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Abstract
Interval-valued intuitionistic fuzzy sets are widely used in multi-attribute decision-making problems to select the optimal
alternative, but how to measure uncertainty is an open and significant problem. In this paper, a new distance measure of
interval-valued intuitionistic fuzzy sets is proposed based on the distance of interval numbers. With the advantages of taking
account of the whole number in the interval and having definite physical meaning, the proposed distance measure of interval-
valued intuitionistic fuzzy sets shows superiority in measuring uncertainty and imprecision. In addition, the proposed distance
measure is compared with some recent research works and classical distances through numerical examples. Graphs are drawn
to visually display the variation characteristics and analyze the properties of the distance measures. The results prove that the
proposed distance measure of interval-valued intuitionistic fuzzy sets outperforms other metrics in measuring uncertainty and
avoiding counterintuitive cases. Some illustrative examples of multi-attribute decision making under real life are conducted,
which demonstrates the strong discrimination capability and effectiveness of the proposed distance measure.

Keywords Interval-valued intuitionistic fuzzy set · Distance measure · Decision making · Uncertainty

1 Introduction

Decision making has been widely applied in many fields
in recent years and receives increasing attention (Deng and
Deng 2019), like industrial engineering (Ayhan et al. 2015;
Ling et al. 2016; Zhang and Deng 2018b), medical treat-
ment (Deem 2016; Garg 2016; Xiao 2018) and so on (Chen
et al. 2016; Deng et al. 2019c). The first step of decision is
establishing mathematical structures to describe the charac-
teristics of uncertain information from different levels. The
second step is designing corresponding algorithms to address
fuzzy data based on the decision-making goals. Therefore,
finding an appropriate description model and a reasonable
method to deal with data are two fundamental topics.

There are many models to describe uncertainty such as
rough set (Pawlak 1982), evidence theory (Deng et al. 2016;
Dong et al. 2019; Gao and Deng 2019; Sun and Deng 2019),
and D number theory (Mo and Deng 2019; Zhao and Deng
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2019; Deng and Jiang 2019a). Since a crisp number can-
not describe uncertainty and imprecision properly, Zadeh
proposed fuzzy set (FS) (Zadeh 1965). Afterward, many
extended approaches and theories were proposed. Interval-
valued fuzzy set (IVFS) (Zadeh 1975), presented by Zadeh,
generalized the membership degree from exact number to
interval number. Atanassov conceived intuitionistic fuzzy
set (IFS) (Atanassov 1986), which considered simultane-
ously the membership degree and non-membership degree
of the element to a set. Hesitant fuzzy sets (Torra 2010) was
defined by Torra in terms of a function that returns a set of
membership values for each element in the domain. Differ-
ent extended fuzzy sets depict the uncertainty of complex
things from different aspects. As a combination of IFS and
IVFS, interval-valued intuitionistic fuzzy set (IVIFS) was
introduced by Atanassov (Atanassov 1994), which describes
membership degree and non-membership degree via inter-
val numbers and provides a more reasonable mathematical
model to deal with uncertain events and fuzzy information.
However, these theories have inherent defects, namely lack of
parametrization as pointed in (Molodtsov 1999). Molodtsov
proposed soft set theory as a parameterized tool for dealing
with uncertainty. By integrating soft set theory with classi-
cal fuzzy set theory, a lot of extensions of fuzzy set theory
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have been presented (Majumdar and Samanta 2010). For
instance, interval-valued fuzzy soft set (Yang et al. 2009)
is a combination of interval-valued fuzzy set and soft set.
In the same way, vague soft set (Xu et al. 2010), general-
ized interval-valued intuitionistic fuzzy soft rough set (He
and Xiong 2017), etc., were proposed successively. Jiang
et al. (2010) proposed interval-valued intuitionistic fuzzy
soft set (IVIFSS), which is widely applied in dealing with
decision-making issues with multiple participations and dif-
ferent decision metrics. Due to an appropriate description of
uncertainty and imprecision, fuzzy theories and soft com-
puting theories are widely used in practical application: life
sciences (Carmona et al. 2013; Uslan and Seker 2016), data
fusion (Xu and Deng 2019; Song and Deng 2019; Zhang
and Deng 2018a), decision making (Chen and Huang 2017;
Gou and Xu 2017; Oztaysi et al. 2017; Tao et al. 2017;
Wang and Chen 2017a; Wang 2017), evaluation (Marasini
et al. 2017; Ren et al. 2017; Song and Wang 2017; Kang
et al. 2019), categorization (He and Jiang 2018a), etc. For
example, a fuzzy linguistic RFM (recency, frequency and
monetary value) model was proposed by Alberto Carrasco
et al. (2019) and applied to campaign management.

As a significant topic in the theory of fuzzy sets, uncer-
taintymeasures are used to dealwith fuzzydata andhavebeen
developed from different views, such as distance measure
(Merigo and Casanovas 2010), similarity measure (Ren and
Wei 2017; Fei and Deng 2019), inclusion measure, entropy
measure (Huang et al. 2019; Li and Deng 2018; Xiao 2019;
Zhao et al. 2016) and correlation coefficient (Jiang et al.
2019). For example, Hu and Li (2013) researched the rela-
tionship between entropy and similarity of interval-valued
intuitionistic fuzzy sets in detail. Deng and Jiang (2019b)
introduced a novel method to evaluate green supply chain
management practices under fuzzy environment based on D
number theory. Song and Wang (2017) proposed a new sim-
ilarity measure between IFSs and illustrated its superiority
of avoiding counterintuitive cases. In Jiang (2018), a novel
correlation coefficient is proposed to measure the similarity
of two basic probability assignments (BPAs). Selvachandran
et al. (2017) defined similarity measure and intuitionistic
entropy by means of the distance measure and discussed
relationship among these information measures. Meantime,
these uncertainty measures of extended fuzzy soft sets are
widely applied in practical engineering and have achieved
effective results, such as pattern recognition (Han and Deng
2018; Zhang and Deng 2019; Uslan et al. 2014), optimiza-
tion problems (Deng et al. 2019b, 2017a, b) cluster analysis
(Rahim et al. 2016), etc., especially in decision making
(Han and Deng 2019; He and Xiong 2017; Oztaysi et al.
2017; Zhou et al. 2016). For example, Morente-Molinera
et al. (2017) proposed fuzzy ontologies and multi-granular
linguistic modeling methods to solve multi-criteria group
decision-making problems under environments with a high

number of alternatives. InHe and Jiang (2018b), an evidential
Markov decision-making model based on Dempster-Shafer
(D-S) evidence theory and Markov modeling is proposed to
model the real human decision-making process. A damage
degree identification method based on high-order difference
mathematical morphology gradient spectrum entropy is pro-
posed by Zhao et al. (2018). Liu et al. (2017) presented the
interval-valued intuitionistic fuzzy-ordered weighted cosine
similarity (IVIFOWCS) measure and introduced its appli-
cation in group decision making. Tang (2017) investigated
an approach to interval-valued intuitionistic fuzzy soft sets
in decision making by means of grey relational analysis
and D-S theory of evidence. A metamodel and its corre-
sponding domain-specific language were presented by Rojas
et al. (2018), which supported decision making from open
government data. Wang and Chen (2017b) proposed a new
multi-attribute decision-making (MADM) method based on
IVIFSs, the linear programming (LP) methodology, and the
extension of the technique for order preference by similar-
ity to ideal solution (TOPSIS) method. Deng et al. (2018)
presented a new motor bearing fault diagnosis method based
on integrating empirical wavelet transform, fuzzy entropy,
and support vector machine. A new interval-valued informa-
tion entropy measure for interval-valued intuitionistic fuzzy
sets (IVIFSs) was constructed by Nguyen (2016) to handle
with the increasing complexity of the decision-making prob-
lems. Morente-Molinera et al. (2018) used fuzzy ontologies
to manage multi-criteria group decision-making environ-
mentswith high number of alternatives. Feng andGuo (2017)
discussed relationships among distance measures, similarity
measures and inclusion measures of interval-valued intu-
itionistic fuzzy soft sets (IVIFSSs) and applied them in
decision making.

