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Abstract
In the current study, the performance of three evolutionary algorithms, differential algorithm (DE), evolution strategy (ES),

and biogeography-based optimization algorithm (BBO), is examined for foundation design optimization. Moreover, four

recent variations of evolutionary-based algorithms [i.e., improved differential evolution algorithm based on an adaptive

mutation scheme, weighted differential evolution algorithm (WDE), linear population size reduction success-history-based

adaptive differential evolution algorithm, and biogeography-based optimization with covariance matrix-based migration]

have been tackled for handling the current problem. The objective function is based on the cost of shallow foundation

designs that satisfy ACI 318-05 requirements is formulated as the objective function. This study addresses shallow footing

optimization with two attitudes, routine optimization, and sensitivity analysis. As a further study, the effect of the location

of the column at the top of the foundation is examined by adding two additional design variables. Three numerical case

studies are used for both routine and sensitivity analysis. Moreover, the most common evolutionary-based technique,

genetic algorithm (GA), is considered as a benchmark to evaluate the proposed methods’ efficiency. Based on the results,

there is no algorithm which works as the most efficient solver over all the cases; while, BBO and WDE showed an

acceptable performance because of satisfying records in most cases. There were several cases in which GA, DE, and ES

were incapable of finding a valid solution which meets all the constraints simultaneously.

Keywords Metaheuristic algorithms � Global optimization � Construction industry � Shallow footing � Evolutionary

algorithms

1 Introduction

In the past few decades, there has been an increasing

demand for cost and performance optimality in structural

design. However, finding the optimum design of a structure

poses challenges due to material and design limit states

prescribed in standard building codes. Therefore, devel-

oping a qualified design which meets both codes’

requirements as well as optimality criteria simultaneously

is a difficult task due to the high level of complexity and

nonlinearity of engineering problems. Artificial intelli-

gence as a perfect alternative has been helping engineers to

deal successfully with a wide range of complicated prob-

lems (Akhani et al. 2019; Fister et al. 2014; Mousavi et al.

2015; Arab et al. 2018; Azizi et al. 2017; Derakhshan and

Bashiri 2018; Ghoddousi et al. 2015; Rashki et al. 2019;

Nikbakht and Papakonstantinou 2019).

Among a wide range of artificial intelligence-based

techniques, metaheuristic optimization algorithms have

been successfully applied to a wide-range of complicated

problems in many different fields of reserach (Ide et al.

2016; Zeng et al. 2016; Mavrovouniotis et al. 2017; Hancer

and Karaboga 2017; Zhou et al. 2016). Metaheuristic

techniques search for sufficiently good solution rather than

finding the global optimum. The fundamental mechanism

of metaheuristic optimization algorithms may be based on

two essential features: diversification and intensification.

Diversification tries to diverge the search to explore the

entire solution space, while intensification pushes the

search towards the best-found solutions. The balance of

these mechanisms influences the algorithms’ performance
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considerably. This characteristic is why metaheuristic

algorithms show a different level of efficacy in dealing

with a specific problem.

Recently, metaheuristic optimization algorithms have

been widely used in construction industry-related prob-

lems, e.g., structural engineering (Gandomi et al. 2013;

Yang et al. 2016; McCall and Balling 2017), water engi-

neering, geotechnical engineering, transportation engi-

neering (Yang et al. 2012; Celikoglu 2013; Omrani and

Kattan 2013; Gandomi et al. 2015, 2017b, c; Kashani et al.

2016, 2019), construction management (Cheng et al. 2017;

Lee et al. 2015), and structural damage detection (Kaveh

2017). Because of the stochastic nature of metaheuristic

optimization algorithms and difference in performance of

these techniques, they remain an active area of research

(Elyasigomari et al. 2017; Meng and Pan 2017; Marinakis

et al. 2017; Gandomi et al. 2015; Gandomi and Kashani

2016). As a result, it seems necessary to conduct the up-to-

date research on the application of metaheuristic algo-

rithms on a wide range of engineering problems.

Concrete structures are very important in the field of

civil engineering; therefore, many researchers have worked

on developing more sophisticated analyses and solution

techniques to improve their design (Ghoddousi et al. 2016;

Abbasnia et al. 2012, 2013; Khoshroo et al. 2018;

Shayanfar et al. 2018; Rostamian et al. 2011; Omranian

et al. 2018). However, structural designs that consider the

operational and construction cost have not received the

proper attention of engineering community. Spread foun-

dation design and modeling is one of the most critical and

sensitive concrete structural systems in geotechnical engi-

neering. In fact, without a well-designed foundation to

direct the effective loads to the earth successfully, most

civil engineering structural systems cannot function.

Therefore, the proper design of shallow footings is of vital

importance to most construction projects. Since a consid-

erable portion of a structure cost is associated with the

foundations, cost-effective designs of footing are an

essential concern for geotechnical engineers. With the

development of metaheuristic algorithms, optimization of

shallow footing has an very active area of research. Ser-

viceability of footings is assessed by satisfying both

geotechnical stability and structural strength. To account

for both limit states in an shallow foundation optimization

formulation, a variety of different design variables are

required, as well as many nonlinear constraints. The

resulting complexity of the objective function toward a

level of complexity that can greatly affect the performance

of optimization algorithms.

Although the research literature on different problems in

civil engineering optimization is extensive (Camp and

Akin 2011; Aydogdu 2017; Molina-Moreno et al. 2017;

Gandomi et al. 2017a, b, c; Aydoğdu et al. 2016;

Gholizadeh and Poorhoseini 2016; Garcı́a-Segura et al.

2017; Tejani et al. 2018a, b, c, 2019; Kumar et al. 2018),

there are relatively few studies on the optimum design of

shallow footings. Wang and Kulhawy (2008) utilized a

methodology to minimize the final cost of shallow footing

based on the ultimate, limit, and serviceability state for

low-cost design of a spread footing supporting a column

under axial loading. In a similar study, Wang (2009)

attempted to design a shallow footing based on a reliabil-

ity-based optimization method. Khajehzadeh et al.

(2011, 2012) enlisted a modified particle swarm opti-

mization and gravitational search algorithm for designing

of a shallow foundation. Khajehzadeh et al. (2013),

developed a hybrid approach combines the firefly algo-

rithm (FA) with the sequential quadratic programming

(SQP), namely FaSqp, for the optimum design of shallow

footings. Camp and Assadollahi (2013) took two different

objectives, minimum cost and minimum CO2 emission,

into account for the design of footings under uniaxial

loading case by applying a hybrid big bang-big crunch

algorithm. Also, Camp and Assadollahi (2015) considered

cost and CO2 emission design of footing subjected to

uniaxial uplift. Recently, Gandomi and Kashani (2018)

considered the optimality of shallow footing by enlisting

swarm intelligence algorithms [i.e., particle swarm opti-

mization (PSO), accelerated particle swarm optimization

(APSO), firefly algorithm (FA), levy-flight krill herd

(LKH), whale optimization algorithm (WOA), ant lion

optimizer (ALO), gray wolf optimizer (GWO), moth-flame

optimization algorithm (MFO), and teaching–learning-

based optimization algorithm (TLBO)].

This study examines the performance of three evolu-

tionary-based techniques: differential evolution (DE),

evolutionary strategy (ES), and biogeography-based opti-

mization algorithm (BBO), for the optimum design of

shallow footings. These algorithms are selected for this

study due to their successful application to a wide range of

complicated engineering problems. For example, Gandomi

et al. (2017) utilized these algorithms for slope stability

analysis and optimum design of retaining wall successfully.

Many complex civil engineering optimization problems

have been successfully solved using DE, ES, and BBO

(Zhao et al. 2015; Seyedpoor et al. 2015; Franco et al.

2004; Jalili et al. 2016; Çarbaş 2017). In addition, this

study considers the performance of several recently

developed variations of DE, ES, and BBO algorithms [i.e.,

improved differential evolution algorithm based on an

adaptive mutation scheme (IDE), weighted differential

evolution algorithm (WDE), linear population size reduc-

tion success-history-based adaptive differential evolution

algorithm (L-SHADE), and biogeography-based optimiza-

tion with covariance matrix-based migration (CMM-

BBO)]. Performance of these techniques is compared
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benchmark genetic algorithm (GA) solutions. A MATLAB

code is developed to analyze shallow footings based on

ACI 318-05 (2005) requirements. The objective function

considers as the total cost of a shallow footing and its

construction. Two different loading cases of the uniaxial

and flexural moment appied to the shallow foundation. In

addition the effect of the column location on the footing

surface is studied. Also, this study explores the sensitivity

of different input parameters on the final design due to

chances in the friction angle, the elasticity of modulus,

Poisson’s ratio, and density of the base soil, the depth of

the footing and inclination of the effective load with

respect to the vertical direction.

2 Methodology

Figure 1 shows a schematic of a shallow footing. Where L,

B, and H represent the length, width, and thickness of

footing, respectively, D is the depth of the bottom of

footing from the ground surface, bcol is the column width,

L0 is the over-excavation length, and B0 is the over-exca-

vation width around the footing.

