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Abstract
In this paper, the lifetimes of system components are assumed to have independent and nonidentical uncertainty distributions
with uncertain parameters. The reliability functions and mean time to failure of the general systems are investigated according
to the uncertainty theory. Basic models of the general systems with bi-uncertain variables are established and analyzed,
including series, parallel and series–parallel systems. The explicit expressions of reliability function and mean time to failure
of each model are presented. Some numerical examples are given to illustrate the applications of the developed models and
perform a comparison for the models with uncertain and bi-uncertain variables.
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List of symbols
M Uncertain measure
∨ Maximum operator
∧ Minimum operator
ξi Lifetime of component i in series system,

i = 1, 2, . . . , n
ξ j Lifetime of component j in parallel system,

j = 1, 2, . . . ,m
ξi j Lifetime of component j for subsystem Ai ,

i = 1, 2, . . . , n, j = 1, 2, . . . ,mi

ki Number of uncertain parameters contained
in component i

k j Number of uncertain parameters contained
in component j

ki j Number of uncertain parameters contained
in component j for subsystem Ai

Ri
∗( · ; t) Uncertain reliability variable of component

i in series system
R j

∗( · ; t) Uncertain reliability variable of component
j in parallel system
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Ri j
∗( · ; t) Uncertain reliability variable of component

j of subsystem Ai

RAi
∗( · ; t) Uncertain reliability variable of subsystem

Ai

�i ( · ; t) Uncertainty distribution of component life-
time ξi in series system

� j ( · ; t) Uncertainty distribution of component life-
time ξ j in parallel system

�i j ( · ; t) Uncertainty distribution of component life-
time ξi j in series–parallel system

ϒ−1
i gi

(α) Inverse uncertainty distribution of uncertain
variable aigi

ϒ−1
j g j

(α) Inverse uncertainty distribution of uncertain
variable a jg j

ϒ−1
i j gi j

(α) Inverse uncertainty distribution of uncertain
variable ai jgi j

�−1(α) Inverse uncertainty distribution of uncertain
reliability variable

Z (a, b, c) Zigzag uncertain variable
N (e, σ ) Normal uncertain variable
LOGN(e, σ ) Lognormal uncertain variable
R∗( · ; t) Uncertain reliability variables of system
R (t) Reliability function of system at time t

Abbreviation
MTTF Mean time to failure
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1 Introduction

System reliability analysis plays a critical role in engineering
application because it is likely to lead serious consequences
including postponed schedule, economic stagnation, cred-
ibility losses and so on. Reliability of a stochastic system
originated in the late 1940s and early 1950s. After several
decades of development, system reliability analysis based
on probability theory has been widely studied and got many
significant achievements (Rackwitz 2001; Faulin et al. 2010;
Finkelstein and Cha 2013), and it has been applied in vari-
ous fields such as communication systems, power systems,
transportation systems and so on.

However, when probability theory is used to deal with
reliability issues, we always use the long-run cumulative fre-
quency to approximate the actual value in order to estimate
the probability distributions of component lifetimes. This
implies that we need large amounts of observation data by
the statistics. In fact, it is hard for us to obtain observed data
owing to technological, economical or some other reasons,
and then, the domain expert’s subjective estimation needs
to be adopted. Nevertheless, Liu (2015) showed that human
beings usually estimate amuchwider range of values than the
object actually takes. If we still take human belief degrees as
probability distribution, we maybe cause a counterintuitive
result (Liu 2012). Hence, the reliability analysis based on
probability theory is no longer applicable for modeling the
belief degree.

In order to model the belief degree, an uncertainty theory
was proposed in Liu (2007) and refined it in Liu (2010b),
which was a branch of axiomatic mathematics founding on
four axioms, the normality, duality, subadditivity and prod-
uct axioms. In recent years, the uncertainty theory has been
diffusely applied to addressmiscellaneous issues such as reli-
ability analysis (Wang 2010; Hosseini and Wadbro 2016;
Zeng et al. 2018; Liu et al. 2018; Zhang et al. 2019), option
pricing problem (Peng and Yao 2011), portfolio selection
problem (Zhang et al. 2015), solid transportation problem
(Yang et al. 2015; Gao and Kar 2017), logistics routing prob-
lem (Huang et al. 2016), interest rate problem (Sun et al.
2018), risk assessment problem (Zhang et al. 2018; Yao and
Zhou 2018) and so on.

Therefore, several researchers have poured attention into
applying the uncertainty theory to reliability analysis. Liu
(2007) put forward a concept of reliability index and gave
some formulas to calculate the reliability index. Liu (2010a)
presented the uncertain reliability analysis for the sake of
handling system reliability. Liu et al. (2015) established some
essential mathematical models of series, parallel, series–
parallel and parallel–series systems under assumption that
the lifetimes of these systems were considered as uncertain
variables. Zeng et al. (2017) developed belief reliability to
account for epistemic uncertainty in model-based reliability

methods. Gao et al. (2018) introduced uncertain variable to
weighted k-out-of-n system and presented some formulas to
calculate the reliability index of the system.Additionally, Liu
(2013a) employed the uncertainty theory to provide redun-
dant standby method of improving the system reliability.
Then, redundancy optimization of an uncertain parallel–
series system was formulated by Hu et al. (2018), which
developed three models through reliability maximization,
lifetime maximization and cost minimization, respectively.
Besides these, Zeng et al. (2013) showed an application
of uncertainty theory in reliability evaluation of systems.
Gao and Yao (2016) investigated new concepts of important
indexes for an individual component and a group of com-
ponents in an uncertain reliability system. Li et al. (2018)
introduced the uncertainty theory to account for uncertainty
due to small samples. Cao et al. (2019) proposed a discrete
time series–parallel system with uncertain parameters, and
some formulas were given to calculate the reliability of sys-
tem.