Due to the increasing complexity of the decision-making
problems in engineering and the lack of precise information,
the IVIFSs is more applicable to represent uncertain infor-
mation. There has been little investigation on the distance
measure of interval-valued intuitionistic fuzzy sets; there-
fore, it is highly necessary and significant to construct an
appropriate distance measure for IVIFSs. But how to mea-
sure the distance of IVIFSs is an open issue. Dugenci (2016)
introduced a novel generalized distancemeasure for interval-
valued intuitionistic fuzzy sets. Singh and Garg (2017)
proposed a family of distance measures based on Hamming,
Euclidean and Hausdorff metrics under the environment of
type-2 intuitionistic fuzzy set to rank the alternatives. Never-
theless, the constructions of some formulas are complicated
and have no definite physical meaning. Most existing uncer-
tainty measures are obtained based mainly on particular
points (Zhang and Yu 2013), such as midpoints or endpoints
on the intervals of IVIFSs, which inevitably leads to informa-
tion loss and even ineffectiveness of the distance measures in
somecases. In practical applications, these distancemeasures
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defined on the basis of general distancemetrics have poor dis-
crimination capability or even cause counterintuitive results.
In order to solve these problems, a new distance measure
of IVIFSs is presented in this paper and applied in multi-
attribute decision-making problems. The main contributions
of this work are the following:

– A new distance measure of IVIFSs is presented based on
the distance of interval numbers,which takes into account
of all the numbers in the interval and considers hesitancy
degree as a component in distance measure.

– The proposed distance measure of IVIFSs is comprehen-
sively compared and analyzed with some recent research
works and classical distancemeasures through numerical
examples. The results demonstrate that the proposed dis-
tance outperforms other metrics to measure uncertainty
and avoid counterintuitive cases.

– Some real-life applications are provided to prove the
strong discrimination capability of the proposed distance
measure in addressing decision-making problems.

This article is organized as follows. Some notions and
properties about interval-valued intuitionistic fuzzy sets and
distance measures discussed in this paper are briefly intro-
duced in Sect. 2. Section 3 introduces the new distance mea-
sure of interval-valued intuitionistic fuzzy sets. In Sect. 4, the
new distance measure of interval-valued intuitionistic fuzzy
sets is compared with some recent works and classical dis-
tance measures through numerical examples, also their prop-
erties are discussed in detail. Section 5 illustrates real-life
applications in decision making based on the new distance
measure of IVIFSs. Finally, this paper is concluded in Sect. 6.

2 Preliminaries

In this section, some necessary definitions are briefly intro-
duced.

Let U be an initial universe of objects, E be the set of
parameters in relation to objects in U .

U = {x1, x2, . . . , xn} , E = {e1, e2, . . . , em}

Definition 1 (Interval-valued intuitionistic fuzzy set)
(Atanassov 1994; Liu et al. 2017) An interval-valued intu-
itionistic fuzzy set on a universe U is an object of the form

A = {〈x, μA (xi ) , νA (xi )〉 |xi ∈ U }
=
{〈
x, [μ

A
(xi ), μA(xi )], [νA(xi ), νA(xi )]

〉
|xi ∈ U

}

where interval membership degree μA (xi ) ∈ [0, 1], inter-
val non-membership degree νA (xi ) ∈ [0, 1] and satisfy the

following condition: ∀xi ∈ U , 0 ≤ μA (xi ) + νA (xi ) ≤ 1.
For each xi ∈ U , the interval hesitancy degree of an interval
intuitionistic fuzzy set A is defined as follows:

πA(xi ) = [
π A(xi ), π̄A(xi )

]

=
[
1 − μ̄A(xi ) − ν̄A(xi ), 1 − μ

A
(xi ) − νA(xi )

]
.

The class of all interval-valued intuitionistic fuzzy sets onU
can be denoted by I V I FS (U ).

The term “intuitionistic,” which was used by Atanassov, has
a specific meaning in logic. It captures the separate handling
of positive and negative aspects of information. Specifi-
cally, μA (x) is the membership degree which represents the
positive aspect of an element to a set, while νA (x) is non-
membership degree which represents the negative aspects of
an element to a set. πA (x) is a measure of the hesitation of
the expert to assign a numerical value to μA (x) and νA (x).
Actually, the term “intuitionistic” works very well in prob-
lems in which we have to represent the difference between
the positive and the negative representation of something, in
particular, in cognitive psychology and medicine (Bustince
et al. 2016).

Definition 2 (Interval-valued intuitionistic fuzzy soft set) Let
U be a universe set, E be s set of parameters, and A ⊆ E .
A pair (F, A) is called an interval-valued intuitionistic fuzzy
soft set over U , where F is a mapping given by

F : A → IVIFS (U )

From the definition, an interval-valued intuitionistic fuzzy
soft set is a parameterized family of interval-valued intu-
itionistic fuzzy subsets of U . Every set F (e) (e ∈ E) may
be considered as the interval-valued intuitionistic fuzzy value
set of parameter e, and it can be written as: F (e) ={〈
x, μF(e) (x) , νF(e) (x)

〉 |x ∈ U }. Here, μF(e) (x) is the
interval-valued fuzzy membership degree of object x to
parameter e; νF(e) (x) is the interval-valued fuzzy non-
membership degree of object x to parameter e.

Definition 3 (Tran and Duckstein 2002) Let F (R) be the
set of interval numbers in R, and the distance between two
interval numbers A (a1, a2) and B (b1, b2) is defined as:

D2 (A, B) =
∫ 1/2

−1/2

{[
1

2
(a1 + a2) + x (a2 − a1)

]

−
[
1

2
(b1 + b2) + x (b2 − b1)

]}2
dx (1)

=
[
1

2
(a1 + a2) − 1

2
(b1 + b2)

]2

+1

3

[
1

2
(a2 − a1) − 1

2
(b2 − b1)

]2
(2)
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Definition 4 For any A, B,C ∈ IVIFSs (U ), Let d be amap-
ping d : I V I FSs (U ) × IVIFSs (U ) → [0, 1]. If d (A, B)

satisfies the following properties:

(1) 0 � d (A, B) � 1
(2) d (A, B) = 0 if and only if A = B.
(3) d (A, B) = d (B, A)

(4) if A ⊆ B ⊆ C , then d (B,C) � d (A,C) and
d (A, B) � d (A,C)

(5) d (A,C) � d (A, B) + d (B,C)

Then, d (A, B) is a distance measure between IVIFSs A and
B.

Definition 5 Introductions of some recent works and classi-
cal distance measures of interval-valued intuitionistic fuzzy
sets.

In this section, we review some recent research works
and widely used distance measures of interval-valued intu-
itionistic fuzzy sets, which is necessary to help understand
the construction of IVIFS distance. Additionally, in Sects. 4
and 5, these distances will be compared with the pro-
posed distancemeasure of IVIFSs and detailedly investigated
through numerical examples.

Let A and B be two interval-valued intuitionistic fuzzy
sets on U = {x1, x2, . . . , xn}, where

A =
{〈
x, [μ

A
(xi ), μ̄A(xi )], [νA(xi ), ν̄A(xi )]

〉
|xi ∈ U

}

B =
{〈
xi , [μB

(xi ), μ̄B(xi )], [νB(xi ), ν̄B(xi )]
〉
|xi ∈ U

}

1. In Dugenci (2016), Muharrem proposed a new distance
measure for IVIFSs:

Dt
p (A, B)

= p

√√√√√√√√√√√√√√

1
4n(t+1)p

n∑
i=1

{∣∣∣t
(
μ

A
(xi )−μ

B
(xi )

)
−(νA (xi )−νB (xi )

)∣∣∣
P

+
∣∣∣t (νA (xi ) − νB (xi )

)−
(
μ

A
(xi ) − μ

B
(xi )

)∣∣∣
P

+∣∣t (μA (xi ) − μB (xi )) − (νA (xi ) − νB (xi ))
∣∣P

+∣∣t (νA (xi ) − νB (xi )) − (μA (xi ) − μB (xi ))
∣∣P}

where t = 2, 3, 4, . . . and p = 1, 2, 3, . . ., in which,
parameter p is the L p norm and t identifies the level of
uncertainty.When calculating, t = 2, p = 1 in this paper.

