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Abstract
This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s

gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain

of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each

IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time kð Þ, (1) the error e kð Þ and its

standard deviation re kð Þ, and (2) the change of error De kð Þ and its standard deviation rDe kð Þ, to calculate the corre-

sponding adjustment DKP kð Þ, DKI kð Þ, and DKD kð Þ for the PID controller’s gains Kp kð Þ, Ki kð Þ, and Kd kð Þ. The second

main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete

time kð Þ by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which

are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy

system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant

under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which

is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that

the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the

classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed

fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance

in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to

variations and noise.
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1 Introduction

Nowadays, the large amount of uncertainty that is inherent

in most of industrial processes is a major concern in the

process control systems. For this reason, the importance of

the fuzzy logic field has been increased with many works

involving hybrid systems between fuzzy logic, PID and

complex algorithms, such as bee colony (Kumar and

Kumar 2017b), big-bang big-crunch optimization (Yesil

2014), gradient descend methods (Sakalli et al. 2016),

cuckoo search (Fatihu Hamza et al. 2017) and granular

computing (Castillo et al. 2016b). There is a big amount

of work being done to implement fuzzy logic controllers

(FLC) that are replacing the PID controllers in both types.

On type-1 singleton (Jie et al. 2010; Kumbasar and Hagras

2015; Álvarez et al. 2018; Arghavani et al. 2017; Kar-

asakal et al. 2013; Sakalli et al. 2014a, b; Yesil and Guzay

2014; Savran et al. 2015; Var et al. 2015; Souran et al.

2014; Kumar and Kumar 2017a; Kosari et al. 2017; Reyes

et al. 2016; Kumbasar and Hagras 2017; Nayak et al.

2018; Kudinov et al. 2017; Mohanty et al. 2016; Kumar

et al. 2018). On type-1 non-singleton (Ramos et al. 2016;

Reyes et al. 2018) and type-2 singleton (Kumbasar

2014a, b, 2016; Kumbasar et al. 2013; Sakalli et al.

2014a, b; Kumbasar and Hagras 2015; Olivas et al. 2019;

Aliasghary et al. 2012; Mehndiratta et al. 2016; Castro

et al. 2008; Sahin and Kumbasar 2018; Kumar and Kumar

2017a, b, c, d; Khosla et al. 2014; El-Bardini and El-

Nagar 2014a, b; Beirami and Zerafat 2015; Yesil 2014;

Fatihu Hamza et al. 2017; Sanchez et al. 2015a, b; Onti-

veros-Robles et al. 2018; Cervantes and Castillo, 2015;

Fatihu Hamza et al. 2017; Yesil et al. 2014). However, the

usage of the hybrid PID assembled with fuzzy logic sys-

tems in order to calculate and update the PID gains is

gaining places on industrial control applications, where

the PID performance is substantially enhanced with the

uncertainty processing of the fuzzy logic systems. These

hybrid controllers can be considered as an emerging class

of intelligent hybrid controllers, see Table 1. The uncer-

tainties of the measurement processes in the industrial

facilities are the motivation to use the type-2 fuzzy

models. Their nature is capable to manage and process the

uncertainties present in the measurements and provide

accurate results. These facts motivate the use of the type-2

fuzzy models to tuning and actualize the parameters of the

PID controller.

The literature analysis shows that the hybrid model

based on non-singleton type-1 fuzzy logic systems (T1

NSFLS) using non-singleton numbers practically was not

used to model PID controllers. Only two papers have

shown their use and represented 3.6% of the publications

found in the literature. In Ramos et al. (2016), type-1 non-

singleton fuzzy logic system (T1 NSFLS) is applied on an

Atmega 2560 for controlling a stepper motor. The uncer-

tainties presented in the processes are not treated because

of the usage of the T1 SFLS models in the 40% of the

proposals studied; only the 3.6% use the T1 NSFLS. The

uncertainties are ‘‘treated’’ in some manner by the usage of

the interval singleton type-2 fuzzy models (IT2 SFLS). In

Reyes et al. (2018), we find the hybrid use of T1 NSFLS to

update the PID gains in a second-order plant in a faster way

when it is compared to a type-1 singleton models.

In the control field, a lot of work is found in the liter-

ature. Ontiveros-Robles et al. (2018) study and compare

the results of the robustness of the type-2 models against

type-1. Castillo et al. (2016a) present a comparison

between type-1, type-2 and General type-2 fuzzy models

(GT2) to show the efficiency and the performance of dif-

ferent models in a controller. Castillo et al. (2016a, b) add

the granularity to the GT2 model to divide the controller in

several phases using alpha planes to the implementation.

Also, Sanchez et al. (2015a, b) use the advantage of the

type-2 fuzzy sets to add the uncertainties and process them

in granules that later are optimized by a metaheuristic as

Cuckoo search. Zarandi et al. (2019) use the GT2 in design

and diagnosis using z-slices and other methods to optimize

and model the system in several phases. Sanchez et al.

(2015a, b) use GT2 to demonstrate that this model is

capable to outperform the type-1 and type-2 fuzzy models

over external perturbations with the handle of uncertainties

presented. Castro et al. (2008) present a tool to help the

modeling of IT2 FLS that simplifies the generation of the

rules and the inference process. Cervantes and Castillo

(2015) present a multiple IT2 fuzzy controller to adjust the

outputs and the global results of a controller.

The usage of fuzzy hybrid PID controllers is extensive,

e.g., a control model of an inverted pendulum applies an

interval singleton type-2 fuzzy logic system (IT2 SFLS)

controller that stabilizes the pendulum position (Khosla

et al. 2014). A hybrid PID controller that uses an IT2 SFLS

is analyzed on El-Bardini and El-Nagar (2014a) where the

fuzzy system directly calculates the gains of the PID. It

uses triangular fuzzy sets in the input-output values, and a

method is proposed to reduce the computational com-

plexity of the outputs. In El-Bardini and El-Nagar (2014b),

it is proposed an interval type-2 fuzzy proportional integral

derivative controller for controlling an inverted pendulum

with an uncertain model called simplified type-reduction

method, where the controller handles uncertainties due to

the structure of the IT2 SFLS system. A fuzzy self-tuning

PID is proposed in Jie et al. (2010), where the error and

change of error are the inputs to a fuzzy logic system to

obtain the correction to the gains of PID controller. The BP

algorithm is used for dynamic calculating and updating the

gains of a PID controller (Reyes et al. 2016), and the
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performance is compared with that of an IT2 SFLS and

with professional PID controllers obtaining the better

response of these. In Reyes et al. (2018), the PID gains are

updated by a T1 NSFLS and it is compared with a T1 SFLS

controller obtaining better responses and lesser computa-

tional time. Also, the T1 SFLS and the IT-2 SFLS are used

in partial form for tuning and updating the gains in a top

control and system stabilization in Kumbasar and Hagras

Table 1 Hybrid PID controllers using T1 and IT2 fuzzy systems

Topic System

T1 SFLS T1 NSFLS IT2 SFLS GT2 FLS IT2

NSFLS-

1

IT2

NSFLS-

1

Singleton Non-

singleton

Singleton Type-1

Non-

singleton

Type-1

Non-

singleton

BP

tuning

Tuning and

updating

Jie et al. (2010), Kumbasar and

Hagras (2015), Álvarez et al.

(2018), Meza et al. (2012),

Trautzsch and Dawson (2002),

Arghavani et al. (2017), Tang et al.

(2001), Karasakal et al. (2013),

Sakalli et al. (2014a, b), Yesil and

Guzay (2014), Savran et al. (2015)

Ramos

et al.

(2016)

Kumbasar (2014b), Kumbasar

(2016), Kumbasar et al. (2013),

Sakali et al. (2014a, b),

Kumbasar and Hagras (2015),

Olivas et al. (2019)

Design Var et al. (2015) Kumbasar (2016), Aliasghary

et al. (2012), Mehndiratta et al.

(2016), Sakalli et al. (2014a, b),

Castro et al. (2008)

Castillo et al.

(2016a, b),

Zarandi

et al.

(2019)

Parameter

estimation

Var et al. (2015), Souran et al. (2014),

Kumar and Kumar (2017a)

Kumbasar (2014a), Sahin and

Kumbasar (2018), Kumar and

Kumar (2017b), Castro et al.

(2008)

Zarandi et al.

(2019)

Calculate Souran et al. (2014)

Maneuver Kosari et al. (2017)

Control and

system

stabilization

Reyes et al. (2016), Kumbasar and

Hagras (2017), Trautzsch and

Dawson (2002), Deepak and

Cheolkeun (2013), Nayak et al.

(2018)

Ramos

et al.

(2016);

Reyes

et al.

(2018)

Khosla et al. (2014), El-Bardini

and El-Nagar (2014a),

Kumbasar (2014a), Beirami

and Zerafat (2015)

System

Optimization

Kudinov et al. (2017), Mohanty et al.

(2016).

Kumar and Kumar (2017a), Yesil

(2014), Fatihu Hamza et al.

(2017), Kumar and Kumar

(2017c), Sanchez et al.

(2015a, b)

Zarandi et al.

(2019)

Compare Meza et al. (2012), Souran et al.

(2014) and Kumar et al. (2018)

Ontiveros-Robles et al. (2018) Sanchez

et al.