System reliability analysis based on the uncertainty theory
has been studied by many scholars under the assumption that
the component lifetime is an uncertain variable. However, in
practical engineering, most systems are composed of dif-
ferent components with different uncertainty distributions.
On the other hand, the uncertainty distribution parameters
of the component lifetimes are also uncertain owing to the
uncertainty of working environment, so the bi-uncertain phe-
nomena present in the real situations with no wonder. As a
general mathematical description for this kind of uncertain
phenomenon, bi-uncertain variable is defined as a mapping
with some kind of measurability from an uncertainty space
to a collection of uncertain variables. Naturally, bi-uncertain
variable is a generalization of conventional uncertain vari-
able, similar to the cases of bi-random variable (Peng and
Liu 2007), fuzzy random variable (Liu and Liu 2003) or
uncertain random variable (Liu 2013b). It is a challenging
mission to formulate reliability and mean time to failure of
the system with bi-uncertain variables.

This paper aims at employing uncertainty theory to inves-
tigate the reliability functions and mean time to failures of
the general systems with bi-uncertain variables. This paper
is organized as follows. In Sect. 2, some basic concepts and
theorems of uncertainty theory are presented. In Sect. 3, the
reliability function and mean time to failure of single com-
ponent system are investigated according to the uncertainty
theory. Section 4 is the main part of this paper, in which
the basic models of developed systems with bi-uncertain
variables are discussed, including series, parallel and series–
parallel systems. In order to illustrate the applications of
the developed system models, some numerical examples are
given in Sect. 5. Finally, a brief conclusion is made in the last
Section.
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2 Preliminaries

In this section, we introduce some basic concepts and results
in uncertainty theory,which are applied throughout the paper.

Definition 1 (Liu 2007) Let � be a nonempty set, and L be
a σ -algebra over �. A set function M is called an uncertain
measure if it satisfies the following three axioms.

Axiom 1. (Normality Axiom)M {�} = 1 for the universal
set �.

Axiom 2. (Duality Axiom) M {Λ} + M {Λc} = 1 for any
event Λ.

Axiom 3. (Subadditivity Axiom) For every countable
sequence of events Λ1, Λ2, . . . , we have

M

{ ∞⋃
i=1


i

}
≤

∞∑
i=1

M {
i } .

Then, the triplet (�,L,M) is called an uncertainty space. In
addition, in order to provide the operational law, the uncer-
tain measure on the product σ -algebra was proposed by Liu
(2009) as follows.

Axiom 4. (Product Axiom) Let (�k,Lk,Mk) be uncer-
tainty space for k = 1, 2, . . ., the product uncertain measure
M is an uncertain measure satisfying

M

{ ∞∏
k=1


k

}
≤ min

1≤k<∞Mk {
k} ,

where Λk are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

Definition 2 (Liu 2007) An uncertain variable is a function
ξ from an uncertainty space (�,L,M) to the set of real num-
bers such that {ξ ∈ B} is an event for any Borel set B of real
numbers.

Definition 3 (Liu 2007) The uncertainty distribution� of an
uncertain variable ξ is defined by

�(x) = M {ξ ≤ x} ,

for any real number x .

Definition 4 (Liu 2010b) Let ξ be an uncertain variable with
regular uncertainty distribution �(x), then the inverse func-
tion �−1 (α) is called the inverse uncertainty distribution of
ξ .

Theorem 1 (Liu 2010b) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
�1,�2, . . . , �n, respectively. Assume the function f (ξ1, ξ2,

· · · , ξn) is strictly increasing with respect to ξ1, ξ2, . . . , ξm
and strictly decreasing with respect to ξm+1, ξm+2, . . . , ξn,

then the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) has an
inverse uncertainty distribution

�−1 (α) = f
(
�−1

1 (α) , . . . , �−1
m (α) ,

�−1
m+1 (1 − α) , . . . , �−1

n (1 − α)
)

.

Theorem 2 (Liu 2010b) Assume ξ1, ξ2, . . . , ξn are indepen-
dent uncertain variables with uncertainty distributions �1,

�2, . . . , �n, respectively. Then ξ1 ∧ ξ2 ∧ · · · ∧ ξn and
ξ1 ∨ ξ2 ∨ · · · ∨ ξn have uncertainty distributions � (x) =
�1 (x)∨�2 (x)∨· · ·∨�n (x) and� (x) = �1 (x)∧�2 (x)∧
· · · ∧ �n (x), respectively.

In uncertainty theory, the expected value means the aver-
age value of uncertain variable, which plays an important
role in the sense of uncertain measure, and indicates the size
of uncertain variable.

Definition 5 (Liu 2007) Let ξ be an uncertain variable, then
the expected value of ξ is defined by

E [ξ ] =
∫ +∞

0
M {ξ ≥ x}dx −

∫ 0

−∞
M {ξ ≤ x}dx,

provided that at least one of the two integrals is finite.

Theorem 3 (Liu 2007) Let ξ be an uncertain variable with
regular uncertainty distribution �. Then,

E [ξ ] =
∫ 1

0
�−1 (α)dα.

Theorem 4 (Liu and Ha 2010) Assume ξ1, ξ2, . . . , ξn are
independent uncertain variables with regular uncertainty
distributions �1,�2, . . ., �n, respectively. If f (ξ1, ξ2, . . .,

ξn) is strictly increasing with respect to ξ1, ξ2, . . . , ξm
and strictly decreasing with respect to ξm+1, ξm+2, . . . , ξn,
then the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) has an
expected value

E [ξ ] =
∫ 1

0
f
(
�−1

1 (α) , . . . , �−1
m (α) ,

�−1
m+1 (1 − α) , . . . , �−1

n (1 − α)
)
dα.