2. Zhou et al. (2016) proposed continuous intuitionistic
fuzzy-ordered weighted distance (C-IFOWD) measure.
A C-IFOWD measure is a mapping C − I FOWD :∑n ×∑n → R that has an associated weighting vec-
tor −→ω of dimension n, such that

∑n
j=1 ω j = 1 and

ω j ∈ [0, 1].

dC−I FOWD (A, B) =
⎛
⎝

n∑
j=1

ω j dλ

(
Aσ( j), Bσ( j)

)r
⎞
⎠

1/r

dλ (A, B) = 1

2

(∣∣∣λ (μA (xi ) − μB (xi ))

+ (1 − λ)
(
μ

A
(xi ) − μ

B
(xi )

)∣∣∣+ ∣∣λ (νA (xi )

−νB (xi )) + (1 − λ)
(
νA (xi ) − νB (xi )

) ∣∣)

where σ (1) , σ (2) , . . . , σ (n) is any permutation of
(1, 2, . . . , n), such that:

dλ

(
Aσ( j−1), Bσ( j−1)

)

≥ dλ

(
Aσ( j), Bσ( j)

)
, j = 2, 3, . . . , n

dλ

(
A j , Bj

)
is the continuous intuitionistic fuzzy dis-

tance between A j and Bj based on the continuous
interval-valued intuitionistic fuzzy-ordered weighted
averaging (C-IVIFOWA) operator and parameter r > 0.
When calculating, λ = 1/3 in this paper.
If r = 1, then the C-IFOWD measure reduces to the
C-IFOWHD measure:

dC−I FOWHD (A, B) =
⎛
⎝

n∑
j=1

ω j dλ

(
Aσ( j), Bσ( j)

)
⎞
⎠

If r = 2, then the C-IFOWD measure becomes the C-
IFOWED measure:

dC−I FOWED (A, B) =
⎛
⎝

n∑
j=1

ω j dλ

(
Aσ( j), Bσ( j)

)2
⎞
⎠

1/2

3. Hamming distance

dH (A, B) = 1

4n

n∑
i=1

[|μ
A

(xi ) − μ
B

(xi ) |

+ |μ̄A (xi ) − μ̄B (xi )|
+ ∣∣νA (xi ) − νB (xi )

∣∣+ |νA (xi ) − νB (xi )|
]

4. Euclidean distance

dE (A, B) =
{

1

4n

n∑
i=1

[(μ
A
(xi ) − μ

B
(xi ))

2

+ (μ̄A(xi ) − μ̄B(xi ))
2

+(νA (xi ) − νB (xi )
)2 + (νA (xi ) − νB (xi ))

2
]} 1

2

5. Normalized hamming distance induced by Hausdorff
metric
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dNH (A, B) = 1

2n

n∑
i=1

[|μ
A
(xi ) − μ

B
(xi )|

∨ |μ̄A(xi ) − μ̄B(xi )|
+ ∣∣νA (xi ) − νB (xi )

∣∣ ∨ |νA (xi ) − νB (xi )|
]

6. Normalized distance induced by Hausdorff metric

dN (A, B) = 1

2n

n∑
i=1

max
{
|μ

A
(xi ) − μ

B
(xi )|

+ |μ̄A(xi ) − μ̄B(xi )| ,∣∣νA (xi ) − νB (xi )
∣∣+ |νA (xi ) − νB (xi )|

}

3 The new distancemeasure of
interval-valued intuitionistic fuzzy sets

Interval-valued intuitionistic fuzzy set is a flexible math-
ematical tool to depict and handle uncertainty, which is
the inherent characteristic ofmulti-attribute decision-making
(MADM) problems. Hence, several uncertainty measures
such as distance measure have been generalized in interval-
valued intuitionistic fuzzy environment. Nevertheless, the
constructions of some formulas are complicated and have
no definite physical meaning. Additionally, these distance
measures defined on the basis of general distance metrics
have poor distinguishing ability or even cause counterin-
tuitive results. Therefore, a rational and effective distance
measure of IVIFSs is desirable from the theoretical and prac-
tical points of view.

3.1 The new distancemeasure of interval-valued
intuitionistic fuzzy sets

In this section, a new distance measure of interval-valued
intuitionistic fuzzy sets is proposed inspired by the distance
of interval numbers in Definition 3. A conversion between
interval-valued intuitionistic fuzzy set and interval vector is
established, so that the distance of IVIFSs can be investi-
gated from an interval number perspective. The process of
constructing the distance measure of IVIFSs is that convert
IVIFS to a set of interval vector firstly, and then construct the
distance of interval vectors by means of the distance of inter-
val numbers. Simultaneously that is the distance measure of
interval-valued intuitionistic fuzzy sets. The concrete steps
are shown as follows.

For each xi ∈ U , IVIFS A, B are defined as

A =
{〈
x, [μ

A
(x), μ̄A(x)], [νA(x), ν̄A(x)]

〉
|xi ∈ U

}

B =
{〈
x, [μ

B
(x), μ̄B(x)], [νB(x), ν̄B(x)]

〉
|xi ∈ U

}

Step 1 Convert IVIFS to interval vector.
The elements of interval vectors are interval mem-
bership degree, interval non-membership degree and
interval hesitancy degree, respectively.

〈[
μ,μ

]
,
[
ν, ν

]〉 →

⎛
⎜⎜⎝

[
μ,μ

]
[
ν, ν

]
[
π, π

]

⎞
⎟⎟⎠

For A and B, the vectors can be expressed by:

−→
A =

⎛
⎜⎜⎝

[
μ

A
(x) , μA (x)

]
[
νA (x) , νA (x)

]
[
π A (x) , π A (x)

]

⎞
⎟⎟⎠

−→
B =

⎛
⎜⎜⎝

[
μ
B

(x) , μB (x)
]

[
νB (x) , νB (x)

]
[
π B (x) , π B (x)

]

⎞
⎟⎟⎠

Now, the distance of IVIFSs can be regarded as the
distance between vectors

−→
A and

−→
B . Based on the

distance measure of interval numbers, the distance
between the corresponding elements in the vector
can be obtained.

Step 2 Calculate the distance of vectors elements.
According to the distance of interval numbers which
has been introduced in Definition 3. Dμ is the dis-
tance between the degree of interval membership.
Dν is the distance between the degree of interval
non-membership. Dπ is the distance between the
degree of interval hesitancy. And their formulas are
as follows:

Dμ
2 (A, B)

=
[(

μ
A

(x) + μ̄A (x)

2

)
−
(

μ
B

(x) + μ̄B (x)

2

)]2

+1

3

[(
μ̄A (x)−μ

A
(x)

2

)
−
(

μ̄B (x)−μ
B

(x)

2

)]2

Dν
2 (A, B)

=
[(

νA (x) + ν̄A (x)

2

)
−
(

νB (x) + ν̄B (x)

2

)]2

+1

3

[(
ν̄A (x)−νA (x)

2

)
−
(

ν̄B (x)−νB (x)

2

)]2

Dπ
2 (A, B)

=
[(

π A (x) + π̄A (x)

2

)
−
(

π B (x) + π̄B (x)

2

)]2

+1

3

[(
π̄A (x)−π A (x)

2

)
−
(

π B (x)−π B (x)

2

)]2

123



6992 Y. Liu, W. Jiang

In order to represent the difference between corre-
sponding interval elements, the following rules are
formulated:

1. Dμ =
√
Dμ

2, when μ
A

+ μA � μ
B

+ μB;
Dμ = −

√
Dμ

2, when μ
A

+ μ̄A < μ
B

+ μ̄B .

2. Dν =
√
Dν

2, when νA + νA � νB + νB;
Dν = −

√
Dν

2, when νA + νA < νB + νB .

3. Dπ =
√
Dπ

2, when π A + π A � π B + π B;
Dπ = −

√
Dπ

2, when π A + π A < π B + π B .

Step 3 The distance measure between interval vectors.
Based on the distance of interval numbers, a new
distance measure between vector

−→
A and

−→
B is intro-

duced as follows.

d (A, B)

=
√
1

2

(
Dμ

2+Dν
2+Dπ

2+Dπ Dμ+Dπ Dν

)

(3)

The distance measure between interval vectors con-
sists of the distance between each pair of corre-
sponding elements in two vectors. The elements of
interval vectors are interval numbers, hence the dis-
tance between elements Dμ, Dν , Dπ can be obtained
by means of distance of interval numbers.

Step 4 The distance measure of interval-valued intuitionis-
tic fuzzy sets.
The interval vectors

−→
A and

−→
B are transformed from

the IVIFSs A and B. A conclusion can be safely
reached that an interval-valued intuitionistic fuzzy
set is equivalent to a vector. Meanwhile, the distance
between interval vectors is the distance between
IVIFSs. As mentioned above, the distance of the
interval-valued intuitionistic fuzzy sets is the sum
of the distance of the interval-valued intuitionistic
fuzzy numbers for each xi ∈ U . Therefore, the new
distance measure of IVIFSs is proposed as follows:

dIVIFS (A, B)

= 1

n

n∑
i=1

√
1

2

(
Dμ

2+Dν
2+Dπ

2+Dπ Dμ+Dπ Dν

)

(4)

The proposed distance measure of IVIFSs is con-
structed by Dμ, Dν and Dπ through square and
multiplication, which considers not only the differ-
ence of membership degree and non-membership

IVIFS  A,B

Distance of 
IVIFSs

Distance 
measure of INs

, ,D D D

Interval 
vectors A,B

Distance of 
Interval vectors

Fig. 1 Flowchart of novel distance measure

degree, but also takes into account of hesitancy
degree. The hesitancy degree plays a role in measur-
ing the uncertainty of information, which is superior
to other widely used distance measures of IVIFSs,
as illustrated in the examples in Sect. 4. In addition,
the coefficient 1

2 is to keep the distance between 0
and 1.

