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Abstract
Genetic programming (GP) is a popular and powerful optimization algorithm that has a wide range of applications, such as
time series prediction, classification, data mining, and knowledge discovery. Despite the great success it enjoyed, selecting the
proper primitives from high-dimension primitive set for GP to construct solutions is still a time-consuming and challenging
issue that limits the efficacy of GP in real-world applications. In this paper, we propose a multi-population GP framework
with adaptively weighted primitives to address the above issues. In the proposed framework, the entire population consists
of several sub-populations and each has a different vector of primitive weights to determine the probability of using the
corresponding primitives in a sub-population. By adaptively adjusting the weights of the primitives and periodically sharing
information between sub-populations, the proposed framework can efficiently identify important primitives to assist the search.
Furthermore, based on the proposed framework and the graphics processing unit computing technique, a high-performance
self-learning gene expression programming algorithm (HSL-GEP) is developed. The HSL-GEP is tested on fifteen problems,
including four real-world problems. The experimental results have demonstrated that the proposed HSL-GEP outperforms
several state-of-the-art GPs, in terms of both solution quality and search efficiency.
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1 Introduction

Genetic programming (GP) is a powerful population-based
search algorithm that solves optimization problems by evolv-
ing computer programs (Koza and Poli 2005). Over the past
decades, GP has undergone a rapid development. A num-
ber of enhanced GP variants have been proposed, such as
grammatical evolution (GE) (O’Neill and Ryan 2001), gene
expression programming (GEP) (Ferreira 2006), Cartesian
genetic programming (CGP) (Miller and Thomson 2000),
linear genetic programming (LGP) (Brameier and Banzhaf
2007), and semantic genetic programming (SGP) (Moraglio
et al. 2012; Ffrancon and Schoenauer 2015). The applica-
tions of GP are also multiplying fast, including time series
prediction, classification, scheduling optimization, and oth-
ers (Zhou et al. 2003; Schmidt and Lipson 2009; Espejo et al.
2010; Zhong et al. 2017a, b).

Despite its great success, GP has encountered a challeng-
ing issue in real-world applications (i.e., how to select proper
primitives such as terminals (e.g., variable x) and functions
(e.g., + and sin) to construct solutions efficiently for a given
problem). Traditionally, the primitive set is defined in an
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ad hoc manner, relying heavily on experts’ domain knowl-
edge and experience. In many real-world applications where
little or even no domain knowledge is available, we thus
have to design as many primitives as possible to increase
the probability that high-quality solutions are involved in the
corresponding search space. However, this leads to an expo-
nential increase in the range of the search space, which turns
out to slow down the search speed seriously and makes GP
get trapped into local optima easily. In the literature, sev-
eral methods have been proposed to tackle this problem by
using feature selection techniques (Chen et al. 2016, 2017;
Harvey and Todd 2015). Nevertheless, these methods only
focus on the terminal selection. Designing a more effective
mechanism to select both important terminals and functions
is still a challenging research topic remained unexplored in
GP community.

To address the above issues, this paper proposes a multi-
population GP framework with adaptively weighted prim-
itives. In the proposed framework, the whole population
is divided into a number of sub-populations. Each sub-
population is assigned with primitives (i.e., terminals and
functions) having different weights. The sub-populations
are evolved independently using their own important prim-
itives (i.e., those with larger weights) to construct solu-
tions. By periodically sharing promising individuals among
sub-populations and adaptively adjusting the weights of
primitives based on the statistic information of surviving
individuals, the proposed framework can gradually identify
both important terminals and functions during the evolution
processes online. Furthermore, based on the proposed multi-
population framework, a high-performance self-learning
gene expression programming algorithm named HSL-GEP
is developed. The developed HSL-GEP contains a new way
to cooperate different computing resources (e.g., CPU and
GPU), and it adopts a recently published GP variant, self-
learninggene expressionprogramming (SL-GEPZhong et al.
2016) as the GP solver for each sub-population in the pro-
posed framework. In summary, themajor contributions of the
paper are as follows:

(1) A fast multi-population GP framework with adaptively
weighted primitives is proposed. Unlike the existing
methods that only identify important terminals, the
proposed framework is capable of identifying both
important terminals and functions efficiently to improve
the search efficiency.

(2) An efficient algorithm, HSL-GEP, is developed based
on the proposed multi-population framework and GPU
computing technique. Unlike existingmethods that only
consider homogeneous computation resources, the pro-
posedHSL-GEPcan fully utilize both the heterogeneous
hardware computing resources (i.e., GPU and multi-

core CPU) and the characteristics of the algorithm
architecture to accelerate the search.

(3) Comprehensive experiments on both benchmark and
real-world problems are conducted to validate the pro-
posed algorithm and to facilitate the real-world applica-
tions of the proposed method.

The rest of the paper is organized as follows. The related
works of feature selection in GPs and GPU-based GPs are
introduced in Sect. 2. The proposed multi-population GP
framework is introduced in Sect. 3. Section 4 introduces
the details of HSL-GEP. Section 5 presents the experimental
studies, and Sect. 6 draws the conclusion.

2 Related works

In this section, we review the related research works on: (1)
improving GP using feature selection, and (2) improving GP
using GPU parallel computing.

2.1 Improving GP using feature selection

Feature selection is a common technique to improve the per-
formance of a learning algorithm (Xue et al. 2016; Zhai et al.
2014). Generally, the goal of feature selection is to select a
subset of relevant features from the original redundant fea-
ture set, so that the selected features can effectivelymodel the
system. By removing redundant features, we can reduce the
search space and training time, and enhance the generality
of the obtained solutions.

Only several preliminary efforts have been made to apply
feature selection methods to GP high-dimension regression
problems in past few years (Chen et al. 2016, 2017), though
various feature selection methods have been proposed on
classification and clustering problems (Ahmad et al. 2015;
Xue et al. 2013; Hancer et al. 2018; Gu et al. 2018; Nesha-
tian and Zhang 2009; Sandin et al. 2012; Ahmed et al. 2013;
Moore et al. 2013; Deng et al. 2019a). For example, Chen
et al. (2016) assumed that the features appearing in the
better individuals are more important. They calculated the
frequency of distinct features in the top best individuals in
each generation and selected those with higher frequency
as the important features. To further improve the robust-
ness and the efficiency of the feature selection, Chen et al.
(2017) introduced the permutation importance metric in fea-
ture selection. In this method, all the distinct features in the
best-of-run individuals are permutated into other features and
these permutated individuals are re-evaluated. The difference
in permutated fitness and the original fitness is regarded as the
importance of the features. Besides, feature selection tech-
niques have also been applied to improve GP to solve other
real-world applications, such as job shop scheduling (Mei
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et al. 2016b; Riley et al. 2016; Mei et al. 2017) and oral bio-
availability problem (Dick et al. 2015). The above methods
have shown great potential for feature selection in improv-
ing GP. However, existing methods only focus on selecting
terminals, which is not efficient enough, especially on cases
where the function set is large and contains redundant prim-
itives. In this paper, we propose a new framework that can
efficiently select both terminal and function primitives.