Geotechnical stability is measured by the factor of safety

for bearing capacity FSB given as:

FSB ¼ qult

qmax

ð1Þ

where qult is the ultimate bearing capacity of the soil, and

qmax is the maximum allowable bearing pressure computed

based on Meyerhof’s (1963) general equation.

The second geotechnical requirement is based on set-

tlement. In order to evaluate the elastic settlement of the

footing, a method proposed by Algin (2009) is utilized as

follows:

where qa, qb, qc, and qd are the load intensities at the four

consecutive corners of the foundation, ls is the Poisson’s ratio

for a given soil, and Es is Soil elastic Young’s modulus.

In addition to the geotechnical criteria, a number of

structural requirements prescribed in ACI 318-05 (2005)

must be considered in the final design.

The maximum and minimum soil pressure qu under the

footing due to vertical force and flexural moment are:

qu;max ¼ Pu

BL
þ 6Mu

BL2
ð3Þ

qu;min ¼ Pu

BL
� 6Mu

BL2
ð4Þ

where Pu and Mu are the factored load and moment based

on ACI 318-05 (2005).

The critical perimeter bperim for two-way shear strength

against punching of the column at dave/2 away from each

column face is

bperim ¼ 4ðbcolumn þ daveÞ ð5Þ

Where bcolumn is the width of the column and dave is the

average depth of compression fiber to the centroid of the

reinforcement.

Fig. 1 Schematic view of a

shallow footing

dSa ¼
1

Es

ZH

0

ZL

0

ZB

0

�fLðqb � qaÞxþ B½Lqa þ ðqc � qaÞy�gzð1 þ lsÞ½2ðx2 þ y2 þ z2Þls � 3z2�
2pBLðx2 þ y2 þ z2Þ5=2

 !
dxdydz ð2Þ
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The critical two-way shear Vu,two-way is calculated by

Vu;two�way ¼ Pu

bprim � dave

þ cvMuxbcol

Jcx

þ cvMuybcol

Jcy

ð6Þ

where cv is a coefficient for determining shear portion

from the unbalanced moment, Mux and Muy are the flexural

moments in each direction, and Jcx and Jcy are the polar

moments of inertia in each direction.

The nominal two-way shear strength Vn, two-way is

computed as

Vn;two�way ¼ /min

ffiffiffiffi
f 0c

p
3

bprim � dave

1 þ 2

b

� � ffiffiffiffi
f 0c

p
6

bprim � dave

asdave

bprim

þ 2

� � ffiffiffiffi
f 0c

p
6

bprim � dave

8>>>>>>><
>>>>>>>:

ð7Þ

where b is the ratio of the long side to the short side of the

column, / is the nominal strength coefficient [/ = 0.75 as

per ACI 318-05], as is a factor related to the column

position on the footing, and f 0c is the compressive strength

of the concrete.

The critical one-way shear, Vu,one-way at a distance of

dave away from the face of the column in each direction, is

calculated as

Vu;one�way;short ¼ qB
L

2
� bcol

2
� dave

� �
ð8Þ

Vu;one�way;long ¼ qL
B

2
� bcol

2
� dave

� �
ð9Þ

One-way shear strength, Vn,one-way, is calculated as

Vn;one�way ¼ / 0:17xdavej
ffiffiffiffi
f 0c

p� �
ð10Þ

where j is a factor representing the type of concrete and x
is B for the short and L for the long direction.

In addition to shear strength, the final design must

withstand effective moments Mu on the critical sections

located along the face of the column in each direction:

Mu;short ¼
qB

2

L

2
� bcol

2

� �2

ð11Þ

Mu;long ¼ qL

2

B

2
� bcol

2

� �2

ð12Þ

The flexural strength, Mn, is calculated in each direction

as follows:

Mn ¼ /Asify di � 0:59
Asify

xf 0c

� �
ð13Þ

where Asi is the reinforcement cross-sectional area, fy is the

tensile strength of the reinforcing steel, and di is the depth

from the compression face of the footing to the centroid of

the reinforcement.

If / states the reduction factor of bearing strength [equal

to 0.65 based on ACI 318-05 (2005)], A1 is the loading area

(at the end of the column), and A2 is the area of the lower

base of the most substantial frustum of a pyramid with

sides’ inclination of 1–2 as shown in Fig. 2; the bearing

strength of the concrete is given by Eq. (14).

Pbearing;footing ¼ 0:85/f 0cA1

ffiffiffiffiffi
A2

A1

r
� 2 � 0:85/f 0cA1 ð14Þ

The bearing strength of the dowels Pbearing, dowel is

calculated as

Pbearing;dowel ¼ /As;dowelfy ð15Þ

Therefore, the total bearing strength Pbearing may be

calculated by:

Pbearing ¼ Pbearing;footing þ Pbearing;dowel ð16Þ

The next step is to determine the total length of rein-

forcement in the foundation. Therefore, computing the

development length based on ACI 318-05 (2005) is

necessary.

The minimum development length, ld, for flexural ele-

ments is computed as

ld ¼ fywswtwe

1:1k
ffiffiffiffi
f 0c

p
cbþKtr

dbar

� � dbar ð17Þ

where ws is the size factor, wt is the traditional reinforce-

ment location factor, we is a coating factor reflecting the

effects of epoxy coating, k is a factor reflecting the lower

tensile strength of lightweight concrete db is the diameter

of the reinforcement, cb, the smaller of the distance from

the center of a bar to the nearest concrete surface and one-

half the center-to-center spacing of the bars being devel-

oped, and Ktr represents the contribution of confining

reinforcement across potential splitting planes and is taken

as zero. In this study, wt, we, and k are 1.0 and ws is 0.8 for

#6 bars and smaller bars and 1.0 for bars larger than #6.

If ddowel is the diameter of the dowels, the development

length of the dowels into the column, ld,dowel,col, is com-

puted as

ld;dowel;col ¼ maxð0:0005fyddowel; ld;colÞ ð18Þ

where ddowel is the diameter of the dowels and ld, col is the

development length of the column reinforcement is

ld;col ¼ max
0:24dcolfyffiffiffiffi

f 0c
p ; 0:043dcolfy; 200 mm

 !
ð19Þ

where dcol is the diameter of the column bars.

The development of the dowel into the footing

ld, the dowel is
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ld;col ¼ max
0:24ddowelfyffiffiffiffi

f 0c
p ; 0:043ddowelfy; 200 mm

 !
ð20Þ

All the above-mentioned limitations control either

geotechnical or structural constraints. Table 1 lists the

inequality constraint formulations for the design of shallow

foundation. where d is the settlement, V is the shear

strength, M is the flexural strength, Asi is the reinforcement

area, es is the tension steel strain, ld, short is the development

length in short direction, ld, long is the development length

in long direction, smin is the minimum spacing of rein-

forcement, smax is the maximum spacing of reinforcement,

Pu is the maximum bearing pressure, Dmax is the maximum

depth of footing, Dmin is the minimum depth of footing,

and cover is the concrete cover. Ex and Ey in Table 1 are

distance of the column from the center parallel to X and

Y direction.

3 The objective function for optimization

Figure 3 defines nine design variables for the design of a

shallow foundation: the length (X1), the width (X2), the

thickness (X3), the depth of footing (X4), the bar number in

the long direction (R1), the number of bars in the long

direction (R2), the bar number in short direction (R3), the

number of bars in short direction (R4), and bar number of

the dowels (R5). In addition, two design variables, Ex and

Ey, defined the location of the column on the top of the

foundation.

The objective function for the minimum cost design of

shallow footing is

fcost ¼ CeVe þ CfAf þ nCrMr þ
f 0c

f 0cmin

CcVc þ CbVb ð21Þ

where Ce is the unit cost of excavation, Cf is the unit cost of

the framework, Cr is the unit cost of reinforcement, Cc is

the unit cost of concrete, Cb is the unit cost of backfill, Vc is

the concrete volume, and Vb is backfill volume, respec-

tively. Table 2 lists relevant unit cost values.

To handle the mentioned constraints, a static penalty

function approach proposed by Homaifar et al. (1994) is

utilized. In this way, the objective function would be

imposed by a penalty value that reflects the degree of

constraint violations.

fitnessiðXÞ ¼ fiðXÞ þ
Xm
j¼1

Rk;j/
2
j ðXÞ ð22Þ

where Ri,j are the penalty coefficients used, /j is the

amount of violation, m is the number of constraints, f(X) is

Fig. 2 The position of A1 and A2 for computing bearing strength of the concrete
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the unpenalized objective function, and k = 1, 2, …, l,

where l is the number of levels of a violation defined by the

user.