The novelty of this distance measure is that a conversion
between interval-valued intuitionistic fuzzy set and interval
vector is established, and the distance measure of IVIFSs is
proposed based on the distance of interval numbers, which
takes into account of all the points in the interval and is theo-
retically reasonable. The flowchart of constructing the novel
distance measure of interval-valued intuitionistic fuzzy sets
is shown in Fig. 1.

Example 1 Suppose there are two interval-valued intuition-
istic fuzzy sets, A and B.

A = {〈[0.55, 0.67] , [0.1, 0.28]〉 , 〈[0.26, 0.37] ,
[0.55, 0.63]〉}

B = {〈[0.7, 0.8] , [0.15, 0.2]〉 , 〈[0.61, 0.71] , [0, 0.1]〉}

Use the proposed new distance of IVIFSs to calculate the
distance of them. Firstly, the distance of the two IVIFSs cor-
responding to element x1 is calculated as follows:

−→
A1 =

⎛
⎜⎝
[0.55, 0.67]

[0.1, 0.28]

[0.05, 0.35]

⎞
⎟⎠−→

B1 =
⎛
⎜⎝

[0.7, 0.8]

[0.15, 0.2]

[0, 0.15]

⎞
⎟⎠
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Dμ1
2 (A, B) =

[(
0.55 + 0.67

2

)
−
(
0.7 + 0.8

2

)]2

+1

3

[(
0.67 − 0.55

2

)
−
(
0.8 − 0.7

2

)]2
= 0.0196

Dν1
2 (A, B) =

[(
0.1 + 0.28

2

)
−
(
0.15 + 0.2

2

)]2

+1

3

[(
0.28 − 0.1

2

)
−
(
0.2 − 0.15

2

)]2
= 0.0016

Dπ1
2 (A, B) =

[(
0.05 + 0.35

2

)
−
(
0 + 0.15

2

)]2

+1

3

[(
0.35 − 0.05

2

)
−
(
0.15 − 0

2

)]2
= 0.0175

0.55 + 0.67 < 0.7 + 0.8, then

Dμ1 = −
√
Dμ1

2 = −0.1401

0.1 + 0.28 � 0.15 + 0.2, then Dν1 =
√
Dν1

2 = 0.0404

0.05 + 0.35 � 0 + 0.15, then Dπ1 =
√
Dπ1

2 = 0.1323

dIVIFS1 =
√
1

2
× (0.0196+0.0016+0.0175−0.1401×0.1323+0.0404×0.1323)

= 0.1131

In the same way, the distance of the two IVIFSs correspond-
ing to element x2 is calculated as follows:

Dμ2
2 (A, B) = 0.1190, Dν2

2 (A, B) = 0.2916, Dπ2
2 (A, B) = 0.0380

Dμ2 = −0.3450, Dν2 = 0.5400, Dπ2 = −0.1950

dIV I FS2 =
√
1

2
×(0.1190+0.2916+0.0380+0.3450×0.1950−0.5400×0.1950)

= 0.4531

Finally, the distance between IVIFSs A and B is obtained:

dIVIFS (A, B) = 0.1131 + 0.4531

2
= 0.2831

Example 2 Assume there are two interval-valued intuitionis-
tic fuzzy sets A and B, the distance of A and B is calculated
as follows:

A = {〈[0, 0] , [1, 1]〉}
B = {〈[1, 1] , [0, 0]〉}

Dμ
2 (A, B) = 1, Dν

2 (A, B) = 1, Dπ
2 (A, B) = 0

Dμ (A, B) = −1, Dν (A, B) = 1, Dπ (A, B) = 0

dIVIFS =
√
1

2
× (1 + 1 + 0 − 1 × 0 + 1 × 0) = 1

When the distance of interval-valued intuitionistic fuzzy
sets arrives at maximum 1, the membership degree of A is
the complement of B, meanwhile the non-membership of A
is the complement of B. That means, when we make sure

x not belongs to A (the value of membership is 0), while
x surely belongs to B (the value of membership is 1), the
distance between IVIFSs A and B is the largest. That is, A
is the complement of B.

Example 3 Given two interval-valued intuitionistic fuzzy sets
A and B, the distance of A and B is proved as follows.

A = {〈[a1, a2] , [b1, b2]〉}
B = {〈[a1, a2] , [b1, b2]〉}

Dμ
2 (A, B) = 0, Dν

2 (A, B) = 0, Dπ
2 (A, B) = 0

Dμ (A, B) = 0, Dν (A, B) = 0, Dπ (A, B) = 0

dIVIFS =
√
1

2
× (0 + 0 + 0 − 0 × 0 + 0 × 0) = 0

When the interval-valued intuitionistic fuzzy sets A and B
own the same membership degree [a1, a2] and same non-
membership degree [b1, b2], the distance of membership
degree Dμ (A, B) is 0, also Dν (A, B) = 0 and Dπ (A, B) =
0. According to Eq. (4) , the distance between A and B is 0.

Therefore, the essence of the distance measure is to
measure the difference between sets by dealing with the
membership or non-membership of the elements to the sets.
Obviously, Examples 2 and 3 have shown that the maximum
value of dIVIFS is 1 if and only if A is the complement of
B, and the minimum value of dIVIFS is 0 on condition that
A = B, which satisfies the requirements of distance in Def-
inition 4.

3.2 The new distancemeasure of interval-valued
intuitionistic fuzzy soft sets

The soft set theory is widely used to deal with uncertainty
information, which describes objects by a set of parame-
ters. Therefore the novel distance measure of IVIFSs can
be generalized to distance of interval-valued intuitionistic
fuzzy soft sets to address multi-attribute decision-making
problems. The distance of the interval-valued intuitionistic
fuzzy soft sets is the sum of the distance of interval-valued
intuitionistic fuzzy numbers for each xi ∈ U to each e j ∈ E .
Therefore, based on the new distance measure of interval-
valued intuitionistic fuzzy sets, the new distance measure of
interval-valued intuitionistic fuzzy soft sets can be obtained
as follows:

dIVIFSS ((F, E) , (G, E))

= 1

mn

m∑
i=1

n∑
j=1

√
1

2

(
Dμ

2+Dν
2+Dπ

2+Dπ Dμ+Dπ Dν

)

(5)
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It can also be proved that the generalized distance measure
of interval-valued intuitionistic fuzzy soft sets conforms to
the axioms of distance measurement.

4 Comparison of the proposed distance
measure with recent works and classical
distancemeasures

4.1 Numerical examples

In this part, the novel distancemeasure is compared with Dt
p,

C-IFOWD, Hamming distance, Euclidean distance, normal-
ized Hamming distance induced by Hausdorff metric and
normalized distance induced by Hausdorff metric through
numerical examples. Meanwhile, some properties of the for-
mulas are discussed and the counterintuitive cases of the other
widely used distanceswill be pointed out,where the proposed
distance of IVIFSs performs well.

Asmentioned above, the distancemeasures of IVIFSs and
IVIFSSs are based on the distancemeasure of interval-valued
intuitionistic fuzzy numbers. For interval-valued intuition-
istic fuzzy sets, its distance is the sum of interval-valued
intuitionistic fuzzy numbers for each xi ∈ U . For interval-
valued intuitionistic fuzzy soft sets, its distance is the sum of
interval-valued intuitionistic fuzzy numbers for each xi ∈ U
to each e j ∈ E . Therefore, when it refers to the compari-
son of seven distances of IVIFSs, choose the interval-valued
intuitionistic fuzzy sets with just one element x in U , which
has two advantages:

– The distance of IVIFSs and IVIFSSs are made up of
distance of interval-valued intuitionistic fuzzy numbers;
therefore, the distance of IVIFNs is opposed to be inves-
tigated firstly.

– Analyzing the IVIFS with one element helps to visually
study the distance changed by membership and non-
membership, which avoids the impact caused by other
elements in the IVIFS.

Example 4 Given IVIFSs A and B as follows, in accordance
with the definition: 0 ≤ μ (x) + ν (x) ≤ 1, x could change
continuously in the interval [0.1, 0.9]. Draw Hamming dis-
tance dH , Euclidean distance dE , Dt

p, dC−IFOWD, normalized
Hamming distance induced by Hausdorff metric dNH , nor-
malized distance induced by Hausdorff metric dN and the
novel proposed distance measure dIVIFS with function curve,
which is graphically shown in Fig. 2.