3 Reliability of single component system
with bi-uncertain variable

Definition 6 Let ζ be an uncertain variable with uncertainty
distribution �(a1, a2, . . . , ak; t), whose parameters ai , i =
1, 2, . . . , k are independent uncertain variables with uncer-
tainty distributions ϒi , i = 1, 2, . . . , k. Then, ζ is called a
bi-uncertain variable.
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For example, the uncertain variable ζ is distributed with
zigzag uncertainty distribution Z (a, b, c), whose indepen-
dent uncertain parameters a, b and c are denoted by a ∼
L (u, v), b ∼ L (p, q) and c ∼ L (m, n), respectively. In
practical engineering, lifetimes of some components within
a system could have different uncertainty distributions with
uncertain parameters owing to the uncertainty of working
environment. Consider a lifetime of the single component
system as a bi-uncertain variable, and define the reliability
function of the single component system as follows.

Definition 7 Let ξ , a nonnegative bi-uncertain variable, be
the lifetime of single component systemdefined on the uncer-
tainty space (�,L,M). The reliability function of the single
component system is defined by

R (t) = E
[
M {γ ∈ �| ξ (γ ) > t}] . (1)

Then, we denote M {γ ∈ �| ξ (γ ) > t} as R∗ (t), which is
called uncertain reliability variable, that is

R (t) = E
[
M {γ ∈ �| ξ (γ ) > t}] = E

[
R∗ (t)

]
. (2)

Here, the expected value of the measure is formulated as
the reliability of completing the specified function at the time
[0, t] and under certain conditions.

Definition 8 The mean time to failure (MTTF) of the single
component system is defined by

MTTF =
∫ +∞

0
E

[
M {γ ∈ �| ξ(γ ) > t}]dt

=
∫ +∞

0
R (t)dt .

(3)

Theorem 5 Let a1, a2, . . . , ak be independent uncertain
parameters of the lifetime distribution of single compo-
nent system with regular uncertainty distributions ϒ1, ϒ2,

. . . , ϒk , respectively. If the uncertain reliability variable of
single component system is strictly increasing with respect to
a1, a2, . . . , ag and strictly decreasing with respect to ag+1,

ag+2, . . . , ak, then the reliability function and MTTF of the
single component system are

R (t) =
∫ 1

0

(
1 − �

(
ϒ−1
1 (α) , . . . , ϒ−1

g (α) ,

ϒ−1
g+1 (1 − α) , . . . , ϒ−1

k (1 − α) ; t))dα,

(4)

and

MTTF =
∫ +∞

0

∫ 1

0

(
1 − �

(
ϒ−1
1 (α) , . . . , ϒ−1

g (α) ,

ϒ−1
g+1 (1 − α) , . . . , ϒ−1

k (1 − α) ; t))dαdt,
(5)

where ϒ−1
i (α) is the inverse uncertainty distribution of

uncertain variable ai , i = 1, 2, . . . , k.

Proof Let R∗ (a1, a2, . . . , ak; t) denote the uncertain reli-
ability variable of the component with uncertainty dis-
tribution � (a1, a2, . . . , ak; t). According to Definition 4,
R∗ (a1, a2, . . . , ak; t) has the inverse uncertainty distri-
bution �−1 (α), and by Definition 7 and Theorem 3, the
reliability function of the single component system can be
determined by

R (t) = E
[
R∗ (a1, a2, . . . , ak; t)

] =
∫ 1

0
�−1 (α)dα,

and the uncertain reliability variable R∗ (a1, a2, . . . , ak; t)
is strictly increasing with respect to a1, a2, . . . , ag and
strictly decreasing with respect to ag+1, ag+2, . . . , ak , 1 ≤
g ≤ k. Following from Theorem 1, the inverse uncertainty
distribution �−1 (α) of the uncertain reliability variable
R∗ (a1, a2, . . . , ak; t) is

�−1 (α) =1 − �
(
ϒ−1
1 (α) , . . . , ϒ−1

g (α) ,

ϒ−1
g+1 (1 − α) , . . . , ϒ−1

k (1 − α) ; t),
where ϒ−1

i (α) is the inverse uncertainty distribution of
uncertain variable ai with i = 1, 2, . . . , k. Then, the reli-
ability function of the single component system is

R (t) =
∫ 1

0
�−1 (α)dα

=
∫ 1

0

(
1 − �

(
ϒ−1
1 (α) , . . . , ϒ−1

g (α) ,

ϒ−1
g+1 (1 − α) , . . . , ϒ−1

k (1 − α) ; t))dα,

and the MTTF of the single component system is formulated
owing to Definition 8 that is

MTTF =
∫ +∞

0

∫ 1

0

(
1 − �

(
ϒ−1
1 (α) , . . . , ϒ−1

g (α) ,

ϒ−1
g+1 (1 − α) , . . . , ϒ−1

k (1 − α) ; t))dαdt .

�

Example 1 The lifetime ξ of component is distributed with
linear uncertainty distribution L (e1, e2), whose parameters
e1 and e2 are independent uncertain variables, denoted by
e1 ∼ L (a, b) and e2 ∼ L (c, d), respectively. According to
Theorem 5, we have the reliability function:

R (t) =
∫ 1

0

(1 − α) c + αb − t

(1 − α) c + αd − [(1 − α) a + αb]dα,

123



Reliability analysis of general systems with bi-uncertain variables 6979

Fig. 1 A series system with bi-uncertain variables

and MTTF:

MTTF

=
∫ +∞

0

∫ 1

0

(1 − α) c + αb − t

(1 − α) c + αd − [(1 − α) a + αb]dαdt,

where a, b, c and d are real numbers with a < b < c < d.