4 Optimization algorithms description

4.1 Genetic algorithm

The genetic algorithm (GA) is an evolutionary algorithm

imitating biological rules developed by Holland (1975). In

a GA, each potential solution to an optimization problem is

called an individual and is composed of a series of genes

called chromosome. In this chromosome, each gene rep-

resents one of the design variables. Therefore, each indi-

vidual indicates a possible solution for a given function. A

population of individuals surveys the search space gener-

ation to generation based on the fundamental theory of

evolution. The fitness of every individual is attributed to

the value of the objective function for the optimization

problem. New generations reproduced iteratively via three

Table 1 Inequality constraints
Constraint Function

g1(x) FSBdesign

FSB
� 1� 0

g2(x) d
dmax

� 1� 0

g[3–5](x) Vu

Vn
� 1� 0

g[6–7](x) Mu

Mn
� 1� 0

g[8–10](x) Asmin

As
� 1� 0

g[11–12](x) es

0:005
� 1� 0

g13(x) ld;short

B
2
�bcol

2
�cover

� 1� 0

g14(x) ld;long

L
2
�bcol

2
�cover

� 1� 0

g15(x) 2coverþdb;longþdb;shortþddowelþld;dowelþdbend=2

H
� 1� 0

g[16–17](x) 2coverþnbarsdbþðnbars�1Þsmin

x � 1� 0

g[18–19](x) x
2coverþnbarsdbþðnbars�1Þsmax

� 1� 0

g20(x) Pu

Pbearing
� 1� 0

g21(x) D
Dmax

� 1� 0

g22(x) Dmin

D
� 1� 0

g23(x) Exj j
L
2

� 1� 0

g24(x) Eyj j
B
2

� 1� 0

Fig. 3 Design variables for

describing the shallow footing

Table 2 Unit cost values

Input parameter Unit Symbol Value

Excavation $/m3 Ce 25.16

Concrete framework $/m2 Cf 51.97

Reinforcement $/kg Cr 2.16

Concrete $/m3 Cc 173.96

Compacted backfill $/m3 Cb 3.97
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evolutionary operators: reproduction, crossover, and

mutation. First, the highest ranked individuals would

emerge in the next generation without a change in their

content. Next, a group of fittest solutions works as parents

to make offsprings. To this end, the crossover operator

combines genes and proposes new chromosomes. Children

will be modified slightly following a random pattern using

a mutation operator. The mutation changes a gene in a

chromosome based on a predefined probability. These GA

operators are applied iteratively to successive populations

until a satisfactory results is reached for termination. The

GA in this study uses single-point crossover with a prob-

ability of 1, a mutation probability of 0.01, and a roulette

wheel selection operator was for reproduction.

4.2 Differential evolution

4.2.1 Original differential evolution

Differential evolution (DE) is a population-based evolu-

tionary algorithm developed by Storn and Price (1997).

Similar to GA, DE starts evolving an initial random pop-

ulation using three basic evolutionary operators: selection,

mutation, and crossover applied from generation to gen-

eration. The main difference between GA and DE is

encoding that parameters using a float coding instead of a

binary one. DE considers a mutation based on distance and

direction information from the current population (Pant

et al. 2008). The mentioned mutation operator adds a fac-

tored difference between two individuals (difference vec-

tor) to the third one (target vector) to reproduce new

solutions called the trial vector. The mutation operator for

the new solution Si can be formulated as

Si ¼ Sj þ FðSk � SlÞ ð23Þ

where Sj, Sk, and Sl be three randomly selected solutions

from the current generation where j, k, and l � {1, 2, 3, …, N},

and N is the population size, and F is a weighting factor.

In the next step, a crossover operator will be applied to

the mutated solution with a probability of Cr � [0, 1] as

follows:

Pi;t ¼
Si;t if rðtÞ�Cr or t ¼ rnðiÞ
Sj;t if rðtÞ[Cr and t 6¼ rnðiÞ

	
ð24Þ

where i = {1, 2, 3, …, D} represent the tth variable of each

individual (with D total variables), r(t) is a uniform random

number within [0, 1], and rn(i) is a randomly chosen index,

rn(i) = {1, 2, 3, …, D}, that warrants getting at least one

variable from Si.

The aforementioned steps will be repeated iteratively

until reaching termination criteria. In this study, the

weighting factor is equal to 0.5, and the crossover rate is

0.5.

4.2.2 Improved differential evolution algorithm based
on an adaptive mutation scheme

Ho-Huu et al. (2016) developed an improved differential

evolution (IDE) based on an adaptive mutation scheme.

IDE is different from the original DE in terms of selection

and mutation operators. Padhye et al. (2013) proposed an

elitist selection strategy in IDE. In this way, both the par-

ents and children populations are considered altogether,

and the best solutions among all of them would be selected

as the next generation.

Second, the mutation in original DE was replaced by an

adaptive multi-mutation scheme. In this way, within each

generation, two of the following four popular mutation

schemes including ‘‘rand/1,’’ ‘‘best/1,’’ ‘‘rand/2,’’ and

‘‘best/2’’ were chosen following an adaptive procedure to

trigger the mutation. This adaptive strategy pushed the

algorithm to use ‘‘rand/1’’ and ‘‘rand/2’’ mutation schemes

with more probability in the initial iterations to provide

exploration while ‘‘best/1’’ and ‘‘best/2’’ mutation schemes

are more probable in later iterations. This adaptive tech-

nique compares a determinant time-dependent parameter

called delta with a predefined threshold to choose between

the above mentioned cases. The time-dependent delta is

computed as:

delta ¼ fmean=fbest
� 1








 ð25Þ

where fbest is the objective function value of the best

individual and fmean is the mean objective function value of

the whole population.

4.2.3 Weighted differential evolution algorithm

The weighted differential evolution algorithm (WDE) is a

recent variation of differential evolution algorithm pro-

posed by Civicioglu et al. (2018). In this algorithm, a novel

mutation operator is defined, which works with two pop-

ulation sets at every iteration. The fundamental steps of

WDE are summarized as follows:

First, consider the population size to be N, at each

iteration WDE deals with a set of 2 9 N solution vectors.

First, a sub-pattern matrix called SubP will be constructed

by N randomly selected vectors from the whole 2 9 N

pattern vectors. Next, a temporary vector called TempP

with the size of N will be generated using the rest of

unselected solution vectors in the previous step (Prest) by

the following equation:

TempP ¼
X

ðw � PrestÞ where
w ¼ w�

iPN
v w�

i

� D

w� ¼ j3
ðN�1Þ

8<
: ð26Þ
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where � represents an element-by-element multiplication,

D is a 1-by-D vector whose elements are equal to one, and

j(N91) is a N-by-1 vector of random numbers.

In WDE, a control parameter of M(1:N,1:D) = 0 is defined

which will be updated in the course of iterations based on

the following equation:

MðindexJÞ: = 1 where
J ¼ Vð1 : K � Dd eÞ
V ¼ permuteðj0Þ

	
ð27Þ

where K would is calculated as

If a\b then K ¼ j3
ð1Þ else K ¼ 1 �j j3

ð1Þ

� �
ð28Þ

where a, b, and j are uniform random numbers between 0

and 1, and the presented subscribes of j (i.e., (.)) defines

the size of this vector.

In WDE, a scale factor of F is defined as

Fð1�DÞ ¼ k3
ðDÞ If a0\b0

FðN�DÞ ¼ k3
ðNÞ � D Otherwise

(
ð29Þ

where k is a vector of uniform random number within 0 and

1. The provided subscribes for the mentioned parameters

show the dimension of the vectors.

Finally, the offspring will be generated as follows

T ¼ SubPþ F �M � TempP� SubPðmÞ
� �

m ¼ permuteðiÞ m 6¼ ½1 : N�j

	
ð30Þ

here, i = 1: N where i [ Z?.

If the value of a design variable falls outside the domain,

the value are reset using

Pi ¼ lbi þ j3
ð1Þ � ðubi � lbiÞ if Pi \lbi

Pi ¼ ubi þ j3
ð1Þ � ðlbi � ubiÞ if Pi [ ubi

(
ð31Þ

where j(1) is a uniform random number with the size of 1,

and lbi and ubi are lower and upper bounds, respectively.

4.2.4 Linear population size reduction success-history-
based adaptive differential evolution algorithm

Tanabe and Fukunaga (2014) proposed L-SHADE as an

enhanced version of the success-history-based adaptive

differential evolution algorithm (SHADE) by considering

linear population size reduction (LPSR). In fact, SHADE is

an improved version of a well-known, DE variant which

employs a control parameter adaptation mechanism called

JADE (Zhang and Sanderson 2009). In this section, a short

description is provided for common features of JADE,

SHADE, and L-SHADE, and additional modifications

utilized in L-SHADE.

The first common feature between the three mentioned

algorithms is utilizing a generalized form of ‘‘current-to-

best/1’’ mutation strategy called ‘‘current-to-best/1.’’ This

mutation strategy presented in Eq. (32) uses one of the

randomly selected individuals from top N 9 p (p � [0, 1])

members of G-th generation (xpbest,G) instead of using the

global best solution.

ti;G ¼ xi;G þ Fi � ðxpbest;G � xi;GÞ þ Fi � ðxr1;G � xr2;GÞ
ð32Þ

where the parameter Fi � ½0; 1� controls the magnitude of

the differential mutation operator used by individual xi.

xr2,G in Eq. (31) will be selected randomly from the union

of parents and archived solutions. In this mutation strategy,

the control parameter p is defined to adjust greediness and

provide a balance between exploration and exploitation.

The second feature is enlisting an external archive in

which the unselected parents are saved. The size of archive

memory is equal to the population size.