A = {〈[0.1, 0.8] , [0, 0.1]〉}
B = {〈[0.1, x] , [0, 0.1]〉}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

0.1
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dE
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dC-IFOWD

dNH
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dIVIFS

dE,dN,dNH

Dtp,dH

Fig. 2 Comparison between novel distance measure and other distance
measures by using Example 4

From Fig. 2, all of the distance get to the minimum when
x = 0.8, where A = B and the distance of interval-valued
intuitionistic fuzzy sets A and B is 0, which indicates that
the proposed distance measure have the same tendency with
other widely used distances of IVIFSs and can measure the
distance of interval-valued intuitionistic fuzzy sets in com-
mon cases. What’s more, the curve of the proposed distance
has the highest slope; hence, a slight change of IVIFS will
lead to more obvious numerical change than other distance
measures,which can distinguish the difference between simi-
lar IVIFSs. On the other hand, the proposed distancemeasure
will not lead to an overestimation of distance between two
IVIFSs. Firstly, the numerical values of all the distances
belong to interval [0, 1]. Then, in Fig. 2, all the distances
vary linearly, which means there is merely a coefficient dif-
ference between them. What’s more, distance measure is
usually applied in ranking problem, the proposed distance
appears sensitivity in measuring uncertainty and can distin-
guish different objects easily. Hence, the overestimation of
dissimilarity can be avoided through the proposed distance
measure.

Example 5 Given IVIFSs A and B as follows, according to
the definition: 0 ≤ μ (x)+ν (x) ≤ 1, x could change contin-
uously in the interval [0.1, 0.9]. We have drawn normalized
Hamming distance induced by Hausdorff metric dNH , nor-
malized distance induced by Hausdorff metric dN and the
proposed distance dIVIFS, which is graphically shown in
Fig. 3.

A = {〈[0.1, x] , [0, 0.1]〉}
B = {〈[0.8, 0.9] , [0, 0.1]〉}

Example 6 Given IVIFSs A and B as follows, according to
the definition: 0 ≤ μ (x)+ν (x) ≤ 1, x could change contin-
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Fig. 3 Comparison between novel distance measure and dNH , dN by
using Example 5
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Fig. 4 Comparison between novel distance measure and dNH , dN by
using Example 6

uously in the interval [0.2, 0.8]. We have drawn normalized
Hamming distance induced by Hausdorff metric dNH , nor-
malized distance induced by Hausdorff metric dN and the
proposed distance dIVIFS, which is graphically shown in
Fig. 4.

A = {〈[0.7, 0.8] , [0.1, 0.2]〉}
B = {〈[0.1, 0.2] , [0.2, x]〉}

From Fig. 3, as the value of x changes, the interval-
valued intuitionistic fuzzy set A also changes. The distance
between IVIFSs A and B are supposed to change accord-
ingly. The result demonstrates that the proposed distance
decreases with the rise of the value of x . The tendency of
proposed distance can characterize the difference between
A and B appropriately. However, normalized Hamming dis-
tance induced by Hausdorff metric keeps the constant 3.5
from x = 0.2, which is obviously irrational. From Fig. 4, as
x increases, the distance between interval non-membership
degree of A and B is increasing intuitively. Therefore, the

distance between interval-valued intuitionistic fuzzy set A
and B should increase accordingly. In Fig. 4, the value of
the proposed distance measure of IVIFSs rises smoothly.
Nevertheless, the value of normalized distance induced by
Hausdorff metric keeps the 0.6 constant, which is also inap-
propriate. In Example 5 and Example 6, the results of
normalized Hamming distance induced by Hausdorff met-
ric and normalized distance induced by Hausdorff metric
are counterintuitive when measuring the distance between
IVIFSs, while the proposed distance measure has an effec-
tive and rational performance in the situations.

From a theoretical point of view, membership degree and
non-membership degree are equally weighted, the upper
and lower limits are equally weighted, as well. Consider
the structure of dNH and dN as shown in Definition 5.
In the equation of dNH , for each xi ∈ U , the larger

one between
∣∣∣μA

(xi ) − μ
B

(xi )
∣∣∣ and ∣∣μA (xi ) − μB (xi )

∣∣,
together with the larger one between

∣∣νA (xi ) − νB (xi )
∣∣

and |νA (xi ) − νB (xi )| is preserved to calculate the distance
of IVIFSs. In a similar way, for equation dN , the larger

one between
∣∣∣μA

(xi ) − μ
B

(xi )
∣∣∣+ ∣∣μA (xi ) − μB (xi )

∣∣ and∣∣νA (xi ) − νB (xi )
∣∣ + |νA (xi ) − νB (xi )| is retained to cal-

culate the distance between IVIFSs. They abandon the part
of the data in the process of calculating, which destroys
the equal weight between the membership degree and the
non-membership degree, also the upper and lower limits
of intervals. This partly leads to the loss of information
and emerges poor sensitivity of measuring. Here, sensi-
tivity refers to the degree of change of response quantity
caused by the change of input quantity in a certain method.
Specifically, when the input quantities, i.e., interval mem-
bership degree, interval non-membership degree and interval
hesitancy degree change, the response quantity namely the
distance of IVIFSs is expected to change with a reasonable
trend, and the magnitude of the change should be observable.
Compared with dNH and dN , the proposed distance measure
takes into account lower and upper limits of membership and
non-membership equally. Therefore, it appears sensitively as
x changes and demonstrates better metric performance.

Example 7 Given IVIFSs A and B as follows, in accordance
with the definition: 0 ≤ μ (x) + ν (x) ≤ 1, x could change
continuously in the interval [0.1, 0.9], We have drawn Ham-
ming distance dH , Euclidean distance dE , D

p
t , dC−IFOWD

and the proposed distance dIVIFS with function curve, which
is graphically shown in Fig. 5.

A = {〈[0.1, 0.8] , [0, 0.2]〉}
B = {〈[0.1, x] , [0, 0.1]〉}

When x = 0.8, the membership degree of IVIFSs A and
B is the same, meanwhile the distance between A and B
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Fig. 5 Comparison by using Example 7
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Fig. 6 Comparison between novel distancemeasure and Euclidean dis-
tance by using Example 8

should be minimized. From Fig. 5, it can be observed that
other distances take the minimum value at x = 0.8, while
the minimum of Dt

p is between x = 0.7 and x = 0.8, which
indicates that Dt

p appears unreasonably when measuring the
distance of IVIFSs in this example.

Example 8 Given IVIFSs A and B as follows, in accordance
with the definition: 0 ≤ μ (x) + ν (x) ≤ 1, x could change
continuously in the interval [0.1, 0.9], We have drawn Ham-
ming distance dH , Euclidean distance dE , D

p
t , dC−IFOWD

and the proposed distance dIVIFS with function curve, which
is graphically shown in Fig. 6.

A = {〈[0.1, x] , [0, 0.1]〉}
B = {〈[0.8, 0.9] , [0.1, 0.1]〉}

From Fig. 6, as x increases, the tendency of other dis-
tances measure and Euclidean distance are similar. However,
approximately from x = 0.6 to x = 0.9, the slope of

Euclidean distance is slowing down. In particular, at the end
of the x , Euclidean distance can hardly measure change in
the distance of IVIFSs when x changes, while the proposed
distance can distinguish the change of interval-valued intu-
itionistic fuzzy set.

Example 9 As shown in Table 1, the distances of two groups
of interval-valued intuitionistic fuzzy sets are calculated by
Dt

p, C-IFOWD, Hamming distance, Euclidean distance, nor-
malized hamming distance induced by Hausdorff metric and
normalized distance induced by Hausdorff metric and the
proposed distance measure of IVIFSs.

The numbers in bold are counterintuitive cases. The dis-
tances in Group 1 should not be equal to each other, where
dC−IFOWD and dH show counterintuitive cases. In contrast,
the proposed distance measure can distinguish the difference
because of the superior property. The novel proposed dis-
tance measures the interval-valued intuitionistic fuzzy sets
by means of distance measure of interval numbers. Accord-
ing to Definition 3, the integral in Eq. (1) shows that this
distance takes into account each point in both intervals
when computing the distance between those two interval
numbers. So the novel distance measure contains all data
in the interval, while other widely used distance measures
merely use the lower and upper bound values. Therefore,
the novel proposed distance measure appears more perfectly
and effectively when measuring the distance of IVIFSs.
In addition, the new distance measure put the hesitancy
degree as a part of the formula, which is an uncertainty
measure belonging to IVIFSs. Consequently, the novel dis-
tance has an advantage in measuring uncertainty of IVIFSs
and avoiding counterintuitive cases comparing with other
widely used distance measures. Comparing the distances
in Group 2, the distance between 〈[0.35, 0.4] , [0.25, 0.35]〉
and 〈[0.5, 0.55] , [0.3, 0.35]〉 should be smaller than the dis-
tance between 〈[0.35, 0.4] , [0.25, 0.35]〉 and 〈[0.5, 0.55] ,
[0.25, 0.35]〉. However, the result of Dt

p is 0.0625< 0.0750,
which is unreasonable and different from other distancemea-
sures.