2.2 Improving GP using GPU

Benefiting from the strong computing power, GPU has been
adopted to develop various parallel GPs in the literature. The
first programmable-GPU-based GP is perhaps proposed by
Harding and Banzhaf (2007), where a SIMD interpreter (a
GPU programming framework) is developed to evaluate the
whole population of GP in parallel. Later, Harding, Banzhaf,
and Langdon developed a series of parallel GPs (Lang-
don 2011; Harding and Banzhaf 2007; Banzhaf et al. 2008;
Langdon 2010) based on the Compute UnifiedDevice Archi-
tecture (CUDA/C++) and different GP variants. Though
these works mainly focused on the parallelization of fit-
ness evaluation, they have demonstrated the great potential
of GPU in accelerating the search efficiency of GP.

Further, a number of efforts have been made to improve
GPU-based GPs by properly utilizing the distinct charac-
teristics (e.g., memory category and memory hierarchy) of
GPU. From the view of memory category, Shao et al. (2012)
decoded the chromosomes into post-order trees to make full
use of the constant memory of GPU, while Cano and Ven-
tura (2014) transferred the chromosomes into sharedmemory
of GPU to utilize threads in GPU to decode the indepen-
dent subtrees of the chromosomes. Besides, Chitty proposed
two works (Chitty 2016a, b) to improve the performance of
GPU-based GPs from the perspective of memory hierarchy.
In Chitty (2016b), Chitty designed a preemptive parallel
structure to schedule both the L1 cache and shared mem-
ory of GPU. In Chitty (2016a), Chitty further proposed a
two-dimension stack to improve the data transfer efficiency
between L1 cache and global memory of GPU. Both of
these two works successfully accelerated the search efficacy.
Besides, GPU-based GPs have also been applied to various
real-world applications such as the concrete industry and the
graph coloring problem (Gandomi et al. 2016; Chen et al.
2015; Rojas and Meza 2015).

Generally, in existing GPU-based GPs, the evolution pro-
cess is divided into separated stages and GPU is utilized
in certain stages such as fitness evaluation. Different stages
are performed sequentially, which means the GPU and CPU
have to wait for each other alternatively. Keep the above in
mind, this paper proposes a hierarchical parallel GP frame-
work which can keep GPU and CPU busy throughout the
evolution process. When some individuals are evaluated in

GPU threads, genetic operations of other individuals can be
performed simultaneously in CPU threads. By this mean, the
computing resources of multi-core CPU and GPU can be
utilized in a more flexible and efficient manner.

3 Proposed environment-vector-based
multi-population GP framework

3.1 The proposed framework

Since the multi-population is an effective way to solve
the large-scale optimization problems (Deng et al. 2017,
2019b; Mei et al. 2016a; Antonio and Coello 2018; Yang
et al. 2008), the idea of multi-population is also adopted in
our proposed framework. In this section, the environment-
vector-based multi-population GP framework (EMGP) is
presented. In EMGP, the whole population is divided into
multiple sub-populations, and the searching direction of each
sub-population is guided by an environment vector (EV ).
The elements of EV s represent the selection probabilities
of terminals and functions during solution construction in
sub-populations. Each EV consists of two parts: Et and
Ef . Et represents the selection probabilities of terminals,
while Ef represents the selection probabilities of functions.
Accordingly, the lengths of Et and Ef are equal to the
size of the terminal set and function set, respectively. By
assigning different EV s to different sub-populations, the
sub-populations can focus on finding solutions in different
sub-search spaces. To facilitate sharing information among
sub-populations and to improve the search efficiency, three
operations are proposed in EMGP: (1) sub-search space ini-
tialization, (2) sub-search space adaption, and (3) learning
between sub-populations. The general relationship of the
three operations and the pseudocode of EMGP are illustrated
in Fig. 1 and Algorithm 1, respectively. Firstly, the solution
space is divided into different sub-spaces. Each sub-space is
defined by an EV and is assigned to a sub-population. After
that, each sub-population focuses on evolving solutions in
the corresponding sub-search space. During the evolution,
EV s of sub-populations, on the one hand, are adjusted adap-
tively. On the other hand, they learn from each other to find
out more suitable EV s. The details of the proposed EMGP
are described as follows.

3.2 Sub-search space initialization

In this operation, the EV of each sub-population is ini-
tialized. Specifically, the terminal part of EV of the first
sub-population (i.e., Et,0) is set according to the entropy of
each feature (Zhong and Cai 2015). Features with smaller
entropy are more important. The top-10% most important
features are set to 1, while the others are set to 0 in Et,0.
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Fig. 1 The proposed EMGP framework

Algorithm 1: The procedure of EMGP
1: for all sub-populations do
2: initialize EV (Et,k and E f ,k ) � sub-search space initialization
3: for all individuals in the current sub-population do
4: EV -based initialize of individuals.
5: end for
6: end for
7: Fitness evaluation on the initial population.
8: while Termination conditions are not satisfied do
9: for all sub-populations do
10: Update Pt,k and Pf ,k by (4). � sub-search space adaptation
11: Update EVk by (3) and (6).
12: Update PTk by (12)
13: Genetic operations on the current sub-population
14: end for
15: if l mod π = 0 then
16: � learning between sub-populations
17: for all individuals in the sub-population do
18: if similarity by (7) < ω then
19: Immigration of J∗.
20: end if
21: if similarity by (8) < ω then
22: Emigration of a random individual to another random

sub-population.
23: end if
24: end for
25: Determine the EV ′ by (9) and replace the EV of a random

sub-population by EV ′.
26: end if
27: end while

Because the functions have no entropy measurement, all the
elements in Ef,0 are set to 1. To improve global search-
ing ability, the other EV s are scattered evenly in the value
ranges. To ensure that the sub-search spaces assigned to sub-
populations are scattered evenly in the whole search space,
the number of terminals (or functions) assigned to each sub-

population, denoted as νt (or νf ), is initialized by :

νt =
{

� T
Ns−1� + 1 if T ≥ 2

1 otherwise

νf =
{

� F
Ns−1� + 1 if F ≥ 2

1 otherwise

(1)

where Ns is the number of sub-populations, T represents
the number of terminals, and F represents the number of
functions. Every sub-population gets νt terminals and νf
functions from the terminal set and function set randomly.
These νt terminals and νf functions are called the “com-
pulsory” primitives of sub-populations. All primitives are
assigned to sub-populations properly so that each primitive
is the “compulsory” terminal (or function) of at least one
sub-population. The elements of Et and Ef are initialized
by:

Et,k,ut =
{
1 if ut ∈ “compulsory” terminals
1
T otherwise

E f ,k,uf =
{
1 if uf ∈ “compulsory” functions
1
F otherwise

(2)

where k is the index of the sub-population, ut and uf are the
indexes of terminals and functions, respectively.