(2015a, b)

Analyze El-Bardini and El-Nagar (2014b),

Ontiveros-Robles et al. (2018)

Adjustment Alberto (2000) Khosla et al. (2014), Cervantes

and Castillo (2015)

Robot

manipulation

Meza et al. (2012) Fatihu Hamza et al. 2017,

Alberto (2000) and Kumar and

Kumar (2017d)

Improve Yesil et al. (2014)
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(2017), for tuning and updating the PI gains. In Kumbasar

(2014a), the interval type-2 is used to control and stabilize

the PD gains.

The literature shows work related to PID controllers and

IT2 FLS systems using only singleton numbers. Kumbasar

(2014b) uses the IT2 SFLS to design and tuning the

parameters of a PID controller. In Kumbasar (2016), it uses

the IT2 to online tuning the PID controller using T1 sin-

gleton systems and later scale to IT2 SFLS model. Kum-

basar et al. (2013) use the IT2 SFLS systems to adjust the

fuzzy rule base with the elimination or acceptation criteria

of activate or inactive rule. Sakalli et al. (2016) use the IT2

SFLS combined with a gradient descend method and

Kalman filters to improve the performance of the fuzzy

PID controller. Kumbasar and Hagras (2015) use the IT2

SFLS to generate the universe of disclosure and reduce

them into z-slices to obtain a self-tuning technique via IT2

model. Kumbasar (2016) presents a self-tuning mechanism

based on type-1 models that extend onto type-2 model to

study their structure based on a 3 9 3 rule base in a sin-

gleton type-1 and type 2 models. Aliasghary et al. (2012)

proposes a methodology to assemble interval singleton

type-2 fuzzy model in a partial PID controller using only

proportional and integral part of the PID controller.

Mehndiratta et al. (2016) validate the construction and use

of the footprint of uncertainty on a helicopter to tuning PID

controller using type-2 PID fuzzy model. Sakalli et al.

(2014a, b) present the development of IT2 PID controller

with a four rule base that could be visualized by meta-

heuristics and later is analyzed around the steady state and

demonstrate the analogy between conventional and fuzzy

PID controllers. Kumbasar (2014a) studied the robustness

and stability of the PD singleton IT2 controller but missing

the integral part. Sahin and Kumbasar (2018) use a generic

type-2 fuzzy logic controller to avoid the uncertainties

present in a computer games. These uncertainties are

defined as obstacles in the game board. Kumar and Kumar

(2017b) present a singleton IT2 TSK fractional-order PID

controller to study and measure the time response and the

load of the disturbance via bee colony and genetic algo-

rithms to optimize the parameters. Khosla et al. (2014) use

the IT2 to develop and adjust the parameters to maintain

the stability position of the inverted pendulum. El-Bardini

and El-Nagar (2014a) develop a controller model based on

IT2 to show the robustness of the proposal against the

classic PID controllers. Beirami and Zerafat (2015) use the

IT2 to model the time delay and uncertainties present in a

reactor tank via an adaptive adjustment of the parameters

of a PID controller. Kumar and Kumar (2017a) implement

the PID controller with IT2 fuzzy to avoid the nonlineari-

ties, the uncertainties and external disturbances of the

process of a manipulator robot optimized by metaheuristics

as bee colony and genetic algorithms. Yesil (2014) uses the

IT2 to optimize the load frequency problem (LFP) and to

avoid the complexities of the LFP using big-bang big-

crunch optimization to scaling the factors and to minimize

the deviations via the IT2 model. Fatihu Hamza et al.

(2017) use the cuckoo search algorithm to optimize the

gains of the PID model due to the uncertainties. Kumar and

Kumar (2017c) argument the use of IT2 due the uncer-

tainties, nonlinearity’s, perturbations and random noise of

the signals of robotic systems and to deal with these

characteristics use the genetic algorithms to optimize and

scaling the IT2 PD ? I controller; El-Bardini and El-Nagar

(2014b) applied the IT2 model in a PID control to an

inverted pendulum positioned in a cart; Alberto (2000) uses

the IT2 to adapt the control of a robot manipulator; Kumar

and Kumar (2017d) use the artificial bee colony algorithm

to optimize the antecedents of the fuzzy rules of an IT2

model of a PID controller. Yesil et al. (2014) uses the IT2

model to improve the system performance and to provide a

self-tuning mechanism to scale the PID controller in the

transient phase. Cervantes and Castillo (2015) use the IT2

model to provide a global result in a multiphase model and

a hierarchical architecture to adjust the result of the model

in an airplane flight control.

Also was found a little work on general type-2 fuzzy

systems: Kumbasar and Hagras (2015) use the IT2 in the

training phase to adjust, tuning and updating the gains but

only in proportional and integral gains in a type-2 fuzzy

singleton model. Castillo et al. (2016a) use the type-2 to

compare their results against the GT2 model and show their

advantages and enhancements in their performance. Cas-

tillo et al. (2016a, b) design a tool to help the researchers in

the modeling phase in particular to generate the fuzzy

rules. Cervantes and Castillo (2015) use the IT2 to adjust

the outputs of a controller via multiple IT2 systems to

provide a global result of the mentioned controller. Zarandi

et al. (2019) approach the type-2 model to provide an

interval capable to diagnosis that is adjusted for opti-

mization and it is done in posterior phase. Sanchez et al.

(2015a, b) approach the capabilities of the type-2 models to

add the uncertainties present in the data to the model and

process them. Ontiveros-Robles et al. (2018) use the IT2

fuzzy to compare the robustness of the model against type-

1 fuzzy. Sanchez et al. (2015a, b) approach the interval

type-2 to generate granules of value to that later are opti-

mize by metaheuristic models Olivas et al. (2019) propose

a type-2 fuzzy model with dynamic adaptation in meta-

heuristic models, among others).

There are no publications in the literature on using a

non-singleton BP method as a learning mechanism for

antecedent’s and consequent’s parameter tuning of each

one of the three IT2 NSFLS-1 systems, which are used to

calculate as interval sets the corresponding adjustments for

the three gains of the PID controller, the Kp kð Þ, Ki kð Þ, and

20 Gerardo M. Méndez et al.
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Kd kð Þ, being the first main contribution of this paper. The

usage of type-1 non-singleton numbers represents the

chance to manage, as the mean of an interval set, the

numerical values of each gain of the PID controller and

represents an additional contribution.

The non-singleton BP training algorithm uses the plant

output error measurement, which is processed as non-sin-

gleton number, using its mean and its standard deviation

values. Each IT2 NSFLS-1 uses the non-singleton error and

its non-singleton partial to update its Gaussians non-sin-

gleton parameter’s values. This approach is not found in

the literature and constitutes the second main contribution

of this proposal.

This proposal also presents the math formulation of the

non-singleton BP method that uses the non-singleton par-

tial derivatives of the non-singleton error of the output of

the second-order plant with respect to each parameter of

the IT2 NSFLS-1 fuzzy system.

There is one IT2 NSFLS-1 system to calculate as the

mean of an interval value the adjustment DKP kð Þ for the

Kp kð Þ gain; one IT2 NSFLS-1 system to calculate as the

mean of an interval value the adjustment DKI kð Þ for the

Ki kð Þ gain; and one IT2 NSFLS-1 system to calculate the

mean of an interval value the adjustment DKD kð Þ for the

Kd kð Þ gain.

Each IT2 NSFLS-1 uses two input variables, granulated

as non-singleton values: (1) the error e kð Þ and its standard

deviation re kð Þ, and (2) the change of error De kð Þ and its

standard deviation rDe kð Þ. The error is calculated as the

difference between two non-singleton Gaussians numbers,

the set point value, and the value measured by the sensor

located at the output section of the plant.

During the experimental modeling process, the ante-

cedent’s and consequent’s parameters of the rule base

remain fixed on each of the next four different bench-

marking assemblies composed by a PID controller and by a

specific fuzzy system: (1) a PID controller, which gains

adjustments are calculated by a T1 SFLS, which inputs are

singleton or crisp values; (2) a PID controller, which gains

adjustments are calculated by a T1 NSFLS, which inputs

are non-singleton values; (3) a PID controller, which gains

adjustments are calculated by an IT2 SFLS, which inputs

are singleton or crisp values; and (4) a PID controller,

which gains adjustments are calculated by an IT2 NSFLS-

1, which inputs are non-singleton values.

The classic PID Ziegler–Nichols’ (PID ZN), which

gains remain fixed and its inputs are singletons or crisp

values is also used as a benchmarking control system.

Table 1 contains a resume of the references found in the

literature and is arranged according to the application of

the proposal, and by the fuzzy model used to calculate the

adjustment for each PID gains.

This paper is organized as follows. Section 2 describes

the problem statement of the systems modeled as second-

order process, the PID controller formulations, along with a

basic explanation of the T1 and IT2 FLS systems. The

proposed method is described in Sect. 3. Section 3.4 shows

the simulation, and the results are presented in Sect. 5.

Finally the conclusions are presented in Sect. 4.

