed IFWE average operator, we can obtain

the final assessment results of all alternatives:
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Vx1
¼ 0:1553; 0:3162h i;Vx2

¼ 0:2824; 0:2186h i;
Vx3

¼ 0:3591; 0:1349h i:

The comparison matrix of these IFVs can be obtained

based on the possibility-based ranking method:

P ¼
0:5 0:3907 0:3139

0:6093 0:5 0:4202

0:6861 0:5798 0:5

0

@

1

A:

The column sums of matrix P can be calculated as:

P1 ¼ 1:2045;P2 ¼ 1:5296;P3 ¼ 1:7659:

Therefore, the preference order of the three companies

can be obtained according to the values of the column

sums: x3 	 x2 	 x1.

We can get the ranking orders of three alternatives by

the methods in Chen et al. (2016), Xu (2010), Yue (2014)

and Zeng and Su (2011). For comparison, we present the

results derived by different methods in Table 6. It is shown

that the method in Chen et al. (2016) and Zeng and Su

(2011) ranks three factories in the same order x3 	 x2 	 x1,

which is identical to the order obtained by our proposed

method. The ranking preference orders derived by the

methods in Xu (2010) and Yue (2014) are unreasonable

because of the extreme IFV\ 0.8, 0[ , where the non-

membership degree is 0.

For Xu’s method (2010), we can obtain the collective

intuitionistic fuzzy decision matrix as:

R ¼

a1 a2 a3

x1

x2

x3

0:385; 0h i 0:270; 0:572h i 0:281; 0:461h i
0:476; 0:229h i 0:573; 0:419h i 0:494; 0:345h i
0:766; 0:027h i 0:670; 0:234h i 0:573; 0:246h i

0

@

1

A

The aggregated IFV of alternative x1 with regard to

attribute a1 is\ 0.385, 0[ , which is obtained by aggre-

gating the assessment values\ 0.8, 0[ ,\ 0.1,

0.9[ and\ 0.05, 0.95[ , given by decision makers E1,

E2 and E3, respectively, for attribute a1. This is caused by

the calculation process of Xu’s method (2010). In Xu’s

method (2010), the aggregated non-membership degree is

the power product of all non-membership degrees with

their weighting factors. Therefore, the non-membership

degree of the aggregated result will be 0 when there exists a

zero non-membership degree in the original data. Other

values with higher non-membership degrees are not con-

sidered. Thus, the method proposed by Xu (2010) obtains

the incorrect integrated intuitionistic fuzzy decision matrix

R and an unreasonable ranking preference order of alter-

natives x1, x2 and x3, as shown in Table 6.

For the method in Yue (2014) which is proposed based

on (12), we can obtain the positive ideal decision matrix Y�

as:

Y� ¼

a1 a2 a3

x1

x2

x3

0:006; 0h i 0:162; 0:739h i 0:165; 0:654h i
0:008; 0:983h i 0:371; 0:621h i 0:321; 0:557h i
0:018; 0:968h i 0:453; 0:454h i 0:377; 0:464h i

0

@

1

A

The obtained positive ideal intuitionistic fuzzy value for

alternative x1 with respect to attribute a1 is\ 0.006, 0[ .

The non-membership degree is 0. This is also caused by the

power product operation in Yue’s method (2014). The

existence of only one zero non-membership value can

make irrelevant high non-membership degrees, such as 0.9

and 0.95. Therefore, the ideal positive value\ 0.006,

0[ is incorrect. Thus, the method in Yue (2014) obtains

an unreasonable positive ideal decision matrix Y� in the

case where there is an IFV with 0 non-membership degree

in a decision matrix. This will lead to an unreasonable

ranking preference order of the alternatives x1, x2 and x3, as

shown in Table 6.

This example indicates that the proposed method is

robust enough to extreme IFVs in the decision matrices.

6 Conclusions

Using the relation between IFSs and evidence theory, we

propose an evidential model for solving the problem of

MAGDM in intuitionistic fuzzy environment. The pro-

posed evidential model is developed based on two new

methods as following. The first one is the IFWE average

operator, which is developed based on the evidence dis-

counting operation and Dempster’s combination rule.

Another one is the possibility-based ranking method for

IFVs. According to the weights of attributes and decision

makers, all decision makers’ evaluation information can be

aggregated by the IFWE average operator. Finally, the

aggregated IFV of each alternative is ordered by our pro-

posed possibility-based ranking method for IFVs. Com-

parative analysis based on application examples of

MAGDM shows that the proposed model can overcome the

deficiencies in existing methods and obtain reasonable

results. The applicability, availability and superiority of the

proposed method are well illustrated.

The study also has several limitations, which may

serve as avenues for future research. First, information

loss is not considered in the transformation from intu-

itionistic fuzzy information to basic belief assignments.

We have noted that IFV and BBA are not in one-to-one

correspondence. The deep relation between intuitionistic

fuzzy sets and evidence theory is left for us to explore in

future work. Second, the decision makers’ preferences are

not considered in the proposed approach. The subjective

factors from decision makers can affect the final result. It
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is of interest to examine the influence of decision makers’

preferences and compare the decision making results

under different preference perspectives. Therefore, the

description and quantification of decision makers’ prefer-

ences are desirable in future research. Last, the proposed

approach could be extended to some practical scenarios such

as site selection in airport construction and project selection

for venture investment. Tailored decision making proce-

dures, corresponding attributes and reasonable proposals

could be developed for those scenarios.
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