3.3 Sub-search space adaptation

This operation is used to evolve the sub-population indepen-
dently and update the EV of each sub-population adaptively
during the evolution. Specifically, a EV is updated based
on the distributions of terminals and functions in the cur-
rent sub-population in each generation. Since the surviving
individuals have better fitness values, they are more likely
to contain important terminals and functions that are used to
construct promising solutions. Hence, a EV is updated by:

El
t,k = (1 − τ)El−1

t,k + τ Pt,k

El
f ,k = (1 − τ)El−1

f ,k + τ Pf ,k

k = 1, 2, . . . , Ns; τ = 1

π

(3)

where l is the generation index, π is the number of gen-
erations between two migrations, Pt,k and Pf ,k are the
proportions of terminals and functions in the current sub-
population, respectively. In each generation, the elements
pt,k,ut and p f ,k,uf of Pt,k and Pf ,k are updated according
to the scaled frequency of terminals and functions in the cur-
rent sub-population as shown in (4).
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pt,k,ut = na + c∑T−1
d=0 nd + c

p f ,k,uf = nb + c∑F−1
d=0 nd + c

(4)

na and nb are the scaled frequency of terminals and functions
computed by (5); c is a small constant value ensuring that
all terminals and functions have a small probability to be
selected. In (5), I is the set of indexes of individuals which
contain terminal a (or function b); f̄ and δ are the average
and the standard variation of fitness value in a certain sub-
population, respectively; and fi is the fitness value of the i th
individual.

na =
∑
i∈I

T
f̄ − fi

δ × lg(1 + l)

nb =
∑
i∈I

F
f̄ − fi

δ × lg(1 + l)
(5)

After each update, the EV is normalized by:

Et,k,ut = Et,k,ut∑T−1
a=0 Et,k,a

E f ,k,uf = E f ,k,uf∑F−1
a=0 E f ,k,a

(6)

3.4 Learning between sub-populations

To efficiently utilize the searching information and determine
a more suitable EV , two operations, namely the migration
andMonte-Carlo-based EV generation, are performed every
π generations during the evolution of each sub-population.
The migration operation contains two phases: immigration
and emigration. In the immigration phase, the best individual
of each sub-population is substituted by the best-so-far indi-
vidual J ∗ of the whole population. In the emigration phase,
a random individual is selected from each sub-population
and compared with another random individual in other sub-
populations. The latter will be replaced by the former if the
former is better.

To preserve the diversity of sub-populations, the cosine
distance (7) is adopted to measure the similarity between
EVG and EVk (denoted as Ω(G, k)) in immigration, while
(8) is adopted to measure the similarity between EVi and
EVj (denoted as Ω(i, j)) in emigration. G is the index of
the sub-population of the best individual J ∗.

Ω(G, k) = 1 − 1

2

(
cos(Et,G , Et,k) + cos(E f ,G , E f ,k)

)
(7)

Ω(i, j) = 1 − 1

2

(
cos(Et,i , Et, j ) + cos(E f ,i , E f , j )

)
(8)

If Ω is larger than a random threshold ω = rand(0, 1),
the migration between these two sub-populations will be
rejected.

In the Monte-Carlo-based EV generation, a new EV
is generated considering the existing EV s by Monte-Carlo
methods (MC) and is assigned to a random sub-population.
Since the effectiveness of an EV can be estimated accord-
ing to the performance of the corresponding sub-population,
better performance of the sub-population implies the higher
probability of containing the valuable primitives the EV has.
Following thismind, the importance of primitives is designed
as the product of elements of EV and the corresponding rank-
ings. Thus, the newly generated EV (labeled as EV ′) can be
calculated by:

E ′
t,ut =

Ns∑
k=0

Et,k,ut
2 × r

E ′
f ,ut =

Ns∑
k=0

E f ,k,uf
2 × r

(9)

where r is the rank of each sub-population in descend-
ing order based on the fitness of the best individual in the
sub-population. Finally, the EV ′ is normalized by (6) and
assigned to a random sub-population.

4 Proposed HSL-GEP

In this section, a hierarchical parallel genetic programming
named high-performance self-learning gene expression pro-
gramming (HSL-GEP) is developed based on the proposed
EMGP framework mentioned above and the GPU-CUDA
computing platform. In the following parts, the basic con-
cepts of GPU are introduced at first. Then, the general
architecture of HSL-GEP and its implementations are pre-
sented.

4.1 Basic concepts of GPU

A GPU contains three types of hierarchical layers: grid,
block, and thread. Generally, a thread is a basic unit of GPU,
and a common GPU can contain thousands of threads. A
block contains a number of threads, and a grid contains a
number of blocks. There are a number of streaming multi-
processors (SMs) on each chip of GPU, and one SM can run
several blocks simultaneously. Similar to CPU, each SM has
its own cache, which is shared by all the blocks in the SM.
Each SM contains a limited number of registers. Thus, the
more blocks there are, the less registers a block can occupy
on the SM.
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Fig. 2 General architecture of the proposed HSL-GEP

There are five common kinds of memory in GPU: cache,
register, global memory, shared memory, and constant mem-
ory Cook (2012). The cache and register are the fastest
memory inGPU, but their capacity is the smallest. The global
memory, which can be read/written by both CPU and GPU,
is the largest memory, but its bandwidth is the lowest in GPU.
The shared memory is a segment of user-programmed cache
in GPU. The shared memory can be read by multiple threads
simultaneously, but it can only be written sequentially. The
shared memory is commonly used for data reutilization and
data sharing between threads. The constant memory is a vir-
tual address of the global memory. It has no physical memory
block, but it utilizes the cache and a broadcasting mechanism
to speed up the data reading ratio of multi-thread.

4.2 The architecture of HSL-GEP

The architecture of HSL-GEP contains three major modules:
main evolution module, independent evolution module, and
GPU fitness evaluation module, as shown in Fig. 2. The
main evolution module is responsible for the initialization
of the whole algorithm and the outer evolution procedure,
including scheduling CPU threads to perform independent

evolution module, synchronization, and learning operation
among sub-populations. The independent evolution mod-
ule is responsible for evolving a sub-population using the
five reproduction steps in EMGP (i.e., environment updat-
ing, mutation and crossover, chromosome decoding, fitness
evaluation, and selection). A multi-core CPU is applied in
the independent evolution module to pipeline the indepen-
dent evolution of all sub-populations to shadow the latency
time of CPU and GPU communication. The GPU fitness
evaluation module is used to evaluate the fitness values of
individuals in sub-populations through GPU. The model uti-
lizes the threads in CPU (denoted as TC) and those in GPU
(TG) to work cooperatively during the evolution. The pseu-
docode of HSL-GEP is illustrated in Algorithm 2, and the
related symbols are listed in Table 1. Firstly, the model ini-
tializes the computational resources (e.g., CPU threads and
GPU memory allocation), EV s, and the population. Then,
the model performs EV updating and genetic operations to
evolve sub-populations independently. If such independent
evolution satisfies the “trigger” π , the migration and the
Monte-Carlo-based EV generation are performed. Finally,
the evolution is terminated when the model meets the termi-
nation condition.
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Algorithm 2: The procedure of HSL-GEP
1: Thread creation in CPU
2: Memory allocation in GPU
3: for all k ∈ Ns sub-population do
4: initialize EV (Et,k and E f ,k ) � sub-search space initialization
5: for all j ∈ Ms individual do
6: Initialize Ck, j
7: EV -based initialization of Xk, j .
8: end for
9: end for
10: Fitness evaluation on initial population in GPU.
11: while Termination conditions are not satisfied do
12: for k = 0 to Ns do
13: Sub-search space adaptation in Algorithm 1.
14: for j = 0 to Ms do
15: Uk, j ← Mutation and crossover procedure
16: end for
17: Fitness evaluation of the j th sub-population in GPU.
18: Selection between Uk, j and Xk, j by (14).
19: end for
20: if l mod π = 0 then
21: Synchronization barrier.
22: Learning between sub-populations in Algorithm 1
23: end if
24: end while