4 Reliability of general systems with
bi-uncertain variables

In this section, we introduce basic models of the general
systems with bi-uncertain variables, including series, paral-
lel and series–parallel systems. The reliability functions and
MTTFs of developed models are discussed, respectively.

4.1 Reliability of series systemwith bi-uncertain
variables

Consider a series system consisting of n independent com-
ponents connected in series, as shown in Fig. 1. Let ξi , a
bi-uncertain variable, be the lifetime of component i in the
series system defined on the uncertainty space (�i ,Li ,Mi ),
i = 1, 2, . . . , n. The component lifetimes ξi , i = 1, 2, . . . , n
are independently distributed with regular uncertainty dis-
tributions �i

(
ai1, ai2, . . . , aiki ; t

)
, i = 1, 2, . . . , n, where

ai1, ai2, . . . , aiki are independent uncertain variables. It is
clear that the lifetime of series system is ξ = ξ1∧ξ2∧· · ·∧ξn ,
which is also a bi-uncertain variable. For the sake of simplic-
ity, the model discussed on the product uncertainty space
(�,L,M), where � = �1 × �2 × · · · × �n , L = L1 ×L2 ×
· · · × Ln and M = M1 ∧ M2 ∧ · · · ∧ Mn .

Theorem 6 The reliability function of the series system with
bi-uncertain variables is

R (t) = E

[ ∧
1≤i≤n

(
1 − �i

(
ai1, ai2, . . . , aiki ; t

))]
, (6)

where ki is the number of uncertain parameters contained in
component i , i = 1, 2, . . . , n.

Proof Let Ri
∗(ai1, ai2, . . . , aiki ; t) denote the uncertain reli-

ability variable of component i in the series system, that is

Ri
∗ (

ai1, ai2, . . . , aiki ; t
) = M {γ ∈ �| ξi (γ ) > t}

= 1 − �i
(
ai1, ai2, . . . , aiki ; t

)
.

Furthermore, the uncertain reliability variable R∗(a1, a2, . . . ,
an; t) of the series system is

R∗ (a1, a2, . . . , an; t)
=

∧
1≤i≤n

Ri
∗ (

ai1, ai2, . . . , aiki ; t
)

=
∧

1≤i≤n

(
1 − �i

(
ai1, ai2, . . . , aiki ; t

))
,

where ai = (
ai1, ai2, . . . , aiki

)
, i = 1, 2, . . . , n. According

to Definition 7, the reliability function of the series system
can be determined by

R (t) = E
[
R∗(a1, a2, . . . , an; t)

]
= E

⎡
⎣ ∧
1≤i≤n

(
1 − �i

(
ai1, ai2, . . . , aiki ; t

))⎤⎦ .


�
Theorem 7 Let ai1, ai2, . . . , aiki be independent uncertain
parameters of the lifetime distribution of component i in
the series system with regular uncertainty distributions
ϒi1, ϒi2, . . . , ϒiki , respectively. If the uncertain reliability
variable of the series system is strictly increasingwith respect
to ai1, ai2, . . . , aigi and strictly decreasing with respect to
ai(gi+1), ai(gi+2), . . . , aiki , then the reliability function and
MTTF of the series system are

R (t) =
∫ 1

0

∧
1≤i≤n

(1 − �i (ϒ−1
i1 (α) , . . . , ϒ−1

i gi
(α) ,

ϒ−1
i(gi+1) (1 − α) , . . . , ϒ−1

iki
(1 − α) ; t))dα,

(7)

and

MTTF =
∫ +∞

0

∫ 1

0

∧
1≤i≤n

(1 − �i (ϒ
−1
i1 (α) , . . . , ϒ−1

i gi
(α) ,

ϒ−1
i(gi+1) (1 − α) , . . . , ϒ−1

iki
(1 − α) ; t))dαdt,

(8)

where ϒ−1
i gi

(α) is the inverse uncertainty distribution of
uncertain parameter aigi . ki is the number of uncertain
parameters contained in component i with 1 ≤ gi ≤ ki ,
i = 1, 2, . . . , n.

Proof Let R∗(a1, a2, . . . , an; t) denote the uncertain relia-
bility variable of the series system with uncertainty distri-
bution �(a1, a2, . . . , an; t). It is known that the uncertain
reliability variable R∗(a1, a2, . . . , an; t) is strictly increas-
ing with respect to ai1, ai2, . . . , aigi and strictly decreasing
with respect to ai(gi+1), ai(gi+2), . . . , aiki , 1 ≤ gi ≤ ki ,
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i = 1, 2, . . . , n. According to Theorem 1, the inverse
uncertainty distribution �−1 (α) of the uncertain reliability
variable R∗(a1, a2, . . . , an; t) is

�−1(α) =
∧

1≤i≤n

(1 − �i (ϒ
−1
i1 (α) , . . . , ϒ−1

i gi
(α) ,

ϒ−1
i(gi+1) (1 − α) , . . . , ϒ−1

iki
(1 − α) ; t)),

where ai = (ai1, ai2, . . . , aiki ), i = 1, 2, . . . , n. Then by
Theorem 4, we obtain the reliability function of the series
system with bi-uncertain variables which is

R (t) =
∫ 1

0
�−1 (α)dα

=
∫ 1

0

∧
1≤i≤n

(1 − �i (ϒ
−1
i1 (α) , . . . , ϒ−1

i gi
(α) ,

ϒ−1
i(gi+1) (1 − α) , . . . , ϒ−1

iki
(1 − α) ; t))dα.