2 Problem statement

2.1 The second-order model of the plant

A second-order transfer function model was used to rep-

resent the plant under control. This model is considered

without time delay. Figure 1 shows that

G sð Þ ¼ Y sð Þ
U sð Þ ¼

K

T1sþ 1ð Þ T2sþ 1ð Þ ð1Þ

where G sð Þ represents the transfer function of the plant, K

represents the gain of the process, T1 and T2 are the time

constants of the process, and s is the complex variable. Its

equivalent difference equation in discrete period of time

(Gaidhane et al. 2019) can be expressed as:

y kð Þ ¼ K2u kð Þ � a1y k � 1ð Þ � a2y k � 2ð Þ ð2Þ

where

a1 ¼ e�Ts=T1 ð3Þ

a2 ¼ e�Ts=T2 ð4Þ
a1 ¼ � a1 þ a2ð Þ ð5Þ
a2 ¼ a1 � a2 ð6Þ

K2 ¼ K � Ts
a1 � a2

T1 � T2

ð7Þ

where Ts ¼ T
20

is the sampling time or the measurement

period, and T is the minimum value of the time constants

of the plant, min ½T1;T2�, y kð Þ is the output value of the

plant at the discrete time k, and u kð Þ is the PID control

value, which is the input of the plant.

2.2 PID controller

The PID controller has several versions, which are widely

used in the industry (Gaidhane et al. 2019). Due to its

simplicity and robustness to execute rational decisions,

which take into account the present, the past and the

desired states of the plant under control, the PID is the

industry’s preferred controller (proportional, integral and

derivative controllers). The positional version of the PID’s

discrete algorithm is used in this proposal:
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u kð Þ ¼ Kp e kð Þ þ Tc

Ti

Xk

i¼0

e ið Þ þ Td

Tc
e kð Þ � e k � 1ð Þ½ �

" #
ð8Þ

u kð Þ ¼ Kpe kð Þ þ Ki

Xk

i¼0

e ið Þ þ Kd e kð Þ � e k � 1ð Þ½ � ð9Þ

where u kð Þ is the control variable, e kð Þ is the error of the

output in the discrete time k, e k� 1ð Þ represents the error

in the discrete time k� 1, Kp is the proportional gain, Ti

represents the integral time, Td represents the derivative

time, and Tc is the control interval time. According to

(Gaidhane et al. 2019) in order to avoid oscillations in the

behavior of the PID controllers, the control period should

be selected as:

Tc � 5:0�Tm ð10Þ

where Tm ¼ Ts is the measurement interval time.

Using

e kð Þ ¼ yref � ym kð Þ ð11Þ

where ym is the feedback, the measurement of the output of

the plant, and yref is the set point value, the PID controller

(2) can be expressed as:

u kð Þ ¼ Kp þ Ki � k
� �

yref � Kp þ Ki þ Kd

� �
y k � 1ð Þ

� Ki þ Kdð Þy k � 2ð Þ � Kið Þ
Xk�3

i¼0

y ið Þ; ð12Þ

where

Ki ¼ Kp
Tc

Ti
ð13Þ

Kd ¼ Kp
Td

Tc
ð14Þ

y kð Þ, y k� 1ð Þ, and y k� 2ð Þ are the output of the plant in

the discrete time k, k� 1, and k� 2.

2.3 T1 FLS systems (Mendel 2001)

A type-1 (T1) fuzzy set, A, is a generalization of a crisp set

x 2 X. It is defined on a universe of discourse X, and it

means the space or interval where X could get a value in a

specification and it is characterized by the membership

function lA xð Þ that takes on values in the interval 0; 1½ �. A

membership function provides a measure of the degree of

membership of an element in X to the fuzzy set, which is

really the membership of x in A. Such a set may be rep-

resented as:

A ¼ x; lA xð Þð Þ=8x 2 Xf g ð15Þ

T1 membership function lA xð Þ is constrained to be

between 0 and 1 for all x 2 X, and is a 2D Gaussian

function. The T1 fuzzy rule base consists of a set of IF–

THEN rules that represents the model of the system. The

type-1 FLS has p inputs, x1 2 X, x2 2 X,…, xp 2 X, and

one output y 2 Y , which have a rule base size of M rules of

the form:

Ri : IFx1 is Fi
1 and x2 is Fi

2. . .and xp is Fi
p THEN yi is Gi

ð16Þ

where i = 1,2,…M, Fi
1 is the antecedent fuzzy set of the x1,

Fi
2 is the antecedent fuzzy set of x2, …, Fi

p is the antecedent

fuzzy set of xp, G
i is the consequent fuzzy set of the output

yi, and Fi
p ¼ liAp

xð Þ. These rules represent a fuzzy relation

between the input space X1 � X2 � . . .� Xp and the output

space Y , and it is complete, consistent and continuous

(Wang 1999). See Fig. 2 for singleton model and Fig. 3 for

non-singleton model.

The membership function for each antecedent is a

Gaussian function as:

liAk xq
� �

¼ Fi
q ¼ exp � 1

2

xq � mi
q

riq

" #" #
ð17Þ

where mi
q is mean, riq is the standard deviation, q = 1, 2,

…, p, p is the number of inputs, and i = 1,2,…M. The

means of the antecedent fuzzy sets were uniformly dis-

tributed over the entire input space.

The membership function for each consequent is a

Gaussian function with the form:

Fig. 1 Block diagram of the classic PID controller
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liG yi
� �

¼ Gi ¼ exp � 1

2

yi � mi
y

riy

" #" #
ð18Þ

where mi
y is the mean, riy is the standard deviation of the

output yi, and i = 1,2,…M.

If li is the firing level of the consequent of the ith rule,

then the centroid defuzzifier is given as:

yc xð Þ ¼
PM

i¼1 yil
i

PM
i¼1 l

i
ð19Þ

where yi is the mean value of the Gaussian function of the

ith consequent, and yc is the calculated value of the fuzzy

system.

2.3.1 T1 SFLS

The singleton T1 FLS are those systems which inputs are

modeled as crisp numbers:

xq ¼ x
0

q ð20Þ

where q = 1,2…p, with p the number of inputs, and the

antecedents and consequents are fuzzy sets, are Gaussians

of type-1, as (17) and (18).

The singleton fuzzification operation or value transfor-

mation mechanism in a type-1 fuzzy set is shown in Fig. 2.

The vertical axis represents the membership grade,

lAq
x0q
� �

2 0; 1½ � of the crisp input value x0q. The horizontal

Fig. 2 Pictorial description of

singleton input and antecedent

operations for T1 SFLS.

Adapted from Mendel (2001)

Fig. 3 Pictorial description of

non-singleton input and

antecedent operations for a T1

NSFLS. Adapted from Mendel

(2001)

Dynamic adaptation of the PID’s gains via interval type-1 non-singleton type-2 fuzzy logic… 23

123



axis represents the real values of the universe of disclosure

of each crisp input.

2.3.2 T1 NSFLS

The T1 NSFLS systems are those systems, which inputs are

modeled as Gaussians functions of type-1, non-singleton

values with mean and standard deviation, and these func-

tions can be used to handle the uncertainty of the inputs:

lXq
xq
� �

¼ exp � 1

2

xq � mXq

rXq

� �� �
ð21Þ

where mXq
is the mean of each input centered at x0q, mXq

¼
x0q; rXq

is the standard deviation of each input, q = 1,2…p.

These systems have antecedents and consequents modeled

as fuzzy sets which use Gaussians of type-1, as (17) and

(18).

The non-singleton fuzzification operation in a type-1

fuzzy set is shown in Fig. 3. In this type of inputs, their

uncertainty values rXq
are taking into account together with

their mean values xq ¼ x
0
q.

The T1 NSFLS systems have their inputs modeled as

type-1 fuzzy numbers that can handle measurements

uncertainties when applied to antecedents and consequents

parameters modeled as Gaussians of type-1 fuzzy values.

The measured data that come from the sensors of the

process are uncertain, but there is no way to account for

any uncertainty in the antecedent and consequent mem-

bership functions of T1 NSFLS systems. These systems

only take into account for the noise through the filtering

action of the non-singleton fuzzification operations.

2.4 IT2 FLS systems (Mendel 2001)

Consider the transition from an ordinary set to fuzzy sets.

When it is not easy to determine the membership of an

element in a set as 0 or 1, fuzzy sets of type-1 are used.

Similarly, when the circumstances are so fuzzy that there is

trouble to determine the membership grade even as a crisp

number in 0; 1½ �, fuzzy sets of type-2 are used.

A general type-2 fuzzy set, denoted by ~A, is character-

ized by a type-2 membership function l ~A x; uð Þ, wherex 2 X

and u 2 Jx � 0; 1½ �:
~A ¼ x; uð Þ; l ~A x; uð Þ

� �
j 8x 2 X; 8u 2 Jx � 0; 1½ �

� �
ð22Þ

and 0	 l ~A 	 1

The amplitude of a secondary membership function is

called a secondary grade. In (2), l ~A x; uð Þ for x 2 X, u 2 Jx
is the secondary grade.

When l ~A x0; u0ð Þ ¼ 1; 8u 2 Jx � 0; 1½ � in (11), then the

secondary membership functions are interval sets, and if

this is true for 8x 2 X, then is the case of an interval type-2

membership function. They reflect a uniform uncertainty at

the primary memberships of x.