Table 1 The list of important symbols

S The size of the whole population

Ms The size of the sub-population

Ns The number of sub-populations

L The length of the chromosome

π The generation interval between two migrations

Xk, j The chromosome of j th individual in kth
sub-population. Its vector form is
Xk, j = (xk, j,0,xk, j,1,…,xk, j,L−1)

Ck, j The type vector of j th individual in kth
sub-population. Its vector form is
Ck, j = (ck, j,0,ck, j,1,…,ck, j,L−1)

ut Index of terminal set,ranging from 0 to T − 1

uf Index of function set,ranging from 0 to F − 1

l The index of generation

Pt,k The probability vector of all terminal symbols in kth
sub-population

Pf ,k The probability vector of all function symbols in kth
sub-population

PTk The probability vector of ingredient types in kth
sub-population

Yk, j The j th mutation vector

Uk, j The j th trial vector

rand(set) Choose an element from the given set or data range
randomly

ADF Auto-defined function, a nested sub-function in
SL-GEP

NTC The number of CPU threads

NB The number of GPU blocks

NT The number of threads in each GPU block

4.3 Main evolutionmodule

The initialization of themain evolutionmodule contains three
parts: the whole population initialization, threads creation,
and memory allocation in GPU. Before the population ini-
tialization, an ingredient type vector Ck, j and the EV need
to be initialized at first.

The vector Ck, j = (ck, j,0, ck, j,1, . . . , ck, j,L−1) of each
individual describes the type of all genes in the individual.
The Ck, j is introduced because SL-GEP has different type
requirements in different parts of the individual. For example,
a gene belonging to head part can be either function or termi-
nal, while a gene belonging to tail part can only be terminal.
The Ck, j is initialized randomly based on the available gene
types defined by the individual representation. The EV s of all
sub-populations are also initialized by themethodmentioned
in Sect. 3.2. Since different sub-populations are controlled by
different EV s, an EV -based assignment is developed to ini-
tialize individuals, as shown in Algorithm 3.

Algorithm 3: EV -based assignment of xk, j,i
Input: ck, j,i
Output: xk, j,i
1: if ck, j,i == terminal then
2: repeat
3: ut = rand(0, T − 1)
4: xk, j,i = terminal set(ut )
5: until rand(0, 1) < Et,k,ut
6: end if
7: if ck, j,i == function then
8: repeat
9: u f = rand(0, F − 1)
10: xk, j,i = function set(u f )
11: until rand(0, 1) < E f ,k,u f
12: end if
13: if ck, j,i == ADF then
14: xk, j,i = rand( ADF set )
15: end if

After the population initialization, threads for paralleliza-
tion and theGPUmemory for fitness evaluation are allocated.
Specifically, five arrays for each GPU are allocated for sym-
bolic regression problems. Arrays T I and T O are used to
store training inputs and outputs, respectively, while array
DEV , F IT , and CV are used to store the decoded indi-
viduals, the calculated fitness values, and the temporary data
during calculation, respectively. T I is a two-dimension array
whose size isMI ×MV , where MI is the maximum number
of input samples and MV is the dimension of input vec-
tors. T O and F IT are two one-dimension arrays with MI
elements and NB elements, respectively. NB is the number
of GPU blocks which will be mentioned later. DEV is a
two-dimension array storing the decoded individual, and its
dimension is NB ×L , where L is the length of the individual.
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DEV is essentially the buffer between GPU and CPUwhich
is introduced above. CV is a two-dimension array with a
size of NB × MI . CV mainly stores the temporary value
during computation. All these five arrays are allocated to the
global memory of GPU to apply to solving problems with
large-scale data.

Following the initialization, the outer evolution proce-
dure performs the following four steps iteratively: evoking
independent evolution of sub-populations, synchronization
barriers, learning operations between sub-populations men-
tioned in Sect. 3.4, and termination judgment, until the
termination conditions are met.

4.4 Independent evolutionmodule

The independent evolution module is performed by TCs to
evolve sub-populations. One TC is responsible for one or
multiple sub-populations. Specifically, each TC is respon-
sible for at most � Ns

NTC
� sub-populations, where Ns is the

number of sub-populations and NTC is the number of TC .
During the independent evolution of sub-populations, the
EV s are updated according to (3) and (6), and the genetic
operations like mutation and crossover are performed to gen-
erate new individuals.

The mutation and crossover in HSL-GEP are the same as
SL-GEP. Specifically, the extended “DE/current-to-best/1”
mutation proposed inSL-GEP is adopted to generate amutant
vector for each target vector (i.e., parent individual). The
“DE/current-to-best/1” mutation can be expressed by:

Yk, j = Xk,r1 + ξ · (Xk,best − Xk,r1) + ξ · (Xk,r2 − Xk,r3)

(10)

where ξ is a scaling factor which is randomly set by:

ξ = rand(0, 1) (11)

Each gene in the target vector will mutate to a new value
with certain probability. If a gene is to be mutated, its value
is also set by the EV -based assignment (Algorithm 3). In the
EV -based assignment, the route-wheel selection is utilized
to determineCk, j based on PTk . PTk is the probability vector
of ingredient types and is updated by

ptk,a = ma + c∑
d∈{terminals, f unctions,ADFs} md + c

(12)

where ma is the frequency of three ingredient types (i.e.,
terminals, functions, and ADFs). c is a small constant.

The crossover operation generates a trial vector Uk, j for
each Xk, j by

uk, j,i =
{
yk, j,i if rand(0, 1) < CR or j = κ

xk, j,i otherwise
(13)

where CR is a random number ranging from 0 and 1, and κ

is a random integer ranging from 0 to Ms − 1.
After the genetic operations, the GPU fitness evaluation

module is invoked to evaluate the fitness of individuals. The
fitness evaluation model invokes the GPU asynchronously
to reduce the waiting time of both CPU and GPU. Once the
fitness of a newly generated trial vector is calculated, the
selection operation is performed to choose the better one
between each pair of trial vector and target vector by (14) to
form the new population.

Xl+1
k, j =

{
Uk, j if f (Uk, j ) ≤ f (Xl

k, j )

Xl
k, j otherwise

(14)

where f (·) is the objective function. Without loss of gen-
erality, we consider the problem at hand as a minimization
problem (e.g., to minimize the fitting error). Thus, the indi-
vidual with smaller objective function value is regarded as
the better one.

4.5 Fitness evaluationmodule

This module is used to evaluate the fitness values of individu-
als in sub-populations using GPU. The fitness of each newly
generated individual is calculated in four steps, as shown
in Fig. 3. Firstly, one row of DEV (a decoded individual) is
read into a block cache. Then, TGs in this block calculate the
outputs of different rows of T I based on DEV and store the
outputs intoCV . After that, TGs calculate the error between
T O and different columns ofCV , which are then stored back
to CV . Finally, the errors of a row in CV are summed up
and stored to F IT . This arrangement guarantees when one
decoded individual is read into the cache of one block, TGs
in this block can always hit the memory of the decoded indi-
vidual. When TGs need to use the same decoded individual
to calculate the output repetitively, the frequent memory hit
cuts down the times of swapping between cache and global
memory and reduces the data transportation time in GPU.
After the outputs of an individual on all inputs are calcu-
lated, another unfinished individual will be loaded into the
block to perform fitness evaluation until all individuals are
calculated. Once all submitted individuals are evaluated, the
F IT is copied back to CPU to set the fitness values of the
submitted individuals. By this mean, multi-thread CPU can
pipeline the evocation of fitness evaluation in GPU andmake
full use of both computing resources.
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Fig. 3 General procedure of fitness evaluation

To reduce the data transmission times between CPU and
GPU, a buffer is introduced in this module to store sub-
populations ready for fitness evaluation. Once the buffer is
full, or all sub-populations are checked and there is at least
one sub-population in the buffer, the GPU will be evoked
immediately to evaluate the fitness of individuals stored in
the buffer.