4.2 A brief comparison with Intuitionistic Fuzzy
Entropy Feature Selectionmethod
(Revanasiddappa and Harish 2018)

In Revanasiddappa and Harish (2018), Revanasiddappa and
Harish proposed a new feature selection method based on
intuitionistic fuzzy entropy. Firstly, based on themembership
degree, non-membership degree andhesitancydegree of intu-
itionistic fuzzy set, intuitionistic fuzzy C-Means clustering
method is employed to compute the intuitionistic member-
ship values. Then, intuitionistic fuzzy entropy is constructed
via the computed intuitionistic membership values. Further,
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Table 1 Example 9
Group 1

〈[1, 1] , [0, 0]〉
〈[0, 0] , [0, 0]〉

〈[0, 0] , [0, 0]〉
〈[0.5, 0.5] , [0.5, 0.5]〉

〈[1, 1] , [0, 0]〉
〈[0.5, 0.5] , [0.5, 0.5]〉

dIVIFS 0.7071 0.5 0.5

Dt
p 0.5 0.1667 0.5

dC−IFOWD 0.5 0.5 0.5

dH 0.5 0.5 0.5

dE 0.7071 0.5 0.5

dNH 0.5 0.5 0.5

dN 1 0.5 0.5

Group 2
〈[0.35, 0.4] , [0.25, 0.35]〉
〈[0.5, 0.55] , [0.3, 0.35]〉

〈[0.35, 0.4] , [0.25, 0.35]〉
〈[0.5, 0.55] , [0.25, 0.35]〉

dIVIFS 0.1067 0.1061

Dt
p 0.0625 0.0750

dC−IFOWD 0.0917 0.0750

dH 0.0875 0.0750

dE 0.1090 0.1601

dNH 0.1 0.0750

dN 0.15 0.15

features with lower entropy values are selected to categorize
the text documents.

In this paper, a new distance measure of interval-valued
intuitionistic fuzzy sets is proposed and applied in multi-
attribute decision-making problem. Firstly, the distancemea-
sure is inspired by the distance of interval numbers and copes
with interval membership degree, interval non-membership
degree and interval hesitancy degree. Then, the distances
between the objects to be evaluated and the ideal object are
calculated respectively. Object with lower distance is supe-
rior object selected.

Comparing the above methods, different extended fuzzy
sets are employed to handle uncertain and vague information.
Revanasiddappa and Harish’s work is based on the intuition-
istic fuzzy set, while this paper is based on the interval-valued
intuitionistic fuzzy set. It is worth noting that intuitionistic
fuzzy set is a special case of interval-valued intuitionistic
fuzzy set, in which the interval membership degree satisfies
μ

A
(x) = μA (x), interval non-membership degree satis-

fies νA (x) = νA (x), interval hesitancy degree satisfies
π A (x) = π A (x). In addition, Revanasiddappa and Har-
ish proposed an intuitionistic fuzzy entropy to measure the
features, while this paper introduced a distance measure to
choose the optimal object.

5 The application of the proposed distance
in decisionmaking

Decision making under uncertainty environment is an open
issue. The membership information of alternatives to attri-

butes is represented through interval-valued intuitionistic
fuzzy soft set and integrated in a decision-making matrix
firstly. Then, the distance measure of IVIFSSs is utilized to
evaluate the degree of the alternatives in line with the ideal
object. The essence of the distance measure to make decision
is that the difference of two sets is measured bymeans of cal-
culating the distance between the membership functions of
the same element to two sets. In this section, the problem of
decision making is solved using the new proposed distance
measure of interval-valued intuitionistic fuzzy soft sets.

Example 10 (Qin et al. 2011) Consider an interval-valued
intuitionistic fuzzy soft set (F, A) which describes the
“attractiveness of houses” that Mr. X is considering for
purchase. Suppose that there are six houses under consid-
eration, namely the universes U = {

h1, h2, h3, h4,h5, h6
}
,

and the parameter set A = {e1, e2, e3, e4, e5}, where ei stand
for “beautiful,” “large,” “cheap,” “modern” and “in green
surroundings,” respectively. The tabular representation of
(F, A) is shown in Table 2. Obviously, the precise evalu-
ation for each objects on each parameter is unknown, while
the lower and upper limits of such an evaluation are given.

Use the proposed distance measure of IVIFSSs to evalu-
ate the houses and make decisions. Firstly, assuming the Mr.
X’s ideal house h0 completely conforms to these five param-
eters. IVIFSS (F0, A) is denoted in Table 3. Then, divide
IVIFSS (F, A) into IVIFSS (Fk, A) (k = 1, 2, 3, 4, 5, 6);
each (Fk, A) represents the interval membership degree and
interval non-membership degree for each house hk to each
attribute. The tabular representation of (Fk, A) is shown in
Table 4.
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Table 2 Interval-valued
intuitionistic fuzzy soft sets over
U

U e1 e2 e3 e4 e5

h1
〈[0.7, 0.8] ,
[0.1, 0.2]〉

〈[0.82, 0.84] ,
[0.05, 0.15]〉

〈[0.52, 0.72] ,
[0.18, 0.25]〉

〈[0.55, 0.6] ,
[0.3, 0.35]〉

〈[0.7, 0.8] ,
[0.1, 0.2]〉

h2
〈[0.85, 0.9] ,
[0.05, 0.1]〉

〈[0.7, 0.74] ,
[0.17, 0.25]〉

〈[0.7, 0.75] ,
[0.1, 0.23]〉

〈[0.7, 0.75] ,
[0.15, 0.25]〉

〈[0.75, 0.9] ,
[0.05, 0.1]〉

h3
〈[0.5, 0.7] ,
[0.2, 0.3]〉

〈[0.86, 0.9] ,
[0.04, 0.1]〉

〈[0.6, 0.7] ,
[0.2, 0.28]〉

〈[0.2, 0.3] ,
[0.5, 0.6]〉

〈[0.65, 0.8] ,
[0.15, 0.2]〉

h4
〈[0.4, 0.6] ,
[0.3, 0.4]〉

〈[0.52, 0.64] ,
[0.23, 0.35]〉

〈[0.72, 0.78] ,
[0.11, 0.21]〉

〈[0.3, 0.5] ,
[0.4, 0.5]〉

〈[0.8, 0.9] ,
[0.05, 0.1]〉

h5
〈[0.6, 0.8] ,
[0.15, 0.2]〉

〈[0.3, 0.35] ,
[0.5, 0.65]〉

〈[0.58, 0.68] ,
[0.18, 0.3]〉

〈[0.68, 0.77] ,
[0.1, 0.2]〉

〈[0.72, 0.85] ,
[0.1, 0.15]〉

h6
〈[0.3, 0.5] ,
[0.3, 0.45]〉

〈[0.5, 0.68] ,
[0.25, 0.3]〉

〈[0.33, 0.43] ,
[0.5, 0.55]〉

〈[0.62, 0.65] ,
[0.15, 0.35]〉

〈[0.84, 0.93] ,
[0.04, 0.07]〉

Table 3 Interval-valued
intuitionistic soft set of ideal
house

(F0, A) e1 e2 e3 e4 e5

h0 〈[1, 1] , [0, 0]〉 〈[1, 1] , [0, 0]〉 〈[1, 1] , [0, 0]〉 〈[1, 1] , [0, 0]〉 〈[1, 1] , [0, 0]〉

Table 4 Interval-valued
intuitionistic fuzzy set of hk

(Fk , A) e1 e2 e3 e4 e5

hk

〈
[μ

k1
, μ̄k1] ,[

νk1, νk1
]〉

〈
[μ

k2
, μ̄k2] ,[

νk2, νk2
]〉

〈
[μ

k3
, μ̄k3],[

νk3, νk3
]〉

〈
[μ

k4
, μ̄k4] ,[

νk4, νk4
]〉

〈
[μ

k5
, μ̄k5],[

νk5, νk5
]〉

Table 5 Distance between hk and ideal house based on IVIFSS

House h1 h2 h3 h4 h5 h6

Distance 0.2512 0.1954 0.3271 0.3340 0.3200 0.3690

Evaluate each house by calculating the distance between
each (Fk, A) and (F0, A). A small distance means that the
house is more in line with the properties of the ideal house,
and it is the optimal solution. Six distances are calculated
by means of the new distance measure of IVIFSSs, and the
result is shown in Table 5.

From Table 5, the ranking of the degree of satisfaction is
h2 > h1 > h5 > h3 > h4 > h6. Therefore, Mr. X should
choose house h2 in preference to other houses. Compared
with the result in Qin et al. (2011) h2 > h1 = h5 > h3 =
h4 = h6, there is a fuzzy priority of identifying h1 and h5;
h3, h4 and h6. Therefore, the order of the distances of the
six houses calculated by proposed distance is more clear, the
new distance measure appears accurately and effectively in
multi-attribute decision making.