A Mamdani interval type-2 fuzzy logic system having p

inputs x1 2 X1; . . .; xp 2 Xp and the output space y 2 Y is

represented by fuzzy IF–THEN rules that represent input–

output relations of a system and can be expressed as:

Ri : IF x1 is ~Fi
1 and x2 is ~Fi

2. . . and xp is ~Fi
p THEN yi is ~GI

ð23Þ

where yi is the consequent output of the ith rule with an

interval type-2 fuzzy set value ~Gi (i = 1,…,M rules), and
~Fi
q (q = 0, 1, …, p, with p inputs) are interval type-2

antecedents fuzzy sets. This rule represents a type-2 rela-

tion between the input space X1 � X2 � . . .� Xp, and the

output space Y of the type-2 FLS.

The membership function for each antecedent is a

Gaussian function as:

li~Aq xq
� �

¼ ~Fi
q ¼ exp � 1

2

xq � mi
q

riq

" #" #
ð24Þ

where mi
q 2 mi

q1;m
i
q2

h i
is the uncertain mean, q = 1,2,…,p

(p the number of inputs) and i = 1,2,.…,M (the number of

M rules), and riq is the standard deviation. The means of the

antecedent fuzzy sets are uniformly distributed over the

entire input space. It contains the uncertainty contained in

the antecedent fuzzy sets.

The membership function for each consequent is a

Gaussian function with the form:

li~G yi
� �

¼ ~Gi ¼ exp � 1

2

yi � mi
y

riy

" #" #
ð25Þ

where mi
y 2 mi

y1
;mi

y2

h i
is the uncertain mean, i = 1,2,…M

(The number of M rules), rik is the standard deviation. It

contains the uncertainty of the consequent fuzzy sets. ~Gi of

the ith can be represented by an interval set ½yil; yir�. If �f i and

f i are the firing interval of the consequent of the ith rule,

see Figs. 4 and 5, then the type reduction and defuzzifi-

cation can be given as:

yl ¼
PL

i¼1
�f iyil þ

PM
i¼Lþ1 f

iyilPL
i¼1

�f i þ
PM

i¼Lþ1 f
i

ð26Þ

yr ¼
PR

i¼1 f
iyir þ

PM
j¼Rþ1

�f iy j
lPR

i¼1 f
i þ
PM

i¼Rþ1
�f i

ð27Þ

yc ¼ fns2�1 ¼ yl þ yr

2
ð28Þ

where L and R are calculated values by optimization

means, yl; yr½ � is the interval set calculated value of the
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type-2 fuzzy system, and yc is the mean value of the

interval set.

IT2 FLS takes into account the rule (antecedent and

consequent) uncertainties due to construction and initial

training with noisy data.

2.4.1 IT2 SFLS

The singleton IT2 SFLS are those systems which inputs are

modeled as crisp numbers:

xq ¼ x
0

q ð29Þ

where q = 1,2…p, with p as the number of inputs. The

antecedents and consequents are modeled as fuzzy sets,

which use Gaussians of type-2, as (24) and (25),

respectively.

The singleton fuzzification operation in an interval type-

2 fuzzy set is shown in Fig. 4. The vertical axis represents

the primary membership of u ¼ Jxq of x0q; Jxq 2 0; 1½ �, of

Fig. 4 Pictorial description of singleton input and antecedent operations for an IT2 SFLS. Adapted from Mendel (2001)

Fig. 5 Pictorial description of non-singleton input and antecedent operations for an IT2 NSFLS-1. Adapted from Mendel (2001)
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the crisp input value x0q.The horizontal axis represents the

real values of the universe of disclosure of crisp each input.

2.4.2 IT2 NSFLS-1

The interval type-1 non-singleton type-2 FLS are those

systems, which inputs are modeled as Gaussians functions

of type-1, as non-singleton values with mean and standard

deviation, and these functions can be used to handle the

uncertainty of the inputs:

lXq
xq
� �

¼ exp � 1

2

xq � mXq

rXq

� �� �
ð30Þ

where mXq
is the mean of each input centered at mXq

¼
x0q; rXq

is the standard deviation of each input,

q = 1,2…p. The antecedents and consequents are fuzzy

sets, which use Gaussians of type-2, as (24) and (25).

The non-singleton fuzzification operation in an interval

type-2 fuzzy set is shown in Fig. 5. In this type of inputs,

the uncertainty values rXq
are taken into account together

with their mean values xq ¼ x
0
q.

The IT2 NSFLS-1 systems take into account all the

uncertainties that can be presented in a fuzzy logic system:

(a) the antecedent and consequent uncertainties due to the

heuristic construction of the fuzzy rule base and the esti-

mation of the first values of their parameters using noisy

data, and (b) the uncertainties due to the measurements that

are used during the control and feedback processes.

3 Proposed method

The parameters of the PID controller are initially calculated

using the Ziegler–Nichols tuning rule, based on the

parameters of the second-order plant, and on its experi-

mental step-function response. The initial values of the PID

gains contain uncertainties due to the uncertainty generated

during the identification process of the plant and due to the

use of Ziegler–Nichols rule. The fuzzy rule base of the

proposed IT2 NSFLS-1 systems is constructed using a

heuristic method that incorporates uncertainty in the ante-

cedents and consequents fuzzy sets. The proposed assem-

bly uses three IT2 NSFLS-1 systems to calculate the

adjustment for each the three gains of the PID controller,

(2), in order to reduce the variations and the transient time

on the desired output of the plant until the stopping criteria

established by the user is accomplished.

3.1 Proposed dynamic updating of the PID gains
using an IT2 NSFLS-1 system

Three IT2 NSFLS-1 systems update the gains of the PID

controller (2), through the processing of two type-1 fuzzy

inputs: (a) the error e kð Þ that is calculated using the feed-

back measurement of the output of the plant ym kð Þ, and the

reference value yref or set point, (31), and its standard

deviation re kð Þ; and (b) the change of error De kð Þ that is

calculated using the errors e kð Þ; e k� 1ð Þ in the discrete

times k and k - 1, k ¼ 1; 2; 3; . . ., and its standard devia-

tion, rDe kð Þ, (32).

e kð Þ ¼ yref � ym kð Þ ¼ N yref ; 0
� �

� N ym kð Þ; r2
ym

kð Þ
h i

¼ N yref � ym kð Þ; r2
ym

kð Þ
h i

ð31Þ

De kð Þ ¼ e kð Þ � e k� 1ð Þ ¼ �N ym kð Þ; r2
ym

kð Þ
h i

þ N ym k� 1ð Þ; r2
ym

k� 1ð Þ
h i

¼ N �ym kð Þ þ ym k� 1ð Þ; r2
ym

kð Þ þ r2
ym

k� 1ð Þ
h i

ð32Þ

The next three rules of thumb are used in Beirami and

Zerafat (2015), to construct the fuzzy rule base of each IT2

NSFLS-1 system.

• If e kð Þj j is big, then DKP kð Þ is big, then DKD kð Þ is

small, and DKI kð Þ is small too.

• If e kð Þj j is medium, then DKP kð Þ is small, then DKD kð Þ
is medium, and DKI kð Þ is medium.

• If e kð Þj j is small, then DKP kð Þ and DKI kð Þ are big.

• If De kð Þj j is small, then DKD kð Þ is big and reverse.

The fuzzy sets of each antecedent of the IT2 NSFLS-1

rule base has two non-singleton values: (a) the uncertain

error (interval mean error e kð Þ ¼ el kð Þ; er kð Þ½ � and its

standard deviation re; and (b) the uncertain change of error

(interval mean change of error De kð Þ ¼ Del kð Þ;Der kð Þ½ �
and its standard deviation rDe.

Negative big left and right ([Nbl, Nbr], [nbl, nbr], NBl,

NBr]), negative medium left and right ([Nml, Nmr], [nml,

nmr], [NMl, NMr]), negative small left and right ([Nsl,

Nsr], [nsl, nsr], [NSl, NSr]), zero left and right ([Zcl, Zcr],

[zcl, zcr], [Z0 l, Z0r]), positive small left and right ([Psl,

Psr], [psl, psr], [PSl, PSr]), positive medium left and right

([Pml, Pmr], [pml, pmr], [PMl, PMr]), and positive big left

and right ([Pbl, Pbr], [pbl, pbr], [PBl, PBr]) are the

uncertain linguistic variables used for the IT2 NSFLS-1

fuzzy sets constructions (Tables 2, 3, 4).

In the proposed assembly, three IT2 NSFLS-1 systems

are used to calculate the gains, DKP kð Þ, DKI kð Þ and

DKD kð Þ.
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The IT2 NSFLS-1 fuzzy rule for DKP kð Þ calculation has

the following form:

IF e kð Þj j is gPm and De kð Þ is eps THEN DKP kð Þ is gNM
ð33Þ

The IT2 NSFLS-1 fuzzy rule for DKI kð Þ calculation has

the form:

IF e kð Þj j is gPm and De kð Þ is eps THEN DKI kð Þ is gPM
ð34Þ

The IT2 NSFLS-1 fuzzy rule for DKD kð Þ calculation

has the form:

IF e kð Þj j is gPm and De kð Þ is eps THEN DKD kð Þ is fPS
ð35Þ

Each input variable contains seven fuzzy sets, resulting

in 49 IT2 fuzzy rules, per each fuzzy rule base.