5 Experimental studies

In this section, we test the proposedHSL-GEP on benchmark
problems and real-world problems and analyze its results.
First, the experimental settings, including benchmark prob-
lems, compared algorithms, and performance metrics, are
described. Then, the results and discussions are presented.

5.1 Experimental settings

Table 2 lists fifteen symbolic regression problems (SRPs)
for testing, where F0 to F10 are benchmark problems
and the other four problems are real-world problems. The
selected benchmark problems have been widely used for
symbolic regression in the literature (McDermott et al. 2012;
Vladislavleva et al. 2009; Keijzer 2003; Yao et al. 1999).
They contain various function primitives (e.g., +, −, sin,
ln, exp, and so on) and have different difficulty levels for
investigation. In addition, the selected real-world problems
are also adopted in the papers of the compared methods
(i.e., the SL-GEP (Zhong et al. 2016) and GPPI (Chen et al.

2017)) and obtained from various applications (i.e., F11 to
F14 are obtained from the gas chromatographymeasurements
of the composition of a distillation tower,1 the Communities
and Crime unnormalized dataset (CCUN),2 and the Dif-
fuse Large-B-Cell Lymphoma (DLBCL) dataset provided by
Rosenwald et al. (2002), respectively). Especially, the data in
F12, the Communities and Crime normalized dataset (CCN),
is obtained by standardizing the data of F13 from the web-
site by z-score. Besides, the non-predictive features in CCN
and CCUN are removed and the number of murders in 1995
(the 130th feature) is used as the goal attribute. All of the
benchmark problems and the real-world ones are useful to
investigate the effectiveness of the proposed method. The
data associated with each problem are divided into train-
ing data and testing data, and the 10-fold cross-validation
method is adopted, except for the F14 whose size of train-
ing data and testing data has been specified in Rosenwald
et al. (2002). Each fold of training and testing data is run
5 times independently (i.e., totally 50 independent runs for
F0 to F13 and 20 independent runs for F14). All the missing
values in the data are substituted by the average value of the
attribute.

We compare the proposedHSL-GEPwith five othermeth-
ods. The first one is the recently published SL-GEP (Zhong
et al. 2016), which has been shown quite effective in solving
SRPs. The second one is “SL-GEP+GPPI,” which integrates
SL-GEP with a feature selection technique (named GPPI).
GPPI is the state-of-the-art feature selection method pro-
posed in Chen et al. (2017), to improve GPs on SRPs. In
SL-GEP+GPPI, GPPI is firstly performed to identify the
importance of different features (i.e., terminal primitives).
After that, SL-GEP evolves solutions based on these fea-
ture importance. The third one is EM-SLGEP which directly
uses the SL-GEP as the GP solver for each sub-population
in EMGP framework. The main difference between SL-
GEP and EM-SLGEP lies in the application of the proposed
multi-population framework. The fourth competitor is “SL-
GEP+2DG” which accelerates SL-GEP using a recently
proposed GPU implementation (i.e., design a two-dimension
stack for GPU computation and it is denoted as 2DG) (Chitty
2016a). The main difference between 2DG and the pro-
posed hierarchical parallel framework is the utilization
of computing resources. 2DG only focuses the utilization
of GPU, but HSL-GEP considers CPU, GPU, and their
cooperation. The fifth competitor is “EMSLGEP+2DG,”
which adopts the GPU implementation in Chitty (2016a) to
implement EM-SLGEP. The sixth method is the proposed
HSL-GEP,which combines both themulti-population frame-

1 The dataset of F11 can be downloaded from http://
symbolicregression.com/sites/default/files/DataSets/towerData.txt.
2 The dataset of F12,13 can be downloaded from http://archive.ics.uci.
edu/ml/datasets/Communities+and+Crime+Unnormalized.
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Table 2 The fifteen testing
problems

Ind function range dmn Itrain Itest

Benchmark problems

F0 x6 + x5 + x4 + x3 + x2 + x U[− 1, 1] 1 180 20

F1 sin(x2) cos(x) − 1 U[− 1, 1] 1 180 20

F2 ln(x + 1) + ln(x2 + 1) U[0, 2] 1 180 20

F3 − exp(− ∑4
i x

2
i ) U[0, 2] 4 180 20

F4 30 (x0−1)(x2−1)
x21 (x0−10)

x0:U[0.05, 2] 3 900 100

x1:U[1, 2]

x2:U[0.05, 2]

F5 −20 exp(−0.2
√∑30

i x2i
30 )− U[−32, 32] 30 180 20

exp(
∑30

i cos(2xi )
30 ) + 20

F6 x6 + x5 + x4 + x3 + x2 + x U[− 10, 10] 1 180 20

F7 sin(x2) cos(x) − 1 U[− 50, 50] 1 180 20

F8 ln(x + 1) + ln(x2 + 1) U[0, 200] 1 180 20

F9 ln(x + 1) + ln(x2 + 1) x :F2 21 180 20

Noise:U[− 1, 1]
F10 30 (x0−1)(x2−1)

x21 (x0−10)
x, y, z:F3 53 900 100

Noise:U[−1, 1]
Real-world problems

F11 Tower-unknown – 25 4499 500

F12 CCN-unknown – 124 1993 222

F13 CCUN-unknown – 124 1993 222

F14 DLBCL-unknown – 7399 180 60

dmn is the number of dimensions; Itrain is the number of training samples; Itest is the number of testing
samples; F6 to F10 are the large-domain version or the noisy version of F0 to F4

Table 3 The parameter settings

method Ns Ms (S) π NTC NB NT

SL-GEP 1 50(50) – 1 – –

SL-GEP+GPPI 1 50(50) – 1 – –

EM-SLGEP 4 32(128) 100 1 – –

SL-GEP+2DG 1 512(512) – 1 256 128

EMSLGEP+2DG 4 128(512) 100 1 256 128

HSL-GEP 4 128(512) 100 4 256 128

work and the hierarchical parallel computingmechanism and
adopts the SL-GEP as the basic GP solver for each sub-
population.

The important parameter settings of all methods are listed
in Table 3. The other parameters of SL-GEP and GPPI are
set the same as those in the original paper (Zhong et al. 2016;
Chen et al. 2017). To fully utilize the computing resources of
GPU, all the methods implemented on GPU have a relative
large S, which is 512. The time interval between two migra-
tions (π ) is 100 generations. The number of threads in CPU

(NTC ) is 1 for all methods but 4 for HSL-GEP. The number
of blocks (NB) in GPU is 256, and the number of threads
in each block (NT ) is 128. The experiment platform is one
chip of GeForce GTX 1070 GPU and Intel Core i7-7700 4-
core CPU with 3.60GHz. All algorithms terminate when the
optimal fitness value is reached or the limited running time
is reached. In this study, the optimal fitness value is reached
when the Rmse is less than 1e−4. And the limited running
time is 60 s and 180s for benchmark problems and real-world
problems, respectively.