The third feature are the control parameters assignments

utilized in SHADE and L-SHADE which are different from

the JADE algorithm. To be more exact, a historical mem-

ory with the size of H is provided to SHADE and

L-SHADE for two control parameters (i.e., Cr and F) in

DE. Both these parameters Cr and F vary between 0 and 1

which are crossover rate and scaling factor for magnitude

of mutation, respectively. An effective approach was uti-

lized in SHADE is to update this memory in each gener-

ation with Cri and Fi values, which result in better

offsprings (Tanabe and Fukunaga 2014).

Finally, LPSR has been incorporated into SHADE

algorithm for dynamically resizing the population size to

improve its performance. To this end, in each iteration, the

following equation is proposed to examine the population

size for the next generation:

NGþ1 ¼ round
Nmin � N init

MAX NFE

� �
� NFE þ N init

� �
ð33Þ

where Nmin is the minimum possible number of the indi-

viduals for mutation (proposed to be equal to 4), Ninit is

initial population size, NFE is the current number of fitness

evaluations, and MAX_NFE is the maximum number of

fitness evaluations. Therefore, in each generation

(NG-NG?1), numbers of the worst individuals would be

removed from the population.

4.3 Evolutionary strategy

Evolution Strategy (ES) was originally proposed by

Rechenberg (1965), and later developed by Schwefel

(1977). ES mimics macro-level of evolution (phenotype,

hereditary, variation) to explore the solution space

(Brownlee 2011). The major difference between GA and

ES is using a string of real number to represent the

potential solutions rather than a bit string. ES works mainly

based on three key steps:
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(i) producing new offspring from a set of parents

using a recombination operator

(ii) applying a mutation operator to provide

exploitation

(iii) generating a new population by collecting the

fittest group of solutions

This study utilizes a two-member ES, which forms new

offspring P from the parent Sp based on

P ¼ Sp þ Z ð34Þ

where Z = {z1, z2, z3, …, zn} is a random vector of a size

consistent with the problem’s dimensions.

Moreover, the following probability function is pro-

posed for the mutation operator:

pðziÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞri
p exp �ðzi � niÞ2

2r2
i

 !
ð35Þ

where zi is the ith component and ni and ri are the mean

and standard deviation of zi, respectively.

ES applies these steps iteratively to reach a solution to

the optimization problem. In this study the the number of

offspring to produce each generation is set at 10 and the

standard deviation for changing the solution is set as 1.

4.4 Biogeography-based optimization algorithm

4.4.1 The original biogeography-based optimization
algorithm

The biogeography-based optimization (BBO) algorithm is

inspired by mathematical models of biogeography pro-

posed by Simon (2008). Biogeography is a study of the

distribution of different biological species among islands

over time by Wallace (1876) and Darwin (1859). In BBO,

each island is represented by a potential solution. Those

habitats move toward the fitter solution by frequent updates

via migration and mutation operators. BBO controls the

search direction toward the optimal solution by defining

two parameters that govern the sharing of features between

solutions. These parameters k and l are defined as

ks ¼ I 1 � S

Smax

� �
; for 0� S� Smax ð36Þ

ls ¼ E
S

Smax

; for 0� S� Smax ð37Þ

where Smax is the most significant possible number of

species, S is the number of species, I is the maximum

immigration rate, and E is the maximum emigration rate.

An island’s potential to absorb habitants is defined by a

suitability index variable (SIV). Larger values of the SIV

illustrate the more capacity for accepting more individuals.

However, the quality of individuals was examined by

habitat suitability index (HSI).

In a BBO algorithm, a weak solution with higher

potential of change will accept new immigrants from a

better solution (higher HSI). Therefore, poor solutions

experience more alterations to improve their positions.

Moreover, a mutation operator provides a satisfactory

diversity of the solutions in BBO. This study used a

mutation probability of 0.01, and habitat modification

probability of 1.

4.4.2 Biogeography-based optimization with covariance
matrix-based migration

Chen et al. (2016) proposed a modified version of the

original BBO algorithm by incorporating covariance-based

matrix migration (CMM-BBO) which eliminates the

dependence of original BBO to the coordinate system.

Basically, CMM rotates the coordinate system by

applying an eigenvector to a given solution vector (H) be-

fore the migration procedure in order to provide more

efficient information transition.

Eigenvectors can be evaluated using a factorized

covariance matrix of the solution vector with the size of D

as follows:

CovðHÞ ¼ QHKHQ
T
H ð38Þ

where QH is the D 9 D matrix that has the eigenvector of

Cov(H) as its ith column and KH is the diagonal matrix that

has the corresponding eigenvalues as its diagonal entries,

respectively.

The eigenvector-based solution will be generated using

a factorized covariance matrix Cov(H) into its canonical

form based on

eigHG
k ¼ HG

k � QH

eigHG
k ¼ ½eigHG

ðk;1Þ; eigH
G
ðk;2Þ; . . .; eigH

G
ðk;DÞ�

	
ð39Þ

where G represents the current generation, eigHG
k denotes

the rotated habitant, and eigHG
ðk;jÞ is the jth rotated SIV in

the eigenvector-based coordinate system. In this study, the

crossover rate and probability of using covariance matrix-

based migration are 0.9 and 0.5, respectively.

5 Numerical simulation

Three numerical case studies are examined to estimate the

performance of the proposed algorithms. The first case

addresses a shallow footing which subjected to a uniaxial

load. In the second case, an effective moment is added to

the uniaxial force. The third case considers the impact of

relocating the column along the top of the footing in each
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direction. Table 3 lists the necessary input parameters for

the case studies. MATLAB is used to develop a design

procedure for determining the minimum cost design of

shallow footing based on ACI 318-05 requirements. To

compute meaningful statistics on the performance of the

proposed algorithms all each algorithm is run run 101

times. The results are reported based on best, worst, mean,

median, and standard deviation (SD) of the runs. For all

algorithms, the population size is 50 and maximum number

of iterations is 1000. As a further study, a sensitivity

analysis is conducted on variations of soil parameters base

soil friction angle variation between 28� and 38�, soil

density between 11.5 and 23.5 kN/m3, modulus of elas-

ticity between 10,500 and 90,500 kPa, Poisson’s ratio

between 0.1 and 1, concrete compressive strength between

20 and 55 MPa, effective force inclination with respect to

vertical axis between 0� and 45�, and depth of footing

between 300 and 3000 mm. The column for conveying the

loading to the footing has an area of 400 9 400 mm2 with

reinforcements’ composition of 6U16. Table 4 lists the

limits for each design variable.

5.1 Case I: uniaxial loading

In this case, the shallow footing is subjected to a uniaxial

force yield developed from dead and live loads of 650 kN

and 350 kN, respectively. In a series of 101 runs, GA, DE,

and ES were successful in reaching a valid solution 51, 57,

and 62 times. Table 5 lists data gathered on the cost of the

final designs in the form of the best, worst, mean, SD, and

median values based on the number of cases that algo-

rithms worked efficiently in finding valid solutions.

Table 6 lists the final design variables. These results show

that L-SHADE and IDE generated the lowest cost design at

$29,884.24. Furthermore, L-SHADE was the best

algorithm in this case of study based on values for worst,

mean, SD and median of $43,442.27, $36,140.85,

$3000.00, and $36,163.22, respectively. On the other hand,

the highest best value is obtained by GA. Also, based on

the mean values, ES showed the poorest performance with

a mean value of $119,866.19.

Table 7 lists values for each component related to the

objective function. Using L-SHADE results as the bench-

mark, excavation is reduced by 30.92%, 41.06%, 62.42%,

and 20.74% with respect to GA, DE, ES, and WDE,

respectively. Concrete framework was reduced by 11.45%,

24.65%, 31.44%, and 0.79%, reinforcement reduced by

54.52%, 37.61%, 47.89%, and 0%, concrete volume

reduced by 20.32%, 37.13%, 48.97%, and 0.67%, and

compacted backfill reduced by 24.88%, 32.08%, 52.48%,

and 20.49% in comparison with GA, DE, ES, and WDE,

respectively. Comparing the results between L-SHADE

and BBO demonstrates 2.97% less excavation and 12.41%

less compacted backfill proposed by BBO, while 10.61%

more solid framework, 16.56% more reinforcement, and

19.89% more concrete obtained by BBO.

Table 8 list design results for this case from previous

studies. The results from most of the proposed methods

show better performance in terms of except best, mean, SD,

and median solution except for GA, DE, and ES.