For the sake of comparing and verifying the performance
of the proposed distance Dt

p, C-IFOWHD, C-IFOWED,
Hamming distance, Euclidean distance, normalized Ham-
ming distance induced by Hausdorff metric and normalized
distance induced by Hausdorff metric are also utilized in

this example to decide which house for Mr.X to choose. The
results are calculated as shown in Table 6. The rankings cal-
culated by other distances almost have the same order with
the result obtained by the proposed distance measure except
C-IFOWED.As shown in bold, C-IFOWEDhas an abnormal
result when measuring and comparing house h3 and h4.

Furthermore, partial values of Table 2 are changed to
test the performance of each distance measure as shown in
Table 7. The changed numbers are bold. Actually, the mem-
bership degree of h4 to parameters are improved overall,
which leads to slight optimization of h4; the membership
degree of h5 to parameters are reduced overall, which leads
to slight deterioration of h5. Now, all the distance measure
are reused to evaluated the situation of houses. The results
are shown in Table 8.

As expected, the distances between h4 and ideal object
are reduced and the distances between h5 and ideal object
are increased overall. However, Dt

p and Hamming distance
are ambiguous in distinguishing h3 from h5; C-IFOWHD
shows difficulty to distinguish h3 and h4. The ranking of
houses obtained by the proposed distance measure is h2 >

h1 > h3 > h4 > h5 > h6, which is the same as the
results of Euclidean distance and normalized Hamming dis-
tance induced by Hausdorff metric. However, in the previous
examples, dE shows poor degree of discrimination when
measuring the slight change in Example 8, and dNH per-

123



A new distance measure of interval-valued intuitionistic fuzzy sets and its application in… 6999

Table 6 Comparison of the distance measures for Example 10

h1 h2 h3 h4 h5 h6 Ranking

dIVIFS 0.2512 0.1954 0.3271 0.3340 0.3200 0.3690 h2 > h1 > h5 > h3 > h4 > h6

Dt
p 0.2415 0.1880 0.3180 0.3245 0.3100 0.3590 h2 > h1 > h5 > h3 > h4 > h6

C-IFOWHD 0.2423 0.1877 0.3213 0.3280 0.3117 0.3610 h2 > h1 > h5 > h3 > h4 > h6

C-IFOWED 0.2577 0.1948 0.3701 0.3613 0.3495 0.3983 h2 > h1 > h5 > h4 > h3 > h6
dH 0.2415 0.1880 0.3180 0.3245 0.3100 0.3590 h2 > h1 > h5 > h3 > h4 > h6

dE 0.2530 0.1971 0.3289 0.3359 0.3223 0.3712 h2 > h1 > h5 > h3 > h4 > h6

dNH 0.2860 0.2230 0.3670 0.3820 0.3620 0.4130 h2 > h1 > h5 > h3 > h4 > h6

dN 0.2950 0.2260 0.3790 0.3840 0.3670 0.4220 h2 > h1 > h5 > h3 > h4 > h6

Table 7 The changed
interval-valued intuitionistic
fuzzy soft sets over U

U e1 e2 e3 e4 e5

h1
〈[0.7, 0.8] ,
[0.1, 0.2]〉

〈[0.82, 0.84] ,
[0.05, 0.15]〉

〈[0.52, 0.72] ,
[0.18, 0.25]〉

〈[0.55, 0.6] ,
[0.3, 0.35]〉

〈[0.7, 0.8] ,
[0.1, 0.2]〉

h2
〈[0.85, 0.9] ,
[0.05, 0.1]〉

〈[0.7, 0.74] ,
[0.17, 0.25]〉

〈[0.7, 0.75] ,
[0.1, 0.23]〉

〈[0.7, 0.75] ,
[0.15, 0.25]〉

〈[0.75, 0.9] ,
[0.05, 0.1]〉

h3
〈[0.5, 0.7] ,
[0.2, 0.3]〉

〈[0.86, 0.9] ,
[0.04, 0.1]〉

〈[0.6, 0.7] ,
[0.2, 0.28]〉

〈[0.2, 0.3] ,
[0.5, 0.6]〉

〈[0.65, 0.8] ,
[0.15, 0.2]〉

h4
〈[0.4, 0.6] ,
[0.3, 0.4]〉

〈[0.52, 0.64] ,
[0.23, 0.35]〉

〈[0.76, 0.78] ,
[0.11, 0.21]〉

〈[0.36, 0.5] ,
[0.4, 0.5]〉

〈[0.8, 0.9] ,
[0.05, 0.1]〉

h5
〈[0.55, 0.8] ,
[0.15, 0.2]〉

〈[0.3, 0.35] ,
[0.5, 0.65]〉

〈[0.52, 0.68] ,
[0.18, 0.3]〉

〈[0.63, 0.77] ,
[0.1, 0.2]〉

〈[0.72, 0.85] ,
[0.1, 0.15]〉

h6
〈[0.3, 0.5] ,
[0.3, 0.45]〉

〈[0.5, 0.68] ,
[0.25, 0.3]〉

〈[0.33, 0.43] ,
[0.5, 0.55]〉

〈[0.62, 0.65] ,
[0.15, 0.35]〉

〈[0.84, 0.93] ,
[0.04, 0.07]〉

Table 8 Comparison of the distance measures for Table 7

h1 h2 h3 h4 h5 h6 Ranking

dIVIFS 0.2512 0.1954 0.3271 0.3278 0.3309 0.3690 h2 > h1 > h3 > h4 > h5 > h6

Dt
p 0.2415 0.1880 0.3180 0.3195 0.3180 0.3590 h2 > h1 > h3 = h5 > h4 > h6

C-IFOWHD 0.2423 0.1877 0.3213 0.3213 0.3223 0.3610 h2 > h1 > h3 = h4 > h5 > h6
C-IFOWED 0.2577 0.1948 0.3701 0.3539 0.3679 0.3983 h2 > h1 > h4 > h5 > h3 > h6

dH 0.2415 0.1880 0.3180 0.3195 0.3180 0.3590 h2 > h1 > h3 = h5 > h4 > h6
dE 0.2530 0.1971 0.3289 0.3296 0.3341 0.3712 h2 > h1 > h3 > h4 > h5 > h6

dNH 0.2860 0.2230 0.3670 0.3720 0.3780 0.4130 h2 > h1 > h3 > h4 > h5 > h6

dN 0.2950 0.2260 0.3790 0.3740 0.3830 0.4220 h2 > h1 > h4 > h3 > h5 > h6

forms counterintuitively in Example 5 and Example 6. From
a performance point of view, the proposed distance measure
dIVIFS is reasonable and effective in all cases. From a theo-
retical point of view, the proposed distance measure is based
on the distance of interval numbers, which takes into account
each point in the interval and considers hesitancy degree as a
component in the equation. In conclusion, the proposed dis-
tance measure is preferable to measuring distance accurately
and distinguishing objects in decision-making problems.

In the following, a brief example of group decision-
making problem under interval-valued intuitionistic fuzzy
environment is illustrated.

Example 11 (Zhou et al. 2016) There is a human resource
management problem where a university wants to introduce
oversea outstanding teachers. The university has brought
together a group of decision makers. The group is consti-
tuted by three persons including university president e1, dean
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Table 9 Interval-valued intuitionistic fuzzy decision matrix A(1) of expert 1

u1 u2 u3 u4

x1 〈[0.6, 0.8] , [0.1, 0.2]〉 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.6, 0.7] , [0.2, 0.3]〉 〈[0.4, 0.5] , [0.2, 0.4]〉
x2 〈[0.4, 0.7] , [0, 0.1]〉 〈[0.5, 0.7] , [0.1, 0.2]〉 〈[0.7, 0.8] , [0.1, 0.2]〉 〈[0.7, 0.8] , [0.1, 0.2]〉
x3 〈[0.3, 0.7] , [0.2, 0.3]〉 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.1, 0.4] , [0.4, 0.5]〉 〈[0.3, 0.4] , [0.4, 0.6]〉
x4 〈[0.7, 0.8] , [0.1, 0.2]〉 〈[0.2, 0.3] , [0.4, 0.6]〉 〈[0.6, 0.8] , [0, 0.2]〉 〈[0.6, 0.8] , [0, 0.2]〉
x5 〈[0.5, 0.6] , [0.3, 0.4]〉 〈[0.7, 0.8] , [0, 0.1]〉 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.1, 0.3] , [0.4, 0.6]〉