The MTTF of the series system is formulated owing to Def-
inition 8 and Theorem 6. That is

MTTF =
∫ +∞

0

∫ 1

0

∧
1≤i≤n

(1 − �i (ϒ
−1
i1 (α) , . . . , ϒ−1

i gi
(α) ,

ϒ−1
i(gi+1) (1 − α) , . . . , ϒ−1

iki
(1 − α) ; t))dαdt .


�

4.2 Reliability of parallel systemwith bi-uncertain
variables

Consider a parallel system consisting of m independent
components proceed simultaneously, see Fig. 2. Let ξ j ,
a bi-uncertain variable, be the lifetime of component j
in the parallel system defined on the uncertainty space(
� j ,L j ,M j

)
, j = 1, 2, . . . ,m. The component lifetimes

ξ j , j = 1, 2, . . . ,m are independently distributed with reg-
ular uncertainty distributions � j (a j1, a j2, . . . , a jk j ; t), j =
1, 2, . . . ,m,wherea j1,a j2, . . . , a jk j are independent uncer-
tain variables. It is clear that the lifetime of parallel system is
ξ = ξ1 ∨ ξ2 ∨ · · · ∨ ξm , which is also a bi-uncertain variable.
For the sake of simplicity, themodel discussed on the product
uncertainty space (�,L,M), where �=�1 × �2 × · · · × �m ,
L = L1 ×L2 × · · · ×Lm andM = M1 ∧M2 ∧ · · · ∧Mm .

Theorem 8 The reliability function of the parallel system
with bi-uncertain variables is

R(t) = E

⎡
⎣ ∨
1≤ j≤m

(1 − � j (a j1, a j2, . . . , a jk j ; t))
⎤
⎦ , (9)

where k j is the number of uncertain parameters contained
in component j , j = 1, 2, . . . ,m.

Fig. 2 A parallel system with bi-uncertain variables

Proof Let R j
∗(a j1, a j2, . . . , a jk j ; t) denote the uncertain

reliability variable of component j in the parallel system,
that is

R j
∗(a j1, a j2, . . . , a jk j ; t) =M

{
γ ∈ �| ξ j (γ ) > t

}
=1 − � j (a j1, a j2, . . . , a jk j ; t).

Further, the uncertain reliability variable R∗(a1, a2, . . ., am;
t) of the parallel system is

R∗(a1, a2, . . . , am; t)
=

∨
1≤ j≤m

R j
∗(a j1, a j2, . . . , a jk j ; t)

=
∨

1≤ j≤m

(1 − � j(a j1, a j2, . . . , a jk j ; t)),

where a j = (
a j1, a j2, . . . , a jk j

)
, j = 1, 2, . . . ,m. Accord-

ing to Definition 7, the reliability function of the parallel
system can be determined by

R (t) =E
[
R∗(a1, a2, . . . , am; t)]

=E

⎡
⎣ ∨
1≤ j≤m

(1 − � j (a j1, a j2, . . . , a jk j ; t))
⎤
⎦ .


�

Theorem 9 Let a j1, a j2, . . . , a jk j be independent uncertain
parameters of the lifetime distribution of component j in
the parallel system with regular uncertainty distributions
ϒ j1, ϒ j2, . . . , ϒ jk j , respectively. If the uncertain reliabil-
ity variable of the parallel system is strictly increasing with
respect to a j1, a j2, . . . , a jg j and strictly decreasing with
respect to a j(g j+1), a j(g j+2), . . . , a jk j , then the reliability
function and MTTF of the parallel system are

R (t) =
∫ 1

0

∨
1≤ j≤m

(
1 − � j

(
ϒ−1

j1 (α) , . . . , ϒ−1
j g j

(α) ,

ϒ−1
j(g j+1)

(1 − α) , . . . , ϒ−1
jk j

(1 − α) ; t))dα,

(10)
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and

MTTF =
∫ +∞

0

∫ 1

0

∨
1≤ j≤m

(
1 − � j

(
ϒ−1

j1 (α) , . . . , ϒ−1
j g j

(α) ,

ϒ−1
j(g j+1)

(1 − α) , . . . , ϒ−1
jk j

(1 − α) ; t))dαdt,
(11)

where ϒ−1
j g j

(α) is the inverse uncertainty distribution of
uncertain variable a jg j . k j is the number of uncertain param-
eters contained in component j with 1 ≤ g j ≤ k j , j =
1, 2, . . . ,m.

Proof Let R∗(a1, a2, . . . , am; t) denote the uncertain relia-
bility variable of the parallel system with uncertainty distri-
bution�(a1, a2, . . . , am; t). It is known that R∗(a1, a2, . . . ,
am; t) is strictly increasing with respect to a j1, a j2, . . . , a jg j

and strictly decreasingwith respect toa j(g j+1), a j(g j+2), . . . ,

a jk j for 1 ≤ g j ≤ k j , j = 1, 2, . . . ,m. According to The-
orem 1, the inverse uncertainty distribution �−1 (α) of the
uncertain reliability variable R∗(a1, a2, . . . , am; t) is

�−1 (α) =
∨

1≤ j≤m

(
1 − � j

(
ϒ−1

j1 (α) , . . . , ϒ−1
j g j

(α) ,

ϒ−1
j(g j+1)

(1 − α) , . . . , ϒ−1
jk j

(1 − α) ; t)),
where a j = (a j1, a j2, . . . , a jk j ), j = 1, 2, . . . ,m. Then by
Theorem 4, we obtain the reliability function of the parallel
system with bi-uncertain variables which is

R (t) =
∫ 1

0
�−1 (α)dα

=
∫ 1

0

∨
1≤ j≤m

(
1 − � j

(
ϒ−1

j1 (α) , . . . , ϒ−1
j g j

(α) ,

ϒ−1
j(g j+1)

(1 − α) , . . . , ϒ−1
jk j

(1 − α) ; t))dα.