3.2 The PID controller

The first estimation of the starting values of the PID gains

is using the ZN closed-loop method that gives an amplitude

ratio between subsequent oscillations after a step change of

the set point equal to �, and this is often a guarantee as a

medium range stability (Alberto, 2000). After that the gains

are adjusted by trial and error observing the best behavior

Table 2 IT2 NSFLS-1 fuzzy rule base for (a) KPl(k) gain adjustment,

(b) KPr(k) gain adjustment

DKPl kð Þ Del kð Þ

nbl nml nsl zcl psl pml pbl

Nbl PBl PBl PMl PMl PSl Z0 l Z0 l

Nml PBl PBl PMl PSl PSl Z0 l NSl

el kð Þ Nsl PMl PMl PMl PSl Z0 l NSl NSl

Zcl PMl PMl PSl Z0 l NSl NMl NMl

Psl PSl PSl Z0 l NSl NSl NMl NMl

Pml PSl Z0 l NSl NMl NMl NMl NBl

Pbl Z0 l Z0 l NMl NMl NMl NBl NBl

DKPr kð Þ Der kð Þ

nbr nmr nsr zcr psr pmr pbr

Nbr PBr PBr PMr PMr PSr Z0r Z0r

Nmr PBr PBr PMr PSr PSr Z0r NSr

er kð Þ Nsr PMr PMr PMr PSr Z0r NSr NSr

Zcr PMr PMr PSr Z0r NSr NMr NMr

Psr PSr PSr Z0r NSr NSr NMr NMr

Pmr PSr Z0r NSr NMr NMr NMr NBr

Pbr Z0r Z0r NMr NMr NMr NBr NBr

Table 3 IT2 NSFLS-1 fuzzy rule base for (a) KIl(k) gain adjustment,

(b) KIr(k) gain adjustment

DKIl kð Þ Del kð Þ

nbl nml nsl zcl psl pml pbl

Nbl NBl NBl NMl NMl NSl Z0 l Z0 l

Nml NBl NBl NMl NSl NSl Z0 l Z0 l

el kð Þ Nsl NBl NMl NSl NSl Z0 l PSl PSl

Zcl NMl NMl NSl Z0 l PSl PMl PMl

Psl NMl NSl Z0 l PSl PSl PMl PBl

Pml Z0 l Z0 l PSl PSl PMl PBl PBl

Pbl Z0 l Z0 l PSl PMl PMl PBl PBl

DKIr kð Þ Der kð Þ

nbr nmr nsr zcr psr pmr pbr

Nbr NBr NBr NMr NMr NSr Z0r Z0r

Nmr NBr NBr NMr NSr NSr Z0r Z0r

er kð Þ Nsr NBr NMr NSr NSr Z0r PSr PSr

Zcr NMr NMr NSr Z0r PSr PMr PMr

Psr NMr NSr Z0r PSr PSr PMr PBr

Pmr Z0r Z0r PSr PSr PMr PBr PBr

Pbr Z0r Z0r PSr PMr PMr PBr PBr

Table 4 IT2 NSFLS-1 fuzzy rule base for (a) KDl(k) gain adjustment,

(b) KDr(k) gain adjustment

DKDl kð Þ Del kð Þ

nbl nml nsl zcl psl pml pbl

Nbl PSl NSl NBl NBl NBl NMl PSl

Nml PSl NSl NBl NMl NMl NSl Z0 l

el kð Þ Nsl Z0 l NSl NMl NMl NSl NSl Z0 l

Zcl Z0 l NSl NSl NSl NSl NSl Z0 l

Psl Z0 l Z0 l Z0 l Z0 l Z0 l Z0 l Z0 l

Pml PBl NSl PSl PSl PSl PSl PBl

Pbl PBl PMl PMl PMl PSl PSl PBl

DKDr kð Þ Der kð Þ

nbr nmr nsr zcr psr pmr pbr

Nbr PSr NSr NBr NBr NBr NMr PSr

Nmr PSr NSr NBr NMr NMr NSr Z0r

er kð Þ Nsr Z0r NSr NMr NMr NSr NSr Z0r

Zcr Z0r NSr NSr NSr NSr NSr Z0r

Psr Z0r Z0r Z0r Z0r Z0r Z0r Z0r

Pmr PBr NSr PSr PSr PSr PSr PBr

Pbr PBr PMr PMr PMr PSr PSr PBr
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of the response of the plant. This method surely induces

uncertainty to the starting point of the PID gains values and

in the control signal estimation.

The PID gains are updated after each control cycle by

the next calculations:

Kp kð Þ ¼ Kp k� 1ð Þ þ DKP kð Þ ð36Þ

Ki kð Þ ¼ Ki k� 1ð Þ þ DKI kð Þ ð37Þ
Kd kð Þ ¼ Kd k� 1ð Þ þ DKD kð Þ ð38Þ

where Kp kð Þ is the proportional gain, Ki kð Þ is the integral

gain, and Kd kð Þ is the derivative gain of the PID controller

at the discrete time k. DKP kð Þ; DKI kð Þ and DKD kð Þ
adjustments are calculated by each IT2 NSFLS-2 system as

interval sets values.

Equations (36), (37) and (38) are computed each control

cycle in the discrete time k and are used to update each gain

of the PID (2) controller. Figure 6 shows the interaction for

every component of the proposed assembly that uses the

IT2 NSFLS-1 for dynamic PID gains updating.

3.3 The backpropagation algorithm for IT2
NSFLS-1 parameters adjustment

As explained in Mendel (2001), an objective function e hð Þ
may have a nonlinear form with respect to an

adjustable parameter h. In iterative descent methods, the

next point hnext is determined by step down from the cur-

rent point hnow in the negative direction of the gradient of

the function e hð Þ:

hnext ¼ hnow � ag ð39Þ

where a is the learning rate, and g is the vector of the first

partial derivatives of E hð Þ

g hð Þ ¼ oe hð Þ
oh1

;
o hð Þ
oh2

; . . .;
o hð Þ
ohn

� �T

ð40Þ

Considering that given the control signal model, the

second-order plant model, and the IT2 NSFLS-1 fuzzy

systems, j ¼ k, is the discrete time, then:

u kð Þ ¼ Kp þ Ki � k
� �

yref � Kp þ Ki þ Kd

� �
y k � 1ð Þ

� Ki þ Kdð Þy k � 2ð Þ � Kið Þ
Xj�3

i¼0

y ið Þ ð41Þ

y kð Þ ¼ K2u kð Þ � a1y k � 1ð Þ � a2 k � 2ð Þ ð42Þ
ym kð Þ þ rym kð Þ ¼ y kð Þ þ ry kð Þ ð43Þ

and defining the error function as in Eq. (11) the objective

function, which is required to minimize its value in order to

update the design parameters of the fns2�1 xð Þ fuzzy sys-

tems, Eq. (8), each one composed by M fuzzy rules, with

the next form: mi
q 2 mi

q1;m
i
q2

h i
is the uncertain mean of the

antecedents, riq is the standard deviation of antecedents,

riXq
is the standard deviation of type-1 non-singleton input

data. Let be p = the number of input variables of the IT2

NSFLS-1 system, with q ¼ 1; 2; . . .; p, and i ¼ 1; 2; . . .;M,

being the number of fuzzy rules, j and k being the discrete

period of time.

Fig. 6 Block diagram of proposal using the non-singleton values, and three IT2 NSFLS-1 fuzzy system to adjust the PID’s gains
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Equation (39) is used to establish the basic equations to

update the antecedent parameters using the BP method:

mi
q1 k þ 1ð Þ ¼ mi

q1 kð Þ � a
oe

omi
q1

�����
j

ð44Þ

mi
q2 k þ 1ð Þ ¼ mi

q2 kð Þ � a
oe

omi
q2

�����
j

ð45Þ

riq k þ 1ð Þ ¼ riq kð Þ � a
oe

oriq

�����
j

ð46Þ

and is also used for update the consequent parameters:

yil k þ 1ð Þ ¼ yil kð Þ � a
oe

oyil

����
j

ð47Þ

yir k þ 1ð Þ ¼ yir kð Þ � a
oe

oyir

����
j

ð48Þ

Using the chain rule for partial derivatives

oe

omi
q1

�����
j

¼ oe

oym

	 

oym

ou

	 

ou

ofns2�1

	 

ofns2�1

omi
q1

 !" #

j

ð49Þ

oe

omi
q2

�����
j

¼ oe

oym

	 

oym

ou

	 

ou

ofns2�1

	 

ofns2�1

omi
q2

 !" #

j

ð50Þ

oe

oriq

�����
j

¼ oe

oym

	 

oym

ou

	 

ou

ofns2�1

	 

ofns2�1

oriq

 !" #

j

ð51Þ

oe

oyil

����
j

¼ oe

oym

	 

oym

ou

	 

ou

ofns2�1

	 

ofns2�1

oyil

	 
� �

j

ð52Þ

oe

oyir

����
j

¼ oe

oym

	 

oym

ou

	 

ou

ofns2�1

	 

ofns2�1

oyir

	 
� �

j

ð53Þ

the resulting derivative components are:

ofns2�1

omi
q1

�����
j

¼ ofns2�1

oyl

	 

oyl

omi
q1

 !
þ ofns2�1

oyr

	 