For all problems and all compared algorithms, the function
set is set to { +,−,×,÷,max,min, pow, mod , sin, cos,
exp, ln,√, sgn, ��, ��, | · |, opp,+5,×5}, where the sgn
returns the sign of the input and the opp returns the opposite
number of the input. The +5 and ×5 serve as the redundant
functions in the function set. The terminal set is determined
according to the specific problem. For example, the number
of terminals in F0 is only one, while that of F6 is twenty-
five (i.e., x0 to x24). Three performance metrics are utilized
for algorithm comparison. The first metric is the root-mean-
square error (RMSE) on the testing data, which is calculated
by:
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R( f (.)) =
√∑

( f (xti ) − yti )2

Nt
(15)

where xti and yti are the input vector and output of testing
data, respectively, and Nt is the number of testing data.When
the RMSE of an independent run is less than 1e−4, the algo-
rithm is regarded as achieving the perfect hit (i.e., achieving
the optimal fitness value). The second one is the success rate
on the training data (Suc), which describes the percentage of
the perfect hits. The Suc is calculated by (16).

Suc = Ds

D
(16)

In (16), Ds is the number of perfect hits and D is the total
number of independent runs. The third metric is the average
running time (Tr ), which measures the computational time
efficiency of the algorithms.

5.2 Comparison with state-of-the-art algorithms

Table 4 shows the comparison results of these six algo-
rithms. The bold data are the best results. The Wilcoxon
rank-sum test results between other methods and HSL-GEP
are labeled out. Symbols ≈,+, and − represent the corre-
sponding method is similar to, significantly better, and worse
than HSL-GEP (EM-SLGEP) according to the Wilcoxon
rank-sum test at α = 10%. Symbols in brackets are the
Wilcoxon rank-sum test results between other methods and
EM-SLGEP. The symbol b, s(b, s) demonstrates the number
of cases in which HSL-GEP (EM-SLGEP) performs better
than, or similar to another method.

It can observed in Table 4 that EM-SLGEP outperforms
SL-GEP and SL-GEP+GPPI in most problems. In some
cases, such as F1, F2 and F9, EM-SLGEP has much bet-
ter Suc values compared with SL-GEP and SL-GEP+GPPI.
Although in those tough problems such as F3 and F6, all
methods, including the basic SL-GEP, have the same Suc
and Tr , EM-SLGEP still has a better Rmse than SL-GEP
and SL-GEP+GPPI, which means a better solution quality.
The above results validate the effectiveness of the proposed
multi-population framework. As for GPU-based methods,
HSL-GEP performs significantly better than other two meth-
ods (i.e., SL-GEP+2DG, EMSLGEP+2DG) in most of these
fifteen problems, especially the real-world ones. HSL-GEP
obtains the best RMSE and Suc results among all GPU-
based methods in all testing problems. Since SL-GEP+2DG
andEMSLGEP+2DGcannot fully utilize theGPUandmulti-
core CPU (i.e., CPU and GPU must wait to each other
alternatively), they are not efficient enough to accelerate the
search. The above results demonstrate the effectiveness of
our two main novelties. Both the proposed EV-based multi-
population GP framework and the developed hierarchical

parallel computing mechanism can improve the searching
efficiency.

To investigate the convergence speedof all compared algo-
rithms, we plot the convergence curves of the best-of-run
RMSE obtained by the algorithms in all the problems. Fig-
ure 4 illustrates the RMSE versus time convergence curves
of the compared algorithms. It is observed that the results of
EM-SLGEP (i.e., the green curve) can converge faster and
deeper than that of SL-GEP (i.e., the black curve) and SL-
GEP+GPPI (i.e., the purple curve) in most problems such
as F1, F2, F6, F7, F8, F9, and F10. These also validate the
effectiveness of the proposed multi-population mechanism.
Meanwhile, the convergence curves of the proposed HSL-
GEP (i.e., the red curve) converge faster than all the other
curves in most cases. Besides, the curve of the proposed
method can always converge to a smaller RMSE , which
means that the proposed method can find better quality solu-
tions. For the simple problems, although the feature selection
ability in HSL-GEP cannot bring too much benefit to the
evolution process, HSL-GEP also achieves better (or at least
similar) results. As for the tough real-world problems, HSL-
GEP converges faster and deeper than others, including the
two GPU-based methods. These results demonstrate the effi-
cacy of HSL-GEP.

5.3 Primitive selection analysis

In this subsection, we investigate the effectiveness of primi-
tive selection in HSL-GEP. The primitive selection results of
six problems and the target primitives (functions and termi-
nals) of selected benchmark problems are listed in Table 5.
These six benchmark problems are selected as examples
because they cover nearly the whole function set and cover
different difficulty levels (i.e., from the simplest F0 to the
hardest F10). The components of Et,G and E f ,G are regarded
as the importance of each primitive. Five most important
functions and terminals (i.e., those with larger weights) are
shown in Table 5. Since F0, F1, and F3 have less than five
terminals, the selection results of terminals are omitted in
Table 5. It is observed that all methods, including the basic
GP solver, SL-GEP, have a certain ability of primitive selec-
tion. But EM-SLGEP and HSL-GEP can find out more target
primitives (i.e., those marked in bold font). For example, in
F10, EM-SLGEP and HSL-GEP find out two to four tar-
get functions, while others can only find out one function.
Besides, the weights of the target primitives found by EM-
SLGEP and HSL-GEP are also higher than those of others.
For example, in the most complicate task F5, the sum of
weights of target terminals found by EM-SLGEP and HSL-
GEP are 0.24 and 0.34, respectively, which are much higher
than those found by others.

Further, to show the efficiency of the feature selection
ability of the proposed method, the importance versus time
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Table 4 The comparison results on the fifteen problems

Index SL-GEP SL-GEP+GPPI EM-SLGEP SL-GEP+2DG EMSLGEP+2DG HSL-GEP

F0 Suc 0.9 1 0.9 1 1 1

Rmse 0.001 −(≈) 0.000 ≈ (+) 0.001 − 0.000 ≈ (+) 0.000 ≈ (+) 0.000

Tr (s) 11.11 ≈ (≈) 2.829 ≈ (≈) 8.480 ≈ 1.339 +(+) 4.739 ≈ (≈) 4.478

F1 Suc 0.3 0 0.92 0.44 0.64 0.94

Rmse 0.002 −(−) 0.005 −(−) 0.000 ≈ 0.001 −(−) 0.001 −(−) 0.000

Tr (s) 49.67 −(−) 60.0 −(−) 14.60 ≈ 47.70 −(−) 33.92 −(−) 18.26

F2 Suc 0.12 0 0.4 0.2 0.5 0.68

Rmse 0.005 −(−) 0.009 −(−) 0.003 − 0.004 −(≈) 0.003 −(≈) 0.001

Tr (s) 55.02 −(−) 60.0 −(−) 41.20 ≈ 51.36 −(−) 38.18 ≈ (+) 29.01

F3 Suc 0 0 0 0 0.02 0

Rmse 0.060 −(≈) 0.067 −(≈) 0.060 − 0.049 ≈ (+) 0.051 −(+) 0.046

Tr (s) 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0 ≈ 60.0 ≈ (≈) 59.55 ≈ (≈) 60.0

F4 Suc 0 0 0 0 0 0

Rmse 0.191 −(≈) 0.301 −(−) 0.203 − 0.150 −(+) 0.160 −(+) 0.133

Tr (s) 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0 ≈ 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0