The MTTF is formulated by Definition 8 and Theorem 8.
That is

MTTF =
∫ +∞

0

∫ 1

0

∨
1≤ j≤m

(
1 − � j

(
ϒ−1

j1 (α) , . . . , ϒ−1
j g j

(α) ,

ϒ−1
j(g j+1)

(1 − α) , . . . , ϒ−1
jk j

(1 − α) ; t))dαdt .

�

4.3 Reliability of series–parallel systemwith
bi-uncertain variables

Consider a series–parallel system consisting of n subsystems
A1, A2, . . . , An in series, each subsystem Ai (i = 1, 2, . . . , n)

Fig. 3 A series–parallel system with bi-uncertain variables

consists of mi independent components connected in par-
allel, as shown in Fig. 3. Let ξi j , a bi-uncertain variable,
be the lifetime of component j of subsystem Ai defined
on the uncertainty space

(
�i j ,Li j ,Mi j

)
, i = 1, 2, . . ., n,

j = 1, 2, . . .,mi . The lifetimes ξi j , i = 1, 2, . . ., n,
j = 1, 2, . . .,mi are independently distributed with reg-
ular uncertainty distributions �i j (ai j1, ai j2, . . . , ai jki j ; t),
i = 1, 2, . . ., n, j = 1, 2, . . .,mi , whereai j1, ai j2, . . . , ai jki j
are independent uncertain variables. Obviously, the lifetime
of series–parallel system is ξ = ∧n

i=1
∨mi

j=1 ξi j ,which is also
abi-uncertain variable. For the sakeof simplicity, themodel is
discussed on the product uncertainty space (�,L,M), where
� = �11 × �12 × · · · × �nmn , L=L11 × L12 × · · · × Lnmn

and M = M11 ∧ M12 ∧ · · · ∧ Mnmn .

Theorem 10 The reliability function of the series–parallel
system with bi-uncertain variables is

R (t)= E

⎡
⎣ ∧
1≤i≤n

∨
1≤ j≤mi

(1 − �i j(ai j1, ai j2, . . . , ai jki j ; t))
⎤
⎦ ,

(12)

where ki j is the number of uncertain parameters contained of
component j of subsystem Ai , subjected to i = 1, 2, . . . , n,
j = 1, 2, . . . ,mi .

Proof Let Ri j
∗(ai j1, ai j2, . . . , ai jki j ; t) denote the uncertain

reliability variable of component j of subsystem Ai , that is

Ri j
∗(ai j1, ai j2, . . . , ai jki j ; t)
= M

{
γ ∈ �| ξi j (γ ) > t

}
= 1 − �i j (ai j1, ai j2, . . . , ai jki j ; t).

Further, the uncertain reliability variable RAi
∗(ai1, ai2, . . . ,

aimi ; t) of subsystem Ai is

RAi
∗(ai1, ai2, . . . , aimi ; t)
=

∨
1≤ j≤mi

Ri j
∗(ai j1,ai j2, . . . , ai jki j ; t)

=
∨

1≤ j≤mi

(1 − �i j (ai j1, ai j2, . . . , ai jki j ; t)).
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Table 1 Results of reliability
functions in the single
component system

Time 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R(t) 0.9985 0.9939 0.9764 0.9195 0.7752 0.5256 0.2638 0.0989 0.0299 0.0079

Table 2 Lifetime distributions of components in the series system

Component Lifetime distribution

1 ξ1 ∼ LOGN (e1, 1) , where e1 ∼ Z (1, 2, 3)

2 ξ2 ∼ LOGN (e2, 0.5), where e2 ∼ Z (1, 2, 3)

3 ξ3 ∼ LOGN (e3, 1.5), where e3 ∼ Z (1, 2, 3)

Furthermore, since the series–parallel system composed of
n subsystems connected in series, the uncertain reliability
variable R∗(a1, a2, . . . , an; t) of this system is

R∗(a1, a2, . . . , an; t)
=

∧
1≤i≤n

RAi
∗(ai1, ai2, . . . , aimi ; t)

=
∧

1≤i≤n

∨
1≤ j≤mi

Ri j
∗(ai j1,ai j2, . . .,ai jki j ; t)

=
∧

1≤i≤n

∨
1≤ j≤mi

(1 − �i j (ai j1, ai j2, . . . , ai jki j ; t)),

where ai = (ai1, ai2, . . . , aimi ; t), ai j = (ai j1, ai j2, . . . ,
ai jki j ), i = 1, 2, . . ., n, j = 1, 2, . . .,mi . According to Defi-
nition 7, the reliability function of the series–parallel system
can be formulated by

R (t) = E
[
R∗(a1, a2, . . . , an; t)

]
= E

⎡
⎣ ∧
1≤i≤n

∨
1≤ j≤mi

(1−�i j(ai j1,ai j2,. . ., ai jki j; t))
⎤
⎦ .