oyr

omi
q1

 !" #

j

ð54Þ

oyl

o�f i

����
j

¼
cil � ylPL

i¼1
�f i þ

PM
i¼Lþ1 f

i
if i	 L

0 if i[ L

8
<

: ð55Þ

oyl

of i

�����
j

¼
cil � ylPL

i¼1
�f i þ

PM
i¼Lþ1 f

i
if i[ L

0 if i	 L

8
<

: ð56Þ

oyr

o�f i

����
j

¼
cir � yrPR

i¼1 f
i þ
PM

i¼Rþ1
�f i

if i[R

0 if i	R

8
<

: ð57Þ

oyr

of i

�����
j

¼
cir � yrPL

i¼1 f
i þ
PM

i¼Lþ1
�f i

if i	R

0 if i[R

8
<

: ð58Þ

oyl

omi
q1

�����
j

¼ oyl

o�f i

	 

o�f i
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q1

 !
þ oyl
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 !
of i

omi
q1

 !" #

j

ð59Þ

oyr

omi
q1

�����
j

¼ oyr

o�f i

	 

o�f i
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q1

 !
þ oyr
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 !
of i

omi
q1

 !" #

j

ð60Þ

o�f i

omi
q1

�����
j

¼

xq � mi
q1

� �
�f i xupq

� �

rXq

� �2þ riq

� �2
if xq\mi

q1

0 if xq �mi
q2

8
>>><

>>>:
ð61Þ
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q1

�����
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0 if xq 	
mi

q1 þ mi
q2
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Xq
ðmi
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q1Þ
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that calculates the Kp gain, it is possible to obtain the

recursive equation for mi
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omi
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 !" #
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mi
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2
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yir � yr
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PM
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" #

�
xk � mi
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� �
�f i xupq

� �

rXq

� �2þ riq

� �2

2
64

3
75 ð85Þ

Also, for the case of the IT2 NSFLS-1 system that

calculates the Ki gain of the PID controller, the recursive

equation is derived. For the case of the IT2 NSFLS-1

system that calculates the Kd gain, the following partial

derivative equation is obtained:

mi
q1 kþ 1ð Þ ¼ mi

q1 kð Þ þ a � 1

2
�K2

� e k� 1ð Þ � e k� 2ð Þ½ �
yir � yr

 �

PR
i¼1 f

i þ
PM

i¼Rþ1
�f i

" #

�
xq �mi

q1

� �
�f i xupq

� �

rXq

� �2þ riq

� �2

2

64

3

75

ð86Þ

A similar procedure can be followed to compute (39),

(40), (41) and (42).

The calculation of xupq and xlowq
depends on the location

of xq with respect to the values of mi
q1,mi

q2,riq, yil and yir as

clearly explained in Ramos et al. (2016), resulting in five

situations or states as shown in Table 5.

The equations for antecedent and consequent parameters

tuning in the period of time j; mi
q1,mi

q2,riq, y
i
l and yir depend

on the relative position of xq with respect to the values of

mi
q1,mi

q2,riq, yil and yir as shown in Tables 5, 6, 7, 8 and 9 for

the Kp and Ki gains adjustments. The corresponding

derivative equations for the adjustment of the Kd gain are

straightforward and can be calculated using (83) in the

same way as the previous gains.
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3.4 Simulation and analysis

The MATLAB software was used to model and simulate

the PID controllers using ZN, the T1 SFLS and NSFLS, the

IT2 SFLS, the IT2 NSFLS-1, and the proposed assembly

using IT2 NSFLS-1 with BP learning mechanism (PID IT2

NSFLS-1 BP) to calculate the PID gains dynamic adjust-

ments. In this experiment was used the second-order model

of a hydraulic actuator that operation range is 4–20 mA.

The control signal opens and closes the valve. The refer-

ence value was selected as yref ¼ 20:0 mA that means the

valve is 100% opened. The set point can be selected as any

value of the operational range 4–20 mA.

The simulation process followed the next steps:

(a) The parameters of the plant were identified through

the experimental test, obtaining K ¼ 2:0, T1 ¼ 5:0,

T2 ¼ 10:0, Tm ¼ T1
20:0 ¼ 5:0

20:0 ¼ 0:25,

Tc ¼ 1:0&Tc 	 5:0 � Tm ¼ 1:25, K2 ¼ 0:0024,

a1 ¼ �1:9265, a2 ¼ 0:9277.

The second-order model for the valve using (1)

was the next:

G sð Þ ¼ 2

5sþ 1ð Þ 10sþ 1ð Þ ð87Þ

y kð Þ ¼ 0:0024 � u kð Þ � �1:9265ð Þ � y k � 1ð Þ
� 0:9277ð Þy k � 2ð Þ ð88Þ

(b) The initial values of the gains of the PID controller

were obtained through the ZN method using the

previous parameters of the second-order plant;

Tc ¼ 1:0;Kp ¼ 6:0; Ti ¼ 70:0; Td ¼ 6:7. In this

experiment, the initial values of the PID gains were:

Kp 0ð Þ ¼ 1:3, Ki 0ð Þ ¼ 0:0153, Kd 0ð Þ ¼ 15:6

u kð Þ ¼ Kp þ Ki � k
� �

yref � Kp þ Ki þ Kd

� �
y k � 1ð Þ

� Ki � Kdð Þy k � 2ð Þ � 0:0153ð Þ
Xk�3

i¼0

y ið Þ

ð89Þ

u kð Þ ¼ 1:3153 � yref � 16:9153ð Þy k � 1ð Þ

� �15:5847ð Þy k � 2ð Þ � Kið Þ
Xk�3

i¼0

y ið Þ ð90Þ

(c) c Each consequent was designed to have two fuzzy

sets: (1) one fuzzy set for the input x1, the error e kð Þ,
was modeled using the mean value

lelþler
2

and the

standard deviation value re; and (2) a second fuzzy

set for the input x2, the change of error De kð Þ
modeled using the mean values

lDelþlDer
2

and the

standard deviation rDe of it. Both of them were

modeled as Gaussians of type-1 fuzzy values.

(d) The numerical values of each uncertain fuzzy set of

the PID controller using the IT2 NSFLS-1 with BP

learning mechanism (PID IT2 NSFLS-1 BP) were

initialized as shown in Table 10. Each consequent

was designed to have two fuzzy sets: (1) one fuzzy

set for the input x1, the error e kð Þ that was modeled

using two mean values lel; ler½ �, and the standard

deviation value re; and (2) a second fuzzy set for the

input x2, the change of error De kð Þ modeled using

two mean values lDel; lDer½ �, and the standard

deviation rDe of it. Both of them were modeled as

Gaussians type-2 fuzzy values.

The values of the non-singleton inputs: (1) the uncertain

error e kð Þ þ re kð Þ, and (2) the uncertain change of error,

De kð Þ þ rDe kð Þ, were modeled as non-singleton Gaussians

fuzzy values. The initial parameters values of the three IT2

NSFLS-1 systems are shown in Table 10.

Table 5 Situations or states of xq for calculation of xupq and xlowq

Case State of xq for xlowq
calculation State of xq for xupq calculation xilowq

xiupq
calculation

1
xq\

mi
q1
þmi

q2

2
� r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2

xq\mi
q1 xlowq

¼ ðrXq Þ
2
mi

q2
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2 xup ¼ ðrXq Þ
2
mi

q1
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2

2
xq\

mi
q1
þmi

q2

2
� r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2
xq 2 mi

q1
;mi

q2

h i
xlowq

¼ ðrXq Þ
2
mi

q2
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2

xupq ¼ xq

3
xq 2

mi
q1
þmi

q2

2
� r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2 ;
mi

q1
þmi

q2

2
þ r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2

� �
xq 2 mi

q1
;mi

q2

h i
xlowq

¼ mi
q1
þmi

q2

2

xupq ¼ xq

4
xq [

mi
q1
þmi

q2

2
þ r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2
xq 2 mi

q1
;mi

q2

h i
xlowq

¼ ðrXq Þ
2
mi

q1
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2

xupk ¼ xq

5
xq [

mi
q1
þmi

q2

2
þ r2

Xq
mi

q2
�mi

q1
ð Þ
2ðriqÞ

2

xq [mi
q2 xlowq

¼ ðrXq Þ
2
mi

q1
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2 xupq ¼
ðrXq Þ

2
mi

q2
þðriqÞ

2
xq

ðrXq Þ
2þðriqÞ

2
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The parameters are updated each control period of time

using the BP’s derivative equations as shown in Tables 5,

6, 7, 8 and 9.

3.4.1 Experimental modeling

The results of the experimental modeling process are

shown in Fig. 7. The stabilization times at 20 mA, arbi-

trarily selected as the operating set point, are shown in

Table 11. The proposed assembly PID IT2 NSFLS-1 BP

controller stabilizes 1.5 times fast that the one controller

that uses the PID ZN and these using the T1 SFLS, the T1

NSFLS, and the IT2 NSFLS1 systems. There is not over-

shooting in any PID controller as shown in caption a) of

Fig. 7, which shows the transient period of the six PID

controllers: classic ZN, the updated by T1 SFLS, T1

NSFLS, IT2 SFLS by IT2 NSFLS-1 and by the proposed

IT2 NSFLS-1 with BP learning mechanism.