Figure 4(a) shows convergence rate plots for the best-

found solutions. These plots indicate that the GA, DE, and

ES methods were considerably less efficient than the other

methods and did not successful converge to a valid solution

in the initial iterations (e.g., GA found a valid solution after

the 79th iteration, DE after 421st iteration, and ES after

856th iteration). These algorithms followed an invariant

pattern until converging to the final solutions. Fig-

ure 4(a) shows that BBO, L-SHADE, and IDE converged

to their best-found solution relativity quickly WDE

Table 3 Utilized data for case studies

Input parameters Unit Symbol Routine optimization Sensitivity analysis

Internal friction angle of base soil � / 30 30

Unit weight of base soil kN/m3 cs 18 19.5

Poisson’s ration – ls 0.3 0.5

Elasticity modulus of soil kPa Es 10,500 30,500

Over-excavation length m L0 0.3 0.3

Over-excavation width m B0 0.3 0.3

Yield strength of reinforcing steel MPa fy 400 400

Compressive strength of concrete MPa fc 21 21

Concrete cover cm Cc 7 7

Unit weight of concrete kN/m3 cc 23.5 23.5

Depth of bottom of the footing from the ground surface m D 0.5 0.5

Maximum allowable settlement mm d 25 25

The factor of safety for bearing capacity – SFB,design 3 3
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recorded lots of changes and improvements during the

search. Figure 4(b) shows mean convergence history for all

the algorithms. For this case study, these plots indicted that

L-SHADE and CMM-BBO have satisfactory performance,

while BBO, IDE, and WDE were inefficient, and GA, DE,

and ES displayed the weakest performance.

5.2 Case II: axial and flexural loading
at the center of foundation

In this case, the foundation is subjected to an external

moment from the dead and live load as 400 kN m and

150 kN m in addition to the vertical forces defined in the

Case I. Table 5 lists the best, worst, mean, SD, and median

values for Case II low-cost design from 101 runs. Only

BBO and WDE were are to find feasible low cost designs.

While the best design was obtained by BBO, WDE

demonstrated overall better performance in this case study.

To be more precise, the best-found solution by WDE is

only 0.07% more than BBO while its worst, mean, SD, and

median were 60.74%, 10.37%, 95.98%, and 1.01% less

than BBO. Moreover, WDE was successful in converging

to a feasible solution 101 times while BBO was successful

only 60 times.Tables 6 and 9 list the design variables and

operational expenses, respectively. These data also

Table 4 Design variables permitted domains

Design variables Unit Lower bound Upper bound

X1 cm 400 4000

X2 cm 400 4000

X3 cm 0 3000

X4 cm 300 3000

R1 – 2 20

R2 – 3 18

R3 – 2 20

R4 – 3 18

R5 – 4 20

Ex cm - 2000 2000

Ey cm - 2000 2000

Table 5 Design cost values for

numerical case studies
Optimization algorithm Best Worst Mean SD Median Successful run

Case I

GA 65,202.98 214,203.5 108,384.9 30,889.48 100,168 51

DE 47,854.12 234,763.3 115,026.2 40,560.58 107,810.6 57

ES 57,491.74 201,798.9 119,866.2 38,165.27 109,785.5 62

BBO 35,729.92 711,79.83 45,976.71 5496.31 44,713.83 101

L-SHADE 29,884.24 43,442.27 36,140.85 3000.00 36,163.22 101

CMM-BBO 32,593.32 43,442.27 36,306.05 1857.04 36,163.22 101

IDE 29,884.24 86,792.60 40,803.87 6936.81 39,251.28 101

WDE 29,975.51 40,982.80 37,171.43 2419.07 37,774.61 101

Case II

GA N.G. N.G. N.G. N.G. N.G. 0

DE N.G. N.G. N.G. N.G. N.G. 0

ES N.G. N.G. N.G. N.G. N.G. 0

BBO 82,586.08 223,702.4 95,031.69 25,601.23 86,057.1 60

L-SHADE N.G. N.G. N.G. N.G. N.G. 0

CMM-BBO N.G. N.G. N.G. N.G. N.G. N.G.

IDE N.G. N.G. N.G. N.G. N.G. N.G.

WDE 82,641.39 87,822.48 85,174.01 1029.10 85,184.41 101

Case III

GA N.G. N.G. N.G. N.G. N.G. N.G.

DE N.G. N.G. N.G. N.G. N.G. N.G.

ES N.G. N.G. N.G. N.G. N.G. N.G.

BBO 49,432.67 406,799.4 68,315.1 35,051.68 63,301.79 101

L-SHADE N.G. N.G. N.G. N.G. N.G. 0

CMM-BBO N.G. N.G. N.G. N.G. N.G. N.G.

IDE N.G. N.G. N.G. N.G. N.G. N.G.

WDE 54,271.58 71,325.71 62,659.25 4314.35 62,688.27 36
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confirms that GA, DE, ES, IDE, and WDE failed to con-

verge to a fesiable final design.

Tables 10, 11, 12, 13, 14, 15, and 16 list the results of a

sensitivity analysis of the effect of various soil parameters

to the final design based on the best and mean results of

101 runs. Figures 5, 6, and 7 shows a comparison of mean

values for each optimization method for variations in the

values of soil parameters. It worth noting that the results

are based on the successful runs from the original 101 runs.

The results in Table 10 show considerable change in the

low-cost designs as Df varies from 300 mm to 3000 mm.

BBO and WDE both solved the problem efficiently, while

the performance of other algorithms was varied sporadi-

cally. The results demonstrated that increasing the depth of

Table 6 Final low-cost optimization designs for the proposed case studies

Optimization algorithms X1 (m) X2 (m) X3 (m) X4 (m) R1 R2 R3 R4 R5 Ex Ey

Case I

GA 1355.02 1351.58 1902.34 310.94 14 17 16 11 14 – –

DE 1635.16 1366.55 1947.95 361.28 14 14 14 16 18 – –

ES 1642.17 1806.07 2511.80 350.66 14 17 16 12 18 – –

BBO 1361.95 1362 1265.77 301.41 14 13 12 17 14 – –

L-SHADE 1180.38 1180.38 1567.86 300 12 16 12 16 14 – –

CMM-BBO 1180.38 1352.11 1393.212 300 12 17 14 12 14 – –

IDE 1180.38 1180.38 1567.861 300 12 16 12 16 14 – –

WDE 1181.16 1185.14 1969.71 302.80 12 16 12 16 14 – –

Case II

GA – – – – – – – – – – –

DE – – – – – – – – – – –

ES – – – – – – – – – – –

BBO 1696 2901 1037 336.38 18 16 16 12 14 – –

L-SHADE – – – – – – – – – – –

CMM-BBO – – – – – – – – – – –

IDE – – – – – – – – – – –

WDE 1696.05 2901.69 1240.77 336.52 18 16 16 12 14 – –

Case III

GA – – – – – – – – – – –

DE – – – – – – – – – – –

ES – – – – – – – – – – –

BBO 1654 1712.93 1927.76 301.11 14 15 14 15 14 - 4 - 180

L-SHADE – – – – – – – – – – –

CMM-BBO – – – – – – – – – – –

IDE – – – – – – – – – – –

WDE 1624.29 1796.59 1988.56 344.47 16 13 14 16 14 41.80 221.60

Table 7 Level of construction operations and facilities for Case I

The resultant operations content Unit Value

GA DE ES BBO L-

SHADE

CMM-

BBO

IDE WDE

Excavation m3 8.02 9.40 14.74 5.38 5.54 5.38 5.54 6.99

Concrete framework m2 4.28 5.03 5.5284 4.24 3.79 4.00 3.79 3.82

Reinforcement kg 2.99 E?03 2.18E?03 2.61E?03 1.63E?03 1.36E?03 1.48E?03 1.36E?03 1.36E?03

Concrete m3 1.87 2.37 2.92 1.86 1.49 1.66 1.49 1.50

Compacted backfill m3 2.17 2.40 3.43 1.45 1.63 1.52 1.63 2.05
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footing generally reduces the final cost. By increasing the

depth of footing from 300 mm to 3000 mm, the cost of the

foundation can be reduced by about 38%. Figure 5 shows

mean values for all optimization methods as footing depth

increases. BBO and WDE were successful in fesiable

solution while other techniques did not converge in most of

the cases. At depths greater than 1000 mm both the BBO

and WDE showed monotonic variations in final designs;

whereas, the other algorithms did not follow any pattern.

The mean design generated by WDE is about 8.81% less

than BBO.

Table 11 lists designs obtained from each optimization

method as the compressive strength of the concrete varies

from 20 to 55 MPa. As the compressive strength increase,

the cost of the WDE and BBO designs decrease, with a

maximum cost reduction of about 28%. Figure 6 shows the

change in the cost of the foundation designs as concrete

compressive strength decreases. BBO and WDE show

consistent cost reductions as the concrete strength increase;

whereas, the remaining algorithm do not demonstrate this

effect or only sporadically.

Table 12 lists designs obtained by each method as the

inclination angle changes from 0 to 40�. WDE results it can

be observed that when the inclination angle is increased

from 0� to 30� the final cost increase only slightly; how-

ever, after that the cost increases sharply with maximum

cost increases 43.39% and 40.56% obtained by BBO and

WDE, respectively. Figure 7 shows the mean results for all

optimization methods as the inclination angle increases.

The cost of BBO and WDE designs for inclination angles

between 0� and 30� increase slightly; whereas; from 35� to

45� the cost increase about 40%.