�

Theorem 11 Let ai j1, ai j2, . . . , ai jki j be independent uncer-
tain parameters of the lifetime distribution of component
j of subsystem Ai with regular uncertainty distributions
ϒi j1, ϒi j2, . . . , ϒi jki j , respectively. If the uncertain reliabil-
ity variable of the series–parallel system is strictly increasing
with respect to ai j1, ai j2, . . . , ai jgi j and strictly decreasing
with respect to ai j(gi j+1), ai j(gi j+2), . . . , ai jki j , then the reli-
ability function and MTTF of the series–parallel system are

R (t) =
∫ 1

0

∧
1≤i≤n

∨
1≤ j≤mi

(
1 − �i j

(
ϒ−1
i j1 (α) , . . . , ϒ−1

i j gi j
(α) ,

ϒ−1
i j(gi j+1)

(1 − α) , . . . , ϒ−1
i jki j

(1 − α) ; t))dα,

(13)

and

MTTF

=
∫ +∞

0

∫ 1

0

∧
1≤i≤n

∨
1≤ j≤mi

(
1 − �i j

(
ϒ−1
i j1 (α) , . . . , ϒ−1

i j gi j
(α) ,

ϒ−1
i j(gi j+1)

(1 − α) , . . . , ϒ−1
i jki j

(1 − α) ; t))dαdt,
(14)

where ϒ−1
i j gi j

(α) is the inverse uncertainty distribution of
uncertain variable ai jgi j . ki j is the number of uncertain
parameters contained in component j of subsystem Ai with
1 ≤ gi j ≤ ki j , i = 1, 2, . . . , n, j = 1, 2, . . . ,mi .

Proof Let �i j (ai j1, ai j2, . . . , ai jki j ; t) denote the regular
uncertainty distribution of the lifetime ξi j of component j
of subsystem Ai , where ai j1, ai j2, . . . , ai jki j are uncertain

variables with inverse uncertainty distributions ϒ−1
i j1 (α) ,

ϒ−1
i j2 (α) , . . . , ϒ−1

i jki j
(α), respectively. According to Theo-

rem 1, the inverse uncertainty distribution �−1 (α) of the
uncertain reliability variable R∗ (a1, a2, . . . , an; t) is

�−1(α) =
∧

1≤i≤n

∨
1≤ j≤mi

(
1 − �i j

(
ϒ−1
i j1 (α) , . . . , ϒ−1

i j gi j
(α) ,

ϒ−1
i j(gi j+1)

(1 − α) , . . . , ϒ−1
i jki j

(1 − α) ; t)),
where ai=(ai11, ai12, . . ., ai1ki1 , . . ., ai j1, ai j2, . . ., ai jki j ,
. . ., aimi1, aimi2, . . . , aimi kimi

), i = 1, 2, . . . , n. Then by
Theorem 4, we obtain the reliability function of the series–
parallel system with bi-uncertain variables which is

R (t) =
∫ 1

0
�−1 (α)dα

=
∫ 1

0

∧
1≤i≤n

∨
1≤ j≤mi

(
1 − �i j

(
ϒ−1
i j1 (α) , . . . , ϒ−1

i j gi j
(α) ,

ϒ−1
i j(gi j+1)

(1 − α) , . . . , ϒ−1
i jki j

(1 − α) ; t))dα,

and the MTTF of the series–parallel system is formulated by
Definition 8 and Theorem 10. That is

MTTF

=
∫ +∞

0

∫ 1

0

∧
1≤i≤n

∨
1≤ j≤mi

(
1 − �i j

(
ϒ−1
i j1 (α) , . . . , ϒ−1

i j gi j
(α) ,

ϒ−1
i j(gi j+1)

(1 − α) , . . . , ϒ−1
i jki j

(1 − α) ; t))dαdt .
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Table 3 Results of reliability
functions in the series system

Time 1 3 5 7 9 11 13 15 17 19

R(t) 0.9029 0.7275 0.6041 0.5146 0.4469 0.3940 0.3515 0.3167 0.2876 0.2631

Table 4 Lifetime distributions
of components in the parallel
system

Component Lifetime distribution

1 ξ1 ∼ LOGN (e1, 1), where e1 ∼ Z (2, 6, 8)

2 ξ2 ∼ LOGN (e2, 0.5), where e2 ∼ Z (3, 6, 7)

3 ξ3 ∼ LOGN (e3, 1.5), where e3 ∼ Z (4, 6, 9)

Table 5 Results of reliability
functions in the parallel system

Time 20 40 60 80 100 120 140 160 180 200

R(t) 0.9770 0.9344 0.8954 0.8610 0.8306 0.8033 0.7786 0.7558 0.7346 0.7146


�

5 Numerical example

In this section, some numerical examples are given to illus-
trate the applications of the developed models, including
series, parallel and series–parallel systems. The reliability
functions and MTTFs of the general systems are compared
and analyzed when the lifetimes are considered as uncertain
and bi-uncertain variables, respectively.

Example 2 Consider a single component system, and assume
that the lifetime of component is uncertain variable ξ with
regular normal uncertainty distribution ξ ∼ N (ξ1, 0.5),
where ξ1 is an uncertain variable with regular normal uncer-
tainty distributions ξ1 ∼ N (3, 0.5). According toTheorem5,
the numerical values of the reliability functions in the single
component system are illustrated in Table 1.

Example 3 Consider a series system consisting of three inde-
pendent components, and assume ξ1, ξ2, ξ3, bi-uncertain
variables, be the lifetimes of components in the series sys-
tem and lifetime distributions of components are given in
Table 2. According to Theorem 7, the numerical values of

the reliability functions in the series system are illustrated in
Table 3.

Example 4 Consider a parallel system consisting of three
independent components. The lifetimes of components are
bi-uncertain variables ξ1, ξ2, ξ3, and lifetime distributions of
components are given in Table 4. According to Theorem 9,
the numerical values of the reliability functions in the parallel
system are illustrated in Table 5.