3.4.2 Experimental modeling with noise

The next experiment was performed with the purpose to

know the behavior of the plant under noise disturbance

with a signal-to-noise ratio (SNR) of % 15 dB. When the

valve was at the stable state zone of the set point, a noise

was introduced. In the simulation process of the five PID

controllers, the noise was added directly to the control

signal as shown in (91), where un kð Þ is the control signal of

normal operation, and r kð Þ is the imposed noise with a

SNR of approximately 10% of the normal control signal

value. The corresponding output can be calculated using

next equations,

u kð Þ ¼ un kð Þ þ r kð Þ ð91Þ
ym kð Þ ¼ yu kð Þ þ yrn kð Þ ð92Þ

where yu kð Þ, and yrn kð Þ are the model outputs to un kð Þ, and

r kð Þ inputs.

In order to obtain a 10% of variation in the steady state,

this simulation was performed with a control value u kð Þ
with a negative noise value of �2:0, u kð Þ ¼ un kð Þ � 2:0,

and was established during three cycles of time. After that,

the control signal was set to its calculated

value,u kð Þ ¼ un kð Þ. The behavior of the PID controller is

shown in caption (b) of Fig. 7. The caption shows the

behavior of the controller systems with negative noise

Table 8 Selection of

consequent parameter of yr

using BP method for tuning the

Kp and Ki IT2 NSFLS-1

parameters

Parameter of consequent membership function that contributes to the right-most

f i
r
2 f 1; . . .; f R
� �

yir k þ 1ð Þ ¼ yir kð Þ þ a 1
2
K2e k � 1ð Þ

�f xlowqð Þ½ �PR

i¼1
f iþ
PM

i¼Rþ1
�f i

� �

�f ir 2 �f Rþ1; . . .; �f MR
� �

yir k þ 1ð Þ ¼ yir kð Þ þ a 1
2
K2e k � 1ð Þ

�f xupqð Þ½ �PR

i¼1
f iþ
PM

i¼Rþ1
�f i

� �

Table 9 Selection of

consequent parameter of yl

using BP Method for tuning the

Kp and Ki IT2 NSFLS-1

parameters

Parameter of consequent membership function that contributes to the right-most

�f il 2 �f 1; . . .; �f L
� �

yil k þ 1ð Þ ¼ yil kð Þ þ a 1
2
K2e k � 1ð Þ

�f xupqð ÞPL

i¼1
�f iþ
PM

i¼Lþ1
f i

� �

f i
l
2 f Lþ1; . . .; f M
� �

yil k þ 1ð Þ ¼ yil kð Þ þ a 1
2
K2e k � 1ð Þ f xlowqð ÞPL

i¼1
�f iþ
PM

i¼Lþ1
f i

� �

Table 10 Universe of disclosure and initial values of fuzzy sets for DKP kð Þ;DKI kð Þ; and DKD kð Þ estimation. There are three IT2 NSFLS-1

learning mechanism with BP learning mechanism

Input 1 eð Þ lel Nbl = - 22 Nml = - 16 Nsl = - 7 Zcl = - 2 Psl = 4 Pml = 12 Pbl = 18

Input 1 eð Þ ler Nbr = - 18 Nmr = - 14 Nsr = - 6 Zcr = 2 Psr = 8 Pmr = 16 Pbr = 22

Input 1 eð Þ re 6 6 6 6 6 6 6

Input 2 Deð Þ lDel nbl = - 12 nml = - 7 nsl = - 4 zcl = - 2 psl = 0 pml = 3 pbl = 8

Input 2 Deð Þ lDer nbr = - 8 nm = - 3 nsr = - 1 zcr = 2 psr = 4 pmr = 7 pbr = 12

Input 2 Deð Þ rDe 2 2 2 2 2 2 2

Output yil NBl = - 11 NMl = - 9 NSl = - 7 Z0 l = - 2 PSl = 7 PMl = 10 PBl = 16

Output yir NBr = - 7 NMr = - 5 NSr = - 3 Z0r = 2 PSr = 11 PMr = 14 PBr = 20
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perturbation. The values obtained from this experiment are

shown in Table 12.

The response of the PID IT2 NSFLS-1 with BP learning

mechanism is smooth and stable in comparison with the

other benchmark PID controllers.

In the same manner, a positive noise of u kð Þ with 2 mA

of magnitude and 3 cycles of time was applied in all the

benchmarking systems during the steady state as can be

seen in caption (c) of Fig. 7, which shows the behavior of

the PID systems with a positive noise perturbation.

Figure 8a shows the behavior of the proposed hybrid

assembly and the benchmark models in the transient phase.

There, it can be see that the stabilization takes around of 60

cycles with a smooth curve in contrast to the benchmark

fuzzy models that presents overshoot and damping. Also

when the model is under positive or negative disturbance

the behavior of the model is equal as shown in the insets b,

d, f of Fig. 8. The proposal assembly doesn’t show over-

shoot and damping and it presents the best stability before

and after the perturbation.

The behavior of the PID ZN and the PID T1 NSFLS

systems under the positive disturbance reflects a slow

recovery behavior in comparison with the proposed PID

IT2 NSFLS-1 with BP learning mechanism performance.

The stabilization times are shown in Table 13.

There is a difference between the behaviors of these five

systems depending on the negative or a positive value of

the noise. The analysis shows that the response for recov-

ery of the proposed PID IT2 NSFLS-1 BP controller is

Fig. 7 Comparison of the

performance among the PID

controllers: the classic PID ZN

controller, the one that uses

gains update by T1 and IT2

fuzzy system, and the proposed

PID using IT2 NSFLS-1 system

with BP algorithm

Table 11 Comparison of

transient periods
PID system Cycles for stabilization

ZN 211 (stability remains by 138 cycles)

T1 SFLS 194 (stability remains by 8 cycles)

T1 NSFLS 190 (stability remains by 33 cycles)

IT2 SFLS 249 (stability remains by 54 cycles)

IT2 NSFLS1 245 (stability remains by 42 cycles)

IT2 NSFLS-1 with BP learning mechanism 211 (stability remains by 189 cycles)

Table 12 Stabilization for

negative disturbance
PID system Cycles for stabilization

ZN 61 (stability remains by 17 cycles)

T1 SFLS 339 (stability remains by 69 cycles)

T1 NSFLS 207 (stability remains by 13 cycles)

IT2 SFLS 15 (stability remains by 76 cycles)

IT2 NSFLS1 68 (stability remains by 135 cycles)

IT2 NSFLS-1 with BP learning mechanism 72 (stablity remains by 130 cycles)
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Fig. 8 Comparison of the

performance among the NZ, T1

SFLS, T1 NSFLS, IT2 SFLS,

IT2 NSFLS-1 hybrid PID

controllers at different operating

set points: 10, 15, 20 mA
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faster than ZN, T1 SFLS and IT2 NSFLS1 benchmarking

controllers.

3.4.3 Experimental modeling with different set points

The fuzzy PID controllers were tested with three different

operating set points with arbitrarily selected values as 10,

20 and 15 mA. Different set points were tested to observe

the behavior of the systems under a perturbation and to

observe the transient periods. In the stable period (Fig. 9),

there were added a negative (- 2.0 mA) and positive

(? 2.0 mA) disturbances with 3 cycles of application. The

results of the simulation are shown in Figs. 8 and 9. The

captions (a), (b) and (c) in Fig. 8 show the stabilization

times after the sequential change of the values of the

operating set point. The captions from (d) to (f) of Fig. 8

show the behavior of the PID controllers under the influ-

ence of negative and positive disturbances.

4 Conclusion

At the end of the experimental phase of this work, the

results show fast response and an improvement in the

stabilization behavior of the output of the plant under the

control of the proposed assembly. The performance of the

proposal overcomes the performance of the five bench-

marking assemblies: the PID ZN, the PID and the T1

SFLS, the PID and the T1 NSFLS, the PID and the IT2

SFLS, the PID and the IT2 NSFLS-1. Table 14 shows a

complete comparison among these benchmarking

controllers.

The proposal is a breakthrough in PID modeling.

According to the literature, this is the first time that the PID

can process the uncertainties and noise of the measure-

ments thanks to the IT2 NSFLS1 systems that has its

parameters and its output value in the form of non-sin-

gleton numbers, Gaussian numbers with its mean value and

its standard deviation value.

Table 13 Stabilization for

positive disturbance
PID system Cycles to stabilization

ZN 66 (stability remains by 144 cycles)

T1 SFLS 108 (stability remains by 100 cycles)

T1 NSFLS 43 (stability remains by 24 cycles)

IT2 SFLS 15 (stability remains by 137 cycles)

IT2 NSFLS1 206 (stability remains by 25 cycles)

IT2 NSFLS-1 with BP learning mechanism 60 (stability remains by 144 cycles)

Fig. 9 Comparison of the performance among the PID controllers:

the classic PID ZN controller, the one that uses gains update by T1

and IT2 FLS system, and the proposed PID using IT2 NSFLS-1

system for gains update

Table 14 Comparison of the stabilization on negative–positive disturbances, and overshooting between the PID ZN, the PID T1 NSFLS & the

IT2 NSFLS-1

PID

ZN

PID T1

NSFLS

PID IT2

NSFLS-1

Improvements of the PID IT2 NSFLS-1 over the PID T1

NSFLS

Stabilization time (cycles) 211 190 211 11% lesser

Overshooting 11.15% 0.03% 0 Without overshooting

Stabilization cycles in negative

disturbance

61 207 72 287% lesser

Stabilization cycles in positive

disturbance

66 43 60 39% superior
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The best performance is obtained from the proposed

assembly that uses the PID controller and the IT2 NSFLS-1

systems that calculate the specific adjustments for the

PID’s gains required to carry out the output of the plant to

the desired set point in the shortest period of time and with

the required condition of stability for the plant’s response.