Tables 13, 14, 15, and 16 demonstrate that design

obtained by BBO and WDE were not very sensitivity to

Table 8 Design cost values for

numerical case studies recorded

in the previous studies

(Gandomi and Kashani 2018)

Optimization algorithm Best Worst Mean SD Median

Case I

PSO 43,442.27 174,424.19 68,735.94 25,816.84 65,635.62

APSO 43,443.57 101,988.36 59,688.07 13,129.36 56,338.39

FA 43,460.08 56,392.56 47,889.69 4050.38 48,655.36

LKH 43,442.27 121,053.07 60,307.73 20,401.16 50,854.70

WOA 44,069.07 269,536.09 74,438.94 33,273.80 63,619.03

ALO 43,449.55 86,639 54,489.32 9100.66 51,528.52

GWO 43,449.51 50,867.28 44,099.64 1896.90 43,548.68

MFO 43,442.27 92,818.80 52,244.01 11,878.01 47,177.09

TLBO 43,442.27 80,530.39 50,030.90 6983.25 48,867.28

Case II

PSO N.G. N.G. N.G. N.G. N.G.

APSO 83,106.50 199,333.61 111,235.31 39,132.04 88,429.40

FA 83,420.23 95,344.62 87,260.74 2048.08 86,752.26

LKH 82,561.80 168,203.28 103,150.55 31,489.16 84,684.55

WOA 86,211.90 213,337.85 143,928.04 28,789.61 141,308.61

ALO 82,591.50 171,792.51 91,960.91 11,750.99 87,682.61

GWO 82,913.69 86,744.27 84,424.89 905.71 84,722.97

MFO 82,561.80 193,416.99 98,280.99 17,005.85 89,082.68

TLBO 82,561.80 91,131.93 84,042.91 1319.29 83,357.92

Case III

PSO 50,774.31 133,384.03 60,345.81 14,491.96 56,501.26

APSO 50,477.45 153,021.38 65,808.17 14,359.98 61,379.86

FA 50,582.63 71,602.48 59,828.52 3806.46 59,357.75

LKH 48,720.24 625,896.24 75,764.29 60,913.08 63,923.62

WOA 62,785.04 726,015.73 147,202.86 96,514.92 121,278.82

ALO 52,372.17 89,347.06 64,734.54 7458.81 62,263.10

GWO 49,218.44 113,860.89 62,590.00 21,403.45 50,576.35

MFO 49,141.25 220,477.60 84,223.73 34,322.99 79,630.52

TLBO 49,504.24 80,344.96 56,061.12 5078.10 59,982.06
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various in the other input parameters (i.e., /, c, Es, and t).

Comparison of the current results with the previous studies

listed in Table 8 demonstrated that in terms of the best

results WDE and BBO obtained lower cost designs than

APSO, FA, WOA, and GWO. Based on the mean results

BBO out performed PSO, APSO, FA, LKH, and WOA,

while WDE was better than all the swarm algorithms

expect of GWO and TLBO.

Figure 8 shows the convergence rate history for the best-

found solutions and mean results and demonstrate that

BBO and WDE significantly outperform IDE. A compar-

ison of BBO and WDE shows that BBO found feasible

solutions sooner than WDE and converged the its final

design at the beginning of the search and varied slightly

after that point. In contrary, WDE experienced many

changes during the search process and converged to its

final optimum solution after 600th iteration. Convergence

history based on the mean results show WDE out per-

formed BBO and that IDE did not work efficiently in this

case. As discussed comprehensively and demonstrated in

the results, by changing the loading conditions the objec-

tive function became more complex than Case I. Only three

of the eight optimization algorithms, BBO, WDE, and IDE,

were capable of solving this foundation problem. Further-

more. only WDE obtained feasible solution in 101 runs.

5.3 Case III: axial and flexural loading
with dynamic location

In Case III, the location of the column is not fixed and can

vary within the two-dimensional space at the top of the

foundation. Therefore, two more design variables, the

eccentricity of the column along with x and y directions,

are added to foundation problem defined in Case II,. The

most important effect of varying the location the column is

moderating the pressure distribution under the footing and

making it more uniform. which can prevent the foundation

structure from having an unbalanced strength. The results

listed in Tables 5 and 6 show that only BBO and WDE

obtained feasible designs. BBO found the lowest cost

design of $49,432.67 which is 8.92% less than WDE’s.

However, WDE recorded better overall results in terms of

the worst, mean, SD, and median values. Furthermore, the

results indicated the positive influence of including the

Fig. 4 Convergence history based on best-found solutions and mean results for Case I

Table 9 Final level of construction operations and facilities for Case II

The resultant operations content Unit Value

GA DE ES BBO L-SHADE CMM-BBO IDE WDE

Excavation m3 – – – 8.95 – – 9.34 10.71

Concrete framework m2 – – – 6.87 – – 5.68 6.87

Reinforcement kg – – – 3.77E?03 – – 7.66E?03 3.77E?03

Concrete m3 – – – 4.39 – – 2.81 4.39

Compacted backfill m3 – – – 1.77 – – 2.26 2.12
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location of the column as a design variable; reducing the

cost of the foundation by nearly 40%.

Tables 6 and 17 list the values of the design variables

and operational costs for best Case III foundation designs,

respectively. BBO and WDE obtained feasible designs

while GA, DE, ES, L-SHADE, CMM-BBO, and IDE were

not successful. Comparison of the results with the previous

study by Gandomi and Kashani (2018) demonstrated that

LKH found the lowest best value while TLBO obtained the

lowest of mean value.

Tables 18, 19, 20, 21, 22, 23, and 24 list the results of a

sensitivity analysis of the effect of various soil parameters

to the Case III final design based on the best and mean

results of 101 runs. Figures 9, 10, and 11 shows a com-

parison of mean values for each optimization method for

variations in the values of soil parameters.

The results in Table 18 show considerable change in the

low-cost designs as Df varies from 300 mm to 3000 mm.

Only BBO solved the problem efficiently, while the per-

formance of other algorithms was varied sporadically. In

general, the results demonstrated that increasing the depth

of footing generally reduces the final cost. By increasing

the depth of footing from 300 mm to 3000 mm, the cost of

the foundation can be reduced by about 37%. Figure 9

shows mean values for all optimization methods as footing

depth increases. Only BBO consistently obtained fesiable

solutions while other techniques did not converge in most

of the cases. At depths greater than 1600 mm, there was

little effect on the final design due to depth.

Table 19 lists designs obtained from each optimization

method as the compressive strength of the concrete varies

Table 10 Cost ($) design variation under the varying depth of foundation for Case II

Df (m) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

300 N.G. N.G. N.G. 135,391.9 135,519.09 135,519.1 135,519.1 135,566.75

500 N.G. N.G. N.G. 114,385.1 115,076.56 115,076.6 115,076.6 115,111.74

700 119,154 N.G. N.G. 97,367.43 99,249.10 99,249.1 99,249.1 99,265.26

800 N.G. N.G. 106,361.2 91,182.49 89,523.20 89,523.2 89,523.2 89,602.53

1000 N.G. 108,867.6 130,212.5 82,581.76 N.G. N.G. N.G. 82,629.60

1200 208,411.2 131,832.2 142,731 82,642.55 N.G. N.G. 169,788.1 83,129.53

1400 221,234.5 N.G. N.G. 82,650.85 N.G. N.G. 162,581.7 82,712.42

1600 N.G. N.G. 94,106.75 82,707.39 N.G. N.G. 168,097.4 82,698.75

1800 N.G. 211,061.2 109,024 82,756.66 N.G. N.G. N.G. 82,808.66

2000 115,739.3 192,416.6 117,986.2 82,785.29 N.G. N.G. 168,162.7 82,802.18

2200 177,281 N.G. 116,324.1 82,850.05 N.G. N.G. 168,452.7 82,861.07

2400 195,449.1 141,458 N.G. 82,874.55 N.G. N.G. 163,771.4 82,962.48

2600 N.G. 109,287.1 N.G. 82,932.78 82,911.95 N.G. N.G. 83,006.99

2800 N.G. N.G. 183,062.1 82,994.54 N.G. N.G. N.G. 83,009.01

3000 207,476.4 N.G. 102,807.3 83,012.39 N.G. N.G. N.G. 83,197.67

Variation (%) – – – - 38.69 – – – - 38.63

Table 11 Cost ($) design variation under varying compressive strength of concrete for Case II

fc (MPa) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

20 115,383.9 102,259.8 201,676.6 82,592.51 N.G. N.G. N.G. 83,392.64

25 N.G. 192,468 N.G. 76,023.51 77,293.38 N.G. N.G. 75,986.84

30 118,075 103,926.3 85,542.49 72,407.65 72,221.42 N.G. N.G. 72,244.33

35 113,412.9 113,663.9 90,179.59 68,394.72 68,301.68 N.G. N.G. 68,341.25

40 123,813.3 N.G. 116,432 64,459.45 67,417.6 N.G. N.G. 64,541.41

45 N.G. N.G. N.G. 62,298.45 N.G. N.G. N.G. 62,744.01

50 114,589.3 110,126.5 75,195.36 61,453.68 61,726.18 N.G. N.G. 61,356.66

55 N.G. N.G. 94,695.98 59,206.41 60,817.5 N.G. N.G. 59,222.85

Variation (%) – – - 53.05 - 28.32 – – – - 28.98
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from 20 to 55 MPa. As the compressive strength increase,

the cost of the BBO designs decrease, with a maximum

cost reduction of about 69%. Figure 10 shows the change in

the cost of the foundation designs as concrete compressive

strength decreases. BBO show consistent cost reductions as

the concrete strength increase; whereas, the remaining

algorithm do not demonstrate this effect or only

sporadically.