F5 Suc 0 0 0 0 0 0

Rmse 1.076 −(−) 1.352 −(−) 0.905 ≈ 1.304 −(−) 1.000 −(−) 0.914

Tr (s) 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0 ≈ 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0

F6 Suc 0 0 0 0 0 0

Rmse 2742.9 −(≈) 100.94 ≈ (+) 346.0 − 2.051 ≈ (+) 211.27 −(+) 97.15

Tr (s) 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0 ≈ 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0

F7 Suc 0.58 0 0.68 0.34 0.76 1

Rmse 0.075 −(≈) 0.387 −(−) 0.082 − 0.122 −(−) 0.042 −(≈) 0.000

Tr (s) 46.25 −(−) 60.0 −(−) 31.76 − 51.34 −(−) 43.17 −(−) 22.61

F8 Suc 0.96 0.08 1 1 1 1

Rmse 0.000 ≈ (≈) 0.016 −(−) 0.000 ≈ 0.000 ≈ (≈) 0.000 ≈ (≈) 0.000

Tr (s) 17.05 −(−) 58.45 −(−) 2.872 ≈ 19.50 −(−) 3.717 −(−) 2.019

F9 Suc 0 0 0.16 0.08 0.22 0.34

Rmse 0.008 −(−) 0.014 −(−) 0.006 − 0.007 −(−) 0.005 −(≈) 0.003

Tr (s) 60.0 −(−) 60.0 −(−) 60.0 − 60.0 −(−) 60.0 −(−) 45.0

F10 Suc 0 0 0 0 0 0

Rmse 0.313 −(−) 0.487 −(−) 0.215 − 0.278 −(−) 0.195 −(+) 0.152

Tr (s) 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0 ≈ 60.0 ≈ (≈) 60.0 ≈ (≈) 60.0

F11 Suc 0 0 0 0 0 0

Rmse 52.58 −(≈) 63.58 −(−) 51.36 − 51.00 −(≈) 48.61 ≈ (+) 47.77

Tr (s) 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0 ≈ 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0

F12 Suc 0 0 0 0 0 0

Rmse 0.248 −(≈) 0.239 −(≈) 0.216 − 0.226 −(≈) 0.218 ≈ (≈) 0.184

Tr (s) 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0 ≈ 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0

F13 Suc 0 0 0 0 0 0

Rmse 16.45 −(≈) 15.01 ≈ (≈) 15.93 ≈ 15.86 ≈ (≈) 14.70 ≈ (≈) 13.74

Tr (s) 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0 ≈ 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0

F14 Suc 0 0 0 0 0 0

Rmse 50005 ≈ (≈) 3.647 ≈ (≈) 3.719 ≈ 5.183 ≈ (≈) 3.693 ≈ (≈) 3.476

Tr (s) 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0 ≈ 180.0 ≈ (≈) 180.0 ≈ (≈) 180.0

Rmse b,s(b,s) 13,2(5,10) 11,4(9,4) 10,5 9,6(5,6) 9,6(2,7)

Tr b,s(b,s) 5,10(5,10) 5,10(5,10) 2,13 5,9(5,9) 4,11(4,10)

The bold data are the best results. Symbols≈, +, and− represent the corresponding method is similar to, significantly better, and worse than HSL-GEP (EM-SLGEP)
according to the Wilcoxon rank-sum test at α = 10%. The symbol b, s(b, s) demonstrates the number of cases in which HSL-GEP (EM-SLGEP) performs better
than, or similar to another method
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Fig. 4 The RMSE versus time convergence process of all six methods on fifteen problems

changing process of terminals in F10 is shown in Fig. 5. The
F10 is selected because it is one of the most complex bench-
mark problems in our experiments (i.e., it has more than one
target primitives, different value range, and a large number of
noisy features.). The target terminals (i.e., x0, x1, and x2) are
labeled as black, red, andgreen curves, respectively,while the
curves with other colors belong to noisy features. As shown
in Fig. 5, the x1 is missed by SL-GEP and the importance
of x0 and x2 is not high enough at the end of the evolution.
It can be observed that SL-GEP discovers x0 and x2 during
the evolution. However, the primitive selection results of SL-
GEP are not accurate and efficient enough. The importance of
primitives in SL-GEP changes slowly. This not only shows a
limited ability of SL-GEP to select primitives, but alsomakes
SL-GEP get trapped into local optima easily. Similar results
are obtained by SL-GEP+GPU. Besides, SL-GEP+GPPI
has a better terminal selection ability than SL-GEP. It can
discover x0 and x2 faster than SL-GEP, but the accuracy
of SL-GEP+GPPI is still not high enough. EM-SLGEP,
EMSLGEP+2DG, HSL-GEP have much better primitive
selection results. For all these three algorithms, all three tar-

get terminals are successfully identified, and the importances
of these three terminals become relatively high quickly dur-
ing the evolution. Among them, the importances of x0 and
x2 in HSL-GEP and EMSLGEP+2DG are more balanced
than EM-SLGEP, and the convergent speed of importance
of HSL-GEP is faster than that of EMSLGEP+2DG. There-
fore, the proposed HSL-GEP performs significantly better
than EM-SLGEP and EMSLGEP+2DG. To sum up, the pro-
posed HSL-GEP can effectively select important primitives
(both functions and terminals) in the early evolution stage,
which significantly improves the search efficiency.

5.4 Scalability analysis

In this subsection, we investigate the impact of the comput-
ing resources on HSL-GEP by varying the number of CPU
threads (NTC ), the number of threads in each block (NT ), and
the number of GPU blocks (NB). The basic settings of NTC ,
NT and NB are 4, 128, and 256, respectively. By controlling
the variates, NTC varies from1 to 4, NT varies from64 to 512,
and NB varies from 128 to 1024. When one of these three
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Table 5 The primitive selection
on six benchmark problems F0 = {+, ∗(pow), x0}

SL-GEP ∗(0.39), +(0.22), exp(0.11), max(0.06), √(0.04)

SL-GEP+GPPI exp(0.14), +(0.09), mod(0.09), ∗(0.07), ÷(0.07)

EM-SLGEP +(0.32), pow(0.10), √(0.09), min(0.01), exp(0.00)

SL-GEP+2DG ∗(0.46), +(0.22), exp(0.15), max(0.06), √(0.02)

EMSLGEP+2DG ∗(0.47), +(0.25), exp(0.07), max(0.05), √(0.05)

HSL-GEP ∗(0.40), +(0.23), exp(0.09), pow(0.07), √(0.06)

F1 = {−(opp), ∗, sin, cos, x0}
SL-GEP sin(0.21), opp(0.19), cos(0.17), ∗(0.09), | · |(0.08)
SL-GEP+GPPI opp(0.09), cos(0.08), sin(0.06), +5(0.05), ln(0.05)

EM-SLGEP cos(0.42), sin(0.17), −(0.14), opp(0.11), ÷(0.06)

SL-GEP+2DG opp(0.24), cos(0.21), sin(0.13), √(0.12), | · |(0.09)
EMSLGEP+2DG opp(0.28), cos(0.25), sin(0.19), ∗(0.08), √(0.05)