Example 5 Consider a series–parallel system consisting of
three subsystems in series, and each subsystem consists of
three components connected in parallel. The lifetime of com-
ponent j of subsystem Ai is assumed to be a bi-uncertain
variable ξi j , where i = 1, 2, 3, j = 1, 2, 3. Lifetime distri-
butions of components of the subsystems are given inTable 6.
According to Theorem 11, the numerical values of the reli-
ability functions in the series–parallel system are illustrated
in Table 7.

In order to illustrate the relationship between the differ-
ent parameters and the corresponding reliability functions
of systems, we initially make the necessary instructions: A
system with bi-uncertain variables means that whose life-
time distribution with uncertain parameters, while a system
with uncertain variables means that lifetime distribution with

Table 6 Lifetime distributions of components of subsystems in the series–parallel system

Subsystem Lifetime distribution

A1, ξ11 ∼ LOGN (e11, 1) , ξ12 ∼ LOGN (e12, 0.5) , ξ13 ∼ LOGN (e13, 1.5) , where e11, e12, e13 ∼ Z (1, 2, 3)

A2, ξ21 ∼ LOGN (e21, 1.2) , ξ22 ∼ LOGN (e22, 0.5) , ξ23 ∼ LOGN (e23, 0.6) , where e21, e22, e23 ∼ Z (0.5, 1, 1.5)

A3, ξ31 ∼ LOGN (e31, 0.7) , ξ32 ∼ LOGN (e32, 0.5) , ξ33 ∼ LOGN (e33, 0.8) , where e31, e32, e33 ∼ Z (0.25, 0.5, 0.75)

Table 7 Results of reliability
functions in the series–parallel
system

Time 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

R(t) 0.9718 0.9248 0.8482 0.7476 0.6357 0.5255 0.4259 0.3412 0.2719 0.2166
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Table 8 Lifetime distributions of components with uncertain variables

System Lifetime distribution

Single component system ξ ∼ N (3, 0.5)

Series system ξ1 ∼ LOGN (2, 1) , ξ2 ∼ LOGN (2, 0.5) , ξ3 ∼ LOGN (2, 1.5)

Parallel system ξ1 ∼ LOGN (5.5, 1) , ξ2 ∼ LOGN (5.5, 0.5) , ξ3 ∼ LOGN (6.25, 1.5)

ξ11 ∼ LOGN (2, 1) , ξ12 ∼ LOGN (2, 0.5) , ξ13 ∼ LOGN (2, 1.5)

Series–parallel system ξ21 ∼ LOGN (1, 1.2) , ξ22 ∼ LOGN (1, 0.5) , ξ23 ∼ LOGN (1, 0.6)

ξ31 ∼ LOGN (0.5, 0.7) , ξ32 ∼ LOGN (0.5, 0.5) , ξ33 ∼ LOGN (0.5, 0.8)
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Fig. 4 a Reliability function of the single component system, b reliability function of the series system, c reliability function of the parallel system,
d reliability function of the series–parallel system

Table 9 MTTFs of the general systems

System Single component system Series system Parallel system Series–parallel system

MTTFs of systems with bi-uncertain variables 3.0459 43.625 2785.9 1.8940

MTTFs of systems with uncertain variables 3.0000 37.122 2611.0 1.8744

constant parameters. Based on these, we select the expected
value of Z (a, b, c) as the constant parameter of the compo-
nent lifetime distribution. That means general systems with

bi-uncertain variables degenerate to general systems with
uncertain variables. The lifetime distributions of these com-
ponents in each degenerated system are listed in Table 8.
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The graphs for comparing the reliability functions of the
single component, series, parallel and series–parallel systems
under different parameters are shown in Fig. 4a–d, respec-
tively. The reliability function of each system with constant
parameters (uncertain variables) is obtained by traditional
uncertain reliability analysis in green dotted line, while the
reliability function with uncertain parameters (bi-uncertain
variables) is obtained in red solid line. From Fig. 4a–d, we
can easily observed that the systems’ reliability functions
are indeed affected by the assumption that the parameters
are uncertain variables. It is particularly noteworthy that the
general shapes of the plots under constant and uncertain
parameters are similar. However, Fig. 4a displays the reli-
ability function of single component system with constant
parameters is larger up to a specific time point, and it becomes
lower than the case with uncertain parameters beyond this
specific time point. Figure 4b and d shows that the reliability
functions of series system and series–parallel system have
weak sensitivity to the assumption under uncertain parame-
ters. Figure 4c shows that the reliability function of parallel
systemwith uncertain parameters has a larger reliability than
the one with constant parameters.

Additionally, in order to illustrate the relationship between
the different parameters and the corresponding MTTFs of
systems, we make a comparison between the common sys-
tems referred in Examples 2–5 and degenerated general
systems presented in Table 8. According to Eqs. (5, 8, 11,
14) and Theorems proved by Liu et al. (2015), the MTTFs
of systems are illustrated when the lifetimes considered as
bi-uncertain and uncertain variables, respectively, as shown
in Table 9. The results show that the obtained MTTFs with
bi-uncertain variables are larger than the ones with uncertain
variables.

6 Conclusions

This paper developed a generalization for system reliability
analysis based on the assumption that the lifetime of system
component is bi-uncertain variable. Some theorems for reli-
ability functions and MTTFs of general single component,
series, parallel and series–parallel systems were derived. In
addition, some numerical examples were presented to illus-
trate the applications of the developed models, including
series, parallel and series–parallel systems. Finally, we com-
pared and analyzed the reliability functions and MTTFs of
these systemswhen the component lifetimeswere considered
as bi-uncertain variables and uncertain variables, respec-
tively.
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