Table 20 lists designs obtained by each method as the

inclination angle changes from 0 to 40�. That BBO,

L-SHADE, and IDE results show that as the inclination

angle is increased from 0� to 15� the final cost increase

only slightly; however, after that the cost increases sharply

with maximum cost increases 35.73%, 49.91%, and

47.81% obtained by BBO, L-SHADE, and IDE, respec-

tively. Figure 11 shows the mean results for all optimiza-

tion methods as the inclination angle increases. Th e cost of

Table 12 Cost ($) design variation under varying effective force inclination with respect to the vertical direction for Case II

i (�) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

0 91,299.71 145,499.5 106,163.7 82,662.71 85,776.54 N.G. N.G. 82,953.95

5 123,446 N.G. N.G. 82,647.22 N.G. N.G. N.G. 82,993.9

10 N.G. 188,159.7 N.G. 82,858.23 N.G. N.G. N.G. 82,704.1

15 N.G. 102,259.8 N.G. 82,739.62 N.G. N.G. N.G. 83,610.27

20 N.G. N.G. 216,040.1 82,809.72 N.G. N.G. N.G. 83,349.46

25 N.G. N.G. N.G. 82,880.09 N.G. N.G. N.G. 83,726.1

30 N.G. N.G. N.G. 82,934.74 N.G. N.G. N.G. 83,730.37

35 N.G. N.G. N.G. 83,505.88 86,227.79 N.G. N.G. 84,078.81

40 N.G. N.G. N.G. 98,917.09 90,292.52 N.G. N.G. 92,756.58

45 N.G. N.G. N.G. 118,528.5 117,908.7 N.G. N.G. 116,604.1

Variation (%) – – – 43.39 – – – 40.56

Table 13 Cost ($) design variation under varying friction angle of base soil for Case II

u (8) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

28 N.G. N.G. N.G. 82,691.6 N.G. N.G. N.G. 82,786.74

30 N.G. N.G. 109,633.9 82,600.74 N.G. N.G. N.G. 82,900.21

32 105,463.2 103,824.3 N.G. 82,524.3 N.G. N.G. N.G. 82,660.11

34 N.G. 194,759.1 99,036.07 82,475.24 N.G. N.G. N.G. 82,484.33

36 205,540.9 N.G. 105,803.9 82,399.66 N.G. N.G. N.G. 83,212.1

38 202,081.5 N.G. N.G. 82,408.4 N.G. N.G. N.G. 82,538.07

Variation (%) – – – - 0.34 – – – - 0.30

Table 14 Cost ($) design variation under varying soil density for Case II

c (�) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

11.5 105,480 135,606.5 N.G. 82,846.68 85,952.83 N.G. N.G. 82,823.18

13.5 201,119.4 145,499.5 N.G. 82,701.82 N.G. N.G. N.G. 82,979.04

15.5 N.G. 213,012.5 112,991.4 82,694.44 N.G. N.G. N.G. 82,817.23

17.5 188,711.5 N.G. N.G. 83,175.59 N.G. N.G. N.G. 83,509.75

19.5 N.G. N.G. N.G. 82,551.57 N.G. N.G. N.G. 82,597.49

21.5 202,081.5 121,366.8 183,820.3 82,619.57 N.G. N.G. N.G. 82,626.85

23.5 117,782.6 89,199.26 112,281.2 82,550.3 N.G. N.G. N.G. 82,847.11

Variation (%) 11.66 - 34.22 – - 0.36 – – – 0.03
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L-SHADE designs for inclination angles between 0� and

35� increase slightly; whereas; from 35� to 45� the cost

increase about 49%.

Table 20 lists designs obtained by each method as the

inclination angle changes from 0 to 40�. that BBO,

L-SHADE, and IDE results show that as the inclination

angle is increased from 0� to 15� the final cost increase

only slightly; however, after that the cost increases sharply

with maximum cost increases 35.73%, 49.91%, and

47.81% obtained by BBO, L-SHADE, and IDE,

Table 15 Cost ($) design variation under varying modulus of elasticity for Case II

Es (kPa) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

10,500 N.G. N.G. 115,052.8 82,590.95 N.G. N.G. N.G. 82,644.07

20,500 215,781 N.G. N.G. 82,593.03 N.G. N.G. N.G. 82,614.96

30,500 109,338 N.G. 191,171.5 82,573.05 N.G. N.G. N.G. 82,733.85

40,500 117,782.6 N.G. N.G. 82,634.41 N.G. N.G. N.G. 82,640.13

50,500 201,119.4 N.G. N.G. 82,557.94 N.G. N.G. N.G. 83,431.3

60,500 97,077.5 N.G. 99,036.07 82,576.97 N.G. N.G. N.G. 83,490.63

70,500 N.G. N.G. N.G. 82,653.84 N.G. N.G. N.G. 83,094.52

80,500 N.G. 217,417 108,009.9 82,570.73 N.G. N.G. N.G. 82,611.58

90,500 186,177.1 N.G. 97,177.59 82,616.26 83,335.72 N.G. N.G. 82,697.69

Variation (%) – – - 15.54 0.03 – – – 0.06

Table 16 Cost ($) design variation under varying Poisson’s ratio for Case II

t GA DE ES BBO L-SHADE CMM-BBO IDE WDE

0.1 N.G. 113,450.5 191,171.5 83,493.51 N.G. N.G. N.G. 82,635.82

0.2 92,686.72 N.G. N.G. 82,765.3 N.G. N.G. N.G. 82,586.48

0.3 177,612.9 89,199.26 116,254.4 82,553.41 N.G. N.G. N.G. 82,696.31

0.4 177,487.3 111,385.9 N.G. 82,575.37 82,539.51 N.G. N.G. 82,707.68

0.5 85,697.1 198,586.6 130,263.5 82,737.76 N.G. N.G. N.G. 82,739.22

0.6 85,697.1 185,961.7 N.G. 82,572.35 N.G. N.G. N.G. 83,361.62

0.7 N.G. N.G. N.G. 82,676.94 N.G. N.G. N.G. 82,762.3

0.8 N.G. N.G. 116,254.4 82,661.18 N.G. N.G. N.G. 82,756.44

0.9 N.G. N.G. 109,633.9 82,572.35 N.G. N.G. N.G. 82,652.39

1 177,487.3 192,531.8 N.G. 83,443.09 82,539.51 N.G. N.G. 83,312.7

Variation (%) – 69.71 - 0.01 - 0.06 – N.G. N.G. 0.82

Fig. 5 Mean cost ($) design variation under the varying depth of foundation for Case II
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Fig. 6 Mean cost ($) design variation under varying compressive strength of concrete for Case II

Fig. 7 Mean cost ($) design variation under varying effective force inclination with respect to the vertical direction for Case II

Fig. 8 Convergence history based on best-found solutions and mean results for Case II
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Fig. 9 Mean cost ($) design variation under the varying depth of foundation for Case III

Fig. 10 Mean cost ($) design variation under varying compressive strength of concrete for Case III

Fig. 11 Mean cost ($) design variation under varying effective force inclination with respect to the vertical direction for Case III
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respectively. Figure 11 shows the mean results for all

optimization methods as the inclination angle increases. Th

e cost of L-SHADE designs for inclination angles between

0� and 35� increase slightly; whereas; from 35� to 45� the

cost increase about 49%.

Tables 21, 22, 23 and 24 demonstrate that obtained

feasible designs were not very sensitivity to various in the

other input parameters (i.e., /, c, Es, and t). Figure 12

shows the convergence rate history for the best-found

solutions and mean results and demonstrate that BBO

significantly outperform WDE. A comparison of BBO and

WDE shows that BBO found feasible solutions sooner than

WDE and converged the its final design at the initial steps

(less than 200 iterations) and varied slightly after that

point. In contrary, WDE experienced many changes during

the search process and converged to its final optimum

solution after 600th iteration. Convergence history based

on the mean results again shows that BBO converged to

feasible designs earlier than WDE. As demonstrated in the

results, adding the location of the column as a design

variable changes the objective function and becomes more

complex than Case II. Only two of the eight optimization

algorithms, BBO and WDE were capable of solving this

foundation problem. Furthermore. only BBO obtained

feasible solution in 101 runs.