HSL-GEP opp(0.30), cos(0.23), sin(0.22), ∗(0.11), | · |(0.03)
F3 = {+,−(opp), ∗, exp, x0,1,2,3}
SL-GEP max(0.25), cos(0.25), sin(0.15), ∗(0.09), ln(0.07)

SL-GEP+GPPI −(0.09), ln(0.09), opp(0.08), ∗(0.06), max(0.05)

EM-SLGEP cos(0.17), +(0.15), max(0.14), ∗(0.12), −(0.09)

SL-GEP+2DG max(0.27), sin(0.13), cos(0.13), ∗(0.08), −(0.08)

EMSLGEP+2DG cos(0.28), max(0.23), sin(0.11), ∗(0.08), ln(0.06)

HSL-GEP max(0.28), cos(0.23), sin(0.12), ∗(0.08), ln(0.07)

F5 = {+,−(opp), ∗, pow,÷, exp,√, cos,+5, x0−29}
SL-GEP | · |(0.32), ln(0.14), *5(0.12), �·�(0.10), +(0.09)

x0(0.52), x18(0.02), x13(0.02), x9(0.02), x27(0.02)

SL-GEP+GPPI | · |(0.16), sgn(0.07), +5(0.07), ÷(0.06), ln(0.05)

x0(0.71), x28(0.02), x18(0.02), x11(0.02), x3(0.02)

EM-SLGEP ∗(0.24), | · |(0.29), ln(0.15), ∗5(0.08), sin(0.07)
x0(0.98), x28(0.00), x13(0.00), x3(0.00), x1(0.00)

SL-GEP+2DG | · |(0.35), ��(0.15), ∗5(0.13), ln(0.11), +5(0.09)

x0(0.46), x28(0.03), x18(0.02), x24(0.02), x5(0.02)

EMSLGEP+2DG | · |(0.37), ∗(0.21), ln(0.13), +(0.06), ��(0.06)
x0(0.94), x28(0.01), x10(0.01), x12(0.01), x2(0.00)

HSL-GEP | · |(0.29), ∗(0.27), ln(0.14), +(0.07), ∗5(0.05)
x0(0.95), x28(0.02), x5(0.01), x12(0.00), x10(0.00)

F9 = {+, ∗, ln, x0}
SL-GEP √

(0.20), ∗(0.15), sin(0.13), +(0.11), cos(0.06)

x0(0.62), x17(0.02), x13(0.02), x12(0.02), x18(0.02)

SL-GEP+GPPI ∗(0.11), +(0.07), √(0.06), pow(0.06), max(0.06)

x0(0.86), x12(0.01), x7(0.01), x4(0.01), x15(0.01)

EM-SLGEP +(0.26), √(0.21), sin(0.17), ÷(0.16), ∗(0.10)

x0(0.98), x2(0.01), x1(0.00), x4(0.00), x20(0.00)

SL-GEP+2DG √
(0.23), ∗(0.18), +(0.13), max(0.07), ��(0.06)

x0(0.59), x17(0.02), x14(0.02), x9(0.02), x1(0.02)

EMSLGEP+2DG √
(0.33), ∗(0.20), +(0.14), sin(0.15), cos(0.03)

x0(0.93), x20(0.01), x10(0.01), x5(0.01), x9(0.01)

HSL-GEP √
(0.38), ∗(0.20), +(0.14), sin(0.14), cos(0.02)

x0(0.94), x20(0.01), x16(0.01), x2(0.00), x7(0.00)
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Table 5 continued
F10 = {−(opp), ∗,÷, pow, x0, x1, x2}
SL-GEP ∗(0.38), ln(0.07), cos(0.07), mod(0.06), ��(0.05)

x0(0.15), x2(0.13), x12(0.02), x34(0.02), x41(0.02)

SL-GEP+GPPI mod(0.10), ÷(0.09), sin(0.07), | · |(0.07), ��(0.06)
x2(0.17), x0(0.15), x5(0.02), x7(0.02), x43(0.02)

EM-SLGEP −(0.31), ∗(0.27), ÷(0.12), pow(0.06), ln(0.05)

x0(0.70), x2(0.17), x1(0.11), x3(0.01), x5(0.00)

SL-GEP+2DG ∗(0.54), mod(0.07), ��(0.05), sin(0.04), cos(0.04)
x0(0.11), x2(0.08), x34(0.02), x37(0.02), x41(0.02)

EMSLGEP+2DG ∗(0.45), ln(0.18), cos(0.06), √(0.06), opp(0.05)

x0(0.56), x2(0.30), x1(0.04), x8(0.01), x6(0.01)

HSL-GEP ∗(0.43), √(0.08), opp(0.05), cos(0.05), sin(0.03)

x0(0.56), x2(0.31), x1(0.04), x52(0.01), x24(0.00)

The bold primitives (and the data) are the target primitives (and their weights) of different benchmark problems
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Fig. 5 The importance changing of terminals of different methods on F10

parameters is modified, the others are set as the basic set-
tings. We choose F9 and F10 for case study since they are the
most challenging benchmark problems. Figure 6 shows the
experimental results. In the scalability experiment of NTC ,
the curves of NTC = 1 (i.e., the black curve) have the slow-
est convergence speed in both F4 and F5. On the contrary,
the curves of NTC = 4 (i.e., the blue curve) have the fastest
convergence speed. This is because the larger NTC means
HSL-GEP can utilized more CPU computation resources.

Meanwhile, the parameters ofGPUcomputation resources
have a more robust performance. As shown in Fig. 6, the
curves of NT and NB are very close to each other, which
means these GPU parameter settings have similar perfor-
mance. However, to better utilize the GPU, Nt and Nb should
not be set too small. For example, the curves of the smallest
setting (i.e., the black curves) in both Nt and Nb have the
slowest convergent speed compared to other parameter set-
tings. This is because when the parameters are set too small,
a part of GPU resources will not be scheduled during run-
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Fig. 6 The scalability of the proposed HSL-GEP on various computing
resources

ning. This phenomenon is also mentioned in Cook (2012). It
is also worth mentioning that the red curves in Nt and Nb are
always very close to the fastest convergent speed or reach the
deepest RMSE in both two problems. The above results sug-
gest that Nt = 128 and Nb = 256 are promising parameter
settings in this application.

6 Conclusion

This paper proposed a fast parallel genetic programming
framework by using the environment-vector-based multi-
population mechanism and the hierarchical parallel comput-
ing mechanism. A recently published GP variant (named
SL-GEP) has been integrated with the proposed fast GP
framework to derive an efficient implementation named
HSL-GEP. The developed HSL-GEP is capable of discov-
ering the valuable primitives during the evolution process.
Besides, the hierarchical parallel computing mechanism in
HSL-GEP can fully utilize the heterogeneous computa-
tion resources (i.e., GPU and multi-core CPU) to improve
the search efficiency. To investigate the efficiency of the
proposed HSL-GEP, eleven benchmark problems and four
real-world problems have been used for testing. Five other
GP variants, including the state-of-the-art GPs with feature
selection techniques and GPU-based parallel GPs, are used
for comparison. The empirical results have demonstrated that
the proposed HSL-GEP has a significantly better (or at least
competitive) performance than the other methods. As for
future work, we plan to apply the proposed HSL-GEP to
large-scale symbolic regression problems with big data and
validate its generality on various problems, such as classifica-
tion and planning problems. Besides, extending the proposed

method by using other parallel computing platforms such as
Spark is another promising research direction.
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