The most important characteristic of the proposed IT2

NSFLS1BP system is the capability to processes the

uncertainty coming from the input data, the sensor, the

modeling of the IT2 system and the initial values of their

parameters. Uncertainties filtering provide a characteristic

to the system to adapt their performance to the desired set

point with small variations that provide stability to the

control process, however, in the presence of perturbations,

and arise as the better assembly to avoid the loss of

stability.

Other PID approximations only work with the mean of

the measures, without the standard deviation. This proposal

works with central and dispersion statistic indicators of the

measurements covering all uncertainties and noise in the

measurement.

The results of the experiment show that the stability of

the proposed assembly is clearly the best because the

output remains almost two periods of time in contrast with

other proposals or tests, and also the proposal of IT2

NSFLS1 BP maintains the stability in presence of a per-

turbations and this stability do not presents oscillations as

overshoot and damping. In the assembly constructed using

the PID controller and the T1 SFLS the stability remains

only 9 cycles in contrast with the period of time of the

proposal, which stability time remains by 189 cycles in the

worst case. In the better case the stability of the proposed

model remains 1.5 times in contrast to the PID and 19

times against to the T1 NSFLS. Also in the transient period

it is observed a similar situation.

The proposed assembly of the PID controller using IT2

NSFLS-1 systems with BP shows the best stability and the

best performance compared to the five assemblies used as

benchmarking systems.

In the simulations results it can be seen patterns in the

behavior of the response of the plant that provide the

chance to predict the behavior of the model over a distur-

bance. Also, the variation of the proposal is completely

stable with a variation of 10% over the rest of the models

that have variations more than 15% over a controlled

disturbance.

The stabilization of the proposed assembly is faster that

their counterpart’s of the time cycles to recover the

stability.

As future work the authors:

• will apply the model to real industrial problems where

the uncertainties are non-stationary in a hot strip mill

facility located in Monterrey, N.L. MX., firstly in off

line mode and secondly in real-time mode,

• will work in a proposal of the PID control model using

artificial neural networks for the PID gains calculation,

• will apply the BP model onto a GT2 model to evaluate

the performance in a PID controller,

• will propose other type of models for tuning with

metaheuristics assemblies,

• will apply the proposed assembly in a plant modeled

with time delay in its output.
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Álvarez A, Reyes D, Rincón EJ, Valderrama J, Noradino P, Méndez

GM (2018) PID implemented by a type-1 fuzzy logic system

with back-propagation algorithm for online tuning of its gains.

In: Melin P, Castillo O, Kacprzyk J, Reformat M, Melek W (eds)

Fuzzy logic in intelligent system design: theory and applications.

Proceedings of NAFIPS 2017. Advances in intelligent systems

and computing, vol 648. Springer, Cham, pp 256–263

Arghavani N, Almobaied M, Guzelkaya M, Eksin I (2017) On-line

rule weighting for PID-type fuzzy logic controllers using

extended Kalman filter. IFAC-PapersOnLine 50(1):7140–7145

Beirami H, Zerafat MM (2015) Self-tuning of an interval type-2 fuzzy

PID controller for a heat exchanger system. Iran J Sci Technol

Trans Mech Eng 39:113–129

Castillo O, Amador-Angulo L, Castro JR, Garcia-Valdez M (2016a)

A comparative study of type-1 fuzzy logic systems, interval

type-2 fuzzy logic systems and generalized type-2 fuzzy logic

systems in control problems. Inf Sci 354:257–274

Castillo O, Cervantes L, Soria J, Sanchez M, Castro JR (2016b) A

generalized type-2 fuzzy granular approach with applications to

aerospace. Inf Sci 354:165–177

Castro JR, Castillo O, Melin P, Rodrı́guez-Dı́az A (2008) Building

fuzzy inference systems with a new interval type-2 fuzzy logic

toolbox. Transactions on computational science I. Springer,

Berlin, pp 104–114

Cervantes L, Castillo O (2015) Type-2 fuzzy logic aggregation of

multiple fuzzy controllers for airplane flight control. Inf Sci

324:247–256

38 Gerardo M. Méndez et al.

123



Deepak G, Cheolkeun H (2013) Control of a quadrotor using a smart

self-tuning fuzzy PID controller. Int J Adv Robot Syst 1:1–9

El-Bardini M, El-Nagar A (2014a) Interval type-2 fuzzy PID

controller: analytical structures and stability analysis. Arab J

Sci Eng 39(10):7443–7458

El-Bardini M, El-Nagar AM (2014b) Interval type-2 fuzzy PID

controller for uncertain nonlinear inverted pendulum system.

ISA Trans 53(3):732–743

Fatihu Hamza M, Yapa H, Ahmed Choudhury I (2017) Cuckoo search

algorithm based design of interval Type-2 Fuzzy PID. Eng Appl

Artif Intell 62:134–151

Gaidhane PJ, Nigam MJ, Kumar A, Pradhan PM (2019) Design of

interval type-2 fuzzy precompensated PID controller applied to

two-DOF robotic manipulator with variable payload. ISA Trans

89:169–185

Jie SUN, Zhang DH, Xu L, Zhang J, Du DS (2010) Smith prediction

monitor AGC system based on fuzzy self-tuning PID control.

J Iron Steel Res Int 17(2):22–26

Karasakal O, Guzelkaya M, Eksin I, Yesil E, Kumbasar T (2013)

Online tuning of fuzzy PID controllers via rule weighing based

on normalized acceleration. Eng Appl Artif Intell 26(1):184–197

Khosla A, Leena G, Soni MK (2014) Interval type-2 fuzzy logic

controller to control the velocity and angle of inverted pendu-

lum. Int J Intell Syst Appl 6(7):44–51

Kosari A, Jahanshahi H, Razavi SA (2017) An optimal fuzzy PID

control approach for docking maneuver of two spacecraft:

orientational motion. Eng Sci Technol Int J 20(1):293–309

Kudinov YI, Kolesnikov VA, Paschenko FF, Paschenko AF, Papoc L,

(2017) Optimization of fuzzy PID controller’s parameters. In:

12th international symposium ‘‘intelligent systems’’,

INTELS’16, 5 Oct 2016, Elsevier, Procedia Computer Sciences,

vol 103, pp 618–622

Kumar A, Kumar V (2017a) Hybridized ABC-GA optimized

fractional order fuzzy pre-compensated FOPID Control design

for 2-DOF robot manipulator. AEU-Int J Electron Commun

79(2017):219–233

Kumar A, Kumar V (2017b) A novel interval type-2 fractional order

fuzzy PID controller: design, performance evaluation, and its

optimal time domain tuning. ISA Trans 68(2017):251–275

Kumar A, Kumar V (2017c) Evolving an interval type-2 fuzzy PID

controller for the redundant robotic manipulator. Expert Syst

Appl 73(2017):161–177

Kumar A, Kumar V (2017d) Artificial bee colony based design of the

interval type-2 fuzzy PID controller for robot manipulator.

Presented at TENCON 2017–2017 IEEE Region 10 conference,

November, 2017, pp 602–607

Kumar A, Kumar V, Gaidhane PJ (2018) Optimal design of fuzzy

fractional order PIkDl controller for redundant robot. Procedia

Comput Sci 125:442–448

Kumbasar T (2014a) Robust stability analysis of PD type single input

interval type-2 fuzzy control systems. Presented at 2014 IEEE

international conference on fuzzy systems (FUZZ-IEEE),

pp 634–639

Kumbasar T (2014b) A simple design method for interval type-2

fuzzy PID controllers. Soft Comput 18(7):1293–1304

Kumbasar T (2016) Interval type-2 fuzzy PID controllers and an

online self-tuning mechanism. Pamukkale Univ J Eng Sci

22(8):643–649

Kumbasar T, Hagras H (2015) A self-tuning zSlices-based general

type-2 fuzzy PI controller. IEEE Trans Fuzzy Syst

23(4):991–1013

Kumbasar T, Hagras H (2017) A gradient descent based online tuning

mechanism for pi type single input interval type-2 fuzzy logic

controllers. Presented at IEEE international conference on fuzzy

systems (FUZZ-IEEE), pp 1–6

Kumbasar T, Yesil E, Karasakal O (2013) Self-tuning interval type-2

fuzzy PID controllers based on online rule weighting. Presented

at the 2013 IEEE international conference on fuzzy systems

(FUZZ-IEEE), July, pp 1–6

Mehndiratta M, Kayacan E, Kumbasar T (2016) Design and

experimental validation of single input type-2 fuzzy PID

controllers as applied to 3 DOF helicopter testbed. Presented at

the 2016 IEEE international conference on fuzzy systems

(FUZZ-IEEE), July, 2014, pp 1584–1591

Mendel JM (2001) Uncertain rule-based fuzzy logic systems:

introduction and new directions. Prentice Hall PTR, Upper

Saddle River
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