6 Conclusions

The present study is devoted to examining the performance

of three main evolutionary metaheuristic optimization

algorithms (DE, ES, and BBO) and some of their

successful variations (L-SHADE, CMM-BBO, IDE, and

WDE) on cost optimization of a reinforced concrete shal-

low footing. In order to examine the performance of the

mentioned algorithms, a MATLAB code is developed

based on ACI 318-05 requirements. Low cost shallow

foundation designs were generated for two loading cases:

1) a uniaxial force and 2) a combination of a uniaxial force

and a flexural moment. In the third case, the location of the

column along the top of the foundation is considered to a

design variable. All the optimization algorithms are run

101 times, and the results reported in the form of best,

worst, mean, SD, and median of successful runs. Results

show that only BBO and WDE algorithms were able to

deal successfully with all the cases. In fact, all the algo-

rithms were successful in handling the first case; however,

in the second case only7 BBO and WDE obtained feasible

designs. Based on the best low cost designs, it was shown

that that applying a flexural moment to the footing causes

about a 176% increase in cost; whereas, allowing location

of the column to vary on top of the footing reduces the cost

about 40%. In summary, none of the presented optimiza-

tion algorithms were successful for all cases. However, for

Case I, L-SHADE obtained the lowest best and mean

values. WDE and BBO provided the best design for Case II

and Case III, respectively.

A sensitiveity analysis measured the cost of feasible

foundation designs due changes in the following parame-

ters: base soil friction angle from 28� to 38�, soil density

from 11.5 to 23.5 kN/m3, modulus of elasticity from 10,500

to 90,500 kPa, Poison’s ratio from 0.1 to 1, concrete

compressive strength from 20 to 55 MPa, effective force

inclination respect to vertical axis from 0� to 45�, and depth

of footing from 300 mm to 3000 mm. Variations of Df, fc,

Fig. 12 Convergence history based on best-found solutions and mean results for Case III
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and i had considerable impact on the final design cost.

Based on these results the cost of a foundation was reduced

by increasing the depth of footing from 300 mm to 1200

mm for Case II and by increasing the depth from 300 mm

to 1800 mm for Case III. Using stronger concrete also

resulted in a low cost designs. However, changing the

effective force inclination angle with respect to the vertical

direction from 15� to 45� increased the cost for both Cases

II and III. Other mentioned input parameters had

insignificant effects on the final designs.

Table 17 Final level of construction operations and facilities for Case III

The resultant operations content Unit Value

GA DE ES BBO L-SHADE CMM-BBO IDE WDE

Excavation m3 – – – 10.95 – – – 11.54

Concrete framework m2 – – – 5.0095 – – – 5.44

Reinforcement kg – – – 2.23E?03 – – – 2.47 E?03

Concrete m3 – – – 2.60 – – – 2.86

Compacted backfill m3 – – – 2.58 – – – 2.70

Table 18 Cost ($) design

variation under varying depth of

foundation for Case III

Df (m) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

300 N.G. N.G. N.G. 82,092.04 N.G. N.G. N.G. 86,623.57

500 N.G. N.G. N.G. 71,436.18 N.G. N.G. N.G. N.G.

700 144,547.4 N.G. N.G. 66,709.61 N.G. N.G. N.G. N.G.

800 N.G. N.G. N.G. 67,272.12 N.G. N.G. N.G. N.G.

1000 N.G. N.G. N.G. 63,085.8 N.G. N.G. N.G. N.G.

1200 N.G. 106,433.1 N.G. 58,458.99 N.G. N.G. N.G. N.G.

1400 N.G. N.G. N.G. 55,841.72 N.G. N.G. N.G. N.G.

1600 N.G. N.G. N.G. 51,560.36 N.G. N.G. N.G. N.G.

1800 N.G. N.G. N.G. 51,045.92 N.G. N.G. N.G. N.G.

2000 N.G. N.G. N.G. 51,681.57 N.G. N.G. N.G. N.G.

2200 N.G. 133,501.4 N.G. 50,936.83 N.G. N.G. N.G. 53,710.9

2400 N.G. N.G. N.G. 50,944.72 N.G. N.G. N.G. 55,637.56

2600 N.G. N.G. N.G. 52,760.58 N.G. N.G. N.G. 55,131.87

2800 N.G. N.G. N.G. 50,911.85 N.G. N.G. N.G. 55,076.39

3000 N.G. N.G. N.G. 51,192.12 N.G. N.G. N.G. 51,629.04

Variation (%) – – – - 37.64 – – – –

Table 19 Cost ($) design

variation under varying

compressive strength of

concrete for Case III

fc (MPa) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

20 168,784.5 N.G. N.G. 51,991.54 N.G. N.G. N.G. 53,925.02

25 N.G. N.G. 105,855.2 46,068.64 N.G. N.G. N.G. 48,602.77

30 N.G. N.G. N.G. 44,060.38 N.G. N.G. N.G. 46,724.59

35 N.G. N.G. 110,931.9 39,801.31 N.G. N.G. N.G. N.G.

40 N.G. N.G. 111,189.6 36,386.25 N.G. N.G. N.G. N.G.

45 N.G. N.G. N.G. 35,763.86 N.G. N.G. N.G. N.G.

50 122,588.4 N.G. 171,781.1 35,687.58 N.G. N.G. N.G. N.G.

55 N.G. N.G. 71,929.68 34,305.3 N.G. N.G. N.G. N.G.

Variation (%) – – – - 69.15 – – – –
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Table 20 Cost ($) design

variation under varying

effective force inclination with

respect to the vertical direction

for Case III

i (8) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

0 N.G. N.G. N.G. 56,442.04 59,928.89 N.G. 64,612.95 N.G.

5 N.G. N.G. N.G. 54,588.8 61,298.61 N.G. 60,157.71 N.G.

10 N.G. N.G. N.G. 54,187.8 62,915.01 N.G. 68,546.14 N.G.

15 N.G. N.G. N.G. 51,928.71 64,035.97 N.G. 66,405.02 N.G.

20 N.G. N.G. N.G. 57,339.86 70,318.04 N.G. 62,487.87 N.G.

25 N.G. 126,536.2 N.G. 61,231.49 66,151.91 N.G. 77,032.93 N.G.

30 N.G. N.G. N.G. 64,729.46 71,599.61 N.G. 75,984.31 N.G.

35 N.G. N.G. N.G. 68,699.79 83,805.42 N.G. 77,904.68 N.G.

40 N.G. N.G. N.G. 71,510.76 79,746.21 N.G. 84,467.11 N.G.

45 N.G. N.G. N.G. 76,610.07 89,840.11 N.G. 95,555.55 N.G.

Variation (%) – – – 35.73 49.91 – 47.89 –

Table 21 Cost ($) design variation under varying friction angle of base soil for Case III

u (8) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

28 N.G. N.G. N.G. 52,695.49 64,678.39 N.G. 63,259.73 N.G.

30 N.G. N.G. N.G. 55,047.71 58,104.73 N.G. 63,311.59 130,197.3

32 N.G. 231,718 N.G. 54,350.52 85,064.69 N.G. 67,519.83 118,025.5

34 N.G. N.G. N.G. 52,792.72 N.G. N.G. 62,109.73 115,106.5

36 N.G. N.G. N.G. 55,159.68 N.G. N.G. 61,021.06 128,731.7

38 185,589.2 N.G. N.G. 51,143.69 N.G. N.G. 69,164.85 120,612.8

Variation (%) – – – - 2.94 – – 9.33 –

Table 22 Cost ($) design

variation under varying soil

density for Case III

c (8) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

11.5 N.G. N.G. N.G. 56,505.33 69,159.45 N.G. 61,156.05 N.G.

13.5 N.G. 231,718 N.G. 55,043.18 57,354.19 N.G. 64,498.02 N.G.

15.5 N.G. 115,166.4 163,118.2 56,036.58 67,782.45 N.G. 62,578.5 N.G.

17.5 N.G. N.G. N.G. 50,249.32 55,311.28 N.G. 62,327.23 N.G.

19.5 N.G. N.G. N.G. 55,190.71 66,264.3 N.G. 68,251.97 N.G.

21.5 N.G. N.G. N.G. 50,410.93 82,232.17 N.G. 66,774.31 N.G.

23.5 N.G. N.G. 161,874.6 52,764.79 75,812.09 N.G. 62,055.69 N.G.

Variation (%) – – – - 6.62 9.62 – 1.47 –

Table 23 Cost ($) design

variation under varying

modulus of elasticity for Case

III

Es (kPa) GA DE ES BBO L-SHADE CMM-BBO IDE WDE

10,500 N.G. N.G. N.G. N.G. 68,976.09 N.G. 69,248.58 N.G.

20,500 N.G. 112,810.2 132,913.8 N.G. 61,052.41 N.G. 70,868.36 N.G.

30,500 N.G. 140,066.4 154,343.7 N.G. 61,376.15 N.G. 63,501.42 N.G.

40,500 N.G. N.G. N.G. N.G. 59,424.4 N.G. 63,478.81 N.G.

50,500 N.G. N.G. N.G. N.G. 61,560.54 N.G. 60,865.56 N.G.

60,500 191,740.5 151,938.4 176,960.5 N.G. 65,669.32 N.G. 71,845.7 N.G.

70,500 N.G. N.G. N.G. N.G. 61,997.06 N.G. 76,172.53 N.G.

80,500 164,477.5 117,382.1 N.G. N.G. 62,491.87 N.G. 62,253.54 N.G.

90,500 69,706.2 N.G. 117,875.2 N.G. 67,142.64 N.G. 68,955.79 N.G.

Variation (%) – – – – - 2.66 – - 0.42 –
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