Table 10 Interval-valued intuitionistic fuzzy decision matrix A(2) of expert 2

u1 u2 u3 u4

x1 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.6, 0.7] , [0.1, 0.2]〉 〈[0.5, 0.7] , [0.1, 0.2]〉 〈[0.5, 0.7] , [0.1, 0.2]〉
x2 〈[0.6, 0.8] , [0, 0.2]〉 〈[0.2, 0.3] , [0.4, 0.6]〉 〈[0.7, 0.8] , [0.1, 0.2]〉 〈[0.2, 0.4] , [0.4, 0.5]〉
x3 〈[0.1, 0.4] , [0.4, 0.5]〉 〈[0.8, 0.9] , [0, 0.1]〉 〈[0.1, 0.4] , [0.2, 0.5]〉 〈[0.4, 0.7] , [0.2, 0.3]〉
x4 〈[0.6, 0.8] , [0, 0.2]〉 〈[0.3, 0.8] , [0, 0.1]〉 〈[0.2, 0.3] , [0.4, 0.6]〉 〈[0.6, 0.7] , [0.2, 0.3]〉
x5 〈[0.2, 0.4] , [0.5, 0.6]〉 〈[0.6, 0.7] , [0.2, 0.3]〉 〈[0.6, 0.8] , [0, 0.2]〉 〈[0.1, 0.4] , [0.3, 0.5]〉

Table 11 Interval-valued intuitionistic fuzzy decision matrix A(3) of expert 3

u1 u2 u3 u4

x1 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.2, 0.4] , [0.4, 0.5]〉 〈[0.4, 0.7] , [0, 0.1]〉 〈[0.7, 0.9] , [0, 0.1]〉
x2 〈[0.2, 0.3] , [0.4, 0.6]〉 〈[0.2, 0.3] , [0.4, 0.6]〉 〈[0.6, 0.7] , [0.2, 0.3]〉 〈[0.5, 0.7] , [0.1, 0.2]〉
x3 〈[0.7, 0.9] , [0, 0.1]〉 〈[0.3, 0.4] , [0.4, 0.5]〉 〈[0.1, 0.3] , [0.3, 0.5]〉 〈[0.2, 0.4] , [0.4, 0.5]〉
x4 〈[0.3, 0.8] , [0.1, 0.2]〉 〈[0.1, 0.2] , [0.4, 0.6]〉 〈[0.2, 0.3] , [0.4, 0.5]〉 〈[0.3, 0.4] , [0.4, 0.6]〉
x5 〈[0.7, 0.8] , [0, 0.2]〉 〈[0.3, 0.8] , [0, 0.1]〉 〈[0.4, 0.7] , [0.2, 0.3]〉 〈[0.6, 0.7] , [0, 0.2]〉

Table 12 Ideal strategy of three
experts

u1 u2 u3 u4

e1 〈[0.4, 0.6] , [0.2, 0.4]〉 〈[0.3, 0.5] , [0.3, 0.5]〉 〈[0.5, 0.6] , [0.3, 0.4]〉 〈[0.3, 0.5] , [0.3, 0.5]〉
e2 〈[0.5, 0.7] , [0.2, 0.3]〉 〈[0.5, 0.7] , [0.2, 0.3]〉 〈[0.5, 0.7] , [0.1, 0.3]〉 〈[0.4, 0.6] , [0.2, 0.4]〉
e3 〈[0.5, 0.6] , [0.2, 0.3]〉 〈[0.4, 0.6] , [0.2, 0.4]〉 〈[0.5, 0.7] , [0.2, 0.3]〉 〈[0.4, 0.5] , [0.3, 0.4]〉

of management school e2 and human resource officer e3.
After careful review of the information, they made strict
evaluation for five candidates xi (i = 1, 2, 3, 4, 5) and sum-
marized the abilities of candidates with four aspects U =
{u1, u2, u3, u4}: namely morality(u1), research capabilities
(u2), teaching skills(u3), educational background(u4).

Three decision makers evaluate the candidates xi (i =
1, 2, 3, 4, 5) with respect to the attributes u j ( j = 1, 2, 3, 4)
and construct three interval-valued intuitionistic fuzzy deci-
sion matrices A(k) = (

ai j (k)
)
5×4 (k = 1, 2, 3), which are

shown in Tables 9,10,11. According to the objectives of the
university, each expert establishes his/her own ideal strategy
as shown in Table 12.

With these information, the proposed distance of interval-
valued intuitionistic fuzzy sets can be utilized to obtain the
ranking of the candidates. The following steps are involved:

Step 1 Calculate the distance of each preference value
a(k)
i j provided by the decision maker ek and his/her
ideal preference value with Equation (3). Use the
proposed distance measure of interval-valued intu-
itionistic fuzzy soft sets (Equation (5)) to combine
the four aspects, where the weight of aspects is
ω = (0.3, 0.2, 0.4, 0.1).

Table 13 Collective distance
matrix R

e1 e2 e3

x1 0.1189 0.1226 0.1946

x2 0.2115 0.1661 0.1630

x3 0.1287 0.2462 0.2344

x4 0.2032 0.2571 0.2094

x5 0.2263 0.1573 0.1340
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Table 14 The results of the
decision by proposed distance

x1 x2 x3 x4 x5 Ranking

dIVIFS 0.1427 0.1833 0.1965 0.2213 0.1779 x1 > x5 > x2 > x3 > x4

Table 15 Comparison of the
distances for Example 11

x1 x2 x3 x4 x5 Ranking

dIVIFS 0.1427 0.1833 0.1956 0.2213 0.1779 x1 > x5 > x2 > x3 > x4

Dt
p 0.1293 0.1730 0.1858 0.2135 0.1662 x1 > x5 > x2 > x3 > x4

C-IFOWHD 0.1365 0.1698 0.1830 0.2118 0.1683 x1 > x5 > x2 > x3 > x4

C-IFOWED 0.1559 0.1863 0.2026 0.2250 0.1920 x1 > x2 > x5 > x3 > x4
dH 0.1352 0.1730 0.2858 0.2220 0.1693 x1 > x5 > x2 > x3 > x4

dE 0.1454 0.1858 0.2035 0.2316 0.1807 x1 > x5 > x2 > x3 > x4

dNH 0.1540 0.2025 0.2200 0.2515 0.1945 x1 > x5 > x2 > x3 > x4

dN 0.1645 0.2085 0.2460 0.2695 0.2020 x1 > x5 > x2 > x3 > x4

Step 2 Aggregate the whole distance into a collective dis-
tance matrix R = (rik)5×3, as shown in Table 13.
The collective distancematrix describes the distance
between each candidate xi and the expectation of
each expert.

Step 3 Use the proposed distance measure of interval-
valued intuitionistic fuzzy soft sets to combine
the evaluation of the three experts and derive the
comprehensive preference value of the alterna-
tive xi , where the weight of the experts is v =
(0.4, 0.3, 0.3).

The results are shown in Table 14. The priority relation-
ship of the candidates is x1 > x5 > x2 > x3 > x4, which
means that candidate x1 is the best person after consider-
ing experts’ assessment and multi-factors. Furthermore, in
order to verify the calculation result of the proposed dis-
tance measure, the candidate-selecting problem is calculated
in the same way using the other distances of interval-valued
intuitionistic fuzzy soft sets introduced in Definition 5, as
shown in Table 15. Comparing the ranking of the candidates
calculated by these distances, C-IFOWED displays different
orders when measuring candidates x2 and x5, while other
distance measures have the same order.

In this paper, a new proposed distance measure of IVIFSs
and some classical or recent works are tested and analyzed
through numerical examples. From Examples 5 to 11, other
distances all appear counterintuitive cases in different occa-
sions, while the proposed distance measure performs well
in measuring distance between interval-valued intuitionis-
tic fuzzy sets and shows strong discrimination capability
in MADM problems. Therefore, it can be safely concluded
that the proposed distance of IVIFSs provides an effective
methodology to solve multi-attribute group decision-making
problem.

6 Conclusions

In this paper, a new distance measure of interval-valued intu-
itionistic fuzzy sets is proposed to handle multi-attribute
decision-making problems. To begin with, the novel distance
measure of IVIFSs is constructed based on the distance of
interval numbers. Our proposed distance measure contains
all data in the interval; hence, it can avoid information loss
and handle uncertain information effectively. Additionally,
the proposed distance measure of IVIFSs is compared with
some recentworks, such asMuharrem’s distance, C-IFOWD,
and classical distance measures, such as Hamming distance,
Euclidean distance, normalized Hamming distance induced
by Hausdorff metric and normalized distance induced by
Hausdorff metric through numerical examples. With the
advantages of considering all the numbers in the interval and
taking hesitancy degree as a part of the formula, the proposed
distance of IVIFSs shows predominant sensitivity and avoids
counterintuitive cases. What’s more, the proposed distance
measure can give the effective solutionwhich can be accepted
by decision makers in MCDM problems. Two illustrative
real-life applications of decision making are conducted to
demonstrate the effectiveness of the proposed distance mea-
sure, which can not only obtain the best choice, but also
accurately rank the alternatives in order of preference.
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